Replica Placement in Edge Computing

Leonardo Marques Epifanio
leonardo.epifanio@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Luis Rodrigues)

Abstract. Edge computing is defined as a paradigm in which servers
are placed close to the edge of the network, in order to assist applications
that running in resource-constrained devices. There are two main advan-
tages of edge computing: firstly, edge nodes can provide assistance with
much lower latency than the cloud, because servers are physically closer
to the devices; and secondly, edge nodes can shield the cloud from most
requests, by serving the requests locally. Edge nodes can help in the col-
lection of information from the devices, by aggregating information from
multiple devices before sending it to the cloud. Edge nodes can also make
information available to local devices, that can then access this informa-
tion with low latency. In this work we are mainly interested in the latter,
and we study techniques that can be used to place replicas of relevant
data on edge devices. We propose a system that can collect estimates
of future data demand from different sources (such as historical data
or current observed access patterns) and that can make data placement
decision based on these demand estimates, taking also into considera-
tion the costs of maintaining data replicas and the benefits that can
be achieved by maintaining those replicas. We will illustrate the opera-
tion of our system using examples from the area of vehicular networks,
where edge nodes can help vehicles to select the best traffic routes based
on up-to-date information regarding road congestion, accidents, or other
hazards.

1 Introduction

Edge computing is defined as a paradigm in which servers are placed close to
the edge of the network, in order to assist applications that running in resource-
constrained devices [1]. There are two main advantages of edge computing [2]:
firstly, edge nodes can provide assistance with much lower latency than the cloud,
because servers are physically closer to the devices; and secondly, edge nodes can
shield the cloud from most requests, by serving the requests locally.

An application area where edge computing may prove helpful is the area
of vehicular networks. Current vehicles have multiple sensors that can capture
information not only about the operation of the vehicle itself (such as fuel con-
sumption), but also about the environment (temperature, road condition, etc).
If this data can be effectively collected, it can prove itself useful to many par-
ties: the information can be used by makers to schedule vehicle maintenance
and to improve vehicle design, city planners can use the information to design
better road systems, etc. Furthermore, vehicles can also be consumers of this
information: for instance, a vehicle can leverage the data collected by other ve-
hicles regarding road congestion, accidents, or other hazards, to plan alternative
routes [3]. In this setting, edge nodes can help in collecting information from the
vehicles, by aggregating it from multiple devices in an area, before sending it to
the cloud. Edge nodes can also make this information available to local vehicles,
that may then access it with low latency.

In this work we address the problem of data placement for edge computing,
studying several techniques that can be used to place replicas of relevant data
on edge devices. We propose a system that can collect estimates of future data
demand from different sources (such as historical data or current observed access
patterns) and that can make replica placement decisions based on these demand
estimates, taking also into consideration the costs of maintaining data replicas
and the benefits that can be achieved by maintaining those replicas.

The developed system has to be scalable enough to support a high number of
participants, and adaptable to dynamic changes in the data accesses. We will also
account for different types of operations, and how they affect the communication
between nodes, according to the consistency models they are set to support.

We will illustrate the operation of our system using examples from the area
of vehicular networks, as we’ve described. In this case, historical information
regarding the requests of vehicles on their routes, may allow to predict which
information is relevant to maintain, at a given edge node, at a given time of the
day. The decision of placing a replica of that information, on a given node, then
needs to take into consideration its potential benefits (how likely it is that the
information is going to be used, and what savings can be achieved by serving
requests closer to the requesting nodes).

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. We provide a brief introduction to
key concepts in Section 3, and review existing solutions in Section 4. Section 5
describes the proposed architecture to be implemented and Section 6 describes

how we plan to evaluate our results. Finally, Section 7 presents the schedule of
future work and Section 8 concludes the report.

2 Goals

This work addresses the problem of data placement in edge networks. More
precisely:

Goals: We plan to design, implement, and evaluate techniques to per-
form automatic data placement decisions in edge computing scenarios.
Each data placement decision should be made based on a utility func-
tion that considers the expected benefits of placing a replica on given
edge nodes, and the costs of maintaining that replica. For estimating
the benefits of each decision, we plan to use both historical and current
information regarding data usage.

We plan to maintain, for each data item, information regarding both main-
tenance costs and access patterns. This metadata should reflect not only the
current usage of the item but also historical records. Then we plan to design
policies to make decisions regarding which sites should replicate which data
items at a given point in time. Ideally, the policies would maximize the utility
of the entire system but, given the scale of the system, that is expected to be
composed of a high number of edge nodes and data items, to compute an optimal
assignment would be infeasible, in practice. Thus, we will also study heuristics
that can be executed in a decentralized manner. The project will produce the
following expected results.

Ezpected results: The work will produce 1) a specification of the meta-
data that needs to be maintained to drive the data placement policies; ii)
a specification of the optimization problem, regarding replica placement;
iii) an algorithm to execute these policies in runtime, in a decentralized
and scalable manner; iv) an implementation of the resulting system; v)
an extensive experimental evaluation using simulation software.

3 Background

3.1 Edge Computing and Related Paradigms

The emergence of technologies and applications for mobile computing and the
Internet of Things (IoT), has driven computation towards dispersion, as opposed
to centralization. With the growing quantity of data generated at the edge of
the network, in order to assess the issues of high-bandwidth, geographically-
dispersed, low-latency applications, several paradigms have been proposed [1],
in which the data is stored, processed, and acted upon close to these devices:

Edge Computing is one of such paradigms, where computation is located
as close as one hop from IoT devices (data sources), extending their capabilities,
in a ubiquitous manner.

Fog Computing also decentralizes computation and storage, but its model
is hierarchical, providing progressively increasing resources along a multi-tier
succession of nodes, located between the IoT devices and the cloud data centers.

Multi-access Edge Computing, known also as Mobile Edge Computing,
provides resources through the Radio Access Network (RAN) infrastructure.
This model is expected to benefit significantly from the, now developing, 5G
platform, which will allow for edge computing to be accessible to a wide range
of mobile devices, with reduced latency.

Cloudlet Computing uses computers or clusters of computers, known as
cloudlets, with virtualization capabilities. Tasks are taken from mobile clients,
and divided among the cloudlet nodes in their proximity, which in themselves,
might also be composed of clustered mobile devices.

Despite presenting some differences, these concepts have been used inter-
changeably in previous literature, and demonstrate how the system models vary
within the edge computing paradigm. Despite the fact that each system is, in
its majority, composed of nodes that are less resourceful than the cloud data-
centers, there can still be found a large variance in the storage capabilities and
network reach of each node, and how these communicate with one another, ac-
cording to the topology and routing algorithms. Along with these factors, there
can also be seen differing characteristics from application to application, such
as the amount of data involved, the frequency and locality of requests, and the
consistency requirements of each operation.

Since our aim is to define a general replica placement scheme for the edge,
we must take these differences into account, by using strategies that are flexible
and scalable, while maintaining effectiveness.

3.2 Example of an Edge Computing Application

Vehicular Ad-hoc Networks [4] are defined as decentralized wireless networks
of devices, with vehicle mobility patterns. With the increase in the number of
vehicles on the road, and the advancement of vehicle and communication tech-
nologies, VANET technologies have been developed with the goal of increasing
road safety and transportation efficiency. Two types of nodes are distinguished
in this model: On-Board Units (OBU) and Road-Side-Units (RSU). Usually,
the RSUs, being more resourceful nodes placed strategically along the vehicles’
paths, represent higher tier nodes, that connect the OBUs, which are placed
inside the vehicles, to the upper level of the network.

In systems where these nodes are responsible for producing data, we can very
intuitively observe the applicability of an edge computing model. Such is the case
in [5], where the authors propose LiveMap, an automated system for acquiring,
curating, and disseminating detailed road conditions, with low latency. A simple

approach would be to ship the data from the vehicles to the cloud for its analysis
and storage, however, as the authors note, this would hinder the scalability of
the system, as there are specific areas in cities with a large amount of traffic, in
which multiple vehicles could be transmitting high quality media at the same
time. Because of this, vehicle edge devices are used, along with zone cloudlets,
each operating over a county-sized coverage area.

Specifically, there are several vehicle cloudlets, each operating in a vehicle,
which collect sensor data from the road, and transform it into semantic updates
of lower bandwidth, which are then transmitted to the zone cloudlet. This unit is
responsible for fusing the inputs from all vehicle cloudlets, storing the data, and
selectively disseminating it to the participants, which may then cache it in the ve-
hicle cloudlet. Several data acquisition/dissemination approaches are considered,
with varying data upload rates. The most notable technique is throttle-by-cache,
in which vehicles maintain a cache of the surrounding area in the LiveMap,
and when a hazard is detected, they consult their caches and only upload new
observations.

The system achieves lower latency accesses and updates, in comparison with a
centralized model, but since each zone cloudlet covers a full county-sized area, in
cities with very high, concentrated traffic, bandwidth usage for hazard reporting
may still overwhelm the zone cloudlet, negatively affecting the request latencies.

By using less resourceful and smaller coverage-area cloudlets, and allowing
vehicles to query these cloudlets before reaching their respective zones, we can
alleviate the aforementioned bottlenecks. To further improve performance, and
to allow the effective operation of real-world applications such as trajectory plan-
ning and traffic rerouting, we may also replicate hazard information according to
their requests’ popularity and geographical locality, also leveraging daily traffic
patterns that occur due to daily commutes or weekly events. This way vehicles
in a zone z1, going to 29, can have the hazards of z5 cached in z1, even prior to
fetching them.

Several replica placement techniques that have been applied to this paradigm
account for the mobility of clients, and how to replicate the chunks of an item,
in a way that a requesting vehicle is able to collect the full item by accessing the
RSU nodes along its path [6-8]. However, these type of placement techniques
are, in a way, more related to the problem of how to transmit data to mobile
users, and are orthogonal to our work, since we only consider mobility as a factor
that may influence the locality and dynamism of requests.

3.3 Replica Placement

Although there are several applications for replica placement, such as fault
tolerance and load balancing, in this work, we investigate when and where to
create item replicas, with the objective of improving user-perceived latencies, in
an efficient way.

A replica placement scheme aims at achieving a set of goals, that may be
described by specifying a cost function, whose minimization achieves optimal

placement. These cost functions can account for several factors such as request
popularity and geographical locality, distances between nodes, connection laten-
cies, link bandwidth, storage costs, etc.

In [9], an earlier work on replica placement, the authors specify a simple
cost model that accounts for access costs from nodes to replicas, but assumes
homogeneous request patterns across all nodes. In this model, the goal is to
find the placement strategy which minimizes the average number of hops that
requests must perform, in order to reach the desired replica. The cost function
of placement strategy x is defined by:

I J
1
Cla) =3 D> Aip;di(@)
i=1 j=1

in which A is the total request rate of all nodes, I is the set of nodes, .J the set
of objects, \; the request rate of node 7, p; the probability that object j will be
requested in any node, and d;;(z) the shortest distance from ¢ to a node that
contains j, under placement x. This placement strategy is also subjected to a
storage constraint, regarding the maximum capacity at each node.

The authors prove the NP-Completeness of deciding if there is a placement
x that achieves cost value lower than a target T', by mapping the problem to the
multiple knapsack problem. However, if we consider the optimization problem,
that finds the solution which minimizes cost, we may conclude that, like the
multiple knapsack optimization problem, solving it is NP-Hard.

Because of this property, inherent to any type of Generalized Assignment
Problem, finding the optimal solution for the cost function of a placement scheme
is not feasible. Due to this, each scheme defines instead an heuristic approach,
that aims at approximating the solution. We will classify each approach accord-
ing to:

Optimality, which defines how well the scheme approximates to the optimal
solution.

Centrality, which characterizes where the decisions and computations take
place. On one end, we have systems that perform these actions on a central
node, which takes into account the whole of the network, on the other end, a
system may have each node executing the placement algorithm in a parallel and
autonomous way, with a limited view of the network, which normally results in
rougher approximations to the optimal solution. Since we want the system to be
able to handle a large number of nodes and data items, we aim for decentraliza-
tion, in order to avoid bottlenecks, and reduce execution time via parallelism,
all the while preserving optimality.

Replication degree, which can be fixed, restraining the number of replicas for
each item to a predefined value, or adaptive, changing the number of replicas
according to item demand. Performing placement with adaptive degrees is more
complex than with fixed degrees, but achieves more optimal results, particularly
in skewed workloads.

Routing, which may be classified as replica-aware or replica-blind. Replica-
aware routing schemes have knowledge on the locations of replicas, directing
requests according to these locations, and adapting to changes in their place-
ment. These schemes have the advantage of reducing request latency, but may
require the nodes to synchronize with each other and update their routing ta-
bles, whenever there are changes in the replica locations, also achieving lower
efficiency when performing replica lookup.

Replica-blind schemes, on the other hand, route requests regardless of repli-
cation. If a request, when being propagated through its path to the original file
location, reaches a node with a replica, then the request is satisfied by this node,
reducing latency. Therefore, these schemes are limited to replicating items in the
request paths, but don’t require any synchronization, achieving high efficiency.

Efficiency, which is split into the computation and communication overheads.
The computation overhead represents the complexity of computation necessary
to perform a decision. These computations can be performed in parallel across
multiple nodes, so the considered overhead is that of a single node.

The communication overhead represents the amount of communication be-
tween nodes that is needed not only during the execution of the placement algo-
rithm, to send the information needed for performing the placement decisions,
but also after the placement algorithm, for keeping the system up-to-date with
the new replica locations.

Adaptability to dynamic workloads, which is a requirement in systems
where the requested data varies in time, with regards to its locality and pop-
ularity. Since we are making a general placement scheme for edge computing
applications, we aim for strong adaptability.

Convergence, which defines how long, in terms of optimization rounds, the
scheme takes to converge to a stable placement solution. A stable solution is
reached when the system stops optimizing, by reaching the best possible solution
for the current workload, within the heuristic’s capability. Slow convergence
manifests itself more negatively in dynamic workloads, since a stable solution
may never be reached before the workload changes.

Decision factors, which are the factors considered when performing the place-
ment decisions. These may include, among others, the popularity of requests for
each item at each node, the latency between nodes and item replicas and the
storage costs of each node.

3.4 Context-Sensitive Differential Consistency

In [10] a distributed data store system for the fog paradigm is proposed, with
a differential consistency mechanism, where devices have distinct consistency
guarantees based on their context. The authors demonstrate the applicability
of context-sensitive differential consistency, by exemplifying with a vehicular
network scenario, where autonomous cars may read the state of a traffic light on
a road junction, from multiple replicas, each placed in nearby cloudlets, some

of which may have outdated information. Cars located farther from the road
junction, might only use the traffic light status to update their estimated arrival
time, and as so, have weaker consistency guarantees on the read operation, only
querying one replica; while cars located closer to the road junction have stronger
consistency guarantees, in order to avoid a possible accident, and must thus
obtain the responses from a quorum of replicas.

This concept can be applied to any scenario where, for the same item, there
can be requests with differing consistency requirements, affecting their latency
and routing, and consequently, affecting the optimal strategy for replica place-
ment. To understand this, consider an item ¢ whose read operations may only
consult one replica, but whose write operations must access all replicas. If there
is a high read frequency for i coming from a set of nodes IV, it may be beneficial
to create more replicas close to IV, reducing the perceived latencies. However, the
latency of write requests will increase with the addition of each replica, due to
the fact that all of them must be contacted in a single request. Therefore, if the
write frequency is also high, this strategy possibly renders itself disadvantageous.

In this project, we consider the problem of placing replicas in a way that
minimizes the average latency (or any other type of access cost), in a system
model where requests may have different behaviours in the way their are routed
through the system, not only due to the type of operation being performed, but
also due to the supported consistency model in their current context.

4 Related Work

In this section we review the existing literature on replica placement, focus-
ing on schemes that, despite considering varying system models, present viable
applications to the edge paradigm. We first describe each solution according to
their goals and how they operate, and then we perform a comparison of these
solutions, highlighting each of their advantages and shortcomings.

4.1 Replica Placement Schemes

4.1.1 EAD File Replication [11] The Efficient and Adaptive Decentralized
(EAD) file replication uses an algorithm that optimizes replica placement in a
dynamic workload environment. It does so by placing replicas in the nodes that
are subject to more frequent queries. The algorithm is fully distributed.

The algorithm works by running consecutive optimization rounds. In round ¢,
each node periodically computes g¢y,, the query rate of each file f, whose lookups
are initiated or forwarded by that node. If ¢y is bigger than a threshold (that
depends on the average query rate of the system), the node is considered a traffic
hub for f, and a replication request is submitted to one of its file servers.

A file server node, which may hold the original file or a replica, aside from
computing ¢y, also periodically computes the visit rate of its files (query load I;).
If the load surpasses a threshold above the node’s capacity, the list of replication
requests received in ¢ is ordered according to the gy of each request, and requests

are accepted until the predicted load is bellow the threshold. If this list is empty,
the files are instead replicated to the neighbour nodes that most frequently
query for file f. In case the file server is not overloaded, it will accept replication
requests only if the benefit of file replication (considering the query rate, and the
resource consumption of forwarding the query from the requesting node to the
server) outweighs the storage cost. Each replica node, excluding the original file
server, may also remove f, if ¢y falls under a minimum load threshold during a
certain number of consecutive rounds.

In order to avoid replica fluctuation and the replication overhead that may
result from sudden rises in file popularity which only last for a round, an expo-
nential moving average (EMA) technique is employed to calculate ¢¢, applying
weighting factors to older gy, such that their weight decreases exponentially at
each round, culminating in more reasonable measurements of the query rate.

By placing replicas in the query paths from requesters to file servers, the
scheme allows the usage of a DHT lookup strategy, and replica-blind determin-
istic routing, keeping this process highly efficient. However, since this approach
restricts replication to a specific set of nodes, it results in sub-optimal placement
when looking at cases where the replica could be placed closer to its requesters.

When there is a node join/leave, since the network topology changes, and
traffic may follow different paths, replica nodes might, in such events, witness
lower visit rates for some files. To deal with this churn issue, the system may
transfer replicas between the neighbours of the node which has joined/left, in
order to place these files in the predicted new traffic hubs of the network.

The scheme is able to dynamically adapt to nonuniform and time-varying file
popularity and node interest, adaptively adjusting the replica degrees. Further-
more, it only requires synchronization in the case of node churn, leading to a low
communication overhead. High replica utilization is ensured, but the optimality
factor is hindered by using replica-blind routing, restricting placement to query
hubs. Convergence is fast, since replicas are immediately placed in their desti-
nations, in a parallel fashion, and also quickly eliminated, if their access rate
drops.

4.1.2 Congestion-Aware Caching (CAC) [12] This work investigates
cache management and routing policies that account for link capacity constraints
and network congestion. The work is based on the observation that popularity-
based caching may not provide the best average latency. This is due to the fact
that less popular items, if not cached, may also incur a large overhead on their
retrieval, in particular of retrieval requests are routed through highly congested
links.

Based on this observation, the proposed scheme aims at caching content that
is both popular and whose retrieval is costly, bandwidth-wise. And although
this was developed as a caching solution, the system model assumes cooperation
between caches, and we may interpret cached data as replicas of the original
items, intuitively translating the scheme into a replica placement algorithm,
with an adaptive replication degree.

It is assumed that each content delivery response follows the opposite path
of the corresponding request. Each node keeps track of the number of flows
(active requests) currently passing over its links, which is used for estimating the
available link bandwidth for new requests. Content popularity is also estimated
in each node, for every item whose requests pass through the node. These values
are used by the node to calculate the utility of replicating each item, which is
directly proportional its popularity, and inversely proportional to the minimum
available link bandwidth values along the upstream path (from content source
to current node). These last values are sent between nodes, by attaching them
to requests, resulting in very little communication overhead.

Technically, no synchronization is required, since items are replicated on the
request path, allowing for replica-blind routing. However a congestion-aware
search protocol is proposed by the authors, in which, starting from the requester,
nodes flood their neighbours with an interest request, until reaching a bound-
ary, determined by the number of hops and available link bandwidth, to prevent
further congestion. Nodes containing a replica of the item respond back to the
requester, which then routes its requests to the node whose path is the least
congested.

By accounting for link congestion, this scheme is able to reduce the average
latency in a fully distributed way, despite reducing the cache hit rate and pos-
sibly increasing the number of routing hops. By employing the search protocol,
traffic is displaced from the possibly more congested default paths, to alterna-
tive, less congested routes, also contributing to the avoidance of unnecessary
replicas in those same paths. This way, even though replication is performed on
the request paths, routing is aware of nearby replicas, contributing to a greater
approximation to the optimal solution.

Convergence is fast, since replicas are placed immediately on their optimal
destinations. However, when a replica is created in a node due to congestion, the
node doesn’t keep track of the available link bandwidth to the original object.
In a dynamic environment, this value could eventually improve, but because it
isn’t tracked, a replica may be kept indefinitely in a node whether or not it is
beneficial to the system, which contributes to a sub-optimal performance. This
could be improved by using an age-based tactic, such as the one presented in
the scheme we will discuss next.

4.1.3 Age-Based Cooperative Caching (ABC) [13] In this work the
authors leverage the coupling between routing and caching, by proposing an
adaptive replication mechanism that pushes popular contents to the network
edge, in a fully distributed way, without requiring extensive computations, nor
message exchanges between nodes. The scheme distributes the contents hierar-
chically, placing the most popular contents at the network edge, while the least
popular are placed closer to the sources, focusing on the improvement of the av-
erage cache hit rate and load reduction at central storage units, while handling
dynamic workloads.

10

When the original item is requested from its source server, its initial age
value is calculated in the neighbour node through which it is routed back to the
requester. This value reflects the lifetime of the replica, and is proportional to
its associated popularity, which is the observed access frequency in the source
server. If there is space left for the item, it is cached in the aforementioned
neighbour node. In the opposite case, if there’s an expired item, it is replaced
by the arriving one.

An item is considered expired when it reached the end of its age-defined
lifetime. As the item is forwarded to the requester with its age piggybacked,
every node doubles the value for its age, unless it surpasses a predefined maz_age
parameter. This way, the scheme prioritizes item popularity and distance from
the source nodes, with items being replicated along the path from the requester
to the source, with decreasing importance, and also according to their popularity.

The clear advantage of using such a placement tactic is the efficiency, since
there is no need for synchronization, just like in the previously described schemes,
where replicas are also placed on the routing paths of their correspondent re-
quests. The scheme also takes into account the distance from nodes to the original
items, but the issue relies on the fact that the popularity factor in the age val-
ues is calculated and accounted only in the source nodes, which may result in
inaccuracies, where items, having a global high popularity, are replicated, with
an high age value, in edge nodes where they might only be requested a couple of
times. This curbs optimality, and since nodes suffer from the departure of popu-
lar contents, when they reach their expiration date, a stable placement solution
is never reached.

4.1.4 Associated Data Placement (ADP) [14] In this data placement
scheme, the focus is on improving the co-location of associated data, while still
ensuring localized data serving and balance. Two schemes are modelled, the first
not allowing replication, and the second, allowing replication with fixed degrees
for each data item. We focus on the study of the second scheme, being more
relevant to our context.

As a precursor of this scheme, the authors in [15] presented a data placement
system that iteratively moves an item closer to both its clients and other items it
communicates with, but in contrast with [14], the group association problem is
relaxed to pair-wise relations, and aside from this, the system uses physical dis-
tance between nodes as a decision factor, focusing on the actual geo-distribution
of cloud datacenters. Thus, its application to our context is limited.

In [14], the system model assumes that geographically distributed nodes may
request sets of specific replicas, of a data item, from each other. These sets are
called request patterns. The placement decision needs global knowledge of the
request patterns, and it’s run in a centralized unit. In a time period, the request
rate of each pattern and single replica are measured and/or predicted. These are
then used to calculate 2 metrics:

11

Co-location of associated data, whose value is proportional to the number of
replicas in each request pattern not handled by the same node, without account-
ing for relaying distance.

Localized Data Serving, whose value is proportional to the number of requests
where the requesting node is not the one holding the data. The authors also
mention an extension of this metric, by considering the logical distance from the
nodes serving the requests.

The objective is to minimize a weighted sum of both of these metrics, whose
weights are defined by a trade-off parameter. A constraint for balance is also
applied, by setting upper and lower limits in the number of replicas stored in
each node, according to average of all nodes. The placement is then formulated
as a hypergraph partition problem.

For the initial replica placement, a simple greedy method is applied, in which,
for each data item, the k& nodes with the highest request rate are used to store
the replicas of the item. After this step, the scheme runs a loop, performing, in
each round, a placement decision, but also a routing decision, since the system
adopts a deterministic routing function, that maps to an adequate destination,
each request for an item in a pattern, from each node. This decision is made
considering the request patterns, and their coverage by each node, aiming to
minimize the number of nodes contacted. When a replica is migrated, the routing
decisions concerning it have to be calculated again, and routing is performed by
iteratively choosing the nodes that cover the highest number of items in the
request pattern. This enables fetching several items from a single node, and
reducing the request paths, but it is still less efficient than using a replica-blind
routing scheme.

Placement is performed by building a hypergraph in which the vertex set
is composed by the nodes and the replicas, and the hyperedge set contains all
the request patterns, each assigned a weight proportional to its frequency, and
all the pairings between each node and each replica, also weighted according to
frequency. This hypergraph is then partitioned, minimizing the cut weight.

A scheme for replica migration, specific for dealing with dynamic workloads,
is also proposed, in which only a maximum number K of replicas may be mi-
grated in each round, performing an incremental adjustment. The set of replicas
chosen is the set whose migration provides the highest gain to the system per-
formance. This incurs that several rounds must go by, before reaching the stable
placement solution.

However, although the scheme is resilient to dynamism, and achieves a great
approximation to the optimal solution by having a global view of the network, its
centralization aspect hurts scalability when we combine dynamic workloads with
a high number of nodes. The computation overhead to perform the placement
decision is much higher than in the previously analyzed schemes, and there is a
high communication overhead due to the necessary data collection to build the
hypergraph, and due to the synchronization phase after each placement decision.

12

4.1.5 AutoPlacer [16] AutoPlacer is a self-tuning replica placement system,
developed for a cluster environment. The system operates on the migration of
replicas, considering a fixed replication degree. It assumes consistent hashing is
used as the initial routing strategy, but allows replicas to be migrated to any
node, placing their new locations in a relocation map. Since the map can grow
too large to be efficiently distributed, the authors propose a structure to ensure
fast lookups, called PAA (Probabilistic Associative Array). The scheme executes
in rounds, and each optimization round consists in the following sequence:

Task 1: The top-k most-accessed data items (hotspots), at each node, are
calculated. Once some hotspots have been identified (and relocated) in a given
round, new hotspots are sought in the next round, since in the presence of static
workloads, the top-k lists at each node may stagnate.

Task 2: Each node gathers access statistics on any hotspot items it supervises
and finds the optimal placement for those items, solving a relaxed version of the
cost function minimization problem.

Task 3: Each node computes the PAA for the relocated items it supervises.

Task 4: Each node disseminates its PAA among all nodes, which then as-
semble the received PAAs, locally building an object lookup table.

Task 5: The relocated items are transfered.

To find the location of an item’s replicas, each node first queries the PAA|
whose response, despite being deterministic, may contain innaccurate informa-
tion but guarantees that no false negatives are provided. If the node does not
find any location for an item in the PAA, this means that the replicas have the
default placement, and the hash-based routing scheme can be used to find a
replica. The PAA is able to reduce space by classifying keys according to avail-
able values within them (for example, a key may contain the user that created
the item), and using rules that take these values from a key, and output its
correspondent replica set. The accuracy of this structure is controlled by a few
adjustable parameters.

To deal with dynamic workloads, the system starts a new epoch each time
there is an abrupt change of the access patterns, restarting the execution of
the optimization algorithm with a new lookup table. This is not optimal for a
workload with a progressively changing distribution, undetected by the simple
threshold verification. Likewise, choosing to only optimize k items for each node
in each round impairs the celerity at which the system converges to a stable
placement solution, but despite this, the system, eventually, effectively approxi-
mates to the optimal solution.

While optimization is done in a distributed fashion, the fact that every node
has to synchronize with each other in each round, represents an overhead in
communication. The replication degree is fixed, and hence, the replica number
is not adjusted, hindering better tuning for improving request latency and replica
usage. However, the system is successful at maintaining efficient lookups for a
replica-aware routing scheme.

13

4.1.6 Distributed Cache Management in ICNs [17] This work explores
several on-line distributed and autonomic cache management algorithms directed
at Information-Centric Networks (ICNs), and compares them in terms of perfor-
mance and complexity. The aim is to minimize the overall network traffic cost,
by adaptively assigning (and re-assigning) item replicas to caches, based on their
time-varying request popularity and locality.

The network is modelled as a graph of caches/nodes, connected by their
communication links. It is assumed that a replica-aware routing mechanism is in
place, routing requests to the nearest replica. Considering V' as the set of nodes,
M as the set of available information items, H as the current configuration,
which maps each item to a set of nodes, with h)" being a variable that indicates
whether item m is replicated in v, and N]* as the set of nodes accessing m
through its replica at v, the total network traffic cost is given by:

TH)=> > > 1idy,

m=1 veV: ueNm”
BT =1

where 77" is the request rate for m, generated by u, and d,, the communica-
tion cost from v to uw. The vector r, is an estimation based on the observed
request patterns within a given time window, used to forecast future rates. The
objective is to minimize this cost function, without violating each node’s storage
constraints, whilst maintaining, at least, one replica of each item, in the system.
To achieve this, the authors propose four heuristic solutions which vary in the
amount of knowledge each node needs about the network, and the required level
of coordination between nodes. These algorithms are executed in rounds, and
maintain execution as long as they detect possible performance gains.

The first algorithm, called cooperative, requires each node to maintain a global
view of request patterns, and the current configuration. At each iteration, each
node v calculates, for each replica m that can be removed, the global performance
loss 17*, which is computed as the cost difference between a new configuration,
in which m is removed from v, and the current configuration. For each item m
that is not replicated in v, the expected global performance gain g;"*, achieved
by caching m in v, is also calculated. The node then considers the item with
maximum performance gain, ¢, as the candidate for insertion, and the item with
minimum performance loss, k, as the candidate for replacement. The local maxi-
mum relative gain, b,, is calculated and a report message Rep(b, v, i, k) is sent to
the other nodes. After receiving these messages, each node obtains the network-
wide lowest cost configuration, updating H accordingly, and applying its changes
to the system.

The holistic algorithm requires no coordination of the actions of each node,
which perform their decisions autonomously. It differs from the cooperative algo-
rithm, by assuming that only a single node may modify the global configuration
at a given time. This way, in each iteration, a single node v computes the max-
imum relative gain b, and broadcasts the report message. After receiving this
message, each node immediately updates H, and the changes are applied. By

14

noticing that more than one replacement per node, in each iteration, can be
beneficial, speeding up convergence to a stable solution, the authors propose the
holistic-all algorithm, which behaves in a similar way to the previous one, but
allows the node v to perform all the beneficial replacements, by selecting, from
all possible items in M, the set of candidates that minimize the total traffic cost.

Finally, the myopic algorithm assumes that each v has no information about
the demand patterns at the other nodes, performing decisions based solely on
local information. Considering u,, as the nearest node from v that caches m, the
objective function for this algorithm becomes:

M
T’U(H) - Z T;r;ndumm
m=1

The candidates are then selected only according to dy,,,,, which represents a
very limited view of the network, leading to more sub-optimal results than the
other approaches.

All of the algorithms adapt to dynamic workloads, however, myopic, due to
its limited view, has nodes competing for replicas, leading to slow convergence.
The cooperative and holistic-all algorithms don’t have this problem, but only
perform placement on a limited number of objects, which also hinders conver-
gence. The advantage of the myopic approach is clearly the lower computation
and communication overhead, with no information collection, while all the other
algorithms operate on a global view of the system’s item demands. The cooper-
ative algorithm also specifically requires the communication between all nodes
after computing the candidates in each of them, resulting in lower efficiency.

4.1.7 Decentralized Replica Placement (D-ReP) [18] This work pro-
poses a fully distributed dynamic algorithm for replica placement in the paradigm
of edge computing, taking into account the latency between nodes and their stor-
age costs, considering these as IaaS providers. It aims at improving the proximity
of requesters to replicas, in a bandwidth- and cost-effective way.

The cost function is defined as the number of requests for each replica, multi-
plied by the latencies of these requests (much like in the previously analyzed sys-
tem [17]), summed up with the storage costs of the placed replicas. The authors
developed a very lightweight heuristic approach for minimizing this function, by
delegating to each node the task of performing the placement decisions relative
to their currently stored replicas in an autonomous way.

Each node executes an instance of the placement algorithm, and is aware
not only of itself but also of its immediate neighbours. As so, the inputs used
by the algorithm include the number of requests for each replica stored in the
node, the neighbour node that each request is received through, the perceived
latency to each neighbour node, and the unit storage price of each neighbour
node. The authors make a distinction between source nodes, which can only
duplicate items, and edge nodes, which may also migrate and remove replicas.

The algorithm is executed in epochs, where an item is duplicated from node h
to neighbour n if the total latency cost, according to the number of requests in the

15

last epoch, is larger than the storage cost for that replica in n. If the duplication
condition does not hold, the migration condition is tested, accounting for the
reduction in storage cost, from the removal of the replica on the h, and the
augment in the latency cost, by assuming that the latency of requests of each
other neighbour i # n for the replica, will increase, since it is assumed that
they will be forwarded through h. This assumption may not hold true for some
cases, where ¢ has a lower latency connection to n, bypassing h, resulting in
a rougher approximation to the optimal solution. The condition to remove a
replica evaluates the expected replica utilization, calculated at creation, against
the current number requests. If the value reaches a lower-bound, the replica is
removed.

For replica discovery the authors also propose a lightweight solution. When
a replica is created in a node n by h, node n sends a notification to each node
that requested the replica from A in the last epoch, in a distributed attempt
at informing nodes of a lower distanced replica. This strategy is sub-optimal,
since new requesters may not have knowledge about the replica, but incurs a
low communication overhead, while maintaining some replica-awareness.

Placement is completely distributed and executed with very reduced infor-
mation, requiring little computation per node, but may lead to the creation of
unnecessary replicas and high fluctuation. This, combined with the fact that only
one optimization per replica is performed in each round, results in a slow-paced
convergence towards the stable solution.

4.1.8 QoS-Aware Replica Placement [19,20] We now discuss two sys-
tems that make QoS-Aware replica placement.

In [19] the authors define a QoS-Aware replica placement problem, with
a cost model that accounts for replica storage costs and update costs. This
model regards the placement of the replicas of a single object. The network is
presented as graph of the servers and their connections, in which each server has
an associated weight, representing its unit storage cost. Moreover, a distance
d(u,v) is associated with each edge (u,v) € E, representing the communication
cost between the nodes. This distance definition is also extended to every pair
of nodes, representing the shortest path between them.

The object is associated with an origin server, where the content provider
may perform updates. If this object is replicated at a server that receives requests
for it, the response is generated locally, otherwise, the server contacts another
server in the network and relays the response.

Every server in the network has a QoS requirement ¢(v) which specifies an
upper bound on retrieval cost, which is the distance d(v, u) to the closest server u
that holds a replica. The objective of the QoS-aware placement problem is to find
a replication strategy (defined as the set of nodes R in which the object is placed),
that satisfies the QoS requirements of all servers, while minimizing the replication
cost. This cost is a weighted sum of the storage cost of all placed replicas, and
the update cost, which refers to the necessary communication to update the
replicas. For updates, the model assumes that the network is organized into an

16

update distribution tree structure, rooted at the origin server, which propagates
the updates in an efficient way. The update cost is computed by multiplying the
distances d(u,v) needed to propagate the updates, with the update rate value
of the origin server. Therefore, this cost rises with the number of replicas and
their latency to the origin.

Building on the previous model, [20] also considers the storage cost of each
node and the cost to propagate updates from an item’s source to its replicas,
through the distribution tree. Furthermore, this work also takes into account the
access cost, which is the distance from a consumer node v to the replica node u
that is assigned to serve v, and other consumers. The set of consumers served
by u is denoted SS(u), and the sum of the workloads W (v) from each consumer
v, must not surpass u’s capacity constraint, C(u). The replication strategy is
considered feasible if no replica servers are overloaded and the QoS requirements
are satisfied. The objective of the scheme is to find a feasible strategy that
minimizes the storage, update and access costs.

The first algorithm presented is named Greedy-Remove, starting with a
replica in every server, and subsequently removing each replica, and adjust-
ing workload attribution, according to the largest possible cost reduction. In
the first iteration, the service set SS(v) of each replica server v contains only
itself. These sets are then adjusted for every pair of servers, while maintaining
feasibility, considering two separate cases:

Case 1: The replica is removed from server v by shifting all servers in SS(v)
to SS(u), which is only possible when u is within the QoS range of every server
in SS(v), and the workload addition doesn’t exceed C'(u).

Case 2: A portion of the workload is shifted from v to u, by moving only some
servers in SS(v) to SS(u), obeying to the same conditions as the first case, plus
a rule which dictates that there must be a distance reduction, d(w, u) < d(w, v),
for any server w that shifts to SS(u). While in case 1, replicas are removed
according to the reduction in storage costs, update costs, and distance between
nodes and replicas, in this case the only affected factor is distance, since we are
only dealing with workloads.

A second algorithm, Greedy-Add, was also proposed, starting with an empty
replication set, and adding replicas greedily, not only until the strategy is feasi-
ble, but, until the total cost is impossible to reduce, since, after achieving fea-
sibility, the access costs can be reduced further by adding more replicas to the
system. This algorithm is more computationally efficient than Greedy-Remove,
but achieves slightly less optimal results. Nevertheless, both algorithms are com-
putationally heavier than most of the schemes we’ve analyzed.

These strategies, when applied to a global system, with several objects, make
for a somewhat decentralized scheme, where the placement decisions can be per-
formed at the origin servers for each item. The goal of the algorithm is to sat-
isty latency constraints, and reduce costs without considering request patterns,
therefore it doesn’t need to adapt to dynamic workloads. And since the algorithm
calculates the near-optimal solution in a single round, convergence is immediate.

17

There is awareness of the underlying network topology, and an assumption
that updates are propagated through a tree structure. Routing is replica aware,
due to the fact that requests are routed to the nearest replica, but since we
have no knowledge on how synchronization and replica discovery would be im-
plemented, we make no assumptions on the communication overhead.

4.2 Discussion

The aforementioned schemes were each developed for different systems, and
considering different goals. Each of them succeeds in some factors and flounder
in others. In Table 1 we can see a comparative overview of these schemes.

Placement |Replication . Comp. | Comm. Adaptablll.ty . Decision
Optimality | Distribution Routing to dynamic | Convergence
Schemes degree overhead |overhead factors
workloads
. - . Replica- . .
EAD [11] Medium | Distributed | Adaptive blind Low Low Strong Fast Popularity
Link
CAC [12] Medium | Distributed | Adaptive Mixed Low Low Weak Fast congestion,
Popularity
. Node-server
o . Replica- N .\ .
ABC [13] Low Distributed | Adaptive blind Low | Very low Strong Slow distance,
Popularity
Co-location
. o . . Replica- . . . of associated
ADP [14] High Centralized Fixed High High Strong Slow
aware data,
Popularity
Replica-
AutoPlacer . - - aware . . . N .
[16] High Distributed Fixed (efficient Medium | High Weak Medium Popularity
lookups)
Cooperative . - J Replica- o Very § . Access costs,
Caching [17] High Distributed | Adaptive aware Medium high Strong Medium Popularity
Holistic-All . — . Replica- P . . Access costs,
7] High Distributed | Adaptive aware Medium | High Strong Slow Popularity
Storage costs,
D-Rep [18] Medium | Distributed | Adaptive Mixed Low Low Strong Slow Access costs,
Popularity
Storage costs,
T
QoS-Aware Update costs,
Replica Replica- Load
oplica High Distributed | Adaptive °plica High N/A N/A Fast balance,
Placement aware
[20] Access costs,
QoS
constraints

Table 1: Comparative overview of the existing replica placement schemes.

Placement schemes that use replica-blind routing, such as [11,13] are very
efficient, but are restricted to placing replicas along the request paths, hindering
optimality. [12, 18] attempt at maintaining efficiency, while improving optimal-
ity, mixing the two routing strategies, however, [12] still places replicas along re-
quest paths, while [18] performs other approximations in decision-making. These

18

strategies prevent the schemes from achieving a significantly more optimal solu-
tion. Along with that, they also suffer from, respectively, weak adaptability and
slow convergence.

To help with the inefficiencies of replica-aware routing, [16] uses a probabilis-
tic structure, but this scheme has weak adaptability and uses fixed replication
degrees. [14] solves the adaptability problem, and computes near-optimal solu-
tions, but it is centralized, requiring the collection of data from all nodes, which
is infeasible in the edge computing paradigm, since there can be a very high
number of nodes and items. By considering the co-location of associated data as
a decision factor, in order to perform the placement of a single item, this scheme
requires information on the access patterns of its associated items, and, thus, a
more global view of the system. Because of this, it is hard to develop an efficient
solution for this cost model, while maintaining high optimality.

The Cooperative Caching scheme [17] is distributed, has strong adaptability
and high optimality, but incurs a very high communication overhead in each
placement decision. Holistic-All [17] lowers this overhead, trading-off with a
slower-paced convergence, but still needs each node to gather information from
all the other nodes.

As we have mentioned, one of the main goals of the edge paradigm is to
reduce the delay from clients to content. As so, the aim of a placement scheme
for the edge is to place data closer to the nodes that request it the most, which
depends on factors such as request popularity, and proximity to replicas.

Proximity can be defined as the latency or cost for accessing a replica, hence,
we can affirm that both of the aforementioned factors are accounted for in [17,
18,20]. However, none of these strategies consider the possibility of differential
consistency in requests. [20] considers update costs, associated with the write
operation, but it assumes a specific topology and routing algorithm, not allowing
for other ways to propagate the requests, or for differing consistency guarantees
in each read/write operation, such as what we exemplified in Section 3.4.

Our objective is to develop a decentralized and adaptive replication scheme
for dynamic workloads, that accounts for the different costs of each request,
depending on the type of operation being performed and its supported consis-
tency model, all the while striking a balance between optimality, efficiency and
convergence speed.

5 Architecture

In this section we describe our solution for replica placement in the edge
paradigm. We start by stating our assumptions about the system’s components,
in particular about the edge nodes and data objects. We then describe the op-
timization problem we aim at solving, by defining the cost function and the
constraints. Finally, we discuss an heuristic approach to approximate the opti-
mal solution in an efficient and distributed way.

19

5.1 Edge Nodes

We assume that the system is composed of a set of N edge nodes N' =
{n1,na,...,n,}. Each node n; has a known capacity in terms of storage, denoted
capacity(n;). We assume the availability of a monitor system that can report
the latency of the network path connecting any two nodes n; and n;, denoted
(5(711‘, nj).

5.2 Data Objects

We assume that the system must handle the deployment of a set of O objects
O = {01,02,...,0,}. Each object 0; has a known volume, denoted volume(o;),
which represents the amount of storage capacity it consumes when it is stored in
a given edge node. Each data object o; supports a set of operations op}, op?, ...,
op¥; as it will be clear later in the text, each operation may have a different cost,
depending on its semantics (whether it is a read or a write, which consistency
model it supports, etc).

5.3 Object Deployment

Each object may be replicated in a different set of edge nodes, and the nodes
that maintain replicas of an object may change in time. It is the role of our
placement algorithm to define which edge nodes replicate each object. We assume
that for each object o; there is a single edge node that serves as a master replica
for the object, denoted source(o;). At this stage we assume that the source for
each object is fixed (i.e., it does not change over time). The set of edge nodes
that keep a replica of a given object o; are denoted replicas(o;). The remaining
edge nodes are denoted the consumers(o;). The deployment of an object is a
tuple defined by its source, replicas and consumers, i.e.:

deployment(o;) = (source(o;), replicas(o;), consumers(o;))

with
({source(o;)} U replicas(o;) U consumers(o;)) = N

5.4 Cost of an Operation

We assume that the cost of a given operation op¥, when executed at a given
edge node n, can be expressed as a function of n and of the object deployment
deployment(o;):

cost(op¥, n) = costfunction’ (n, deployment(o;))

The costfunction? for each operation allowed for a given object must be
provided by the user of our system. To ease the task of defining the appropriate
cost functions, we plan to offer a library of cost functions that can be used when
configuring the system.

20

5.5 Example Cost Functions

We illustrate the use of cost functions with a concrete example. Consider that
the user wants to optimize the system for latency, and that, therefore, the cost
of each operation is the latency required to execute that operation. Consider an
object that supports two operations, namely a write operation op™ and a read
operation op”, using a primary backup replication scheme where the source of
the object plays the role of the primary.

A write operation is executed by sending the update to the primary, then
having the primary send the update, in parallel, to all replicas, waiting for all
the acknowledgements from these replicas and, finally, sending back an acknowl-
edgement message to the edge node that executed the operation. The latency of
the write operation can be captured by the following cost function:

wcost(n, deployment(o)) = 26(n, source(o)) + 2\1 max ()5(sou7’ce(o),j)
j€replicas(o

The read operation is executed by performing the read locally, if the node n
maintains a replica of the object, or by sending the read request to the nearest
replica. The latency of the read operation can be captured by the following cost
function:

reost(n, deployment(o)) = 2 5((n,j)

min
Vj€replicas(o)

To allow for context-sensitive differential consistency, several types of read /write
operations can be defined for the same object, along with their adequate cost
functions.

5.6 Access Frequencies, Deployment Cost, and Total Cost

We assume that each node n can keep a record of the frequency of each
operation opi-C it requests, denoted fn(opf). This value can be estimated using
an exponential moving average (EMA) technique, such as the one employed in
[11].

The cost of maintaining a given deployment configuration for an object is
defined as the sum of the costs for all operations on all nodes, times the corre-
sponding frequency rates, i.e.:

cost(deployment(o;)) = Z Z cost(opf,n) - fn(opl)
v

n Vi

And the total cost of the system is the sum of the costs of maintaining the
deployments of all objects:

totalcost = Z cost(deployment(o;))
A\

21

Note that this cost model can be easily extended to consider other types of
costs (such as storage costs), by computing, instead, a weighted sum of these
costs, as was seen in [14,19].

5.7 Optimal Placement

Using the definitions above, the optimal placement would be a set of de-
ployment configurations that would minimize the totalcost, while respecting the
capacity constraints at each mode. The capacity constraint can be expressed as:

Yy, capacity(n) > Z volume(o;)

Vi:n€replicas(o;)

This optimization problem is analogous to the one analyzed in [9], which is
NP-Hard, as we’ve mentioned in Section 3.3. We, therefore, resort to an heuristic
strategy, in order to approximate the solution.

5.8 Heuristic Solution

The heuristic solution decentralizes the placement algorithm, by letting the
source of each object be in charge of the decisions regarding the deployment of
that object. For the sake of simplicity, this solution assumes that the system
is only optimizing for latency, however, it can be intuitively adapted to include
other types of operation-related costs, such as the amount of information trans-
ferred in each request or the bandwidth usage in each connection.

The scheme operates in rounds, in each of which, the nodes estimate f,(op¥)
for each object they have requested. In each round, a shrinking phase and an
expansion phase occur sequentially.

5.8.1 Reducing the Replica Candidates While the shrinking phase is
concerned with removing replicas, the expansion phase is concerned with creating
replicas. In this last phase, the system may consider any node for replication.
With a large number of nodes, calculating the best deployment may involve a
lot of information and a large computation cost, even if done for a single item.
Because of this, we will only consider certain nodes for replication, reducing the
set of deployment options to be evaluated.

Considering the deployment for a single object o;, we allow each replica node
n to collect the access frequencies, an(opf), for each operation it served in the
current round, the set consumers from which it received these requests, C,,, and
the average latency §,,. These values are sent to the source, which orders the C,,
sets by estimated weight:

weight(cn) = Z an(opk) : gn
23

and picks these sets in sequence, computing their union, P = (C; U... U C}),
until the following condition is verified:

22

weight(P) > X - Z weight(Cy,)
Vn

where) is an adjustable parameter. The nodes from the computed set P will be
the candidates to become replica nodes in the expansion phase.

5.8.2 Shrinking Phase Each node n, will calculate its part of the total
cost(deployment(0;)), for each deployment where the replica number is reduced
by 1. This is done by moving each single node j € replicas(o) to consumers(o).
The nodes, after calculating these values, transfer them to the source node, which
aggregates them and computes the total cost for each deployment. If the total
cost is reduced by any of these changes, the lowest cost deployment is picked
and applied to the system, sending the replica to the correspondent node. The
process repeats until it verifies that the lowest cost deployment isn’t lower than
the previous total cost.

When the cost can’t be reduced, the cost difference rd; of removing the
replica of item o; from node n, is computed for each replica node, by the source,
and sent to them for future use in the next phase. This way, each node contains,
for each of its replicas, the potential cost difference obtained by removing them.

5.8.3 Expansion Phase FEach node, after obtaining the set of candidates
P, from the source, will compute its part of the total cost for the deployment
options where the number of replicas is increased by one of these candidates.
The rest of the phase executes in an analogous way to the shrinking phase, with
the source node picking the best deployment options, until there is no further
reduction in cost.

When a replica of o; is created in a node n, besides receiving the replica, n
also receives the total cost difference obtained by adding that replica, ad; . If, in
the current phase, the addition of o; to node n exceeds its storage capacity, its
ad; value is summed up with the rd; value of each resident replica, replacing the
one with which it obtains the lowest value, if, and only if, this value is negative.

5.8.4 Reducing the Participants To further decrease the communication
and computation costs in the deployment decisions, we can reduce the number
of participants, in each round of the algorithm. For each set C),, of nodes that
weren’t picked as candidates for replication, we take its correspondent operation
access frequencies (a,(opF)), and average latency (6,) from the nodes in the set
to the replica n, and we agglomerate the data into a virtual node v,,. This node
represents the whole set C),, and its latency to any other node m is calculated
by:

§(vp, m) = 8, + 6(n,m)

This latency value is used with the access frequencies to estimate the deploy-
ment costs from the requests of the consumer nodes that contacted with n in

23

the current round, instead of calculating the exact cost for each of these nodes.
The costs can be computed either at the source or replicas, and this method can
be used in both phases.

5.9 Using Workload Predictions

Instead of only using the current access frequencies to drive the deployment
of objects, we plan to also use predicted access frequencies whenever available. In
this case, the monitoring system would provide the predicted values for the next
round, which may then be fed into the decision algorithm of the current round.
Deployment actions could be driven by a weighted sum of the costs computed
from current observations and the costs computed from the predicted values.

6 Evaluation

To evaluate the proposed solution we will use the simulation system devel-
oped for testing LiveMap [5], which was built by extending the SUMO frame-
work [21]. This system is able to simulate vehicle movement, with support for
real maps and realistic traffic patterns. It is also able to simulate in-vehicle appli-
cations that communicate with fixed infrastructure, and allows interfacing with
real implementations of system components in runtime. This way we can simu-
late data accesses from these vehicles to edge cloudlets, and execute the replica
placement scheme on the cloudlet infrastructure, to improve request delay. To
demonstrate the support for differential consistency, we will define different op-
erations that can be applied to each item, and generate workloads that use these
operations.

We will evaluate the performance of the heuristic solution, by comparing its
results according to several metrics, with the results obtained with our implemen-
tation of Holistic-All [17], which has high optimality, but has slow convergence
and a high communication overhead, affecting the throughput of the system; and
our implementation of D-Rep [18], which has a low communication overhead, but
also slow convergence, and lower optimality, affecting its general effectiveness.

The complete set metrics we account for span across four topics: 1) Effec-
tiveness; 2) Convergence; 3) Communication overhead; 4) Optimality.

Effectiveness: To measure the effectiveness of the scheme we will use, as perfor-
mance metrics, the average delay of requests, the throughput, and the number of
created replicas. These metrics will also be used to measure how well the system
adapts to changes in the access patterns, by testing with dynamic workloads.

Convergence: We will measure convergence as the average necessary time un-
til the system reaches a stationary point in which no more placements are per-
formed. In this evaluation, we plan to use static workloads, since this metric is
not related with how the access patterns evolve through time.

Communication overhead: To measure the communication overhead, we will
use the total number of messages sent between nodes to perform the placement

24

algorithm, including any data collection or synchronization prior to each deploy-
ment, over a time period, whose duration is yet to be defined.

Optimality: We will measure optimality using the total deployment cost of the
computed placement in each single round. We will compare the results obtained
with the heuristic against the exact solution of the optimization problem. Since
computing the exact solution is NP-Hard, we will only evaluate optimality for
small networks and workloads.

7 Scheduling of Future Work

Future work is scheduled as follows:

— January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

— March 30 - May 3: Perform the complete experimental evaluation of the
results.

— May 4 - May 23: Write a paper describing the project.

— May 24 - June 15: Finish the writing of the dissertation.

— June 15 Deliver the MSc dissertation.

8 Conclusions

In this report we have addressed the problem of replica placement in edge
computing scenarios. We did a survey of a number of replica placement strate-
gies that can be used in this context. Based on these previous work we propose
a replica placement strategy that can be configured to support different data
replication schemes (associated to different data consistency models). The algo-
rithm is designed to operate in a decentralized way, where the replica placement
of different items is computed by different nodes, more specifically, each data
item may be replicated in multiple replicas, but there is a single replica, which
we name the source replica, that is responsible for computing the placement for
that item. This strategy, avoids a single point of control for the entire system.
Replication among source replicas is performed indirectly, using the feedback
provided by the non-source replicas. As future work we plan to implement our
proposal and compare its performance against previous approaches.

Acknowledgments We are grateful to Nivia Quental for the fruitful discussions
and comments during the preparation of this report.
References

1. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A.,

Kong, J., Jue, J.P.: All one needs to know about fog computing and related edge
computing paradigms: A complete survey. Journal of Systems Architecture (2019)

25

10.

11.

12.

13.

14.

15.

16.

17.

18.

Networking, C.V.: Cisco global cloud index: Forecast and methodology, 2016-2021.
White paper. Cisco Public, San Jose (2016)

Kasprzok, A., Ayalew, B., Lau, C.: Decentralized traffic rerouting using mini-
malist communications. In: 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC). (2017) 1-7
Zeadally, S., Hunt, R., Chen, Y.S., Irwin, A., Hassan, A.: Vehicular ad hoc networks
(vanets): status, results, and challenges. Telecommunication Systems 50(4) (2012)
217-241

Hu, W, Feng, Z., Chen, Z., Harkes, J., Pillai, P., Satyanarayanan, M.: Live synthe-
sis of vehicle-sourced data over 4g lte. In: Proceedings of the 20th ACM Interna-
tional Conference on Modelling, Analysis and Simulation of Wireless and Mobile
Systems. (2017) 161-170

Chen, F., Zhang, D., Zhang, J., Wang, X., Chen, L., Liu, Y., Liu, J.: Distribution-
aware cache replication for cooperative road side units in vanets. Peer-to-Peer
Networking and Applications 11(5) (2018) 1075-1084

Mahmood, A., Casetti, C., Chiasserini, C.F., Giaccone, P., Harri, J.: Mobility-
aware edge caching for connected cars. In: 2016 12th Annual Conference on Wire-
less On-demand Network Systems and Services (WONS), IEEE (2016) 1-8
Zhang, F., Xu, C., Zhang, Y., Ramakrishnan, K., Mukherjee, S., Yates, R., Nguyen,
T.: Edgebuffer: Caching and prefetching content at the edge in the mobilityfirst
future internet architecture. In: 2015 IEEE 16th International Symposium on a
World of wireless, mobile and multimedia networks (WoWMoM). (2015) 1-9
Kangasharju, J., Roberts, J., Ross, K.W.: Object replication strategies in content
distribution networks. Computer Communications 25(4) (2002) 376-383

Mayer, R., Gupta, H., Saurez, E., Ramachandran, U.: Fogstore: Toward a dis-
tributed data store for fog computing. In: 2017 IEEE Fog World Congress (FWC).
1-6

Shen, H.: An efficient and adaptive decentralized file replication algorithm in p2p
file sharing systems. IEEE Transactions on Parallel and Distributed Systems 21(6)
(2009) 827-840

Badov, M., Seetharam, A., Kurose, J., Firoiu, V., Nanda, S.: Congestion-aware
caching and search in information-centric networks. In: Proceedings of the 1st
ACM Conference on Information-Centric Networking. (2014) 37-46

Ming, Z., Xu, M., Wang, D.: Age-based cooperative caching in information-centric
networking. In: 2014 23rd International Conference on Computer Communication
and Networks (ICCCN), IEEE (2014) 1-8

Yu, B., Pan, J.: Location-aware associated data placement for geo-distributed data-
intensive applications. In: 2015 IEEE Conference on Computer Communications
(INFOCOM). (2015) 603-611

Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., Bhogan, H.: Volley:
Automated data placement for geo-distributed cloud services. (2010)

Paiva, J., Ruivo, P., Romano, P., Rodrigues, L.: Autoplacer: Scalable self-tuning
data placement in distributed key-value stores. ACM Transactions on Autonomous
and Adaptive Systems (TAAS) 9(4) (2015) 19

Sourlas, V., Gkatzikis, L., Flegkas, P., Tassiulas, L.: Distributed cache manage-
ment in information-centric networks. IEEE Transactions on Network and Service
Management 10(3) (2013) 286-299

Aral, A., Ovatman, T.: A decentralized replica placement algorithm for edge com-
puting. IEEE Transactions on Network and Service Management 15(2) (2018)
516-529

26

19.

20.

21.

Tang, X., Xu, J.: Qos-aware replica placement for content distribution. IEEE
Transactions on parallel and distributed systems 16(10) (2005) 921-932

Cheng, C.W., Wu, J.J., Liu, P.: Qos-aware, access-efficient, and storage-efficient
replica placement in grid environments. The Journal of Supercomputing (2009)
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements 5(3&4) (December 2012)

27

