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Abstract—Placing data replicas in edge nodes is a key strategy
to offer low latency to clients and to improve network utiliza-
tion. In the case of immutable objects, data placement is only
constrained by the limited capacity of edge nodes. However, for
mutable objects, one also needs to consider the cost of keeping
replicas consistent, which then varies with the data consistency
model: a replica placement algorithm that performs well for
weakly consistent replicas may perform poorly when strong
consistency is required. In this thesis, we present Cathode, a
replica placement algorithm that is tailored for the requirements
of the edge environment, all the while being consistency-aware,
making placement decisions based on client demand, storage
costs, and the costs of keeping replicas consistent. In the un-
derlying system, different objects may use different consistency
models and Cathode makes placement decisions accordingly.
Because optimal replica placement is known to be an NP-hard
problem, Cathode resorts to an heuristic that is decentralized
and scalable, providing fast convergence, but also achieving
high quality deployments. The extensive performance evaluation
reported in this thesis shows that it outperforms previous state-
of-the-art replica placement algorithms.

Index Terms—Edge Storage, Data Placement, Consistency

I. INTRODUCTION

Edge computing is defined as a paradigm in which servers
are placed close to the edge of the network, in order to assist
applications that run in resource-constrained devices [1]. There
are two important advantages of the edge computing paradigm
[2]: firstly, edge nodes can provide assistance with much lower
latency than the cloud, because servers are physically closer
to the devices; and secondly, edge nodes can shield the cloud
from most requests, by serving the requests locally.

In this work we address the problem of data placement for
edge computing. In short, the data placement problem consists
in finding a suitable allocation of data objects to edge nodes,
subject to a number of constraints, such that one can maximize
the utility of these placements for the system.

Although the topic of data placement for edge computing
has been addressed before in the literature [3]–[6], most
systems assume that all objects offer the same consistency
model, enforced by some static, pre-defined, replica consis-
tency algorithm. This is unfortunate, as there is a growing
interest in designing systems for edge computing that can
support multiple consistency criteria [7]–[10].

This paper presents Cathode, a replica placement algorithm
that is consistency-aware, and that makes data placement
decisions based on client demand, storage-constraints, and the
costs of keeping replicas consistent. Different objects can use
different consistency models and Cathode makes placement

decisions accordingly. Because optimal replica placement is
known to be an NP-hard problem [11], Cathode resorts to an
heuristic that is highly decentralized, avoiding the bottlenecks
associated to solutions that have a single point of control. Since
nodes that replicate the same objects are allowed to share their
local views of where replicas are most required, Cathode is
able to yield a high utility. This allows Cathode to approximate
the utility provided by algorithms such as Holistic-All [12], but
with better efficiency, by parallelizing computations among
nodes. Furthermore, while other algorithms for the edge are
unable to provide satisfactory results when objects use differ-
ent consistency models, Cathode provides a scalable structure
to support placement optimizations for multiple consistency
protocols. Cathode mainly targets applications such as smart
cities, where the data access patterns are likely to exhibit
strong geographical locality. Despite this, Cathode is versatile
and can be applied on various levels along the path from
the cloud to the edge, by providing several configuration
parameters that can be tuned by the system administrator to
fit the goals of the underlying system.

The rest of the paper is organized as follows. We provide
a formulation of the problem, and an introduction to key
concepts in Section II. Section III describes the proposed
solution, Cathode, and in Section IV we detail our evaluation
of Cathode. In Section V we review several systems related
to our work, and finally, Section VI concludes the report.

II. BACKGROUND

Data replication is widely used in distributed systems as
it can bring many advantages, such as fault tolerance, load
balancing, and lower data access latency. In this paper we
consider the use of data replication in the context of edge
computing with the primary goal of reducing the latency
clients experience when accessing data.

A. Data Placement as an Optimization Problem

We can abstract the problem of deciding which replicas are
placed in which edge nodes as an optimization problem that
aims at minimizing a system wide cost function. In this case,
the cost is correlated with the access latency for edge clients. If
the data is placed in a remote location, and the access latency
is large, the cost is high; conversely, if the replica is placed
in the edge node used by the client, the latency is small and
the cost is low. The cost of a given data placement x can be
formulated as follows [11]:
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C(x) =
1

Λ

I∑
i=1

J∑
j=1

λipjdij(x) (1)

where Λ is the total request rate of all nodes, I is the set of
nodes, J the set of objects, λi the request rate of node i, pj
the probability that object j will be requested in any node,
and dij(x) is a cost value represented by the shortest distance
from i to a node that contains j, under placement x.

If latency is the sole factor to be considered when computing
these costs, the best strategy would be to place a replica of
every object at every edge node. Naturally, in a real scenario,
this is neither feasible nor desirable. First, edge nodes have
limited resources, thus data placement must be performed
under the constraint that the assignment needs to respect
the capacity of individual edge nodes. Also, there are costs
involved in maintaining data replicas. First, when a replica is
deployed, data needs to be transferred from another replica
(most likely, from a datacenter in the cloud) to the target
edge node, a task that consumes network resources. Then, the
replica must be kept up to date in face of updates, which, in
some systems, involves propagating any changes among all
the existing replicas.

The cost of keeping a replica up to date therefore depends
on several factors, such as the frequency of updates, and the
data consistency criteria that needs to be enforced.

B. Solving the Optimization Problem

It has been shown that an optimization problem expressed
above can be mapped to the multiple knapsack problem and
is, therefore, NP-Complete [11]. Thus, practical solutions of
the data placement problem are solved by heuristics that
approximate the optimal solution. The most straightforward
way of applying a heuristic is to centralize all the information
required in a single node that can run the replica placement
algorithm locally, and then, according to its decisions, instruct
other edge nodes to fetch or discard replicas.

Unfortunately, the centralized solution has a number of
drawbacks. In particular, in most cases, the access patterns
(i.e. how often each object is accessed in each edge node, and
the corresponding read-write ratio) are not static and known
a priori. Instead, access patterns are dynamic and need to be
estimated in run time. As a result, the placement of replicas
needs to be recomputed frequently. While access patterns can
be captured on-line by the edge nodes, a centralized solution
requires this information to be shipped on a regular basis to a
single node, which can easily create a bottleneck in the system.
Therefore, there is an interest in studying an heuristic that can
be implemented by distributed algorithms, where the load can
be distributed among multiple nodes.

When using heuristics that can be executed in a distributed
manner, the following criteria should be considered:

• Approximation Quality, which defines how well the algo-
rithm approximates to the optimal solution.

• Efficiency, which is split into the computation and com-
munication overheads.

• Convergence speed, which defines how fast and effective
the scheme is at converging to a stable placement solu-
tion. A stable solution is reached when the system stops
optimizing, by reaching the best possible solution for the
current workload, within the heuristic’s capability.

• Elasticity, which defines how well the placement adapts
to workloads in which the request patterns change over
time.

Given the highly dynamic nature of edge environments
[13], data placement should be elastic. This means that the
placement algorithm must run frequently and thus, it should
be efficient and converge quickly. In previous literature, it is
possible to find algorithms that provide high approximation
quality, but that are not efficient and do not converge quickly,
or, on the opposite side, elastic algorithms that achieve effi-
ciency at the cost of sacrificing quality. In the next paragraphs,
we explore two examples that detail this trade-off.

Holistic-All [12] is a replica placement algorithm that aims
at achieving an high approximation quality. It does so by
having each node trade information with every other node at
the start of an optimization round. This information is then
used by each node to perform placement decisions regarding
its own storage space. However, only one node may perform
a placement decision at a time, so the execution of the
algorithm requires a long serial number of optimization rounds
to converge. This effect is amplified in systems with a high
number of nodes and with a large diameter network.

D-Rep [3] is an example of an algorithm that trades the
approximation quality for efficiency. D-Rep has been designed
specifically for the edge and requires very little communi-
cation among nodes to perform placement decisions. This is
achieved by requiring each node to coordinate only with its
direct neighbours. The algorithm is very fast at performing
optimization rounds, but the approximation quality is hindered
by the fact that each node works with partial information.
Placement decisions are performed in parallel, with each node,
in each round, being capable of duplicating or migrating a
replica of a data object to/from one of its neighbours. Because,
in each round, optimizations are local, D-Rep also requires
many optimization rounds to approximate the global optimum.

C. Taking Data Consistency in to Account

In [14] the authors elaborate on how distributed database
systems (DDBSs) have to perform decisions regarding the
trade-off between latency and consistency, and exhibits the
differences on how several of these systems handle this
trade-off. For example, the Apache Cassandra [15] distributed
storage system allows for the specification of the consistency
level on every single operation. This system has been used
as the base for the storage module of the Cloudpath [8]
platform, which specifies a multi-tier architecture, with nodes
spanning from the cloud to the edge of the network. In
this system, updates are propagated following an eventual
consistency model, but stronger consistency levels may be
achieved by the clients when they perform requests. Further
development of this storage system added the option to use
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session consistency in the operations performed by the clients,
providing yet another form of handling requests [9]. The
relevance of supporting different consistency models in the
paradigm of edge computing has also been recognized in [7],
which proposes a data storage model that allows for different
consistency levels in requests, depending on the context in
which a client is inserted.

III. CATHODE

In this section we describe Cathode, a placement algorithm
that aims at attaining a good balance between the quality of
the solution, and the speed at which this solution is achieved.
This is accomplished by having a near global, but approximate,
view of the problem, whilst minimizing the steps necessary to
perform placement decisions. Furthermore, Cathode aims at
supporting the use of different replica consistency protocols,
such that the programmer can select the consistency model
that better matches the application semantics. We will start
by describing the system model and then we formalize the
optimization problem which the algorithm is set to solve.
Finally, we address the Cathode operation and describe how it
implements an heuristic that approximates the optimal solution
in an efficient and distributed manner.

A. System Model

1) Edge Nodes: We assume that the system is composed
of a set of N edge nodes N = {n1, n2, . . . , nn}. Each
node ni has a known capacity in terms of storage, denoted
capacity(ni), and a unit storage cost storageCost(ni), which
defines the cost of storing a single data unit in that node.

2) Network: We assume that edge nodes are connected
by some multi-hop network, such that any edge node can
communicate with any other edge node. Nodes can commu-
nicate to coordinate placement and to serve client requests.
The communication between any two edge nodes ni and nj is
subject to some (average) delay denoted δ(ni, nj). We assume
that these delays are known by Cathode. The manner in which
these values are measured is orthogonal to our contribution:
nodes can ping other nodes to estimate the delays between
each other, or rely on some external monitoring infrastructure
to obtain this information.

3) Data Objects: We assume that the system must handle
the deployment of a set of O objects O = {o1, o2, . . . , oo}.
Each object oi has a known volume, denoted vol(oi), repre-
senting the amount of storage capacity it consumes when it is
stored in a given edge node. Each data object oi supports a set
of operations op1

i , op2
i , . . ., opki ; each operation may have a

different cost, according to its semantics (whether it is a read
or a write, which consistency model it supports, etc) and to
the current data placement. The granularity of these objects
will depend on the application that is using the algorithm, and
is defined by the system administrator.

4) Clients: We assume clients are not aware of the data
placement. Clients are attached to a given edge node and send
requests to that node. The system model abstracts from these
clients and merely consider these requests as ”emerging” in

nodes. Each request is characterized by a target object and the
specific operation performed on that object. The semantics of
each operation then depend on the consistency model being
used.

B. Object Deployment

Each object may be replicated in multiple edge nodes. The
set of nodes that store the replicas of a given object may
change in time, according to the changes in the workload
(number of clients, frequency of request, etc). It is the role
of Cathode to define which edge nodes replicate each object.
We assume that for each object oi there is a single edge node
that serves as a source replica for the object, denoted src(oi).
The full set of edge nodes that keep a replica of a given
object oi, including its source, is denoted replicas(oi). The
edge nodes that receive requests for given object are denoted
the consumers(oi). The deployment of an object is a tuple
defined by its source and replicas i.e.:

deployment(oi) = (id(src(oi), replicas(oi)) (2)

C. Cost of an Operation

We assume that the cost of a given operation opki on object
oi, when executed at a given edge node n, can be expressed as
a function of n and of the object deployment deployment(oi):

cost(opk
i , n) = costfunctionk

i (n, deployment(oi)) (3)

The costfunctionki may be different for each operation and
allows to model different replica consistency protocols. Cath-
ode users may provide their own cost functions to accommo-
date novel replication strategies, making the system extensible.
To ease the task of defining the appropriate cost functions,
Cathode includes a library of predefined cost functions, for
several widely used consistency protocols, that can be used
when configuring the system.

D. Example Cost Functions

We illustrate the use of cost functions with a concrete
example. Consider that the user wants to optimize the system
for latency, and that, therefore, the cost of each operation is the
latency required to execute that operation. Consider an object
that supports two operations, namely, a write operation opw

and a read operation opr, using a primary backup replication
scheme where the source of the object plays the role of the
primary. A write operation is executed by sending the update
to the primary, then having the primary send the update, in
parallel, to all replicas, waiting for all the acknowledgements
from these replicas and, finally, sending back an acknowledge-
ment message to the edge node that executed the operation.
We call this operation WRITESOURCE. The latency of the
WRITESOURCE operation can be captured by the following
cost function:
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wcost(n, deployment(o)) =

2[δ(n, src(o)) + max
∀j∈replicas(o)

δ(src(o), j)] (4)

The read operation is executed by performing the read
locally, if the node n maintains a replica of the object, or
by sending the read request to the nearest replica. We call this
operation READCLOSEST. The latency of the READCLOSEST
operation can be captured by the following cost function:

rcost(n, deployment(o)) = 2 min
∀j∈replicas(o)

δ((n, j) (5)

Several types of operations, each with their own consistency
requirements and differing semantics, can be allowed for the
same object, and it is the role of Cathode to optimize the
placement of that object, accounting for the observed costs of
each operation, according to their cost functions. Section IV
provides more examples of cost functions.

E. Optimal Placement

Each node n keeps track of the frequency fn(opki ) of each
operation opki that it handles (i.e., requests received from
attached clients). The cost of maintaining a given deployment
configuration for an object oi is defined as:

cost(deployment(oi)) = oCost(deployment(oi))+
sCost(deployment(oi))

(6)

with oCost representing the operations’ cost:

oCost(deployment(oi)) =
∑
∀n

∑
∀k

cost(opk
i , n) · fn(opk

i ) (7)

and sCost representing the storage cost:

sCost(deployment(oi)) =
∑
∀n

hn
i · storageCost(n) · vol(oi) (8)

where hni is a binary which takes the value of 1 when a replica
of oi is stored in n, and 0 otherwise.

The total cost of the system is the cost of maintaining the
deployments of all objects:

totalcost =
∑
∀i

cost(deployment(oi)) (9)

Building up from the definitions above, the optimal place-
ment is a set of deployment configurations that would mini-
mize the totalcost, while respecting the capacity constraints at
each mode. The capacity constraint can be expressed as:

∀n : capacity(n) ≥
∑

∀i:n∈replicas(oi)

vol(oi) (10)

Since this optimization problem is NP-Hard, as we have
mentioned in Section II, we resort to an heuristic strategy, in
order to approximate the optimal solution.

F. Data Placement Algorithm

We decentralize the placement algorithm, by letting the
source of each object be in charge of the decisions regarding
the deployment of that object based on information it receives
from the nodes that replicate the object.

The algorithm operates in epochs. In each epoch, every
node n estimates fn(opkj ) for each object oj for which
n ∈ consumers(oj). Alongside, for each replicated object
(replica(oi, n)), that node n stores (n ∈ replicas(oi)), two
structures are computed:

candidateSet: a set of tuples (m,wn(oi,m)), in which m is
a consumer of replica(oi, n), and wn(oi,m) is a weight that
represents the benefit for creating a replica in m, estimated
by n. The way this weight is estimated is by computing the
follwing equation:

wn(oi,m) = an(oi,m) · δ(m,n) (11)

in which an(oi,m) is the frequency of requests from m to
replica(oi, n). The candidateSet is then composed of the kcand
tuples with the largest weights. Thus, kcand determines the
number of candidates chosen by each replica node n.

summaryTuple: a tuple that is a summarized representation
of the consumers of replica(oi, n). This tuple is defined as
(consumers(oi, n), wn(oi)), where consumers(oi, n) are the
consumers of the replica, and wn(oi) is the average of the
weights wn(oi,m) of each consumer.

These two structures, calculated by the replicas, are sent at
the end of the epoch, from the replicas to the source node of
the object. The source then selects the candidates to replication
and the participants in the process. To select the candidates,
it uses the sets candidateSet(oi, n) from each replica n, to
compute a global set, candidateSet(oi) of the kcand consumers
with the largest weights. To select the participants, the source
uses takes each summaryTuple(oi, n), and picks the consumer
sets with the largest weights, until the summed weight of the
sets surpasses a threshold Tpart ∈ [0, 1]. The union of these
”large weight” sets is denoted participants(oi).

Each optimization round is then composed of two phases,
executed sequentially, the shrinking phase, used to reduce the
number of replicas, and the expansion phase, used to increase
the number of replicas. The algorithm avoids keeping replicas
that do not contribute to reduce the cost, or that may even
increase the cost. For instance, by eliminating the replica
with the largest distance to the source, the latency cost of
WRITESOURCE operations can be reduced. For this reason, the
algorithm executes the shrinking phase before the expansion
phase. We describe these phases next.

1) Shrinking Phase: The goal of the shrinking phase is
to check if it is possible to reduce the cost of the cur-
rent configuration by eliminating one or more replicas. The
shrinking phase starts by estimating, for every combination of
kcomb replicas, the cost of an alternative configuration where
that combination of replicas is removed. The gain that can
be achieved by selecting a alternative configuration, is the
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difference of the cost of the current configuration and the
estimated cost of the alternative configuration. Cathode selects
the alternative configuration with the largest estimated gain
and, if the estimated gain is above some minimal threshold
Tgain, that configuration is selected.

To avoid overloading the source node when estimating
the gains above, we parallelize the computation of these
gains as follows. The source node contacts the nodes in
participants(oi). Since the estimated cost of a alternative
configuration is the sum of the costs incurred by the operations
requested by each consumer, we have these consumers locally
compute their own contribution for the cost of the current
configuration, and for the cost of each of the r alternative
configurations that will be considered by the source. The con-
sumers will then send those partial costs to the source, which
then only needs to sum these contributions to quickly compute
the estimated total cost of each alternative configuration, and
its associated gains.

2) Expansion Phase: The goal of the expansion phase is
to check if is possible to reduce the cost of the current
configuration by adding one or more replicas. As in the
shrinking phase, this is performed by estimating the possible
gains that can be achieved by selecting alternative configu-
rations that, in this case, include 1 to kcomb more replicas
than the current configuration. There is however a significant
difference between the shrinking phase and the expansion
phase. While we assume that the average number of replicas of
any given object is relatively small and, therefore, the number
of target configurations for the shrinking phase is also small,
the number of potential target configurations for expansion
is very large because, in theory, any edge node could be
considered as a candidate to host a potential new replica. As
so, to avoid estimating gains for an extremely high number of
configurations, the only nodes considered by the participants
in the expansion phase, are the nodes in candidateSet(oi, n),
which are essentially, some of the (estimated) ”best” nodes in
which to create a replica. The rest of the expansion phase is
executed in a way that is analogous to the shrinking phase:
The src contacts the participants, the costs are computed in
a distributed way, sent to the src, which estimates the largest
gain alternative deployment, and, if the estimated gain is above
some minimal threshold Tgain, that deployment is selected, and
a new replica is created on the corresponding candidate(s).

G. Algorithm Overheads

Regarding the communication overhead, iteration of the
algorithm requires 6 steps of communication; this accounts
for sending of information from replicas to source, for the
shrinking/expansion phases, and for creating the new replicas.
The latency of each step is mainly tied to the distance between
consumers and replicas, which relates to the network diameter.
The computation overheads fully depends on the choice of
parameters kcand and kcomb, which determine the number of
alternative deployments whose costs must be estimated by
each consumer in the shrinking and expansion phases. The
system administrator is responsible for tuning these parameters

to the needs of the system. We discuss them further in
Section IV-E.

H. Replica Discovery and Fault Tolerance

The mechanisms used for replica discovery, are orthogonal
to the main contributions of this document, since Cathode’s
operation is somewhat independent of the operation of these
underlying mechanisms. Cathode may use a simple system
such as the one proposed in D-Rep [3], or a more complex and
precise system, such as the one proposed in AutoPlacer [16].

As seen, Cathode elects one of the replicas (the source
replica) to play a special role in the algorithm. If this replica
fails, a leader election algorithm should elect another replica
as the new source. These mechanisms are also orthogonal to
our contributions, but their implementation is achieved by a
simple extension of Cathode. In face of a network partition,
the algorithm should elect a source in each partition and
let deployment decisions to be executed in parallel in both
partitions, without blocking the placement algorithm. When
the network partition heals, the leader election mechanism
ensures that only one source remains active. Note that some
data consistency models, namely strong consistency models,
may block operations in the presence of network partitions. For
instance, some operations may require a majority of replicas
a block in minority partitions. This is unavoidable, and has
been captured by the now well known CAP theorem [17]. Still,
Cathode will continue to adjust placement for all objects that
use weak consistency and that remain live during the partition.

I. Space Complexity

We finish the description of Cathode with a brief analysis
of the space snode required for bookkeeping in each node, that
is captured by the following equations:

snode(n) = sconsumer(n) + sreplica(n) (12)

sconsumer(n) =

 ∑
∀i:n∈consumers(oi)

reqOpTypes(n, i)

×(2×size(integer))

(13)

sreplica(n) =∑
∀i:n∈replicas(oi)

 ∑
m∈consumers(oi,n)

(2× size(integer) + size(double))


(14)

where reqOpTypes(n, i) is the number of types of operations
that n requests for given object i. To illustrate with an example,
consider a node n that requests 1000 objects, that performs
2 types of operations on each object, and that stores the
replicas of 1000 objects, which are each periodically requested
by 100 consumer nodes. Considering the size of an integer
as 4 bytes, and the size of a double as 8 bytes, the space
necessary for bookkeeping consumer metadata (sconsumer(n))
in this node would be of 16KB, while the space necessary
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for bookkeeping replica metadata (sreplica(n)) would be of,
approximately, 1.6MB.

The granularity of each object is defined by the system
administrator, and should follow the logic of the application.
We expect the application to cluster fine grain objects into
reasonable sized “data partitions” that are treated as a single
object by the algorithm. This allows the admin to keep the
bookkeeping costs of Cathode within some target limits.

IV. EVALUATION

We now present an experimental evaluation of Cathode’s
performance and compare it with the performance of Holistic-
All [12] and of D-Rep [3]. We aim to show that Cathode strikes
a balance between the advantages and disadvantages of these
two systems. Additionally, we assess the gains that can be
achieved by Cathode, derived from the fact that it takes into
account for the different operations and consistency models
used in the system. In summary, our experimental evaluation
aims an addressing the following questions:

• What is the quality of the deployments provided by
Cathode and how fast is it at converging to a stable
solution?

• How well does Cathode adapt to dynamic workloads?
• Do the semantic-aware mechanisms of Cathode bring

advantages over simpler oblivious approaches?

A. Experimental Setup

Our evaluation is performed by simulating the execution of
the algorithms, using the PureEdgeSim framework [18]. All
the algorithms we have evaluated are “round-based”. These
rounds occur at the end of a time window, an epoch, during
which statistics, regarding, for example, the access patterns
and latencies between nodes, are registered by the nodes. An
optimization round then executes placement decisions based
on the information collected during the last epoch. Because
of this, we use epochs as a measure of time. The (real) time
interval that corresponds to an epoch would depend on factors
such as the request rate of the system. In our experiments,
the request rate is not a factor that exerts large influence on
the performance metrics, since it merely affects the values
that go into the placement problem’s cost function. Because
of this, in our experiments, we have setup the duration of the
epoch to be long enough to collect an average of 30 (new)
client requests at each edge node. This way, the epoch is
merely an abstract time window with the same duration for
each algorithm, independent of its operation and speed. As a
reference, in the evaluation of D-Rep, the authors have studied
how the duration of epochs affected the effectiveness of the
placement algorithm and have shown that epochs of 4 to 7
minutes provide satisfactory results [3].

To simplify the experiments we assume that all objects have
roughly the same size and therefore we assign a unitary storage
cost to each replica. We do not impose any hard limit to the
maximum number of objects that each edge node can store
(even though our algorithm is able to take these limits into
account). Our option to not impose such a limit, is in order to

perform a fair comparison with D-Rep, since the latter does
not specify behaviour on how to deal with hard limits in the
storage capacity of nodes.

B. Network Topology

We consider two network topologies in our experiments:
• Scale-free networks: In a scale-free network model the

number of edges k originating from a given node exhibits
a power-law distribution. This model is widely used,
due to it capturing the properties of many human-made
networks, such as the Internet.

• Grid networks: In the grid (lattice) network model, nodes
are deployed in a two dimensional grid, with each node
having, at most, 4 neighbours. This network model can
capture some edge networks, in which edge nodes may
be placed along the roads, or areas, of a city.

C. Workloads

We consider two different types of workloads:
• Client-driven workload: In this workload clients access

objects according to their own interests, regardless of
their position within the network. This workload captures
applications such as social networks, news websites,
etc., and it has been observed that these workloads are
highly skewed [19], [20]. In this workload, every time
a node makes a request, it selects which object it is
going to access, by sampling a Zipf-like distribution that
is attributed to that node with an exponent α ranging
between 0.7 and 0.8, an interval that can represent several
types of environments as shown in [19].
We divide this workload type in two subtypes, homo-
geneous and heterogeneous. In the homogeneous client-
driven workload, the global distribution of requests also
follows a Zipf law. In the heterogeneous client-driven
workload, clients have independent distributions from one
another, making the global distribution less skewed.

• Locality-driven workload: In this workload objects are
geo-referenced and clients access objects based on their
own geographic positions. This workload captures, for
example, recommendation applications, such as Tripadvi-
sor, where users search for nearby restaurants, museums,
etc., or applications in which vehicles search for road
conditions in their proximity. In this workload, each
object is assigned to a given location and the edge node
closest to that location is designated to be the source
node for that object. Every time a node makes a request,
it selects which object it is going to access following a
skewed distribution in which the skew is based on the
distance between the client and the object.

D. Operations and Consistency Models

In our evaluation we consider just two types of operations:
READ operations, that do not change the state of the object,
and WRITE operations, that do change the state of the object.
Each of these operations may have a different implementations
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Operation Cost Function
WRITESOURCE 2[δ(n, src(o)) + max∀j∈replicas(o) δ(src(o), j)]
READCLOSEST 2min∀j∈replicas(o) δ((n, j)
WRITECLOSEST 2min∀j∈replicas(o) δ((n, j)
READMAJORITY 2max∀j∈closestQuorum(n,o) δ((n, j)
WRITEMAJORITY 2max∀j∈closestQuorum(n,o) δ((n, j)
READWRITEMAJORITY 4max∀j∈closestQuorum(n,o) δ((n, j)

TABLE I: Cost functions used in the evaluation

according to the consistency protocol selected. We consider
four different consistency protocols in our evaluation:

• linerizability: We consider the non-blocking implementa-
tion of atomic registers proposed in [21]. In this imple-
mentation, writes are performed in a majority of replicas,
and reads are implemented by, first, reading a majority
of replicas, and second, writing back the value (that was
read) to a majority of replicas. This write-back phase
is required to ensure consistency among multiple reads
that are executed in concurrence with a write operation.
This consistency model uses the following operations:
READWRITEMAJORITY and WRITEMAJORITY.

• strong consistency primary-backup: In this implemen-
tation all writes are performed directly at the source
replica, which then propagates the update to all the
other replicas, waits for acknowledgements, and returns
to the client. Reads are performed on the nearest replica.
This consistency model uses the following operations:
READCLOSEST and WRITESOURCE; these operations
have been described in detail in Section III-D.

• strong consistency quorum: In this implementation both
reads and writes are performed on a quorum of replicas.
We use a majority quorum for both operations, i.e., each
quorum includes the (r/2 + 1) replicas that are closer
to the client. This consistency model uses the following
operations: READMAJORITY and WRITEMAJORITY.

• weak consistency: In this implementation, the read and
write operations are always performed on the nearest
replica. Updates are propagated to other replicas in the
background. This consistency model uses the following
operations: READCLOSEST and WRITECLOSEST.

The cost functions for each of these operations are depicted
in Table I (for a rationale of these cost function, see Sec-
tion III-D). When comparing Cathode with Holistic-All and
D-Rep we use the weak consistency model, as this model is
directly supported by all systems.

E. Configuring the Parameters of Cathode

As we have seen, the operation of Cathode can be tuned by
four configuration parameters:

• Tgain, the minimum gain (cost reduction) that justifies
adding or deleting a replica;

• kcand, that controls how many candidates are considered;
• kcomb that controls how many combinations (of cre-

ations/removals) are considered;
• Tpart, that indirectly controls the amount of participants

in the optimization process.

(a) Scale-free network, homogeneous client-driven
workload, N=100

(b) Grid network, locality-driven workload, N=100

Fig. 1: Cost function after 1 and 5 epochs of runtime, with a
static workload, for several parameter configurations.

The value of Tgain is application dependent, as it defines
the minimum gain that can bring business benefits. In the
evaluation we wanted to observe the full optimization potential
of the algorithms, so we set Tgain = 0. The other threshold,
Tpart, affects the balance between approximation quality, and
speed. We have set this parameter as its maximum value,
Tpart = 1, to allow for maximum approximation quality, and to
prove that Cathode is able to surpass the converge speed of the
other algorithms, even when all consumers participate in the
computations. The parameters kcand and kcomb affect the several
factors, with higher values leading to higher computational
overheads, but more precise deployments. To make Cathode
as lightweight as possible, the point is to pick low values for
these parameters, while still allowing the algorithm to make
fast progress.

Instead of evaluating every possible combination, we picked
several plausible configurations and measured the cost function
of the deployment computed by Cathode after 1 and 5 rounds
of the algorithm. The results are depicted in Figure 1. In
general, the parameter that appears to exert more influence
is kcomb. As can be observed, in both networks, the the
most noticeable performance improvement, is when kcomb is
switched from the value of 1 to 2. Despite this, the result
after 5 epochs is fairly similar for all configurations. In our
experiments we have used (kcomb = 2, kcand = 10).

F. Convergence Speed

To evaluate the convergence speed of Cathode we set-up an
initial deployment in which there is a single replica of each
data object (the source). Clients access objects using one of
the workloads described in Section IV-C, while the system
runs for several epochs. We then plot the evolution of the cost
function as the experiment progresses.

Figure 2 depicts the evolution of the cost function in
time, for systems of 1000 objects and varying number of
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(a) Scale-free network, homogeneous client-driven
workload, N = 100
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(b) Scale-free network, homogeneous client-driven
workload, N = 500
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(c) Grid network, locality-driven workload, N = 500
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(d) Grid network, heterogeneous client-driven work-
load, N = 500

Fig. 2: Evolution of the cost function during 10 consecutive
epochs with a static workload

nodes, using different combinations of network topologies and
workloads. As shown in Figures 2a and 2b, Holistic-All and D-
Rep, work best in scale-free networks. This happens because
these networks have a low diameter and good results can
be achieved quickly by placing data in well connected hubs.
Conversely, on grid networks, D-Rep performs poorly because
the placement decisions performed in each node consider a
very limited horizon of information (observing only the state
of its neighbours), and hence, the algorithm fails to capture
the global system behaviour, slowing down convergence.

Figures 2c and 2d show that Holistic-All has a much slower
convergence on grid networks. This can be explained by the
fact that Holistic-All requires nodes to wait, for several serial
rounds, for the placement decisions performed in other nodes.
This process turns out to be inefficient in systems with large
diameter and a large number of nodes. Cathode is able to
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(a) Scale-free network, homogeneous client-driven
workload
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(b) Grid network, locality-driven workload

Fig. 3: Final cost after 10 epochs with static workloads as a
function of system size (N)

outperform both Holistic-All and D-Rep on all large networks.
This happens because, on one hand, the information and
communication needed to run the algorithm is less than in
Holistic-All, making the process faster. On the other hand,
placement is performed using a data horizon that allows the
algorithm to place replicas exactly where they are needed,
instead of having to propagate these replicas from neighbour
to neighbour, as it is done in D-Rep.

G. Quality

Figure 3 shows the cost of the final deployment of each
algorithm, after 10 epochs, for different systems sizes. It can
be observed that on scale-free networks the quality of the
solution is less affected by the system size in any of the
algorithms. This is because the quality of the solution mainly
depends on the placement of replicas on the few network
hubs, whose number grows logarithmicaly. Conversely, on grid
networks, a larger system size normally translates to a higher
diameter, and thus a higher initial cost. The same factor that
affects the convergence of Holistic-All and D-Rep in grid
networks, also affects the quality provided by these systems,
that perform considerably worse than Cathode in this setting.
We also studied how the number of data objects affected the
performance of the algorithms and observed that Cathode is
much more conservative, creating less replicas than the other
algorithms for higher N values, but achieving better quality.
Due to lack of space we do not present those experiences here.

H. Dynamic Workloads

We now show how the different algorithms perform when
faced with dynamic workloads. For these experiments we
let each algorithm run for 10 epochs, but, in each epoch, a
percentage f of the sets of objects accessed by the clients, is
changed. The changed sets in each epoch are generated from
a Zipf distribution correspondent to that epoch.
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(a) Scale-free network, homogeneous client-driven
workload, N=100
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(b) Grid network, locality-driven workload, N=100

Fig. 4: Dynamic workloads
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(a) Scale-free network, homogeneous client-driven
workload, N=100
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Fig. 5: Performance with different consistency protocols

As we have seen before, scale-free networks are ”easier”
to optimize. Thus, in these networks, all algorithms can adapt
the deployment in face of dynamic workloads, with reasonable
performance. As f rises, we can see that Cathode is able
to consistently achieve a better performance than the others.
On grids, however, D-Rep and Holistic-All cannot adjust fast
enough, and increase, instead of decreasing, the cost of the
deployment. In sharp contrast, Cathode still offers considerable
benefits even in highly dynamic workloads.

I. Performance with Different Consistency Protocols

We now discuss the advantages that can be obtained by
explicitly considering the consistency protocols of the sys-
tem, in the operation of the placement algorithm. Figure 5

shows the cost of the final deployment of each algorithm,
for the 3 different replica consistency protocols described in
Section IV-D. In both networks, a homogeneous client-driven
workload was used, which better showcases the performance
of the algorithms when using different consistency models.

When using weak consistency, Cathode offers approxi-
mately the same utility as Holistic-All (in fact, it performs
slightly worse). However, when other consistency models are
used Cathode is able to outperform both Holistic-All and D-
Rep. One interesting result is the fact that, when quorum
strong consistency or linearizability are used, both D-Rep
and Holistic-All degrade the performance of the system. This
happens because these algorithms have no way of correctly
assessing the costs involved when a new replica is added to
a quorum based algorithm. Instead, D-Rep and Holistic-All
only account for the flow of information, assuming a weak
consistency model, where a new replica always reduces the
latency experienced in the system, which is not the case when
a quorum based replication scheme is used. In contrast, when
quorum strong consistency or linearizability are used, Cathode
is able to increase the utility by 1.17× on average, due to the
fact that it is aware of the semantics of the operations, taking
into account the cost function and frequency of each. This
support for multiple consistency protocols is made possible
because of the operational structure of Cathode, in which
a single node (source) is responsible for the deployment
decisions of an object, however, the computations necessary
for these decisions are distributed among multiple other nodes.

V. RELATED WORK

There is quite an extensive amount of literature on the data
placement problem [3], [6], [12], [16], [22]–[31] but most of
these system aim at different settings and cannot be easily
adapted to edge computing. For instance, [25], [26] have been
designed for cloud environments, in which the number of
nodes is small: their placement algorithm is run in a centralized
manager, an approach that is not scalable, nor feasible, in
the edge scenario. Some systems consider edge scenarios but
are tailored to specific applications. For instance, [30], [31]
are designed for specific type of workflows. Some systems
consider the costs of updates [27], [28], or the costs of multiple
consistency protocols [29], however, none of them specify a
scalable structure to compute this costs in scenarios like the
edge. In the following, we focus on the approaches that are
closer to Cathode.

Like Cathode, [22] and [24] also aim at being efficient and
decentralized. However, unlike Cathode, they do not account
for latency, and also assume that the routing is blind in
regards to replicas, only creating replicas in the path from
clients to the source. Autoplacer [16] is a data placement
algorithm for the cloud that distributes computations among
nodes and allows for efficient replica-aware routing. However,
Autoplacer requires an all-to-all communication phase that
cannot be efficiently executed among edge nodes. In [6],
the heuristic is based on geographically partitioning the data
placement problem in several regions. However, the algorithm
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only considers the placement of a single copy of object,
disregarding replication as a strategy to reduce latency.

The systems that are conceptually closer to ours are
Holistic-All [12] and D-Rep [3], which we have previously
introduced in Section II and used in our evaluation. The former
illustrates how to achieve a good approximation to the optimal
cost and the latter how to achieve a fast optimization process.
The objective with Cathode was not to compromise neither
optimality nor speed, but to provide both in any system size or
topology. Furthermore, unlike these systems, Cathode provides
a structure that enables consistency-awareness.

VI. CONCLUSIONS AND FUTURE WORK

Cathode achieves high quality solutions in a scalable way,
providing a structure that enables optimizing placement in
multiple consistency models, irregardless of system size or
topology. Cathode surpasses the performance of other algo-
rithms in most of the analysed cases. In the worst case, it
achieves 5% of the utility achieved by quality-focused algo-
rithms. However, in environments such as large grid networks,
Cathode is able to surpass the quality of the other solutions
by a factor of 1.7×. Furthermore, it is able to reduce costs
for all the considered consistency protocols, unlike the other
solutions.

Currently, Cathode already supports 4 different consistency
protocols, namely weak consistency, primary-backup based
strong consistency, quorum-based strong consistency, and
atomic registers. As future work we would like to enrich the
library to include protocols that implement causal consistency
and session guarantees.
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