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“In our broad sweep, the city looks like a single gigantic creature - or more like a single

collective entity created by many organisms. Countless arteries stretch to the ends of its elusive

body, circulating a continuous supply of fresh blood cells, sending new data and collecting the

old, sending out new consumables and collecting the old, sending out new contradictions and

collecting the old.” — Haruki Murakami, in After Dark
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Abstract

Self-management allows a system to manage its own behavior autonomously, guided by

system goals and relying on feedback of the system behavior. The main challenge to self-

management is the growing complexity of software systems. Today, systems are heterogeneous

collections of different services, technologies, and software components, which transforms the

manual management of such systems in a complex, tiresome, and error-prone task.

This thesis proposes a conceptual framework and modeling primitives for the self-

management of systems built from both distributed and non-distributed components that can

be adapted. The approach relies on knowledge from both system designers and component de-

velopers to manage the system. This knowledge is the base of a goal-oriented solution to control

the system behavior, according to the execution conditions and load. As a result, it becomes

possible to optimize the system performance and maintain the desired behavior, while easing

and automatizing the system designer task. Furthermore, the proposed approach also addresses

the challenges of adapting such systems by proposing a solution that leverages on reconfiguration

strategies.

The evaluation of this work in a main case study: a web based system, with both distributed

and centralized components. The evaluation explores different aspects of the approach. It allows

to analyze the performance and scalability of the approach, and how the distribution is handled.

The obtained results show that not only the approach is able to provide the necessary adaptation

support to manage the system, but it also reduces the complexity of the tasks performed by the

system designer.

Keywords: Self-management, autonomic computing, self-optimization, control-loop, goal

policy, adaptable components, self-adaptive systems





Resumo

Os sistemas computacionais são cada vez mais um conjunto de vários componentes, serviços,

tecnologias e middleware. Garantir que os sistemas funcionam de acordo com o desejado torna-

se cada vez mais uma tarefa complexa e que exige um grande esforço humano. Tornar a gestão

destes sistemas autónoma, sem necessidade de intervenção de um operador humano não só a

facilita, como dá garantias de correcção e maior rapidez.

Esta dissertação propõe uma moldura conceptual, constitúıda por vários conceitos, modelos

e metodologias que permitir gerir de forma automática os sistemas compostos por vários ele-

mentos, distribúıdos ou não. A principal contribuição deste trabalho consiste em tirar partido

do conhecimento dos arquitectos dos sistemas e das equipas que fazem o desenvolvimentos dos

vários elementos. Assim propõe uma solução baseada em objectivos para controlar e adaptar o

sistema em tempo de execução de acordo com a carga e o estado do ambiente de execução. Para

além disso, propõe também várias estratégias de reconfiguração para executar as alterações do

sistema.

A avaliação deste trabalho utilizou um caso de estudo principal: uma sistema web-based.

Os protótipos constrúıdos para o caso de estudo permitiram analisar as questões de desem-

penho, escalabilidade, e suporte à distribuição. Os resultados obtidos da experimentação com

os protótipos mostram que não só a abordagem é bem sucedida a gerir automaticamente o sis-

tema, como diminui o esforço e complexidade das tarefas de gestão executadas pelo arquitecto

do sistema.

Palavras-chave: adaptação, auto-optimização, poĺıticas de adaptação, gestão autónoma,

autonomic computing
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The fact that our task is exactly commensurate

with our life gives it the appearance of being

infinite.

Franz Kafka

Chapter 1

Introduction

This thesis addresses the problem of developing self-adaptive systems composed by adaptable

(distributed and non-distributed) components. The emphasis of the work is on the use of goal

policies as a means to manage the inherent complexity of controlling the adaptation.

1.1 Motivation

Software is now pervasive in our daily life, and an increasing number of tasks depends on

the correct and efficient execution of programs that are built by composing multiple software

components or services. These programs often need to operate in dynamic and unpredictable

environments, and have to cope with events such as changes in the available resources, variable

workloads, shifts in user requirements, etc. This motivates the design of self-adaptive systems,

i.e., systems that continuously monitor the execution environment and, without human inter-

vention, change their behavior at runtime in response to changes that may deviate their behavior

or performance from the intended.

However, the development of self-adaptive systems is far from trivial. In fact, it has been

pointed out as one of the main challenges in Software Engineering [GvdHT09]. It has been

recognized [CLG+09] that the proper realization of self-adaptation functionality still remains a

significant intellectual challenge due to the lack of methods, techniques, and tools that enable

the systematic development of this class of systems. The problem stems from the fact that

1



2 CHAPTER 1. INTRODUCTION

adapting a complex system, built as a collection of components is far more complex than adapting

isolated components (the term component is used to name components, services, protocols, or

even technologies that offer a number of functionalities and serve a purpose in the system).

Many systems already offer different options for customizing their behavior at runtime, including

loadable modules and other numerous configuration possibilities. Such alternatives in individual

services can be used to adapt the behavior of the composed system in response to changes in

its execution environment. However, in the presence of many individual components that can

be adapted in different manners, the management of the global system adaptation becomes a

quite complex task [Kep05]. The definition of the appropriate adaptation logic for the system,

not only requires the detailed knowledge of every system component and its interactions, but

also of how it can be adapted. The space of possible configurations can easily become very large

and, hence, finding the right adaptation strategies becomes quite difficult, time-consuming, and

error-prone.

1.2 Problem Statement

The thesis addresses the engineering of self-adaptive systems built from individual adaptable

components, which may have been developed by different teams in a non-coordinated manner.

The aim of the work is to develop an approach to the construction of this class of self-adaptive

systems and to contribute with a set of techniques that facilitate their design and implementa-

tion, addressing the challenges of adaptation management described previously.

The work follows key principles that have emerged from previous research [CLG+09, GSC09,

OMT08], namely that mechanisms supporting self-adaptation should be separated from the

actual system, and clearly identified in a control loop. A key feature of the approach is the

adoption of high-level forms of adaptation policies based on goals and utility functions.

1.3 Contributions

The thesis contributions are related to the specification of adaptation policies and with the

mechanisms required to implement these policies. On one side, the thesis proposes:
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• A conceptual framework for the self-management of systems built from multiple adaptable

components, both distributed and non-distributed.

• Modeling primitives providing means for expressing the adaptation logic of a system ex-

plicitly, separated from the description of the individual services, in two complementary

forms: i) in terms of action policies, defined by event-condition-action rules and ii) in

terms of goal policies addressing key performance indicators.

• Techniques for runtime support of such adaptation policies, namely techniques that sup-

port the dynamic generation of action policies from high-level goals, employed whenever

the system deviates from its desired behaviour.

On the other side, the thesis also addresses the implementation of the adaptation in runtime,

in particular when adaptation is performed on distributed components, including:

• The re-design of a protocol composition framework to facilitate the runtime reconfiguration

of protocol stacks.

To assess these contributions we use as case study a web based system that includes a

combination of distributed and centralized components.

1.4 Results

Given the contributions listed above, the results of this thesis are the following:

• An engine to derive at runtime adaptation strategies from high-level policies using the

representation of the system, the characteristics of each individual component and available

adaptations, and context information regarding the execution environment.

• The design of R-Appia, a reconfigurable version of the Appia protocols composition and

execution framework.

• The design of a set of context sensors and effectors to support the dynamic adaptation of

web applications based on the Apache HTTP server and the Infinispan data-grid.
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• A prototype and an experimental evaluation of an adaptable group communication proto-

col and an in-memory distributed data grid.

• A prototype and an experimental evaluation of an adaptable web application.

1.5 Research History

This work has background in the candidate’s Master dissertation, which proposes a policy-

oriented approach to the construction of adaptive communication protocols [RLR06]. From this

work experience, it was possible to identify some of the shortcomings of self-adaptive solutions.

One observation was the difficulty of describing an appropriate adaptation policy when many

adaptations or communication protocols were involved. The description of the policy demanded

not only a high-level comprehension of what is an adequate performance and behavior for the

system, but also a detailed low-level comprehension of the protocols and how they could be

adapted. Another important observation was that the design and development of the adaptation

support was a demanding effort, were some aspects were tied to the managed system, while others

were more generic. This was true at all levels, but specially at the planning and execution levels,

despite the system being distributed.

These observations lead to an iterative effort of developing an approach that would address

the challenges above, aiming at facilitating the task of developing self-adaptive systems. The

thesis efforts began with studying the self-management support and how it was influenced by

the distribution and composition of the system. The next step was to facilitate the description

of the adaptive behavior of the system. The candidate’s visit to AT&T Labs Research, and

the collaboration with Matti Hiltunen and Richard Schlichting was instrumental to expand

these ideas, and experiment them in a different area, of web applications. Eventually, the idea

of automatically extracting the policy was first experimented in a web application with non-

distributed components only and later with also distributed components, by running the web

application on a cluster of nodes using an in-memory distributed data-grid.

It is worth to mention a number of works related with this thesis that have been developed

in the GSD group at INESC-ID during the PhD program of the candidate. Cristina Fonseca did
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a study of the advantages of using specialized switching protocols to speed up the coordination

required to perform distributed reconfiguration [FRR09]. João Ferreira applied some of these

ideas in the design of A-OSGi, an adaptable OSGi framework [FLR10]. Tiago Taveira has

worked on the implementation of a reconfigurable group communication system based on some

of the results reported here [Tav10].

1.6 Roadmap

The thesis is organized in the following manner. Chapter 2 discusses the concepts and

terminology of adaptive systems. It also provides an overview of the state of the art of the many

topics addressed in this work. Chapter 3 gives an overview of the entire approach, addressing

the activities of adaptation support. The next three chapters focus on technical aspects of

the approach. Chapter 4 covers the knowledge model. Chapter 5 addresses the rule and goal-

oriented planning. Chapter 6 covers the execution of the adaptations using reconfiguration

strategies. Chapter 7 presents the evaluation of the proposed approach. The thesis is concluded

in Chapter 8, with some final remarks and a discussion of future work.
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There are no facts, only interpretations.

Friedrich Nietzsche, in Notebooks

Chapter 2

Self-adaptive Systems

There are literally hundreds, if not thousands, of approaches that rely on some sort of

adaptive solution to improve results when facing dynamic scenarios. They range from problem-

specific to general, and come in a variety of packages, addressing different research areas. Not

only much of the existing work is not of interest to this thesis, but its systematization and

comparison would not bring any significant and relevant benefits. Instead, this chapter has two

goals. The first goal is to provide some clarification of the terms and concepts most commonly

used in this research area. The second goal is to cover the key concerns when designing and

developing such systems, in the state of the art.

This chapter is divided in two main sections. The first addresses the concepts and design

principles, while the second covers the design and development of adaptive systems, including a

discussion of the main limitations and challenges.

2.1 Background

This section presents a concise description of the nuclear concepts commonly employed in

adaptive systems literature. This literature includes mainly sources from context-awareness re-

search, autonomic computing, and renowned conferences in software engineering, such as ICSE1

and FSE2, but not only. Following the introduction of elementary concepts of adaptive systems,

1International Conference on Software EngineeringR�

2ACM SIGSOFT Symposium on the Foundations of Software Engineering

7
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this section also presents a brief description of two best practice design principles for software

development: separation of concerns and closed control loop.

2.1.1 Key Concepts

Many concepts mentioned in this proposal are used in a number of different research areas.

Therefore, the same concept can be referred under different terms, or the same term may refer

to different concepts. Furthermore, many research areas employ adaptation and dynamic re-

configuration to address their particular needs. Each area focus on different aspects, thus, the

use of adaptation is also different. In this section, the concepts of adaptation and context are

clarified, in the scope of adaptive software systems.

2.1.1.1 Adaptation

The term adaptation is widely used in several domains, with slightly different meanings. In

general, software adaptation concerns changing a software system with a purpose, in response

to variations in its operational envelope, for instance, in the user needs, in the system workload

or in the available resources. Dynamic software adaptation (also known as runtime software

adaptation) imply that the intended changes take place during the system execution [MSKC04a];

there is no need to stop the system.

Self-adaptive systems, or simply adaptive systems, are systems that are able to adjust their

behavior autonomously (i.e., without human intervention), in response to their perception of

the environment and the system itself for a variety of goals [CLG+09]. Self-adaptive systems are

also referred by more specific terms when self-adaptation exclusively addresses a specific type of

goal. For instance if adaptation concerns dependability or performance, systems are said to be

self-healing or self-optimizing. Systems or components are said to be adaptable if they provide

mechanisms for being adapted during runtime but they do not monitor the environment and

the control over the change in its behavior is left to other components.

Self-adaptive systems are sometimes referred to as autonomic systems. This is because

self-adaptation is a means that has been explored to in the context of autonomic computing

— a vision of the future in which software systems will manage themselves in accordance with
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high-level objectives specified by humans [Kep05]. This self-management relies on four concerns:

self-healing, self-protection, self-optimization, and self-configuration.

Two key elements in self-adaptive systems are the context and the adaptation logic. The

former is the information regarding the execution environment, which has to be monitored due

to its relevance to assess if the system behavior is suitable or has to be changed. The latter

concerns the decisions that determine when to adapt and how.

2.1.1.2 Context

The notion of context and context-awareness was first introduced in computer science to

improve the interaction between humans and computers. Context provides implicit situational

information, as regular communication between humans would have and was lacking in human-

computer interaction [Dey01]. In a broad sense, context can be understood as any information

that characterizes the situation of an entity [Dey01]. In adaptive systems, this involves any

information that can be used to detect the situations in which the system needs to adapt. For

instance, context might include information that allows to evaluate if the system meets certain

quality of service requirements (performance, availability, security, etc).

Context information can have different origins. Usually, it encompasses both fine-grained

and coarse-grained information. The gathering of context information can be done in different

ways: periodically, continuously, or on demand. Hence, key aspects in the development of

context-aware systems [SAW94] are: (i) the identification of context sources, (ii) acquisition

of information from sources, (iii) aggregation of context information, and (iv) analysis and

publication of the analysis results.

2.1.1.3 Adaptation Logic

The adaptation logic of an adaptive system is what defines its adaptive behavior. This

includes, on one hand, the characterization of the situations in which changes are needed and, on

the other hand, the definition of what type of adaptation is required in each of these situations. In

component-based software systems, adaptation is typically classified as behavioral adaptation or

structural adaptation [MSKC04b]. Behavioral adaptation takes place if the system dynamically



10 CHAPTER 2. SELF-ADAPTIVE SYSTEMS

changes its behavior without changing its structure. For instance, adjusts the value of some

parameters to tune the system behavior or change some variable that determines the algorithm

that is used. Structural adaptation occurs if the system’s structure is modified at runtime

(for instance, a software component is replaced with another component that has the same

interface or, more generally, components and connectors are arbitrarily added or removed).

While the variability supported by behavioral adaptation is fixed (in the sense that the number

of variants becomes fixed at the time of the system construction), structural adaptation supports

an unbounded number of variants because adaptation may introduce an element made available

subsequently.

2.1.2 Design Principles for Self-adaptive Systems

Self-adaptation can be handled within the system, at the code level, for instance making

use of programming language features such as exceptions, reflection, and aspects. However, the

complexity and cost of developing and maintaining adaptive systems can become extremely high

when ad-hoc solutions, defined on a per-system basis, are adopted. Considerable research has

been done in the area of dynamic adaptation and self-adaptation in order to establish approaches

that allow the construction and maintenance of adaptive systems in a cost-effective way. Among

the key design principles that have emerged from this research, the most significant are: (i) the

separation of the concerns of system functionality from the concerns of self-adaptation and (ii)

explicit representation of a feedback control loop.

2.1.2.1 Separating the Adaptive Behavior

When the system’s adaptation logic is scattered by several components, it becomes challeng-

ing to understand the outcome of adapting in a particular scenario, and reuse the components

or the adaptations. Altogether, this scattering makes it hard to maintain and costly to modify.

The separation of concerns (SoC) paradigm [HL95] is a widely accepted solution to these

issues, allowing a cost-effective construction of self-adaptive systems. The solution requires that

all aspects that concern adaptation are extracted from the base system and treated separately

from the system [CGS05]. To some extent, self-adaptation is made external to the base system,
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which, for this reason, is also referred to as the managed system. By applying this principle it is

possible to: (i) decrease the complexity of the software development, (ii) facilitate comprehen-

sion, and (iii) promote reuse of adaptation solutions.

2.1.2.2 Closed Control Loop Systems

A number of recently developed approaches implement the separation and externalization

of the adaptive behavior in terms of a control layer on top of the managed system. This layer

monitors the base system, possibly maintaining an explicit model of the system, and, relying on

a set of high-level goals, adapts the behavior or structure of the system. In many approaches it

requires the insertion of probes in the base system (for instance, to detect specific system events)

and effectors that can perform a specific set of adjustments. This technique can be applied to

both recently built or legacy systems, and further facilitates the reuse across different systems,

reducing the cost of developing new self-adaptive systems.

Many approaches rely on a particularly popular external control mechanism reminiscent

from the classical control theory: the closed control loop [SEM03], depicted in Figure 2.1. In a

closed control loop system, a sensor monitors the output and feeds the data to a controller which

continuously adjusts the input as necessary to keep the error to a minimum or to maintain a

goal. Feedback on how the system is actually performing allows the controller to dynamically

compensate for disturbances to the system. An ideal feedback control system cancels out all

errors.

Controller System

Sensor

System outputSystem input

Measured output

Reference
Measured

error+

_

Figure 2.1: Closed control loop system

In adaptive systems, the control loop consists of mechanisms that monitor the system, reflect

on observations for problems (check if the observed behavior meets the system requirements), and

control the system to maintain it within acceptable bounds of behavior [SEM03]. Furthermore,
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to reflect on observations, the external control system requires an explicit model of the system

being maintained, to be used as a basis for adapting the system [OGT+99].

A principle that has been strongly advocated is that control loops are elevated to first-class

entities in the development of self-adaptive systems [CLG+09]. That is to say, the feedback

control loop needs to be an explicit and visible element of the system in its modeling, design,

and implementation.

From adaptive systems, several computation paradigms emerged, using specific variations

of the closed control control. From these paradigms, one of the most recent is autonomic com-

puting [KC03b]. The goal of autonomic computing is to develop computer systems that are

capable of self-management, in an attempt to address the growing complexity of software sys-

tems and the dynamism of the environment and load. An autonomic system monitors itself and

decides the best adaptations to the current conditions, thus being able of four self-management

tasks: self-configuration, self-healing, self-optimization, and self-protection. Self-configuration

automatically adapts the system and components configuration according to the changing con-

ditions. The self-healing task aims at the automatic discovery and correction of faults. The

self-optimization task adapts resources to ensure optimal functioning and performance accord-

ing to the defined requirements. Finally, the self-protection task is concerned with the proactive

identification and protection from arbitrary attacks.

Autonomic systems employ a variation of the closed control loop with four activities as

depicted in Figure 2.2. This control loop is often called MAPE-K (monitor, analyze, plan,

execute, and knowledge) loop [HM08]. The monitoring activity (M) is responsible for gathering

the context information regarding the execution environment, the system itself, and any other

information considered relevant for adaptation. This is done relying on sensors. The analysis

activity (A) analyzes and interprets the collected information according to the system model,

in order to detect deviations from the desired system behavior. The planning activity (P) uses

the information provided by the monitoring and analysis activities to decide which actions must

be performed to return the system back to an acceptable state. Finally, the execution activity

(E) performs the system adaptation, applying the actions decided in the previous phase through

effectors. The division in several activities enables the independent modification and extension
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of each one. The MAPE-K loop relies on knowledge (K) regarding the system and the system

adaptation to perform all these activities.

Managed Resources

ExecuteMonitor

Analyze Plan

Sensors Effectors

Knowledge

Figure 2.2: Autonomic manager control loop

Overall, employing a feedback control system as an external control mechanism to support

adaptation results in an infrastructure that is highly reusable and easy to modify, whenever

changes to the adaptation support are necessary. These characteristics are paramount when

designing and implementing adaptive systems.

2.2 State of the Art

This section gives an overview of the state of the art for adaptive systems. Due to the sheer

volume of work that employs dynamic reconfiguration, self-adaptation, and other self-adaptive

solutions, we will mainly focus on approaches in which self-adaption is built externally in a

control layer, separated from the other concerns, and relies on an explicit closed control loop.

In this class of approaches there are several critical design issues. One is the choice of

type of system model. The system model is used by the external control loop system to detect

changes in the context and select adaptation strategies. Another is the choice of model for the

adaptive behavior, which allows to express the adaptation logic. Another critical choice is the

type of adaptation support offered to the control layer, responsible for executing adaptation

and providing updated information on the system and execution environment. Finally, the last

critical choice is the support for executing adaptation.
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2.2.1 System Model

As mentioned previously, in approaches to self-adaptation that rely on feedback control

loops, systems maintain a model of themselves, useful to provide information to detect changes

in the behavior, but also indispensable to help select an adequate adaptation strategy. The

choice of model type is intrinsically connected with the type of adaptations that are expected to

be supported. For example, a component-based system may be adapted by adding or removing

components, and by changing links between components. To perform such adaptations, the

system model must capture the components that are currently in use in the system and how

they are connected.

This type of system model is known as an architectural model : it represents an abstract view

of the system as a composition of computational elements and their interconnections [SG96].

Architecture-based approaches to self-adaptation rely on this type of system model. Adaptation

actions in these approaches are typically restricted to operations that can change the structure of

the system architecture: additions, removals, replacements, and (dis)connection of architectural

elements. When behavioral adaptation is needed, for instance, tuning core parameters of the

system, the system model must capture which parameters are available and their current value.

Taylor and colleagues [OMT98, OGT+99]3 demonstrated the beneficial role of an explicit

architectural model fielded with the system and used as the basis for runtime change. In a

chapter devoted to self-managed systems in Future of Software Engineering 2007, Kramer and

Magee also state that architectural models seem to provide the required level of abstraction and

generality to deal with the challenges posed by self-adaptation [KM07]. In the last years, several

architectural-based approaches to self-adaptation have been proposed. Some more prominent

examples are briefly described below.

• Rainbow framework [GCH+04] — it offers structural self-adaptation, maintaining an archi-

tectural model of the system and mechanisms to update the model according to changes to

the system. The approach relies on a mapping between model elements and system-level

elements. A detailed description of this framework is given in Section 2.2.3.2.

3The first work was considered the most influential paper of ICSE98
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• Mobility and Adaptation Enabling Middleware (MADAM) [FHS+06] — a reference archi-

tecture and middleware for mobile computing applications that supports flexible context

monitoring, adaptation planning and dynamic reconfiguration through the change between

different variants for the same variation point.

• Three-layer reference model [KM07, SHMK08] — a reference architecture that relies on a

three-layer model for adaptable software architectures and task synthesis from high-level

goals. The top layer generates plans4 from high-level goals. The middle layer constructs

component configurations from plans and executes those configurations. Finally, the bot-

tom layer includes the components implementation.

• Policy-based architectural management (PBAAM) [GT09, GvdHT09] — an approach to

self-adaptation that uses architectural models as runtime artifacts, adopts a policy-based

model of adaptive behavior that can be modified at runtime and provides explicit support

for the recording and visualization of adaptations in order to help the operators and

designers.

.

2.2.2 Models of Adaptive Behavior

In approaches to self-adaptation that separate the adaptation behavior from non-adaptive

behavior, an important decision is the choice of the type of model of adaptive behavior that is

considered. Approaches that focus on structural adaptation often opt for graph-based models.

In this case, adaptation boils down to graph rewriting, and can be expressed, for instance, using

graph transformation rules [BLMT08, TGM99, HIM00], graph grammars [LM98] or simply

programming scripts for graph manipulation [WLF01, GCH+04] (also called repair strategies).

There is also a number of approaches that use process-based models [ADG98, Oqu04] and others

that use state-based models [ZC06, DHPB03]. For instance, the AutoTune [DHPB03] agent

framework employs state-based models to uniquely adapt a set of system parameters. These

models are obtained from equations that relate system properties with its parameters and that
4A plan specifies which actions will lead the current state to the goal state, in the form of condition-action

rules.
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allow to determine which parameters’ values are suited to a particular situation. The equations

are determined in an experimental manner, before system execution. The authors illustrate

the approach using a case study of web applications performance. The goal is to maintain two

metrics, the CPU use and the memory use, below certain thresholds. The adaptable parameters

are the timeout and the keepalive of Apache web server. By adapting these parameters, it is

possible to increase/decrease the use of CPU and memory. The system monitors continuously

both metrics and they are input to the equations, which output the parameters’ values.

In the aforementioned approaches, the modeling of adaptive behavior is conducted at a

relatively low-level of abstraction. In particular, when the aim is to use self-adaptation in the

context of autonomic computing, as pointed out in [Kep05], it is essential that humans can

express their goals to the systems in an easy way, at an adequate level of abstraction. as pointed

out in [Slo94], policies are considered a better choice than the models referred previously.

The advantages of policy-based adaptations result from their declarative nature (in contrast

with operational nature of the other referred models). This facilitates the understanding of the

adaptation logic of the system by an operator, without requiring fully detailed knowledge of

implementations. The use of policies allows to achieve independence from the current system

state, facilitating and reducing development effort and subsequent tuning of the system’s adap-

tive behavior. Next, are addressed the two main types of policies used for expressing adaptation:

action-based and goal-based.

2.2.2.1 Action Policies

Action policies are declarative situation-action rules that express the actions that should

be performed when given conditions are satisfied. In the context of self-adaptive systems, they

are used to govern the adaptation of the managed system. Each rule indicates the actions

that should be taken in response to events (or in particular states) that indicate the need of

adaptation. Due to the simplicity of specification it is common for approaches to rely on their

own format to specify action policies. The structure of these policies ranges from a simple if-then-

else format [KC03a, MB11] to a more sophisticated event-condition-action (ECA) rules [MD89,

KW04, AST09].
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There were several approaches to define policy languages [KKK96, LCJS01, DDLS01,

Ant06]. Among existing policy languages, the Ponder [DDLS01] languages has achieved a

renowned position by its completeness and comprehensive support. The language, primarily

offering different formats to describe access control rules, has been extensively used for adap-

tation purposes [MLS04, FLR10]. The language allows to specify different behaviors for each

system object. A rule determines how to choose the best behavior for the current scenario.

Each rule is triggered by a specific event and includes a condition clause that must be respected

and the respective action that must be performed. Events signal new circumstances, changes,

that can be either internal to the system or external, which must be addressed. For example,

in a website, if a login attempt fails the user/password tuple three times, an event is generated.

Conditions are predicates that must be evaluated to determine if the rule applies or not, and

which action will be chosen. The actions describe the adaptations that will change the behav-

ior. Other policy languages exist that target specific adaptation goals, for example, targeting

network management [SK05] or dynamic provisioning of resources [ZJY+09].

PBAAM, already mentioned, is an example of an approach to self-adaptation that uses

action policies to specify how the structure changes. They consist of a set of observations and

a list of responses; when the list of observations is fully satisfied, the entire set of responses is

enacted. To facilitate the understanding, they may contain a human readable textual description

that indicates the purpose of the policy to operators.

Action-based policies present some drawbacks that can be hard to tackle. The major draw-

back is probably the amount of knowledge that an operator has to gather before being able to

describe the system adaptive behavior in terms of situation-action rules. This requires policy

makers to be intimately familiar with low-level details of system function. Also, the larger the

number of adaptations, the more complex and error-prone becomes the task of specifying the

policy. Another drawback is that, if there are many elements of the context that can change

independently, the number of rules necessary to describe the adaptive behavior can quickly be-

come very large and complex to be manipulated by humans. Namely, it may become impossible

for a human to predict the combined effect of potential conflicting rules. Finally, if the adaptive

behavior changes or further context information is added, the policy may have to be written
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from scratch, with few reuse options.

2.2.2.2 Goal Policies

To address the drawbacks of action policies in some contexts, some approaches employ high-

level or abstract goals [AHW04, BCGZ06, SHMK08, HSMK09]. The idea is to support the

definition of how the system should behave without full understanding of what the system can

do, leaving to the approach to determine the actions required to achieve the goals.

Goal policies can be specified in numerous ways. In the three-layer reference

model [SHMK08, HSMK09], a goal policy is expressed as a set of formulas, using temporal

logic. These goals, together with a description of the system capabilities, are used to generate

action policies to enforce the goals. This generation relies on identifying all the states from

which it is possible to lead the system to a correct state, thus creating a rule for each undesired

but amendable state. Other approaches maintain action policies and rely on a mechanism to

map goal policies to action policies [BLMR04]. A number of approaches rely on the adaptation

impact estimation to generate action policies[BB08]. Reinforcement learning and heavy compu-

tations allow to estimate the results of executing an adaptation in a certain state, thus selecting

or not an adaptation to address a state. Reinforcement learning allows the adaptation logic to

gather feedback on the impacts of performing an adaptation, and use that same information in

future estimations.

Another approach to the specification of goal policies is to use utility functions [TK04,

FHS+06, CGS06]. The idea in this case is to define the utility (a scalar value) of each possible

system configuration as a function of specific data available in the context (e.g., memory and

bandwidth available). The aim is to assemble a configuration tailored to the current situation.

For instance, in MADAM, a goal policy is expressed in terms of an utility function that assigns

a scalar value to each possible system variant, as a function of the system properties in a given

context. The choice of a system variant when the system needs to be adapted relies on property

predictor functions over that system properties that are associated to each system variant.

Recent work by Salehie and Tahvildari [ST12, ST07] proposes an approach that employs

a variation of utility functions. The proposed approach uses a weighted voting mechanism to



2.2. STATE OF THE ART 19

select the adaptations. The mechanism relies in the priority of the goals in the policy, given by a

priority vector, and in a voting schema. The goal policy encompasses both high-level goals and

more low-level goals, which are organized in a hierarchy. The leaf goals of the policy are mapped

directly to adaptation actions. When a goal or several goals are violated, the voting mechanism

receives the lists of preferred adaptation actions for each goal and aggregates and weights them

according to the priority. This process allows to filter the lists and select the adaptations that

will be used.

2.2.3 Adaptation Support

The adaptation support assists the adaptation process, by providing necessary input and by

carrying out the output of the decision making. The input is a number of informations necessary

to assess, according to the model of the adaptive behavior, which adaptation is necessary, if any.

The output is the selected adaptation to correct the system behavior. The input provisioning

overlaps with a monitoring and analysis task; the output implementation is addressed separately

in Section 2.2.4.

The implementation of the adaptation support depends on many system aspects, namely,

the components, the system model, the adaptations, and the monitored context information.

There are many approaches that made contributions to the adaptation support. There are

two frameworks of particular interest: Cactus and Rainbow. Cactus, while not as recent as

Rainbow or other frameworks, is one that provides a very complete adaptation support, from

monitoring to adaptation execution. Rainbow is one of the most well-known frameworks for

self-management in software engineering. In the next sections, we cover the two frameworks and

analyze how they provide adaptation support, and their main concerns while doing it.

2.2.3.1 The Cactus Framework

The Cactus framework [HSUW00] is a toolkit for the development of services and network

protocols that can be adapted during runtime. This framework focus on fault-tolerance and

survivability5.

5A system’s ability to continue regular execution even in face of attacks or failures.
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Figure 2.3: Adaptive Component in Cactus

The framework does not have an explicit system model. The system’s building blocks are

adaptable and distributed services and protocols. These building blocks are compositions of

software modules, each providing a different property or function. The composition can be

adapted by changing the execution parameters of a software module or exchange the software

modules altogether, thus changing the service composition.

In terms of adaptation support, Cactus offers monitoring and analysis support and adap-

tation execution. This support relies on making the building blocks into adaptive services. An

adaptive service is a set of adaptive components (ACs) (and occasional static components). An

AC, depicted in Figure 2.3, is a collection of software modules, and a component adaptor that

coordinates adaptations between the software modules. Each software module provides a dif-

ferent implementation of the component functionality, with the component adaptor switching

between the alternative modules or changing the execution parameters of the component.

In terms of monitoring, Cactus allows the construction of monitors, as a collection of micro-

protocols, to capture relevant context information, such as resource consumption, and report

that information. The information can be handed over to component adaptors or to the user

through a GUI.

In terms of execution, Cactus has to address several issues related with the state and the

distribution. When switching software modules, it may be necessary to transfer state from

the old module to the new one. Therefore, using service variables, Cactus allows to transfer

state easily, since the service variables are available to any software module in the composition.

Furthermore, if the service is distributed, adapting it may require further care. Cactus relies
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on a three phase process to ensure the coordination of the different sites [CHS01]. The process

begins with the detection phase where the component adaptor determines if the current module

is the best, and, if not, which one is. This is done using fitness functions that take the current

system state as input. The next phase is the agreement between sites to adapt, where all hosts

reach a conclusion if it is necessary to adapt and how. This is achieve using consensus. Finally,

the last phase is action, where a graceful adaptation from one module to another is performed.

These concerns may not apply when changing the service parameters.

Overall, the Cactus framework provides a rich adaptation support for distributed services

and network protocols change. The system model represents the system in terms of its com-

ponents and allows to change parameters and exchange modules. The framework employs a

control loop where a number of monitors control the context information and component adap-

tors perform adaptations, taking care of state transfer and coordination. However, although

there is a separation of concerns between the building block functionality and the adaptation

concerns, the adaptation logic is together with the adaptation execution, in the component

adaptors. This may raise a number of difficulties when it is necessary to change the adaptive

behavior. Furthermore, Cactus also suffers from the issues related with scattering, discussed in

Section 2.1.2.1.

2.2.3.2 The Rainbow Framework

The Rainbow framework [GCH+04] provides support to the self-adaptation of software sys-

tems. This framework focus on providing a reusable infrastructure and low maintenance and

development costs. The framework follows an abstract architectural system model and the

supported adaptations are of the entire responsibility of the system developer.

In terms of adaptation support, Rainbow implements a closed control loop system. To make

this control loop reusable by different software systems, the entire adaptation support is external

to the system. This degree of separation is far greater in comparison with the Cactus framework.

The adaptation infrastructure is divided in three different elements, as depicted in Figure 2.4.

The system layer establishes the connection between the infrastructure and the system, in other

words, it is the system access interface. This layer encompasses sensors (probes) to monitor the
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Figure 2.4: Adaptation infrastructure in Rainbow

system and effectors to execute adaptations to the system. The architecture layer is responsible

for the analysis and planning tasks. This layer has a model manager that gathers information

from all sensors and interprets it and updates the system model representation. Furthermore, a

constraint evaluator checks the system state to detect anomalies. When anomalies are detected

the adaptation engine determines the adaptation action and the conducts its implementation.

Finally, the translation infrastructure mediates the mapping of information across the abstrac-

tion gap from the system to the model. Furthermore, the infrastructure maintains a repository

of the mappings from architectural-level elements to system-level elements and vice-versa.

The adaptation infrastructure depends on system-specific adaptation knowledge. The adap-

tation knowledge is in fact the adaptation logic, which includes the system operational model.

The operational model imposes explicit constraints to the system behavior, defining, among

other elements, adaptation strategies. Adaptation strategies define which actions are possible

and how they should be implemented for particular system concerns. Rainbow relies on archi-

tectural styles to improve the reusability of this knowledge. Architectural styles can be used by

different systems that share the same structural and semantic properties. Allied with adaptation

strategies, it is possible to define an adaptation style which allows to adapt any similar systems

that share the same system concerns.

Overall, the Rainbow framework provides adaptation support that can be reused by different

systems to attain self-adaptation. The entire support is external to the system, requiring that the
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system provides an access interface. There is a clear separation between the adaptation logic and

the adaptation support. The description of adaptation actions also includes its implementation,

since the framework does not support generic adaptations.

2.2.4 Adaptation Execution

There are many concerns affecting the execution of adaptations. Some refer to the compo-

nent and system consistency and disruption, and adaptation cost. The execution of an adapta-

tion also depends on several aspects. The type of adaptation may make a difference on how an

adaptation is performed in system. The target component is also important, as the execution of

the same adaptation may be different for distinct components. The operation and guarantees

that a component or system provide may also determine how an adaptation is executed. Other

components that are co-dependent of the component being adapted, or that are affected by

the adaptation may also be critical for the execution. In the remaining of this section, we will

refer to the execution of an adaptation as a reconfiguration, to distinguish it from the actual

adaptation.

Early work in architecture-based adaptation [MK96, ADG98] executed structural adapta-

tions simply by directly changing the system configuration. This was achieved by adding new

components, connecting or disconnecting ports, without any concerns regarding the component

and the system. However, this may not be adequate when we remove a component that is

currently interacting with another component, the entire interaction is compromised and the

component left in the system may become inconsistent.

Further work by Kramer and Magee [KM98] addressed consistency when reconfiguring com-

ponents. Their work demands quiescent components before executing a removal (or an exchange)

adaptation. Quiescent components must not be engaged in any ongoing interaction with other

components and that will not start any new interaction. Many times, a component to become

quiescent depends on other components that communicate with it. In order to achieve a qui-

escent state, the target node needs these components to stop communicating with it. These

components are called passive, and only when they stop communicating with the target node it

can reach quiescence and be disconnected and removed. The passive components are also up-
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dated in terms of connections, removing all the connections to the removed component. However,

the assumptions they rely on, make the approach non-viable when the target component needs

to perform a service request to one of the passive components to become quiescent. The work

proposed by Moazami-Goudarzi [MGK96] makes the set of passive components grow dynami-

cally, by blocking the passive components only when no service is required from them. Thus,

gradually but definitely, quiescence is obtained. The work by Vandewoude et al [VEBD07],

also based on not as strong assumptions to achieve quiescence, provides another solution if the

removal is actually part of replacing a component. The proposed tranquility (instead of quies-

cence) consists on stopping only the component to be removed and the passive components can

continue operation. In this solution, the component is removed when all passive nodes commit

on not using the target component, despite continuing operation. However, there in some cases

the quiescence will never be reached.

One of the problems with the proposed solutions is that they do not address distributed

components. The distribution elevates the complexity of achieving a quiescent state because

all the instances of the component must becomes quiescent. Another issue is that the simple

solutions used to tackle consistency come at the expense of a high disruption level, namely

when replacing components. In systems with both strong consistency needs and very high

throughputs, such disruptions may cause the system to fail. Communication protocols are

examples of scenarios where the consistency guarantees are strong to avoid message lost but at

the same time, any service disruption causes messages to be delayed. It is important to note

that the lowest disruption solutions are achieved with when tailored for the particular services.

The switching of protocols may be more or less complex, depending on the guarantees offered

by the protocols. Protocols that execute in several different nodes are, often, more complex to

switch, since (commonly) all the nodes have to agree on switching at the same time. Protocols

that have state are also more complex to switch, because a quiescent state may be necessary

before the switch, as well as state transfer from the old protocol to the new one may be required.

A protocol that has state and executes in several nodes is the total order, and is frequently used

as a case study for switching mechanisms [CHS01, MR06, LvRB+01]. A total ordering protocol

ensures that all members of a group receive all messages sent to the group in the same (total)
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order. The total order case study allows to verify if the guarantees are maintained before, during

and after the switching. In the next section we describe in more detail a the mechanisms used

to replace communication protocols: one for any communication protocol and the other tailored

for a total order guarantee that has both high consistency and minimum disruption demands.

2.2.4.1 Cactus Switching Mechanism

The Cactus framework, addressed in Section 2.2.3.1, includes a mechanism to switch between

micro-protocols during runtime [CHS01]. This mechanism intends to be valid for any micro-

protocol substitution.

The adaptation process is a three phase model. The first phase relies on detecting changes

in the execution environment, and if it would be beneficial to adapt or not and how. The re-

sponsibility for detecting a change depends on the implementation and type of application. Any

micro-protocol can detect changes. The adaptation decision is made using information regard-

ing the state and the fitness functions associated to each adaptation-aware algorithm module

(AAM). The AAM determines which is the best behavior for the current scenario. The second

phase is the agreement process in which all the adaptive components reach consensus regarding

the need to adapt or not. Finally, the third phase is the adaptation action itself, implemented

through a graceful adaptation process that implement barriers to achieve synchronism.

Figure 2.5 illustrates the elements involved in the switching mechanism. The entire mech-

anism is controlled by an adaptive component (AC) that includes an adaptor module, which

includes three micro-protocols specifically for controlling the adaptation (adaptor), agreeing

when to adapt (consensus), and executing the adaptation (barrier). The AC also includes

several AAMs.

To illustrate how the switching mechanism operates, let us consider the exchange of different

total order micro-protocols: TO1 to TO2 at the same time in all the adaptive components. In

the given example, TO1 is a sequencer-based total order protocol [KT91], while TO2 is a token-

based total order protocol [CM84]. The group member holding the sequencer/token starts the

switching process.

The sequencer holder sends a message to all participating ACs, so that they are prepared
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Figure 2.5: The Cactus switching mechanism

to receive incoming messages in TO2, besides control messages sent through TO1 that help the

switching process. After all the ACs are prepared, the sequencer sends a control message, so that

each AC allows TO2 to start processing outgoing messages (messages sent to the group). At

this point, messages from TO1 and TO2 are flowing at the same time, and they are delivered to

the corresponding protocol. After a while, only the TO2 processes incoming messages (messages

received).

The mechanism also allows to transfer state after the TO2 initial preparation. The state

may include attribute values, unprocessed messages, history of processed messages, among many

others.

Overall, the Cactus switching mechanism is managed by a coordinator. The mechanism

offers non-disruptive switching that relies on Cactus components and shared information between

micro-protocols in the same adaptive component.

2.2.4.2 Appia Switching Mechanism

This mechanism [MR06] targets the Appia protocol composition framework [MPR01]. The

Appia framework allows to develop protocols in a modular manner. Different protocols are

then organized in a stack to offer tailored communication services. The mechanism relies on a



2.2. STATE OF THE ART 27

monolithic multiplexer tailored to total order switching. This multiplexer is located above the

protocols to switch and depends on Appia ability to handle multiple channels at the same time,

with shared protocols, as depicted in Figure 2.6. This work switches between a sequencer-site

total order protocol (TO1) [KT91] and a symmetric total order protocol (TO2) [MR06].

The process begins with a synchronization point, when all the nodes start sending messages

in TO2. The first message sent through TO2 is flagged, or in the absence of a message, a null

message is sent. At this point there are messages being sent and received from TO1 and TO2,

being delivered to the corresponding protocols. The messages delivered to TO2 are buffered

by the protocol, while the ones delivered to TO1 are processed immediately. When the flagged

messages from all nodes are received, the buffered messages in TO2 are delivered (if they were

not already delivered by TO1), and all messages received by TO1 are discarded. After this

point, all the messages are processed by TO2.

MULTIPLEXER

Protocol TO1 Protocol TO 2

Protocol

Protocol

Protocol

Protocol

Figure 2.6: The Appia switching mechanism

Overall, the Appia switching mechanism does not require a coordinator, only someone to

initiate the process. The mechanism offers a non-disruptive approach that relies on the buffering

ability of protocols and shared sessions in different channels in Appia.

2.2.4.3 Generic Switching Protocol

In [LvRB+01] a different switching protocol is proposed. This mechanism aims at protocol

composition frameworks, such as Ensemble [vRBH+98] or Appia [MPR01], where there is a

vertical composition of protocols in stacks. The communication relies on events that flow in up
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and down directions in the stack and between the different nodes with stacks. The mechanism is

generic, thus, it can be used for any protocol. The switching relies on two specialized protocols,

a switch and a multiplexer. The first is located above the protocols to switch, while the second

sits below, encapsulating both the switching protocols, as well as the protocols that will be

exchanged, as depicted in Figure 2.7. Both switch and multiplexer control the event flow,

they determine to which protocol the events are delivered, and maintain transparency to the

remaining protocols in the stack. The description of this switching protocol will use the total

order case study, where a TO1 protocol is switched by a TO2 protocol.

The switching process relies on an elected coordinator that sends the control messages to

the group. It starts with a prepare message sent to all members. Every member replies with

an okay message that carries the member identification and the number of messages sent so far

by TO1. From this point on, every new message is sent using TO2. If a message is received

for TO2, it is buffered during this phase. When a member starts sending messages in TO2, a

reply is sent to the coordinator. After collecting the acks from every member, the coordinator

sends a new message switch that carries a vector containing the number of messages sent by

each member. This information allows a member to know when all the messages from all the

nodes sent through TO1 are received. At this point, the member can deliver all the buffered

messages to TO2 and stop the TO1.

SWITCH

Protocol TO1 Protocol TO 2

MULTIPLEXER

Protocol

Protocol

Protocol

Figure 2.7: Protocol exchange using a switch and a multiplexer

Overall, this mechanism allows to extend any protocol composition framework, by adding a

switch and a multiplexer to hide the switching from the remaining protocols. A buffering mech-

anism is necessary, although it is separated from the protocols, and can be the multiplexer itself.
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This mechanism also relies on a coordinator. The end of the switching process is determined

by each member on its own. This mechanism can perform worse than the previous one, if one

of the nodes suffers from a slow connection or other type of delay. This results in delaying the

entire process, because all nodes have to wait also. On the other hand, the messages are sent in

duplicate by both channels in the previous mechanism.

2.2.5 Limitations and Challenges

The state of art discusses three main concerns when developing self-adaptive systems. In

software systems built from adaptable components, these concerns raise some challenges and

point out the limitations of some design choices. In terms of system model, the choice is deter-

mined by the type of adaptation that must be supported. In the literature, one can find a clear

distinction between structural and behavioral adaptations. However, in the systems targeted by

this work, both types of adaptation are complementary. Whilst system models continue to be

developed for only one type of behavior, it is becomes necessary to use two distinct models in

not the most efficient of manners. Therefore, the challenge here is to make both architectural

and behavioral models coexist harmoniously, in a single model that allows both structural and

behavioral adaptations.

The second choice is the type of model used to describe the system’s adaptive behavior.

In the targeted systems, the complexity resulting from the large number of components, their

adaptations and the impacts of the later on the global system make a strong push towards the

separation of systems’ behavior, namely, the adaptive behavior. Action policy models allow the

necessary separation but their low-level declarative nature may be a constraint in the targeted

system. With a large number of components, it is expectable that the number of possible

adaptations also rises. The larger is the number of rules, the harder it becomes to declare

new rules and identify any conflicts between rules. It also becomes more complex and difficult

to guarantee that the specified rules in fact translate the desired adaptive behavior. On the

other hand, the goal policy models in the literature may help with the complexity of the system

but they still demands some sort of mapping between the high-level goals and the adaptations

that must be performed. This mapping is done manually, thus, it can also be a tiresome and
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error-prone task due to the large number of adaptations. The challenge here is to automate the

error-prone and complex manual tasks, allowing the policy model to handle more components.

This may be more feasible for the goal policies, as the manual mapping could be automated.

Finally, the third choice addresses the adaptation support. A fairly generic adaptation

support, such as the closed control loop, depends on a series of sensors and effectors that must be

tailored to each component and adaptation. In the target systems, the large number of adaptable

components demands an also large number of sensors and effectors. Furthermore, due to the

distributed nature of many components, the monitor phase must be able to gather information

from different nodes to characterize a component. The same happens with the execute phase

that must support coordination mechanisms to perform the adaptation simultaneous in several

component instances.

Overall, the current state of the art lacks mechanisms and methodologies to address the

greater complexity of these systems. This is the key issue that needs to be overcame to efficiently

support self-adaptation in these systems, as many of the approaches still heavily depend on the

human operator to describe and manage all the aspects of the adaptation logic and its support.

Summary

This chapter introduces the concepts used in adaptive systems and provides an overview

of the state of the art. In terms of concepts, it clarifies the terms context, adaptation, and

adaptation logic terms, and covers some design principles for adaptive systems. In terms of

state of the art, the overview addresses three key aspects: the system model, models of adaptive

behavior and the execution of adaptations.



There’s only one corner of the universe you can be

certain of improving, and that’s your own self.

Aldous Huxley, in Time Must Have a Stop

Chapter 3

Approach Overview

This chapter provides an overview of the conceptual frameworks proposed in this thesis. It

begins with the description of a concrete example, that will motivate and illustrate the approach,

and later will be used for its evaluation. After, the chapter provides a high level introduction

to how to model the system and discusses the organization of the adaptive elements in different

abstraction layers.

3.1 Running Example

The example application consists of a website that is subject to dynamic and unpredictable

load, often facing high traffic. The website hosts an online shopping store, that allows users to

register for an account, browse the products catalog, and perform online orders. The users can

either be home or business clients, with distinct contents being served. The website is deployed

in a clustered-based architecture, i.e., a web cluster, as shown in Figure 3.1.

In general, the clients make requests to a virtual IP, served by a front-end that acts as

a load balancer, distributing the requests among the available servers. Cluster nodes may

receive and process any request from any client because they are not specialized. Each server

node of the cluster has its own web server. Web servers do not interact directly with each

other. Instead, they have access to shared state using a distributed in-memory caching service,

maintained collectively by all server nodes. The distributed cache is used to store results from

31
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Figure 3.1: The running example

recent requests. Therefore, when a server receives a request, it first checks if the request can be

served from the distributed cache. If this is not the case, then it forwards the request to the

local software component that is capable of retrieving or generate the webpage. The cache is

never used to store sensitive information, therefore, some requests are forwarded directly to the

corresponding software component. Finally, all nodes have access to a shared persistent store,

implemented by a database and additional network attached storage (NAS). These are part of

the backend.

The website content is served by three main software components installed in the web servers

deployed at each cluster node. The Catalog component (abbreviated by Cat in Figure 3.1)

handles static content, such as product webpages. The Account component handles sensitive

content, such as credit card information or the user’s account password. Finally, the User

component handles dynamically generated content, which is customized to the user, such as

product recommendations and customized searches. For that purpose, it relies on two centralized

components. The Recommendation engine generates recommendations for a particular user and

the Search engine gathers the results of a search also considering the user. These two components

operate in the backend and can be accessed by any server. Furthermore, the Catalog , Account ,

and User components are separated in business and home to cater to the different types of

users.

The system runs in several nodes. Each client executes in a different node. The virtual
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server executes in another node. A pool of server nodes execute the web server, an instance of

the in-memory caching service, the multicast communication service required by the cache, and

the Catalog , User and Account components. Each server runs Linux OS and Apache HTTP

server [Apa] and uses the RedHat Infinispan [Inf] as the distributed in-memory caching tool and

JGroups [JGr] as the multicast service. The backend executes in a separate node. Finally, there

is a pool of free nodes that can be used to dynamically increase the number of servers.

The case study offers many opportunities for self-adaptation. The system performance is tied

to the workload, and is severely affected by overload. The most obvious adaptation is to have an

elastic number of active servers, in response to changes in the workload. In periods of more load,

more free servers can be activated, while in periods of less load some servers can be assigned to

other tasks or switched off for power saving. When the pool of free nodes is depleted, alternative

configurations of the software components can be used to further increase the system capacity

and avoid overload. For instance, reducing the resolution of any media content in webpages

helps down-sizing the webpages, allowing gains in terms of resource consumption and processing

time. Another possibility is to reduce the freshness of the recommendations and search results,

which can be achieved by fetching the last generated recommendations/search results instead

of fresh ones. The system performance may also be negatively affected by update hot-spots,

when several users try to concurrently access and update the same content, which may result in

conflicts when accessing the cache entries. One solution is the activation (or inactivation) of a

mechanism able to totally order concurrent requests to the cache, preventing deadlocks at the

expense of higher network utilization.

3.2 Components, Nodes, and Instances

The proposed approach targets distributed systems composed of multiple nodes, executing

multiple software components. The key elements of the system are the components, which inter-

act with each other in a manner determined by the underlying architectural style. Components

can be non-distributed or distributed. Non-distributed components have a single instance and

execute in a single node. Distributed components have multiple instances, each executing in a

different node. When a component is distributed, its service is provided cooperatively by the
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multiple instances, that interact among each other; such interactions are internal to the dis-

tributed component. Components are typed and multiple components of the same type may

execute in the system. The approach imposes the following restriction: two or more components

of the same type may execute simultaneously in the system only if they are non-distributed and

deployed on different nodes. As illustrated in Figure 3.2, a system is composed of several nodes,

each node may include both distributed and non-distributed elements. A distributed component

is a set of instances of the same component type.

System

Node Node Node

Distributed Component

Instance Instance Component

Figure 3.2: Distribution taxonomy

Consider the running example of Section 3.1. Each instance of the Apache HTTP server is

independent of every other instance; these instances do not communicate directly and are not

aware of each other, therefore, they are modeled as different non-distributed components (of the

same type). Contrasting, all instances of Infinispan cooperate to maintain shared state. When

an item is written or read from the cache, the instances engage in some protocol to distribute

and replicate data items among them, while ensuring some target consistency criteria. Thus, all

instances are considered to be part of a distributed component. In the running example, Infin-

ispan together with JGroups are distributed components, while all the remaining components

are non-distributed.

The components in the example interact with each other according to a fixed architectural

style. Each Apache HTTP server interacts with an instance of Infinispan and the Account

component. Infinispan also interacts with the User and Catalog components, and JGroups.

The User component interacts with the Recommendation and Search engines. The instances of

the distributed components interact internally. This is not shown in the graphical representation
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of the system architecture.

3.3 System Adaptation

As mentioned in the previous chapter, a system can be adapted in many ways. Considering

the high level model described above, the approach assumes that a system may be adapted as

follows:

• Addition of a component : Components may be added to the system. If a component

is non-distributed, the component needs to be created at a given target node (where no

instance of that type already exists). If the component is distributed, one needs to specify

the number of initial instances and the nodes where each instance is deployed.

• Addition of an instance: When a component is distributed, it may be possible to add new

instances, by creating an instance in a node where no such instance exists.

• Removal of a component : Components may be removed from the system. When a dis-

tributed component is removed, all instances are removed.

• Removal of an instance: When a component is distributed, it is possible to remove only

a designated instance or instances, instead of all. When the last instance is removed, the

component is implicitly removed.

• Exchange a component for another compatible component : It is possible to have multiple

components that provide the same service, each corresponding to a different implemen-

tation of that service. In some cases, one implementation may be obviously better than

another (an upgrade or a bug fix), but it is also possible to have implementations that

materialize different tradeoffs between service quality and resource consumption. In such

cases, one may adapt the system by replacing one component for another component, in

responses to changes in the workload or in the available resources. If the component is

distributed, all the instances will be exchanged.

• Exchange an instance for another compatible instance: When a component is distributed,

it is possible to exchange only a specific instance. This assumes that all the instances
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continue to be compatible and able to execute together.

• Configure parameters: We assume that each component, node, or the system may have

parameters that control its behavior. Furthermore, the values of these parameters can

be changed during runtime. When it is a distributed component’s parameter, we further

distinguish parameters that are local, affecting a single instance, and global, affecting all

instances of the component.

3.4 System Representation

To adapt a system it is necessary some representation of the system to reflect on. The system

representation must have all the necessary information for the self-management but abstract the

unnecessary information. Given the assumptions discussed in the previous sections, the proposed

approach depends on information regarding the system configuration. The relevant aspects of

the system configuration to represent the system are the following:

• Which components are executing at a given time, and in which nodes they are deployed.

For distributed components, how many instances exist and in which nodes these instances

are deployed;

• The current values of the configurable parameters of all deployed components, nodes and

the system.

Thus, the system representation must include information regarding the nodes, components

and the system. The representation of a node includes the node type and the value of any

configurable properties. It also contains the types of all components deployed in that node. The

representation of a component includes the component type and the values of any configurable

parameters. The system representation is concluded in the values of any system parameters

and properties. While the representation of components often includes the interactions with

other components, the proposed approach does not require this information because we do not

adapt connectors between components. Finally, the system configuration only includes active

elements. A node is active if it has at least one active component. A component is active if it
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Figure 3.3: Representation of the system configuration

is ready for execution.

3.5 Adaptation Logic and Adaptation Support

The proposed approach relies on adaptation policies to describe the adaptation logic of the

system. The rationale for this decision is as follows. First, adaptation policies offer better us-

ability to the system designer, when compared to other solutions; their declarative nature allows

easier description and comprehension. Second, a number of systems have been built resorting to

policies to specify adaptations [GCH+04, KC03a] and we leverage on their experience. Finally,

adaptation policies allow to specify both simple adaptation logics as well as sophisticated adap-

tive behaviors. Thus, the approach supports two types of planning: a rule-oriented planning for

simple adaptation logics and a goal-oriented planning for more complex logics.

Our approach follows the closed control loop introduced in Chapter 2. We considered it to

be the most adequate type of support for two main reasons. One is the clear separation between

the monitoring and adaptation, making it possible to support different adaptive behaviors using

the same infra-structure and elements. The other reason is that it promotes the reuse of several

adaptation mechanisms for different managed systems (in the best case, only the sensors and

effectors need to be specifically designed and developed for each system). Also, by modeling
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the control component as a logically centralized entity, the management of distribution becomes

simpler.

As described in Chapter 2, the control loop consists in the monitoring and analysis, plan-

ning, and execution activities. Each activity is carried out by one or more elements that, for

their operation, use static and dynamic knowledge about the system and its state. Not all ele-

ments operate at the same abstraction level; some are tied to the managed system and execution

environment, while others are built on top of the latter, and address the requirements speci-

fied by human operators. To provide a better understanding of the self-management support,

the elements are organized in different layers according to their level of abstraction and the

information they require from other elements. These layers are addressed next.

3.6 Abstraction Layers

The self-management elements are organized in four distinct layers, as depicted in Figure 3.4.

The proposed layering draws a clear separation between the managed system and the self-

management support, creating two abstraction levels: the managed system level and the self-

management level. The self-management level, in turn, is internally structured into multiple

layers: the change management layer and two planning layers, namely the action policy and

the goal policy layer. In summary, the four abstraction layers are the: managed system, change

management, action policy, and goal policy. Figure 3.4 also depicts the static and dynamic

knowledge necessary for the self-management. The following notation is used in the diagram:

• Each layer is depicted by a rectangular frame.

• Boxes inside the frame represent elements that execute at the abstraction level that cor-

responds to that layer.

• An upwards arrow leaving the frame represents information that is provided in runtime

by the elements of the layer to the layer above.

• A downwards arrow entering the frame represents directives received from the layer above.

• In the managed system, the S stands for sensors and E stands for effectors.
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Figure 3.4: The approach’s elements and levels of abstraction

Next, we provide a more detailed description of each layer.

3.6.1 Managed System Layer

The managed system layer corresponds to the lowest abstraction level. This layer includes

the managed system and the executing environment, as well as their sensors and effectors.

Sensors are hooks introduced in the managed system for monitoring purposes, thus, captur-

ing information regarding the system execution or the environment. Sensors can be associated

with a component, a node, or a system property. They can capture different types of infor-

mation, such as the system load, the CPU use, or the throughput. The raw information may
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be captured periodically, at pre-determined time intervals, or, asynchronously through excep-

tions and traps. These asynchronous events and the raw information collected periodically are

transmitted to the layer above. Depending on the component being monitored, the sensor may

use standardized interfaces (for instance, SNMP [CFSD90]), be custom made for the specific

interfaces of the component, or require the component to be extended in order to export the

needed information. In some cases, components may register information in the form of logs,

which can be monitored and parsed by the sensor to obtain the required data.

Effectors are also hooks in the managed system that allow to perform changes to the system.

An effector can be associated to a component, a node, or to the system. If associated to a

component, it is prepared to change the component configuration and control its operation; if it

is associated to a node, it can change the node configuration and properties; if associated to the

system, it can change the nodes that constitute the system, as well as any system parameters.

Effectors may also perform several operations to prepare the element for adaptation, such as

forcing the component to a quiescent state, or retrieving/setting the component state. Effectors

may be in one of two operational states: waiting or busy. In the waiting state, an effector is

waiting to receive control messages that trigger reconfigurations. The effector then switches to

busy state and remains in that state until it has completed all the required reconfigurations.

3.6.2 Change Management Layer

The change management layer contains three elements: the context analyzer, the adaptation

executor, and the system representation manager. These elements support the monitoring,

analysis, and execution activities.

The context analyzer is responsible for the monitoring and analysis activity with the assis-

tance of sensors. It receives all the raw information provided by the sensors and interprets this

information to capture the system state. While the distribution of components is transparent

to sensors, it is not to the analyzer. As a result, the context analyzer is aware of the system

configuration and is prepared to interpret information for both non and distributed components,

and to integrate system-wide information that comes from several nodes. The analyzer may also

store a history of the information collected in the past. This is useful for smoothing algorithms
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used in the monitoring, that clean momentary peaks. Finally, the context analyzer is responsible

for detecting when the system state becomes undesirable and may require adaptation. When

such an occurrence is identified, a context event is sent to the layer above.

The adaptation executor determines how an adaptation is achieved in the managed system.

For this purpose, the adaptation executor takes into consideration the system state, specific

requirements associated with the adaptation target (such as the need to put a component into a

quiescent state), and the type of adaptation to be performed. The distribution of components is a

critical aspect to consider, as it may require coordination of the different instances to execute the

adaptation. The executor operation starts when it receives a combination (a set of adaptations to

be performed) from the layer above. Then, it selects the appropriated reconfiguration strategy to

execute the adaptation. A strategy is a sequence of commands that are exchanged with effectors

and that execute a particular adaptation.

The system representation manager has the sole responsibility of maintaing the part of

the system representation that is dynamic. The system representation is bootstrapped with

the initial system configuration. Changes to the system representation may have two different

causes. They can be caused by an environmental phenomena, such as a fault, or may be triggered

internally, as the result of self-adaptation. If the source of change is external, the context analyzer

will signal the manager, who finds the new architecture for the new system state. If the source is

internal, it is the adaptation executor that signals the manager. In summary, the representation

manager depends on information provided by the context analyzer and the adaptation executor

and provides the updated information to the layer above, so that it can be used in the planning

activity.

3.6.3 Action Policy Layer

The action policy layer can be used to control directly the adaptation, or be used in com-

bination with a goal policy layer (above). The layer includes only one element: the Policy

Interpreter that decides which adaptation(s) should be performed. The decision is based on

the evaluation of an action policy according to the current system state. Information regarding

the current system state is provided by the system representation manager, or obtained by per-
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forming queries to the context analyzer. The evaluation mechanism is prepared to handle two

different action policies. A closed action policy is employed if the rule-oriented planning is used.

This type of action policy consists in a set of rules and is provided by the system designer. Each

rule states which adaptation or adaptations should be performed when a specific undesirable

system state occurs. An open action policy is used in combination with goal-oriented planning.

This type of action policy is generated automatically in the layer above (goal policy layer). The

evaluation mechanism depends on the type of action policy that is used and requires information

that is available at the knowledge model and in the system representation.

3.6.4 Goal Policy Layer

The goal policy layer corresponds to the highest abstraction level. There is a single element

in this layer: the rule generator that is responsible for generating an open action policy from

a goal policy ; the policy consists of a collection of goals that the system must satisfy. The

goals may refer to particular performance indicators, system properties, or other non-functional

properties. Some examples are the throughput, the memory use, the redundancy, and the power

consumption, among many others. Each goal may refer to one or more aspects of the system

behavior, establishing specific thresholds or best-effort demands. The rule generator identifies

the system states that are undesirable and, for each state, it filters the set of adaptations so that

all the adaptations that are not helpful are eliminated (the entire set of possible adaptations

are described in the knowledge model). Then, the set of viable combinations of adaptations is

computed. The pairing of a given state with the set of combinations of adaptations that may

be useful to meet the target goals given that state creates a rule; the set of all rules created this

way forms the open action policy.

3.7 Self-management Knowledge and Activities

The previous section overviewed the approach’s elements, according to the abstraction level,

interaction, and organization in the proposed approach. In this section, we address the same

elements and self-management knowledge from the perspective of the closed control loop activ-

ities. As described in Section 2.1.2.2, the loop consists in the four activities already mentioned
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and based on some knowledge. In our approach, we opt to join the monitoring and analysis in

a single activity, as they are related. Next, we address the knowledge and the three activities of

our approach.

3.7.1 Knowledge

Knowledge refers to the information necessary to monitor and adapt the system. Knowledge

can be static or dynamic. The static knowledge refers to all the information necessary for the

self-management activities that do not evolve with the system execution, while the dynamic

knowledge contains all the information regarding the evolving system execution. The static

knowledge is captured in the knowledge model. The dynamic knowledge is captured in the

system representation (see Sections 3.4 and 3.6.2).

As depicted in Figure 3.4, the static knowledge model captures the necessary information

for the operation of the elements in the goal policy, action policy, and change management

layers. This model includes the configurations and properties of the system elements, such as

the sensors, and effectors, but also knowledge regarding how the system can be adapted. The

latter includes information regarding the type and properties of each component, information

regarding the available nodes, the available adaptations to change the system behavior and,

finally, information regarding how adaptations can be executed. This knowledge is organized

into several sub-models: sensor, context, architecture, adaptation, executor, and effector models.

The sensor and context models are tied with the monitoring and analysis activity. The

sensor model describes the sensors available in the system, namely, the raw data that they cap-

ture and how often they capture that data. The context model describes composite sensors that

specify how raw context information is interpreted to obtain a global view of the system. The

architecture model describes the components, nodes and the system, their properties and initial

configuration. The adaptation, executor, and effector models are tied with the planning and

execution activities. The adaptation model describes the adaptations available to change the

behavior of components, nodes, and the system. The description may also include some esti-

mate of how they affect the system behavior. The executor model describes the reconfiguration

strategies available to perform adaptations. Finally, the effector model describes the commands
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that each effector is able to perform.

3.7.2 Monitoring and Analysis

This activity is performed by the sensors and the context analyzer. The context analyzer

gathers all the raw information captured by the sensors and interprets this information to char-

acterize the system behavior. The analyzer operates in the change management layer.

We assume that all sensors have configurable time periods that control the time interval at

which the monitored data must be captured and sent to the context analyzer. The configuration

of this parameter is made before runtime, by using information that is provided in the sensor

model, as depicted in Figure 3.5. The choice of monitoring interval is a decision tied to the nature

of the information and the resources required to monitor it. Another aspect is that sensors must

be able to reply to a query sent by the context analyzer. Furthermore, a sensor is only aware of

itself, thus, it has no knowledge of other sensors, nor if the component is distributed.

Sensor
ModelSensor       Context

      Analyzer

Sensor
Model

Context
Model

Architecture
Model

Figure 3.5: Models used by sensor and context analyzer elements

The context analyzer creates a representation of the global system state from the partial

data provided by the individual sensors. The context analyzer uses information from the static

knowledge model to operate, as depicted in Figure 3.5. The architecture model provides in-

formation about the nodes, components and the system being monitored. The sensor model

describes the available context information, captured by sensors. The context model describes

how the raw information collected by the sensors must be analyzed and combined to build all

the information regarding the system state and the context. When any relevant change occurs,

the context analyzer will signal the policy interpreter at the action policy layer, so that change

can be addressed. The description of the relevant changes is also in the context model, made

in the form of events. The operation of the policy interpreter may demand information from
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the context analyzer. For this purpose, it is prepared to accept queries, that demand fresh or

interpreted information regarding the system.

3.7.3 Planning

The planning activity determines the self-management of the system. As noted before, there

are two reifications of the planning: rule and goal-oriented. The choice of reification has impact

on the approach operation. If the rule-oriented planning is selected, the approach runs entirely

online, as depicted in Figure 3.6. Instead, if the goal-oriented planning is selected, the approach

also includes a preparation phase, consisting in an offline support. The choice of reification also

affects the execution of the policy interpreter. Next, we address the difference between both

reifications.

 Policy Interpreter

Action Policy Layer

Context
Analyzer

Adaptation
Executor

Middleware / OS

E S ES ES E

Middleware / OSS E

Rule Generator

System
Representation

Manager

Change Management Layer

Managed System Layer

Goal Policy Layer

OFFLINE SUPPORT ONLINE SUPPORT

S

Figure 3.6: The offline and online support

3.7.3.1 Rule and Goal-oriented Planning

The rule-oriented planning is intended for systems where the adaptive behavior is simple,

despite the amount of components or nodes involved in the system. An adaptive behavior is
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simple if it considers a small amount of adaptations or if the adaptations address very specific

scenarios, with little overlapping. This type of planning also allows to reuse an existing action

policy. The self-management support for the rule-oriented planning is run exclusively online

and relies only on the policy interpreter, at the action policy layer. The change management

and managed system layers are also part of the online support. This planning relies on an action

policy to describe the possible system adaptations. Figure 3.7 depicts the models necessary for

the operation of the policy interpreter in the rule-oriented planning.

     Policy
  Interpreter

Architecture
Model

Context
Model

Sensor
Model

Figure 3.7: Models employed in the rule-oriented planning

The goal-oriented planning targets systems with complex adaptive behaviors. An adaptive

behavior is considered complex if it includes a large number of components, adaptations, trade-

offs, and conflicts. A complex adaptive behavior usually tries to achieve several different goals for

the system; because it is concerned with more than one indicator of the system performance. This

type of planning receives as input a high-level goal policy, that establishes the goals for specific

system indicators, related to performance or non-functional properties. The self-management

support for goal-oriented planning consists in offline and online phases. During the offline phase

a closed action policy is generated from the goal policy. During the online phase an action policy

(either generated or provided by the designer) is evaluated by the policy interpreter. The models

employed are depicted in Figure 3.8. The two types of planning will be discussed in detail in

Chapter 5.

3.7.4 Adaptation Execution

The execution of the adaptations selected by the planning activity is the final step of the

control loop. The adaptation executor, in the change management layer, and the effectors,
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Figure 3.8: Models employed in the goal-oriented planning

in the managed system layer, are the elements involved in the execution of adaptations. The

executor is responsible for determining how the selected adaptation(s) should be applied to the

system. This depends on the selected adaptations and the current system state. As depicted

in Figure 3.9, the executor, effector, and architecture models provide the necessary knowledge

regarding the adaptations and their requirements, while the system representation provides the

system state. This information allows the executor to pinpoint the exact adaptation targets. For

each adaptation it is necessary to find a reconfiguration strategy to execute it. These strategies

dictate the sequence of commands that the executor must exchange with the effectors to perform

the adaptation (the commands accepted by the effectors are described in the effector model, see

Figure 3.9).

Effector
ModelEffector     Adaptation

     Executor

Architecture
Model

Executor
Model

Effector
Model

Figure 3.9: Models used by adaptation executor and effector elements

Summary

This chapter described the conceptual framework used in the thesis. It presented the

elements according to its organization in different abstraction levels and in terms of self-
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management activities. The remainder of this thesis will describe the contributions made at

some of these activities. Chapter 5 address the planning activity, both rule-oriented and goal-

oriented. Chapter 6 addresses the execution activity, namely the reconfiguration strategies and

execution support.



A model is just an imitation of the real thing.

Mae West

Chapter 4

Knowledge Model

The knowledge model captures the information necessary for the operation of the elements

in the different layers. We recall that, as introduced in Chapter 3, the knowledge is organized

into several models, which are depicted in Figure 4.1. The figure also shows the dependencies

between the different models, with the architecture model being central to other models. This

chapter addresses in detail each of the models of the knowledge model.

Sensor
Model

Adaptation
Model

Effector
Model

Context
Model

Executor
Model

Architecture
Model

depends on depends on
depends on

Figure 4.1: The knowledge model

4.1 Architecture Model

The architecture model describes the system elements and its architecture, as well as its

initial configuration. The model consists in a global system description and initial configuration,

and the definition of the components and nodes that compose the system. The system description

covers the nodes that can be deployed in the system and any global parameters. The initial

49
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configuration describes how the elements are deployed. The description of components relies on

a component type hierarchy, where all types are sub-types of a root ComponentT type. The

description of nodes relies on a node type hierarchy, where all types are sub-types of a NodeT

type as root. The notion of sub-typing subsumes the is a relationship. Hence, all the super-

type characteristics are inherited by the sub-type. In both hierarchies, types can be abstract or

concrete. Abstract types allow to organize components or nodes according to the characteristics

and features they provide. The concrete component and node types sub-type abstract types,

which are those that can be used to create instances of components and nodes. The two type

hierarchies are presented in Listing 4.1.

In the component type hierarchy, a component type can be marked as abstract and/or

distributed. In the absence of an abstract marker, the component type is concrete, and in the

absence of a distributed marker it is non-distributed. The description of a component type also

includes the component types from which it is a sub-type and the adaptable parameters. The

parameters of distributed components can be local (to each instance) or global (that apply to

all instances of the same type). The later are identified with the marker global. Non-distributed

components can only specify local parameters. A component type inherits the parameters from

the component types that it sub-types. These parameters cannot be redefined nor eliminated.

In the node type hierarchy, a node type can be marked as abstract, otherwise being concrete.

The description also includes the node types from which it sub-types, any adaptable parameters,

and the component types that can be deployed in the node. All parameters are local to the

node. In a similar manner to component types, the inherited parameters cannot be redefined or

eliminated.

The definition of the system builds on the node type hierarchy, which is also presented in

Listing 4.1. The system designer is required to define the maximum number of nodes that the

system can have, together with any adaptable parameters the system may have. Also, she must

provide the list of node types that can be deployed in the system.

Listing 4.2 illustrates the description of component and node types, and the system in

the architectural model. They refer to the running example introduced in Section 3.1. The

first example defines an abstract Catalog component type, which is non-distributed and can
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Listing 4.1: Architecture model: components, nodes, and system
{Abstract } {Dis t r i bu ted } Component componentType

subtype [ componentType ]∗
Parameters

( [ Global ] [ pa ramete r : t ype ] ) ∗

{Abstract } Node nodeType

subtype [ nodeType ]∗
Parameters

[ pa ramete r : t ype ]∗
Components

[ componentType ]∗

System

Parameters

max nodes = number

[ paramete r : t ype ]∗
Nodes

[ nodeType ]∗

be configured to provide images with regular or low fidelity. This type is the super-type of

BusinessCatalog and HomeCatalog component types, which reflect the type of customers that

the component serves. The example that follows simply describes a WebServer component

type. Next, the component type Infinispan is defined, which is distributed and has both local

and global parameters. In this example, the multicast property of an Infinispan component

is a global parameter, since all instances of Infinispan must use the same primitive to inter-

operate. The number of threads of each instance is a local parameter, that can be configured

independently for each replica. In terms of node of types, the ServerNode is a concrete node

which has an is active parameter and allows the component types Infinispan, WebServer and

Catalog to be deployed. Finally, the system is described as having a maximum of 10 nodes,

which are all of type ServerNode.

The architecture model also includes the initial configuration of the system and the default

configuration for new instances. The initial configuration of the system, presented in Listing 4.3,

describes how many nodes of a node type should be created, their configuration in terms of

parameters and instances of concrete component types. The configuration of the component

instances is also specified. The description of how component and nodes instances should be
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Listing 4.2: Excerpt of an architecture model
Abstract Component Cata log

Parameters

f i d e l i t y :{ r e g u l a r , low}

Component Bus i n e s sCa t a l o g

subtype Cata log

Component HomeCatalog

subtype Cata log

Component WebServer

Dis t r i bu ted Component I n f i n i s p a n

Parameters

Globa l m u l t i c a s t p r o p e r t i e s :{ cau sa l , t o t a l }
nb th r e ad s : i n t

Node ServerNode

Parameters

i s a c t i v e : boo l ean

Components

WebServer

I n f i n i s p a n

Cata log

System

Parameters

max nodes = 10

Nodes

ServerNode
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Listing 4.3: Architecture model: initial system configuration
Conf igurat ion

System

[ nodeType = number ]∗
Nodes

[ nodeType : { [ pa ramete r=va l u e ]∗} : { [ componentType ]∗} ]∗
Components

[ componentType : { [ pa ramete r=va l u e ]∗} ]∗

Conf igurat ion

System

ServerNode = 3

Nodes

ServerNode : { i s a c t i v e=t r u e} : {WebServer , I n f i n i s p a n , HomeCatalog , Bu s i n e s sCa t a l o g}
Components

I n f i n i s p a n : {m u l t i c a s t p r o p e r t i e s=causa l , n b t h r e ad s=3}
Cata log : { f i d e l i t y=r e g u l a r }

configured is used as the default configuration to deploy new instances. When the system starts,

each instance is created from a concrete type and set up according to the information on the

initial configuration. Listing 4.3 also presents an example of an initial configuration for the

system.

The architecture model provides information that is fundamental for other elements of the

knowledge model, but also for the system representation. The system representation describes

the system current configuration, which consists on the following information:

• the values of system parameters;

• node instances and the values of node parameters;

• the component instances deployed in each node;

• the values of component parameters (if the parameter is global, then the same value is

used for all instances).

The system representation evolves as a result of changes in the execution environment

and adaptations of the system. Thus, it always provides information on the latest, current

configuration of the system. When describing elements in the knowledge model, often the
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system designers or component developers have to refer to a particular instance of the system

or a parameter. However, since this information is dynamic, references or architecture operators

are used. References are used to refer to a specific parameter, which is made in the form:

instance.parameter name, over a component or node instance. If the human operator needs

to refer to the system parameters, then this is made in the form: system.parameter name.

The architecture operators reflect over the current system configuration, providing updated

information on the component and nodes instances running. The use of these operators will

become more clear in the upcoming description of the other models of the knowledge model.

The architecture operators available are the following:

• getComponentInstances(CT,NT) returns all the instances of a component type CT that

are deployed in nodes of type NT . If the node type is not important, then passing the

NodeT type will select all the component instances of type CT .

• getComponentInstance(CT,NI) returns the instance of component type CT that is running

in the node instance NI.

• getNodeInstances(NT,CT) returns all the instances of a node type NT that have instances

of component type CT running. If the component type is not important, then passing the

ComponentT type will select all the node instances of type NT .

• getNodeInstance(CI) returns the node instance where the component instance CI is run-

ning.

It is important to note that all operators that accept a component type or node type, can

accept the root abstract types ComponentT and NodeT, thus referring to all component types

or all node types.

4.2 Sensor Model

In the proposed approach, we assume that each component or node instance has one sensor

or none. The same applies to the system. The sensor model describes the information that

these sensors provide. It defines for each sensor the type of element that is being sensed and
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the observables and events that will be provided to the context analyzer. Observables model

the context information that is periodically captured by sensors and monitored by the context

analyzer, while events are indications of relevant asynchronous changes.

As presented in Listing 4.4, each sensor description has a target element which can be the

system, a component type, or a node type. In both cases, each deployed instance will have

a sensor instance that captures and provides the information in the sensor description. This

also means that if a component type is distributed, then all instances of that component type

will have its own sensor instance. The information that is captured and provided to the context

analyzer is defined in the form of observables and events. Observables have a name, the accepted

parameters, the return type and the relevance margin (RMargin). The relevance margin is used

to determine if two readings are equivalent or not. If the readings’ values are separated by less

than the margin value, then they are considered equivalent. The description of an observable is

concluded with the sampling interval between readings (in seconds). Events have a name and,

depending on the type of event, they will have a triggering condition and/or a time interval.

Sporadic events are triggered when a condition is verified, while periodic events are triggered

when a certain amount of time has elapsed. Periodic events may also define a condition that

controls the triggering.

If the target of a composite sensor is a distributed component type, observables and events

can be marked as global. A global observable is an observable that is shared by all the instances

of a distributed component type and whose value is the same for all instances. A global event

is an event that is triggered only once, for the component, instead of being triggered on a

per-instance basis.

Listing 4.5 provides some concrete examples of sensors for the running example. The first

example describes a sensor for the WebServer component type and has two observables: re-

quests per second and cpu use, sampled every ten seconds. The second example describes a

sensor for the Infinispan component type. The sensor has two observables: cpu use and to-

tal cache size. The cpu use is per instance, while the total cache size is component wide. The

third example describes a sensor that any component of type Catalog will have. For instance,

instances of component types BusinessCatalog and HomeCatalog. The fourth example describes
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Listing 4.4: Sensor model
Sensor

Target :

componentType | nodeType | system

[ Observable

[ [ Global ] r e tu rnType obs name ( [ paramete r ] ∗ ) : RMargin number

p e r i o d i c a l l y : number ] ] ∗
[ Event

[ Global ] eventName

[ with [ a t t r i b u t e n ame : type ] ∗ ] ∗
[ p e r i o d i c a l l y : number ] ] ∗

a sensor for the node type ServerNode, which means that any node of this type will have its

own sensor. Finally, the last example describes the sensor for the system, which provides an

observable regarding the number of active nodes and two events. The first event is a sporadic

event that signals that there is a failed node, while the second event is a periodic event, triggered

every sixty seconds.

As shown by the third example in Listing 4.5, one may define sensors whose targets are

abstract component types. When there are more than one sensor description for a type, the

instance of that type will have the observables and events that result from the union of all

descriptions. This is the case of the sensor for a HomeCatalog instance, that will have two

observables: cpu use and home processing time.

The sensor instances deployed at a given time depend on the components and nodes that

are running. Thus, similarly to architecture operators, we provide sensor operators that allow

to reflect on the sensor instances that are running. The operators return a set with the existing

sensor instances according to some characteristics, such as the type, observable or event name,

among other options. If there are no sensor instances that fit the characteristics, an empty set

is returned. Below, we present a (non-exhaustive) list of operators:

• sensorSystem() returns the sensor instance attached to the system.

• sensorsComponentType(CT) returns the sensor instances that are attached to components

of type CT .

• sensorsNodeType(NT) returns the sensor instances attached to nodes of type NT .
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Listing 4.5: Excerpt of a sensor model
Sensor

Target : WebServer

Observable i n t r e q u e s t s p e r s e c o n d ( ) : RMargin 10 p e r i o d i c a l l y : 10

Observable doub l e cpu use ( ) : RMargin 0 .01 p e r i o d i c a l l y : 10

Sensor

Target : I n f i n i s p a n

Observable doub l e cpu use ( ) : RMargin 0 .01 p e r i o d i c a l l y : 10

Observable Globa l i n t t o t a l c a c h e s i z e ( ) : RMargin 0 p e r i o d i c a l l y : 60

Sensor

Target : Ca ta log

Observable doub l e cpu use ( ) : RMargin 0 .01 p e r i o d i c a l l y : 10

Sensor

Target : HomeCatalog

Observable i n t home p ro c e s s i n g t ime ( ) : RMargin 0 .2 p e r i o d i c a l l y : 30

Sensor

Target : ServerNode

Observable i n t power consumpt ion ( ) : RMargin 1 p e r i o d i c a l l y : 60

Sensor

Target : system

Observable i n t a c t i v e n o d e s ( ) : RMargin 0

Event n o d e f a i l e d with f a i l e d n o d e : ServerNode

Event beacon p e r i o d i c a l l y : 60
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• sensorsDeployedInNode(NI) returns the sensor instances that are deployed in a node instance

NI.

• sensorsObservable(ON) returns the sensor instances that sense an observable named ON .

• sensorsEvent(EN) returns the sensor instances that sense an event named EN .

• sensorInstance(I) returns the sensor instance associated to the component or node instance

I.

• sensorNode(CI) returns the sensor instance of the node where the component instance CI

is deployed.

• sensorsSelectT(CT,NT,ON) returns all sensor instances attached to a component of type

CT , as long as they are in node instances of type NT , and that sense observables named

ON . This operator is a shorthand for the intersection of the operators sensorsComponent-

Type(CT), sensorsNodeType(NT), and sensorsObservable(ON).

• sensorsSelectI(CT,NI,ON) returns the sensor instance attached to a component of type

CT in the node instance NI, and that sense observables named ON . This operator is

a shorthand for the intersection of the operators sensorsComponentType(CT), sensorsDe-

ployedInNode(NI), and sensorsObservable(ON).

Similarly to operators introduced in the previous section, the operators accept the root

abstract types ComponentT and NodeT, which allow to refer to all component types or all node

types. In the same manner, the observable name can be undefined, so that the selection is made

independently of the observables name.

There is one last sensor operator that instead of giving a set of sensor instances, provides the

system or the component or node instance that is being sensed by a particular sensor instance.

This operator does not seem important on its own, but it allows to refer to a system instance

in conjunction with other operators and in other models. The operator is the following:

• getTarget(SI) returns the system, or component or node instance to which a given sensor

instance SI is attached to.
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4.3 Context Model

The context model describes the context information used to characterize the system be-

havior, or that is relevant for the system adaptation. Naturally, all the raw information that

is produced by sensors is implicitly part of the context that is available to manage the system.

However, in general, it may be easier to express policies by defining observables and events which

are computed/triggered from information provided by multiple sources. Therefore, the context

model not only includes the context information captured by sensors, but it augments it with

the interpretation, filtering, and processing of the captured information through the definition of

composite sensors. The sensor instances, corresponding to the sensors described in the context

model, can be handled using the same sensor operators described in Section 4.2. Thus, a sensor

operator can return a basic or a composite sensor, or both if it returns a set.

4.3.1 Composite Sensors

A composite sensor is an abstraction defined at the level of the context model, that provides

new observables and events from the information provided by the basic sensors in the sensor

model. Composite sensors can aggregate information from different sensors, or perform some

operation on that information. The definition of a composite sensor is different from a basic

sensor mainly in two aspects:

• The specification of a composite observable includes an observableExpression, that specifies

how it is computed from other observables (which either are provided by basic sensors or

by composite sensors).

• The specification of a composite event includes an event condition, that specifies when the

event should be triggered, and the information that is carried by the event.

The differences above are reflected in the description of composite sensors, presented in

Listing 4.6. Similarly to basic sensors, a composite sensor has a target, observables, and events.

The target is a component type, a node type, or the system. At runtime, the target becomes the

instance to which the sensor instance is associated to. Thus, target can be used in the description
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Listing 4.6: Context model
Composite Sensor

Target :

componentType | nodeType | system

[ Observable

[ Global ] r e tu rnType obs name ( [ paramete r ] ∗ ) [ : RMargin number ]

[ p e r i o d i c a l l y : number ]

o b s e r v a b l e E x p r e s s i o n ]∗
[ Event

[ Global ] eventName

[when c o n d i t i o n ]

[ with [ a t t r i bu teName=exp re s s i onOfType ] ∗ ]

[ p e r i o d i c a l l y : number ] ] ∗

of observables and events to refer to the target instance. The description of observables has some

aspects in common with basic sensors. Observables can be marked as global, being available

for the component type, and not on a instance basis. Observables in composite sensors that

employ global observables may be global or not. The system designer is responsible for marking

them as global when it is the case. The most significant difference from basic sensors, is that

the system designer can describe an expression to calculate the observable. This expression may

employ other observables or events, the target, architecture and sensor operators, component

parameters, among others.

The description of events in composite sensors is similar to basic events, with two exceptions.

One is the when statement that describes a triggering condition for the event. This condition

may refer to other events or to the state of an observable. If the when and periodically statements

are used together in the description of an event, that means that every number of seconds the

condition is evaluated and, if satisfied, the event is triggered. The other exception is the with

statement that describes the information that will be carried by the event. The description of

this statement includes the name of the attribute and how its value is obtained. Similarly to

basic sensors, events can also be global, thus a single event is triggered by distributed component.

Listing 4.7 provides several examples of observables and events of a composite sensor at-

tached to the system. The first observable, average workload, calculates the average of the

number of requests per second at the web servers, using the values sensed at each different

server. In this case, the sensorsSelectT(...) returns the sensors attached to all components of
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Listing 4.7: Excerpt of a context model
Composite Sensor

Target : system

Observable

doub l e a v e r ag e wo rk l o ad ( ) : RMargin 20

p e r i o d i c a l l y : 30

Avg s . r e q u e s t s p e r s e c o n d ( ) | s : s e n s o r s S e l e c tT ( WebServer , NodeT ,

r e q u e s t s p e r s e c o n d )

Observable

i n t s e r v e r s a b o v e a v g ( ) : RMargin 3

p e r i o d i c a l l y : 30

Count ( s . r e q u e s t s p e r s e c o n d ( ) > ( t a r g e t . a v e r ag e wo rk l o ad ( )+LIMIT) ) | s :

s e n s o r s S e l e c tT ( WebServer , NodeT , r e q u e s t s p e r s e c o n d )

Event

Webc lu s t e rOve r l oad

when t a r g e t . ave rage workoad ( ) > THRESHOLD

with c u r r e n t l o a d = t a r g e t . a v e r ag e wo rk l o ad ( )

type WebServer . The second observable, servers above avg, describes how many web servers are

subject to a higher workload than the average. The expression relies on the Count function and

in the average workload observable. The listing also shows the description of an event that is

triggered when the average workload exceeds a predefined threshold.

4.3.2 Combination and Aggregation Functions

The description of composite sensors provided in the previous section allows the designer to

cover the monitoring needs of systems in general. However, we have identified some recurring

patterns during the specification of the context model. Thus, we have extended the specification

of composite sensors so that these patterns can be expressed in a simple manner. Next, we

address in detail the patterns and how the composite sensor specification was extended to

support them.

One pattern is to have information regarding a node as a whole, that is obtained from all

the instances running on that node. For instance, consider the observable cpu use, captured

for all the instances of different component types that run in a given node. If the designer

wants to monitor the total CPU consumed by the node, these individual measures will have
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Listing 4.8: Node-aggregated observables
Composite Sensor

Target : ServerNode

Observable

doub l e node cpu use ( ) : RMargin 0 .01

p e r i o d i c a l l y : 10

Sum s . cpu use ( ) | s : s e n s o r s S e l e c t I (ComponentT , t a r g e t , cpu use )

Composite Sensor

Target : ServerNode

Node−aggregated Observable

doub l e node cpu use ( ) : RMargin 0 .01

p e r i o d i c a l l y : 10

from cpu use with AF : Sum

to be combined. As presented in Listing 4.8, the observable node cpu use of the first sensor

resorts to the use of several operators to calculate this information. The computation of the

observable is the sum of the cpu use of all component instances deployed in the node to which

the sensor is attached. To simplify the description of the pattern, node-aggregated observables

were introduced in the specification. These observables rely on an aggregation function(AF)

supplied by the designer to calculate the aggregated value. The description of the observable

node cpu use using this pattern is also presented in Listing 4.8, using the sum as the aggregation

function to join the CPU use of all instances running in the node.

Another pattern is to have information regarding a component type, that is obtained from

all the instances of that component type — both distributed and non-distributed. For instance,

the system designer may need to monitor the average CPU consumption of a distributed com-

ponent, as shown by the first avg infinispan cpu use observable in Listing 4.9. To simplify the

description of this pattern, we augmented the description of composite sensors with component-

combined observables, which rely on a combination function(CF) to calculate the final value.

The description using this pattern is shown by the second observable in Listing 4.9, using the

average as a combination function.

The last pattern is a combination of both previous patterns. This pattern is to have the

information system wide. For instance, continuing with the CPU consumption example, the

system designer would like to monitor the average CPU use of the entire system. We augmented
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Listing 4.9: Component-combined observables
Composite Sensor

Target : I n f i n i s p a n

Observable

doub l e a v g i n f i n i s p a n c p u u s e ( ) : RMargin 0 .01

p e r i o d i c a l l y : 10

Avg s . cpu use ( ) | s : s e n s o r S e l e c tT ( I n f i n i s p a n , NodeT , cpu use )

Composite Sensor

Target : I n f i n i s p a n

Component−combined Observable

doub l e a v g i n f i n i s p a n c p u u s e ( ) : RMargin 0 .01

p e r i o d i c a l l y : 10

from cpu use with CF : Avg

Listing 4.10: System-wide observables
Composite Sensor

Target : system

Observable

doub l e a v g g l o b a l c p u u s e ( ) : RMargin 0 .01

p e r i o d i c a l l y : 10

Avg (Sum s . cpu use | s : s e n s o r s S e l e c t I (ComponentT ,x , cpu use ) ) | x :

g e tNode I n s t anc e s ( ServerNode , ComponentT , cpu use )

Composite Sensor

Target : system

System−wide Observable

doub l e a v g g l o b a l c p u u s e ( ) : RMargin 0 .01

p e r i o d i c a l l y : 10

f o r ServerNode from cpu use with AF : Sum CF : Avg

the description of composite sensors with system-wide observables that employ both combination

and aggregation functions to calculate the final value. Thus, instead of describing a node cpu use

observable and an avg global cpu use, as presented in Listing 4.10 (first observable), the system

designer may describe a single system-wide observable as illustrated by the second observable

in the same listing.

A significant advantage of considering node-aggregated, component-combined, and system-

wide observables in the context model is that the context specification becomes much more

synthetic and simple. Listing 4.11 summarizes how these observables can be specified. System-

wide observables play an important role in the goal-oriented planning. The ones that are relevant
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Listing 4.11: Specification of combined and/or aggregated observables
Composite Sensor

Target : nodeType

Node−aggregated Observable

r e tu rnType obs name ( [ paramete r ] ∗ ) [ : RMargin number ]

[ p e r i o d i c a l l y : number ]

from f rom obs name with AF : f u n c t i o n

Composite Sensor

Target : componentType

Component−combined Observable

r e tu rnType obs name ( [ paramete r ] ∗ ) [ : RMargin number ]

[ p e r i o d i c a l l y : number ]

from f rom obs name with CF : f u n c t i o n

Composite Sensor

Target : system

[KPI ] System−wide Observable

r e tu rnType obs name ( [ paramete r ] ∗ ) [ : RMargin number ]

[ p e r i o d i c a l l y : number ]

[ f o r : [ componentType | nodeType ] ∗ ] from f rom obs name with AF : f u n c t i o n CF :

f u n c t i o n

for that type of planning must be marked as KPI. Also, in the context of goal-oriented planning,

the system-wide observables can be composed to form Composed-System-wide observables. These

observables are calculated from other system-wide observables, according to a join function (JF ),

as presented in Listing 4.12. The join function can employ other system-wide observables. The

composed-system-wide observables relevant for the goal-oriented planning must also be marked

as KPI. The use of these observables in the goal-oriented planning is discussed in detail in

Section 5.2.1.

4.4 Adaptation Model

The adaptation model describes the adaptations that are available to adapt the system.

The description of an adaptation starts with a name and has a target, a list of requirements, a

list of impacts, and a stabilization period, as presented in Listing 4.13. The name identifies the

adaptations and thus is unique. The target of an adaptation can be a component type, a node

type, or the system. At runtime, the target is an instance of that type or the system. The list
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Listing 4.12: Specification of combined and/or aggregated observables
Composite Sensor

Target : system

[KPI ] Composed−System−wide Observable

r e tu rnType obs name ( [ paramete r ] ∗ ) [ : RMargin number ]

[ p e r i o d i c a l l y : number ]

with JF : f u n c t i o n

Composite Sensor

Target : system

KPI Composed−System−wide Observable

doub l e s e r v i c e r a t i o ( ) : RMargin 0 .01

with JF : th roughput ÷ l o ad

of requirements narrows the application of the adaptation to a set of system states. The list of

impacts captures the known impacts of the adaptation in the system configuration and behavior.

The impacts on the configuration of the system, nodes and components are expressed through a

number of actions, while the impact on the behavior is expressed using functions that estimate

how the affected observables will change. The stabilization period describes the time needed for

the system to stabilize after the adaptation, so that it can eligible again for adaptation.

Listing 4.13: Adaptation model
Adaptation adaptat ionName

Target :

componentType | nodeType | system

[ Requires :

[ c o n d i t i o n ] ∗ ]

Impacts :

[ impact ]∗
S t a b i l i z a t i o n :

i n t e g e r

As mentioned above, two different types of impacts can be described. The first type of

impacts is used to describe how the system configuration changes and is required in any descrip-

tion of an adaptation. Since the impacts refer to the adaptation target, different impacts will

be available depending on the adaptation target:

• system.nodeAdded(NT) this impact can only be used in adaptations whose target is the

system. It indicates that an empty node of type NT has been added to the system when
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the adaptation concludes. It returns the node instance that was added.

• system.nodeRemoved(NI) this impact can only be used in adaptations whose target is the

system. It indicates that a node instance NI has been removed from the system when the

adaptation finishes.

• nodeInstance.componentAdded(CT) this impact can only be used in adaptations whose

target is a node instance. It indicates that a new instance of a component type CT has

been deployed in the node instance and returns the added component instance.

• nodeInstance.componentRemoved(CI) this impact can only be used in adaptations whose

target is a node instance. It indicates that the component instance CI has been removed

from the node instance. If the component is distributed, this impact only describes the

removal of that instance.

• nodeInstance.componentReplaced(CT) this impact can only be used in adaptations whose

target is a node instance. It indicates that the component instance target will be replaced

by a new instance of the component type CT. If the instance is part of a distributed

component, this impact affects only that instance.

• componentInstance.parameterChanged(P,NV) this impact can only be used in adaptations

whose target is a component instance. It indicates that the parameter P in the component

instance will be changed to a new value NV . If the component instance is part of a

distributed component and P is global, all the instances of the component are affected. If

P is local, then only this instance is affected.

The second type of impacts describes how the system behavior and performance are expected

to change. This estimation is made for an affected observable and is provided as a function,

which may depend on any observable in the context model or component/node parameters. The

description may also employ architecture and sensor operators, as well as the forall keyword to

iterate the set of sensors or elements returned by the operators. The description of these impacts

assumes that all known impacts will be declared. This type of impacts is not required if the

system designer decides by a rule-oriented planning.
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• observable := F(observable1,...) describes the estimated value of an observable after the

adaptation. This value is obtained using function F that may employ the current values

of other observables and/or component or node parameters.

Listing 4.14 describes a number of adaptations. The first adaptation changes the Infinispan’s

parameter that controls the multicast properties from causal to total. Since the parameter is

global, it needs to be invoked only in one instance. However, the impact on the cpu use is for

all instances, thus, the impact description needs to iterate over all instances of Infinispan. The

CPU use of all instances is expected to increase by 10%. The second adaptation adds a new node

empty to the system, as long as the maximum number of nodes has not been reached yet. The

third adaptation deploys all the component instances necessary in the new empty node. The

last adaptation activates an inactive node that is deployed in the system and ready to operate.

As a result the number of active nodes of the system increases by one.

The adaptation model also includes a list of dependencies and conflicts between different

adaptations. While some adaptations are considered to be conflicting by the system, such as

having the same target or conflicting impacts (add a component and then remove it), the system

designer can describe other conflicts. The description of explicit conflicts and dependencies is

as presented in Listing 4.15. Conflicts are declared as pairs of adaptations. This assumes that

despite the target instance, the adaptations are always conflicting. Dependencies have a more

complex description. A dependency consists of a main adaptation and a collection of other,

dependent, adaptations. The dependent adaptations can have the same target of the main

adaptation or one that is given by the impacts. If it is the same, then the adaptation target is

passed to the dependent adaptation. If it is not the same, then it is necessary to specify which

impact returns the target. This is exemplified in Listing 4.16.

4.5 Effector Model

The effector model describes the control interface of each effector in the system. It lists the

commands that can be invoked in component, node, and system effectors to perform changes.

These commands address pre and post adaptation concerns, or even concerns directly tied to the
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Listing 4.14: Example adaptations
Adaptation a c t i v a t eTo t a lO r d e r :

Target :

I n f i n i s p a n

Requires :

t a r g e t . m u l t i c a s t p r o p e r t i e s = = cau s a l

Impacts :

t a r g e t . parameterChanged ( m u l t i c a s t p r o p e r t i e s , t o t a l )

f o r a l l s : sensorsComponentType ( I n f i n i s p a n ) s . cpu use ∗= 1.1

S t a b i l i z a t i o n :

60

Adaptation addNode :

Target :

system

Requires :

s en so rSys tem ( ) . a c t i v e n o d e s ( ) < t a r g e t . max nodes

Impacts :

t a r g e t . nodeAdded ( ServerNode )

S t a b i l i z a t i o n :

60

Adaptation deployComponents :

Target :

ServerNode

Impacts :

t a r g e t . componentAdded ( WebServer )

t a r g e t . componentAdded ( I n f i n i s p a n )

t a r g e t . componentAdded ( HomeCatalog )

t a r g e t . componentAdded ( Bu s i n e s sCa t a l o g )

S t a b i l i z a t i o n :

60

Adaptation ac t i v a t eNode :

Target :

ServerNode

Requires :

t a r g e t . i s a c t i v e = = f a l s e

Impacts :

t a r g e t . parameterChanged ( i s a c t i v e , t r u e )

senso rSys tem ( ) . a c t i v e n o d e s ( ) += 1

S t a b i l i z a t i o n :

60
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Listing 4.15: Adaptation model: conflicts and dependencies
Con f l i c t s

Adaptations [ ( adaptat ion name1 , adaptat ion name2 ) ]∗

Dependencies

I f adaptat ion name1 Apply

[ adaptat ion name2 with Target adaptat ion name1 . t a r g e t | adaptat ion name1 . Impacts .

impact ]∗

Listing 4.16: Example of conflicts and dependencies
Con f l i c t s

Adaptations ( deac t i va teNode , addNode )

Adaptations ( ac t i va teNode , removeNode )

Dependencies

I f addNode Apply

deployComponents with Target t a r g e t . NodeAdded ( ServerNode )

ac t i v a t eNode with Target t a r g e t . NodeAdded ( ServerNode )

adaptation. They may refer to state concerns, such as quiescence or state transfer, or controlling

the operation of the elements to which the effector is attached. These concerns will be discussed

in more detail in Section 6.1; for now we present the list of commands that can be supported

by effectors:

• makeQuiescent: this command places the component or node instance in a quiescent state,

i.e. a stable state where execution is halted.

• getState: this command retrieves the state of a component instance.

• putState: it command sets the state of a component instance.

• setParameter: this command sets a parameter of a component instance.

• start: this command starts the component instance operation.

• stop: it stops the component instance operation.

• pause: it halts the execution of a component instance.

• resume: it resumes the execution of a component instance.
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• addComponent: this command is strictly for node effectors and cause a new component of

a specific type to be added.

• removeComponent: this command causes a node effector to remove a component.

• addNode: this command causes a system effector to add a new node to the system.

• removeNode: it causes the removal of a node from the system.

The description of an effector involves not only the commands above but also the definition of

to which type of element the effector will be associated with. Thus, the description also includes

the component type, node type, or the system as targets. The description of the different

effectors is presented in Listing 4.17, where the differences in terms of accepted commands is

according to the type of target.

Listing 4.18 gives an example of an effector for Catalog components. The effector accepts

all commands applicable to component types, allowing to set the fidelity parameters also.

4.5.1 Effector Operators

We provide effector operators to obtain the effector instances attached to component or

node instances or to the system. These operators are only employed in the executor model,

to define strategies. The following list of effectors is not exhaustive but shows the the most

common effector operators:

• effectorSystem() returns the effector instance attached to the system.

• effectorsComponentType(CT) returns all effector instances that are attached to components

of type CT .

• effectorsNodeType(NT) returns all effector instances attached to nodes of type NT .

• effectorsDeployedInNode(NI) returns all effector instances that are deployed in a node in-

stance NI.
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Listing 4.17: Effector model
Ef f e c to r

Target :

componentType

Commands

[ boo l ean makeQuiescent ( ) ]

[ s t a t eType g e tS t a t e ( ) ]

[ boo l ean pu tS ta t e ( s t a t e : StateType ) ]

[ boo l ean se tPa ramete r ( parameter name , v a l u e : parameterType ) ]

[ boo l ean s t a r t ( ) ]

[ boo l ean s top ( ) ]

[ boo l ean pause ( ) ]

[ boo l ean resume ( ) ]

Ef f e c to r

Target :

nodeType

Commands

[ boo l ean makeQuiescent ( ) ]

[ boo l ean addComponent ( c : componentType ) ]

[ boo l ean removeComponent ( c : componentType ) ]

Ef f e c to r

Target :

System

Commands

[ boo l ean se tPa ramete r ( parameter name , v a l u e : parameterType ) ]

[ boo l ean addNode ( n : nodeType ) ]

[ boo l ean removeNode ( n : NodeType ) ]

Listing 4.18: Example of an effector
Ef f e c to r

Target :

Cata log

Commands

makeQuiescent ( )

g e t S t a t e ( )

pu tS ta t e ( s t a t e )

s e tPa ramete r ( f i d e l i t y ,{ low , r e g u l a r })

s t a r t ( )

s top ( )

pause ( )

resume ( )
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• effectorsSelect(CT,NT) returns all effector instances attached to a component of type CT ,

as long as they are in node instances of type NT . This operator combines the effectorsCom-

ponentType and effectorsNodeType operators.

• effectorSelect(CT,NI) returns the effector instance attached to a component of type CT in

the node instance NI. This operator combines the effectorsComponentType and effectors-

DeployedInNode operators.

• effectorNode(CI) returns the effector instance attached to the node instance where a com-

ponent instance CI is deployed.

• effectorInstance(I) returns the effector instance associated to the a component or node

instance I.

It is important to note that all operators that accept a component type or node type, can

accept the root abstract types ComponentT and NodeT, thus referring to all component types

or all node types.

As in the sensor operators, there is one effector operator that provides the system or the

component or node instance that is being adapted by a particular effector instance. The operator

is the following:

• getTarget(EI) returns the system, or component or node instance to which a given effector

instance EI is attached to.

4.6 Executor Model

The executor model specifies how adaptations described in the adaptation model are ex-

ecuted, using the commands defined in the effector model. The sequence of these commands

forms a Strategy, and each adaptation has at least one strategy associated. If more than one

strategy is available, the designer may state in the which strategy is the default strategy. The

description of strategies relies on several statements that can employ architecture and effector

operators to obtain elements of the system and their effectors, forall keywords to iterate the sets

returned by operators, and any effector commands allowed. These statements can be grouped in
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Listing 4.19: Executor model
[ de f au l t ] adaptat ionName Strategy st rategyName [ Pa r a l l e l ]

[ Step :

[ s ta t ement ] ∗ ] ∗

Listing 4.20: Executor model: a strategy
de f au l t a c t i v a t eTo t a lO r d e r Strategy stopAndGo

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . pause ( )

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , t o t a l )

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . resume ( )

a sequence of Steps that are executed serially. As a result, no command of a given step may be

performed before all the commands of the previous step have been concluded. However, com-

mands executed in the context of a forall statement in a given step may be executed in parallel.

Listing 4.19 shows how a strategy is specified in the executor model. A strategy consists of the

name of the adaptation and the strategy name, wether or not it is the default strategy, and a

number of steps, each consisting in a collection of statements.

Consider the strategy for activating the total order in the Infinispan component presented

in Listing 4.20. The stopAndGo strategy consists in three steps. In the first step, all instances

of the Infinispan component are paused in parallel. Once all instances have been paused, in the

second step, the value of the parameter multicast properties is changed to total. As soon as all

replicas are configured, in the third step, their execution is resumed in parallel, concluding the

execution. On all steps, the commands are invoked over effectors, obtained using the operators

described in the beginning of this section.

The executor model includes also information necessary to parallelize the execution of strate-

gies. A strategy can be marked as Parallel or different strategies can be described as parallel,

as presented in Listing 4.21. In the former case, it means that if the adaptation is selected for
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Listing 4.21: Executor model: parallel strategies
Pa r a l l e l

( adaptat ionName1 : st rategyName1 ) [AND ( adaptat ionName2 : st rategyName2 ) ]∗

several targets, its execution in different targets can be performed in parallel. In the latter case,

it means that the any adaptations and corresponding strategies in the set can be performed at

the same time, in parallel. The parallelism of strategies will be addressed in detail in Section 6.3.

Summary

This chapter describes the knowledge model in which the proposed approach relies. It

describes each of the sub-models in detail: architecture, sensor, context, adaptation, effector,

and executor. It also describes the operators used in the models and gives extensive examples

of how describe the elements of each sub-model.



People’s behavior makes sense if you think about

it in terms of their goals, needs, and motives.

Thomas Mann

Chapter 5

Planning

The proposed approach relies on a planning activity that can be guided either by rules or by

goals, described in a policy. The use of one or the other has different benefits and disadvantages,

as previously discussed in Chapter 3. The system designer must decide which type of planning

is best suited for the system and provide the corresponding policy. In the rule-oriented planning

the system designer needs to manually describe an action policy that lists all the states where

the system must be adapted. In the goal-oriented planning the designer manually describes a

goal policy that lists the behavior goals for the system that must be fulfilled during runtime. In

this type of planning, the high-level goal policy is then automatically transformed in an action

policy that can be used by the policy interpreter. In this chapter, we address both the rule-

oriented and the goal-oriented planning, discussing the scenarios where they may yield the best

results and minimize the designer’s effort. For each type of planning, we address its support

and elements involved, namely the offline and online support of the different policies.

5.1 Rule-oriented Planning

The rule-oriented planning relies on an action policy composed by rules. Each rule char-

acterizes an unwanted system state and lists the adaptations needed to return the system to a

desired state. As previously mentioned in Section 3.7.3.1, this type of planning requires an in-

depth knowledge of the system elements and the understanding of how changes in their behavior
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impacts the overall system. This may be a reasonable demand when the adaptive behavior is

simple enough, the number of system components is not very large, or the adaptations available

are sparse. This type of planning may also be effective in cases where the adaptive behavior is

straightforward, without complex trade-offs. The framing of the rule-oriented planning in the

context of the approach is depicted in Figure 5.1.
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Figure 5.1: Rule-oriented planning in context

Rule-oriented policies are employed in this type of planning to describe the adaptation logic

that determines how the system changes. They are called closed action policies in the context

of the approach. The approach supports a single policy at a time, that is input to the policy

interpreter in the action policy layer. The description of the policy used in this type of planning

relies on information available in the knowledge model. Next, we address closed action policies

and the operation of the policy interpreter in the context of rule-oriented planning. We conclude

this subsection with a discussion of the tradeoffs involved with the use of this type of planning.

5.1.1 Closed Action Policies

An action policy is a collection of event-condition-action (ECA) rules [MD89] describing

changes in the system configuration. Each rule features an event that triggers the evaluation of
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the rule, a condition that describes the system state where the rule can be fired, and an action,

one or multiple adaptations that should be applied if the condition is satisfied. In our approach,

closed action policies are action policies that describe exactly how the system should be adapted

and the strategy used to execute the adaptation.

The description of rules in closed action policies is as presented in Listing 5.1. The descrip-

tion relies on five elements: when, with, do, where and for. The When describes the triggering

event, which can be a raw event provided directly by a sensor defined in the sensor model or

a composite event defined in the context model. The With is used to state the condition: a

boolean expression that may refer to parameters of the event (if any), the system configuration,

or any observables from the knowledge model. The description of conditions may rely in any

of the operators used in the definition of the composite sensors. The Do statement is used to

describe the adaptations that must be applied to the system, by defining their names previously

described in the adaptation model. The Strategy is the name of an adaptation strategy defined

in the executor model. Recall that strategies are explicitly associated with adaptations, there-

fore the Strategy statement describes the strategy that will be used to execute the adaptation.

If a strategy is not explicitly specified, the default strategy is selected.

The adaptations declared in a rule have a target. When the target of the adaptation is a

component or node type, all existing instances of the defined type will be targets. This is called

the scope of the adaptation. The scope of an adaptation can be specified using the Where and

For statements. The Where allow to narrow down the target set of nodes from all (the default) to

a smaller set, such as a specific type of node or to a node that is carried by the event. Similarly,

the For narrows the target components from all component instances to only those of a specific

type (as long as it is a sub-type of the component type specified in the adaptation). Depending

on the adaptation and scenario, the target defined in the adaptation may be specific enough.

However, adaptations whose target is less specific, such as an abstract type, may declare a scope

to narrow down the target instances. The scope is also useful when the target is a specific node

or component instance carried by the event.

There is an important aspect that should be considered when describing the policy rules.

The order by which the rules are listed in the policy is not arbitrary, as it will be followed at
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Listing 5.1: Closed action policy: the rules
When even t

[ With s t a t eC o n d i t i o n ]

Do { adap t a t i o n [ Strategy s t r a t e g y ]

[Where nodeType ]

[ For componentType ]}+

execution time. This is true for both several rules triggered by the same event, as well as for

several adaptations described in the same rule. In the first case, if several rules are triggered

by the same event and their conditions are satisfied, the selected adaptations of the first rule

will be executed before the adaptations in the second rule. In the second case, if a rule declares

several adaptations, they will be executed by their order.

Listing 5.2 provides several examples of closed action rules, in the context of the running

example. All examples target scenarios where the web servers are over their capacity, and

are triggered by the WebclusterOverload event described in Listing 4.7. In the first rule, the

adaptation adds a new node to the system, if the system has not reach the maximum number of

servers. In this case, there is no need to describe a scope, because it is unambiguously the system.

The second adaptation is to change the fidelity to low of all the HomeCatalog components in

the system. This happens when the maximum number of servers has already been reached and

the BusinessCatalog fidelity is already low in all instances. The last rule changes the multicast

properties of the Infinispan components, because none of the previously described adaptations

is possible. In this case, the scope is not necessary because the adaptation already targets all

the instances of a concrete component type.

Listing 5.2: Rule examples

When Webc lu s t e rOve r l oad

With s enso rSys tem ( ) . a c t i v e n o d e s ( ) < system . max nodes

Do addNode

When Webc lu s t e rOve r l oad

With s enso rSys tem ( ) . a c t i v e n o d e s ( ) = = system . max nodes

AND f o r a l l bc . f i d e l i t y = = low | bc : ge tComponent Ins tances ( Bus i n e s sCa ta l og ,

NodeT)

AND f o r a l l hc . f i d e l i t y != low | hc : ge tComponent Ins tances ( HomeCatalog , NodeT)

Do t o L owF i d e l i t y Strategy f l a s h

Where a l l
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For HomeCatalog

When Webc lu s t e rOve r l oad

With s enso rSys tem ( ) . a c t i v e n o d e s ( ) = = system . max nodes

AND f o r a l l bc . f i d e l i t y = = low | bc : ge tComponent Ins tances ( Bus i n e s sCa ta l og ,

NodeT)

AND f o r a l l hc . f i d e l i t y = = low | hc : ge tComponent Ins tances ( HomeCatalog , NodeT)

Do a c t i v a t eTo t a lO r d e r Strategy stop−n−go

5.1.2 Policy Interpreter

The policy interpreter determines how the system will be adapted. For that purpose, it

evaluates an action policy and has two operation modes, one for each type of planning. In this

section, we cover the operation of the interpreter under the rule-oriented planning, where closed

action policies are evaluated. The other operation mode is addressed in Section 5.2.5. The

interpreter executes exclusively at runtime, as part of the online support.

As previously depicted in Figure 3.6, the general operation of the interpreter relies on two

tasks: preparation and selection. However, in the rule-oriented planning, the preparation task

is not necessary, thus, bypassed. The selection task takes place every time an event from the

context analyzer is received. The interpreter goes through the entire policy, rule by rule, and

evaluates the rules that are triggered by the event. When a rule is triggered by the received

event, any conditions present are evaluated. The conditions may refer to the system state, such

as components configurations, context information, among others. Thus, the policy interpreter

relies on the system representation and context analyzer to obtain the required information

and determine whether the conditions are met or not. When the conditions are satisfied, the

adaptations are selected ant it is necessary to check the dependencies in the adaptation model.

If the selected adaptation has any dependencies, then those adaptations are also selected. After

evaluating the policy rules and checking the dependencies, it is necessary to check if all the

adaptations are compatible. The conflicts description in the adaptation model is used for this

purpose. When two adaptations are conflicting, we remove the one that comes second according

to the rule order. Any adaptations that depend on the removed adaptation are also removed.

The list of selected adaptations, as well as their scope and strategy, is sent to the adaptation

executor for the next activity.
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5.1.3 Tradeoffs

A significant advantage of the rule-oriented planning is tied to the expressiveness of the

closed action policies. In conjunction with the knowledge model, the closed action policies allow

to characterize virtually any system state and its adaptation. This fine-grain control of the

adaptations that are applied to the system is possible because the knowledge model allows to

tailor composite events that are triggered in specific situations. While policies cannot refer to

instances because they are not know at design time, tailored events allows to overcome this

issue, allowing pinpoint instances to adapt, that are carried by the event. These situations can

be further filtered by defining conditions that allow the designer to define different responses

to the same event, based on the system state. Furthermore, based on her know-how about the

system operation, the designer may select the adaptations and strategies that should be used in

each case.

Unfortunately, rule-oriented planning demands that the system designer gathers profound

knowledge on the impact of each adaptation. This can be achieved either through past experience

or by extensive experimentation. Only with this knowledge, the designer is able to select the

most appropriate adaptation for each case and specify its target. This can be a complex task

in systems where the number of adaptations is very large. For instance, even in the simple

example above, it is possible to react to an overload in the cluster by adding new nodes or by

changing the fidelity of components. The best adaptation depends on a number of conditions

that characterize the system state.

Furthermore, in a policy composed by several rules, the goals that the designer is trying to

enforce to the system are captured implicitly and not explicitly. This makes the understanding

of the policy difficult and can make it extremely hard to maintain, change, or extend. Consider

again the example above, if one opts to react to the system overload by increasing a server the

designer implicitly gives preference to customer satisfaction detriment of resource consumption;

on the other hand, if the policy opts to degrade the fidelity even in a scenario where it would

be possible to increase the number of servers, one is implicitly preferring to save resources in

detriment to customer satisfaction. Both policies may be valid in different business models, but

such choices need to be inferred from the actions that have been selected and are not explicitly
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reflected in the policy.

5.2 Goal-oriented Planning

The goal-oriented planning relies on policies composed by goals, specified in order of de-

creasing importance. Each goal describes an objective for the system behavior, which may refer

to performance, service quality, resource provisioning, among other properties. While the rule-

oriented planning offered great expressiveness at the expense of a profound understanding of the

system, the goal-oriented planning aims at simplifying the task of managing the system. The

system designer is expected to provide the goal policy, but its description does not require that

the designer is knowledgeable of the available adaptations and how they are executed. Instead

of explicitly specifying the adaptations that should take place, the system designer expresses

goals that must be met by the system. The adaptations are selected automatically, using the

information provided by the component developers and captured in the knowledge model. While

goal-oriented policies allow for a shorter and more intuitive specification of the adaptive behav-

ior, they require that component developers make available information about the impacts of

each possible adaptation, such that adaptations may be selected in an automated manner. This

assumes that we are able to assess the impact on the system from local impacts on instances.

The framing of the goal-oriented planning in the approach context is depicted in Figure 5.2.

This type of planning encompasses both goal policy and action policy layers, with two main

elements: the rule generator and the policy interpreter. The rule generator operates before run-

time, and constitutes the offline support because its operation does not require information from

the runtime. The policy interpreter operates at runtime, depending on information regarding

the system state. The separation of the goal-oriented planning in online and offline support is

depicted in Figure 5.3.

In this section, we address several aspects of the goal-oriented planning. First, we address

the goal policy specification, which includes the key performance indicators used to describe

goals and the actual goal policy. After, we address the elements that support the goal-oriented

planning, namely the policy generator, the open action policies, and we revisit the policy inter-

preter.
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Figure 5.2: Goal-oriented planning in context

5.2.1 Key Performance Indicators

The Key Performance Indicators, KPIs for short, are observables from the context model,

relevant to describe the goals for the system behavior. The system designer can mark an observ-

able from the context model as a KPI only if that observable is system-wide. This is done using

the marker with the same name. A KPI also demands that the aggregation and combination

functions are limited to monotonically non-decreasing functions. A function is monotonically

non-decreasing if for all x < y, f(x) ≤ f(y). In other words, by increasing x, f(x) also increases

or remains the same; conversely, by decreasing x, f(x) also decreases or remains the same.

This restriction is tied to the policy interpreter and will be discussed in Section 5.2.3.2. The

sum, average, and maximum are three common monotonic non-decreasing functions used in the

definition of system-wide observables.

The system designer may also describe composite KPIs (CKPIs for short) computed from

previously declared KPIs. CKPIs are particularly useful to interpret new performance indicators

from the basic KPIs or relate different KPIs using utility functions. The latter allows to attribute

a specific weight to each KPI, thus, relating the concerned KPIs among themselves. This is
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useful to express trade-offs more complex than a simple rank order allows, and is discussed in

more detail in the next section. CKPIs are composed-system-wide observables in the context

model marked as KPI. A composed-system-wide observable relies in a join function that relates

different system-wide observables (already marked as KPIs). Contrarily to the aggregation and

combination functions, the join function does not face any restrictions, so that it can express

utility functions. From this point onward, we will use KPI to refer to both KPIs and CKPIs.

All the observables that are of interest to describe the goal policy need to described as

system-wide observables and marked as KPIs. This applies not only to properties of the system

behavior and performance, but also to the system configuration. For instance, if the system

designer needs to describe a goal that refers to the configuration of a component, such as the

fidelity of Catalog components, she must describe a system-wide observable first, so that it can

be marked as a KPI.

5.2.2 Goal Policy

The goal policy guides the planning, by describing the desired behavior for the system. As

mentioned previously, the use of a goal policy may be an adequate solution in several scenarios.
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One scenario is when the system designer does not have detailed knowledge of the system

components and their adaptations, but has a global view of the system and its behavior. This

makes it possible for the system designer to express what she considers the desired behavior

and performance for the system, just by describing and marking the KPIs and specifying a

goal policy. Another scenario is when there is a large number of components and it becomes

very hard to manage the adaptive behavior. The larger the number of components, the more

likely is the number of adaptations to grow. In cases where the number of adaptations is very

large, describing the rules for a closed action policy becomes an error-prone task. Describing a

much smaller and contained goal policy demands less effort and concentration from the system

designer. The other scenario where a goal-oriented planning may be an adequate solution is

when it is not possible to predict all scenarios where adaptation may be necessary, due to

frequent changes during runtime. In this case, establishing more general guidelines for the

system behavior in a goal policy allows the planning activity to be more equipped to deal and

react in unexpected scenarios.

The goals in the policy establish the acceptable or desired state for a KPI. There are two

groups of goals: exact and optimization goals.

Listing 5.3: Exact goals

Goal goal name : kpi name Above t h r e s h o l d l ow e r

Goal goal name : kpi name Below t h r e s h o l d u p p e r

Goal goal name : kpi name Between t h r e s h o l d l ow e r t h r e s h o l d u p p e r

Exact goals separate the values of a KPI in two disjoint sets: acceptable and not acceptable.

There are three different types of exact goals and their description is presented in Listing 5.3.

An Above goal states that the value of the KPI should be kept above the stated threshold, a

Below goal that the value should be kept below the threshold, and a Between goal that the value

should be kept within the stated lower and upper thresholds.

The optimization goals, instead of simply classifying the values of a KPI as good or bad,

specify a total order between these values. That is, for any two values, which one is better, as

long as their distance is larger than the relevance margin. We consider three different types of

optimization goals and their description is presented in Listing 5.4.
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Listing 5.4: Optimization goals

Goal goal name : kpi name Close t a r g e t MinGain mgvalue Every p e r i o d

Goal goal name : Minimize kpi name MinGain mgvalue Every p e r i o d

Goal goal name : Maximize kpi name MinGain mgvalue Every p e r i o d

A Close goal states that the KPI value should be kept as close as possible to the target value,

a Minimize goal states that the KPI value should be as small as possible, and a Maximize goal

states that it should be as large as possible. The description of optimization goals includes other

statements: the minimum gain and the periodicity. The minimum gain (MinGain) allows the

system designer to describe when the adaptation is worth it. In other words, the designer de-

mands that only when the gain of the applicable adaptations is above mgvalue they are selected.

As any two values within the relevance margin specified for the target KPI are considered indis-

tinguishable, the mgvalue should always be larger than the relevance margin. In the end, this

statement allows the designer to narrow down the pool of adaptations to those with a significant

impact on the KPI. The periodicity (Every) allows the system designer to describe how often

the planning activity should try to improve a particular KPI. The system designer provides a

time period in seconds, that when elapsed, an attempt to optimize the KPI will be made.

As mentioned above, the policy consists on several goals of the previous types, organized

in rank order, from the most important to the less important. This rank allows a graceful

degradation of the system behavior when it is not possible to fulfill all the goals. How this

degradation is achieved depends on the evaluation criterion used. For rank-based policies, there

are several criteria available and they are discussed in more detail in Section 5.2.5.

Below, we present two examples of goals for the running example. The first aims at keeping

the system’s redundancy level, by maintaining at least three active servers. The second goal

states that, every 300 seconds, the self-management should attempt to maximize the service

ratio. If the service ratio can be improved, this is only done if the gain is superior to 5%.

Goal p r e s e r v e r e dundan c y : a c t i v e n o d e s Above 3

Goal m a x i m i z e s e r v i c e r a t i o : Maximize s e r v i c e r a t i o MinGain 0 .05 Every 300
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5.2.3 Offline Support: Rule Generator

The rule generator is an element exclusive to the goal-oriented planning. It parses a goal pol-

icy and automatically generates an open action policy, that will be used by the policy interpreter

to manage the system. The rule generator operation consists in two steps: event extraction and

adaptation screening. In this section, we address the two steps and the open action policies.

5.2.3.1 Event Extraction

The purpose of the first step of the rule generator operation is to identify the undesirable

system states and generate the description of the events corresponding to those states. The

events description is extracted automatically from the goal policy, using information from the

knowledge model. At the end of this step, the event descriptions are added to a composite sensor

that targets the system, and is included in the context model. From this point on, we will refer

to the description of events simply as events to facilitate the reading.

The events are extracted from the goals in the policy. Exact goals result in sporadic events,

while optimization goals result in periodic events. Table 5.1 summarizes the events generated

for each type of goal. Sporadic events have a name and the triggering condition. The name of

an event is extracted automatically from the goal, with a prefix. The prefix depends on the type

of goal. For exact goals, there are two possible prefixes: Above and Below. For a Below goal, an

Above prefix is added to the name of the goal and used as the name of the event. This indicates

the states when the goal is not satisfied: when the KPI value is above the goal threshold plus

the relevance margin. Similarly, for an Above goal, a Below prefix is added to the name. For a

Between goal, two events are generated, one whose name has an Above prefix and another with

a Below prefix. These two events are generated because the goal is a combination of Above

and Below goals. The condition that triggers the event covers the undesired states, with the

threshold considering the relevance margin.

Listing 5.5 provides examples of exact goals and the corresponding events description. From

the exact Below goal named cpu reserve, a composite event named Above cpu reserve is gener-

ated. The threshold value of the observable used to generate the event is automatically derived

from the value of the goal and from the corresponding margin (in this case 0.75 plus the rele-
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Listing 5.5: Examples of sporadic events extracted from exact goals
Goal c p u r e s e r v e : a v g g l o b a l c p u u s e Below 0 .75

Composite Sensor

Target : System

Event

Above cpu r e s e r v e

when a v g g l o b a l c p u u s e ( ) > 0 .76

with c u r r e n t c p u u s e = a v g g l o b a l c p u u s e ( )

Goal t a r g e t c p u : a v g g l o b a l c p u u s e Between 0 .4 0 . 6

Composite Sensor

Target : System

Event

Be l ow ta r g e t cpu

when a v g g l o b a l c p u u s e ( ) < 0 .39

with c u r r e n t c p u u s e = a v g g l o b a l c p u u s e ( )

Event

Above t a r g e t cpu

when a v g g l o b a l c p u u s e ( ) < 0 .61

with c u r r e n t c p u u s e = a v g g l o b a l c p u u s e ( )

vance margin, 0.01, thus 0.76). In a similar fashion, from the exact goal named target cpu, two

events are automatically generated, one is triggered when the observable goes below the lower

threshold (Below target cpu) and the other when the observable goes above the higher threshold

(Above target cpu).

Periodic events are tied to optimization goals and they are triggered every time the specified

period of time elapses. These events have a mandatory name and a time period. In certain cases,

the description may also include a triggering condition. The name of the event is generated by

adding a prefix to the goal name. Two prefixes can be used: Increase and Decrease. For a

Maximize goal, an Increase prefix is used, and for a Minimize goal a Decrease prefix is used. A

Close goal generates two events. The name of one of the events has a Decrease prefix and cover

all the states where the KPI value is above the target. Thus, the event also has a condition

associated, so that the event is only triggered for those KPI values. The other event has a name

that starts with the Increase prefix and covers all the states where the KPI value is below the

target. It also has a condition associated. Any of the events have a time period associated that
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Listing 5.6: Examples of periodic events extracted from optimization goals
Goal min im i ze cpu : Minimize node cpu use MinGain 0 .05 Every 100

Composite Sensor

Target : System

Event

Dec r ea s e m in im i z e cpu

with c u r r e n t c p u u s e = a v g g l o b a l c p u u s e ( )

p e r i o d i c a l l y 150

Goal t a r g e t c p u : node cpu use Close 0 .3 MinGain 0 .05 Every 200

Composite Sensor

Target : System

Event

Dec r e a s e t a r g e t c p u

when a v g g l o b a l c p u u s e ( ) > 0 .31

with c u r r e n t c p u u s e = a v g g l o b a l c p u u s e ( )

p e r i o d i c a l l y 200

Event

I n c r e a s e t a r g e t c p u

when a v g g l o b a l c p u u s e ( ) < 0 .29

with c u r r e n t c p u u s e = a v g g l o b a l c p u u s e ( )

p e r i o d i c a l l y 200

is extracted from the goal.

Listing 5.6 provides, for two different goals, the generated events. The first example de-

scribes a periodic event in a composite sensor, triggered every 150 seconds. The second example

adds two events to a composite sensor, triggered every 200 seconds, but only if the observable

avg global cpu use is above 0.31 or below 0.29.

Goal Type Goal Event A Event B Trigger

Exact Above Below - lower threshold violated
Exact Below Above - upper threshold violated
Exact Between Below Above upper or lower threshold violated
Optimization Maximize Increase - periodic
Optimization Minimize Decrease - periodic
Optimization Close Increase Decrease periodic

Table 5.1: Event(s) generated for each type of goal
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5.2.3.2 Adaptation Screening

The screening of adaptations is the second step of the rule generator operation. In this step,

the adaptations in the adaptation model are analyzed to determine if they may contribute to

achieve the goal in hand — the goal from which the event under consideration was extracted.

The analysis consists in three distinct phases:

1. Impact : all the adaptations that do not have impact on the KPIs employed by the event

are discarded.

2. Usefulness: all the adaptations that do not improve the KPIs employed by the event are

discarded.

3. Combinations: all the compatible combinations of the screened out adaptations are gen-

erated.

The outcome of this step is a set of viable combinations of adaptations per event. Viable

combinations are all the possible combinations of adaptations that may help achieve the goal, re-

specting any conflicts or dependencies. This also includes the empty combination that represents

keeping the system as it is. Next, we address the three phases in more detail.

Impact: The first phase of the adaptation screening identifies the adaptations that are of

interest to the goal in hand. We consider that an adaptation is of interest if it has impact on

the KPI that is used in the goal. If the goal addresses a CKPI, then the adaptation has impact

on at least one of the KPIs used in the CKPI description. In terms of adaptation description

this translates in the following. All adaptations that declare any of the following impacts are

selected for the next phase:

• has impact on the KPI, CKPI, or one of the KPIs (if the goal deals with a CKPI);

• has impact on any observable that is employed to build the KPI.

The first statement selects all the adaptations that declare a direct impact on any KPI of

the goal in hand. The second statement covers the observables that are used, both directly and
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indirectly, to build any of the KPIs of the goal in hand. The second statement is necessary

because the human operator is only expected to declare the known impacts of an adaptation.

This means that if the adaptation affects a KPI, then, there will be at least one impact that

declares how the KPI, or any observable related to it, is expected to change. For instance, if

we have a KPI A, built from B, who, in turn, is built from C; to address an event on KPI

A, adaptations that have impact on A, B and C are selected. There are other cases, where

the impact on an unrelated observable may denote an impact. For instance, let us assume an

observable D that is built using C; an adaptation with impact on D, means that probably C also

changes. Thus, the adaptation eventually affects KPI A and, thus, should be selected. However,

despite an apparent impact, these adaptations are not selected due to implicit conflicts. These

decisions regarding the second statement are discussed in more detail in the next paragraphs.

Usefulness: The second phase of the adaptation screening assesses the usefulness of the adap-

tations selected in the previous phase. We consider that an adaptation is useful to achieve the

goal in hand, if the adaptation improves the KPI. The usefulness translates in selecting the

adaptations whose impact on the KPI changes it in the same direction as necessary to achieve

the goal. Thus, having a positive impact. For instance, the event extracted from the goal pre-

serve redundancy is triggered whenever the number of active nodes is below 3. The adaptations

that increase the number of active nodes are the useful ones. Similarly, if the aim is to decrease

a KPI, all the adaptations whose impact decrease the KPI are useful.

Assessing the usefulness of an adaptation offline solely relies on the described impacts of

an adaptation. When the impact is declared regarding the target KPI, static analysis of the

specified impact function can help to determine if the impact is positive or not. If it is impossible

to automatically determine the direction of change for an impact function, this information can

be provided by the component developer.

As previously addressed, the description of impacts is not exhaustive, thus, we cannot

limit the adaptations of interest to those that declare a direct impact on the target KPI. As

a result, the analysis must also look at adaptations that declare impacts on any observables

used to build the KPI. However, we must be able to estimate the global impact on the KPI

from the local impacts on the observables, described in the adaptation. The functions used in
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the description of KPIs already cover this requirement, as they are limited to monotonically

non-decreasing functions (as discussed in Section 5.2.1). Regarding the other observables, either

they are basic sensed observables, or they are composite observables whose expression has to

respect the properties of monotonically non-decreasing functions.

In all scenarios where the usefulness of the adaptation cannot be assessed, for instance, if

the impact functions depend on context information, the impact is marked as undetermined. In

these cases, the adaptation is always selected to avoid eliminating potentially useful adaptations.

This guarantees that only adaptations known not to help achieve the goal are discarded.

For instance, consider the event Above cpu reserve from the previous section, where the goal

is to decrease the value of the cpu use. Consider also the adaptations listed in Section 4.4. The

adaptation toLowFidelty declares an impact function that decreases the amount of current CPU

use by 30%, cpu use∗ = 0.7. By calculating the derivative of the function f(KPI) −KPI, it

is possible to see if the impact is positive or not. For instance the derivative of x ∗ 0.7 − x is

always negative, thus the impact always decreases.

Combinations: The third phase of the adaptation screening is the generation of the viable

combinations of the useful adaptations. While this phase could be performed online, it takes

place offline to speed up the operation of the policy interpreter, by providing a set with only the

viable combinations. A combination is viable if it respects the dependencies and explicit conflicts

declared in the adaptation model, as well as the implicit conflicts, inherent to the approach.

To assess if a combination is viable it is necessary to unfold the adaptations first. The

unfolding of an adaptation relies in predicting all the possible targets of that adaptation. The

adaptations that need unfolding are those that can have more than one target. This applies to

adaptations that target node and non-distributed component types. Adaptations that target

distributed component types only need unfolding if they adapt local parameters, otherwise

the target is only one. The prediction of the targets is tied to the number of nodes that the

system may have at the time. The unfolding process uses the max nodes as the number of

nodes, thus, covering all the nodes that might be running. Thus, an adaptation that targets a

node type will have as many variants as the number of max nodes multiplied by the number

of concrete node types to which the target type corresponds. The target of each variant is
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different and is an instance of the node type, identified by the node type and an id, with

id = 1, ...,max nodes. If the adaptation targets a component type, then there will be as many

variants as the number of max nodes multiplied by the number of concrete node types accepted

in the system description and where that component type can run. The target of each variant

is given by getComponentInstance(CT,NI), where CT is the target component type and NI is

one of the node instances that the system may have.

The unfolding process allows the generator to find all the possible variants of each adapta-

tion, thus, it becomes possible to calculate all the combinations. The dependencies are important

in this process to assess if a combination is viable. So are the conflicts, both the explicit (de-

scribed in the adaptation model) and the implicit. The implicit conflicts allow to reject all

adaptations or combinations where we cannot estimate the impact of applying the adaptation.

This is the case of adaptations in the situation of the example of observable D, previously ad-

dressed in the discussion of the impacts. This is also the case of pairs of adaptations whose

impacts overlap and thus it becomes impossible to determine the impact on the KPI. Two

adaptations are implicitly conflicting if both:

• have impact on a common KPI;

• have the same target and impact over a common observable, which is used to build a KPI.

Adaptation requirements determine if an adaptation can be applied or not. However, these

requirements refer to runtime, such as the configuration of some component, node, or system.

Thus, they cannot be assessed offline and do not determine if a combination is viable or not.

The set of viable combinations will have the empty combination and combinations with size

that can range from one to up to as many adaptations described in the adaptation model. At

the end of this process, the rule generator has generated a set of combinations for each extracted

event. The assembly of an event and all the combinations of adaptations are addressed next.

5.2.4 Open Action Policies

An open action policy is similar to a closed action policy with the one exception: the Do

statement. In the closed action policy, the Do statement accepted adaptations with a strategy
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Listing 5.7: Open action rule and example
When even t

[ With s t a t eC o n d i t i o n ]

Do

Se lect {AC1 ,AC2 , . . . }

When Dec r ea s e m in im i z e cpu

Do

Se lect { [ t oLowF i d e l i t y , addNode ] , [ t o L owF i d e l i t y ] , [ addNode ] , . . . }

and scope. In open action policies, the Do statement accepts a Select function that has all the

viable combinations of adaptations {AC1, AC2, ...ACm} associated to the event. The event is

declared in the When clause. The With clause is empty.

The Select function states that only one combination is to be selected from the set and the

choice of the most appropriate combination is delegated to a runtime procedure. An open action

rule has the format specified in Listing 5.7. The reader may wish to compare the format of an

open action rule with that of a closed action rule introduced in Section 5.1.1. The listing also

provides an example of a generated rule, despite not being complete.

5.2.5 Online Support: Policy Interpreter

We have just described how the offline support generates the open action policy. The

open action policy is processed by the runtime support in a manner similar to that of closed

action policies, with the obvious exception that, with the open action policy the Select function

is invoked in runtime, to select the required adaptations from the set of viable combinations

provided as input.

The interpreter starts the evaluation of the open action policy when it receives an event.

The interpreter finds the only rule triggered by the event and starts the preparation task over

the set of viable combinations. It begins by trimming the set of combinations, so that only

the combinations with adaptations that can be applied to the current system state are kept.

For this purpose, the preparation task starts by checking the target of the adaptation. If

the target is the id of a node, it searches the system representation for it. If the target is a

getComponentInstance operator, it executes the operator. The adaptations whose target does
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not correspond to a instance in the system or whose set returned by the operator is empty

are eliminated. It also eliminates adaptations targeting distributed component types that do

not have at least one instance running in the system. If the target of an adaptation exists,

the interpreter verifies the adaptation requirements and eliminates all the adaptations whose

requirements are not satisfied. All the information necessary to perform the preparation task is

available in the system representation and in the context analyzer. Any repeated combinations

are eliminated. The preparation task is concluded with the calculation of the impacts on the

KPIs involved in the goals of the policy. First, the estimated value for the KPIs are calculated

per adaptation and, only after that, for the combination.

After the preparation task, the combinations in the rule are ready to be evaluated by

the Select function during the selection task. The selection of a combination subsumes an

optimization criterion and there are different reasonable choices. For instance, if we restrict our

attention to policies with exact goals only, one possibility is to consider that being optimal means

to satisfy as many goals as possible. In this case, the selection process must pick a combination

of adaptations ACi that maximizes the number of goals that are expected to be satisfied if those

adaptations in ACi are performed (the ranking order of the goals is ignored in this case). A

different optimization criterion, which we call ranked-eager, is to take into account the rank of

goals in policies and satisfy more important goals first. In this case, the selection process starts

by picking the combinations that are expected to satisfy the highest ranked goal k, then among

those are selected the combinations that are expected to satisfy the second ranked goal k + 1,

and so on. There is one exception: If all combinations selected in step k violate the (k + 1)st

goal, all combinations are selected. In this manner, if it is not possible to satisfy the (k + 1)st

goal without violating the kth goal, the remaining goals are still used for tie-breaking. This

selection mechanism is illustrated in Figure 5.4.

We have opted for an optimization criterion that is an extension of the ranked-eager criterion,

which is also applicable to policies with optimization goals. Given that an optimization goal

specifies a total order between the possible values of a KPI, when several combinations are

evaluated against an optimization goal, are selected those that put the KPI close to the target

specified in the goal. This is illustrated by Figure 5.5, where the best combination among those
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Figure 5.5: Evaluation of optimization goals

evaluated against the optimization goal B is represented by a multi-point star shape—the AF

combination. Dashed lines are used to link combinations that are considered equivalent in what

concerns goal B (the difference between their estimated impacts on the KPI of goal B is smaller

than the relevance margin). In the example, when the optimization goal B is evaluated, only

two combinations are selected. One is the combination that puts the KPI of B close to the

target, and the other combination is an equivalent one. The next paragraphs present a more

detailed and rigorous description of the whole selection process.

The process starts with a search space SS = {AC1, AC2, ...ACm} of the viable combinations

of adaptations. The search involves analyzing the estimated effects of the different combinations

on the KPIs addressed by the goals and deducing which ones best fit these goals. More precisely,

recall that policies define a set of ranked goals {G1, ..., Gn}, where G1 is the goal with the highest

rank. The comparison between different combinations of adaptations relies on their evaluation

against these goals, starting with G1. In other words, each goal works as a filter that allows only

a number of ACi to pass. The filter of a goal Gi, which performs the evaluation of a combination

of adaptations C against a goal Gi, depends on the type of goal (exact or optimization) and the

estimated impact of the adaptations on the KPIi associated with the goal. This value, which

we denote by KPICi , is calculated as follows:
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• if KPIi is not composite and employs both an AF and a CF , then KPICi is the result

of first applying CF to each target node of type nodeType (as long as the component

instances offer the observable from obs name), and then apply AF to all nodes.

• if KPIi is not composite and employs only an AF , then KPICi is the result of apply-

ing AF to all the nodes of type nodeType (as long as the instances offer the observable

from obs name).

• if KPIi is not composite and employs only a CF , then KPICi is the result of applying CF

to all the instances of type componentType (as long as the instances offer the observable

from obs name).

• if KPIi is composite (a CKPI), then KPIi is defined by a join function JF involving non-

composite KPIs and hence, the value of KPICi is obtained after calculating the estimated

impact of C in these KPIs.

Note that if C is the empty combination, then KPICi is just the current value of KPIi.

The definition of C matches {G1, ..., Gi} is given by the conjunction of the three following

conditions:

1. if i > 1, C matches {G1, ..., Gi−1}

2. if Gi is an exact goal: KPICi satisfies Gi or, for all other combinations C+ in SS that match

{G1, ..., Gi−1}, KPIC+

i also violates Gi.

3. if Gi is an optimization goal: |KPIC
i − KPIC∗

i | < relevance marginKPIi where C∗ is,

among the combinations in SS that match {G1, ..., Gi−1}, the one that puts the KPIi

closer to the target specified in Gi.

C best matches {G1, ..., Gn} only if i) C matches {G1, ..., Gn} and ii) for some 1 ≤ i ≤ n,

either Gi is an exact goal that is currently violated and KPICi satisfies it; or Gi is an optimization

goal and, compared to the current value of KPIi, there is a gain that exceeds the specified

minimum gain.

To illustrate the selection process, consider a goal policy whose highest ranked goal is

global mem use Below 0.58 and the second highest ranked goal is avg global cpu use Below
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0.36. Let’s assume that the current avg global cpu use value is 0.58 (the second goal is

currently violated) and the rule available to deal with the violation of this goal is When

Above avg global cpu use Select {AC0, AC1, AC2, AC3}, where AC0 is the empty combination

and all adaptations included in the others combinations ACi decrease avg global cpu use at

the expense of increasing global mem use. During the evaluation of the rule triggered by the

Above avg global cpu use event, the selection process starts by selecting the combinations whose

estimated effects do not bring global mem use above 0.58. If the value of global mem use is al-

ready close to the limit and the estimated effect of all three non-empty combinations is to bring

its value above 0.58, then the result of the selection process is to leave the system as it is (the

selected combination is the empty one). On the contrary, if the value of global mem use is far

from the limit and the estimated effects of, say, all but AC3 keep global mem use value below

0.58, then the process would continue by selecting among AC0, AC1, AC2, the combinations

that are able to bring cpu use below 0.36. Suppose this is the case with the two non-empty

combinations. Then, the next ranked goal in the policy would be used to tie-break among them.

The rule evaluation mechanism has two implicit advantages. First, even if a goal is violated

and cannot be satisfied, the evaluation process will continue to see if it can improve the system

by satisfying other goals, such as optimization goals. Second, when it is not possible to satisfy all

goals, the proposed approach provides graceful degradation according to the rank. As a result,

the goals with lower rank will be violated first to maintain the more important goals.

Note that if an optimization goal ranks first in the policy, the rule evaluation mechanism

will treat it in a greedy manner. This makes it possible to describe scenarios where we want

to give preference to an optimization goal, hence, the system adapts mainly focused on that

optimization.

5.2.6 Discussion

Besides the obvious advantage of handling complex adaptation logics, the goal-oriented

planning facilitates several aspects tied to the human part of managing the system. Humans play

two distinct roles in this approach: component developers and system designers. The component

developers share their experience with the system, providing intel on how the system can be
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adapt and of the benefits and trade-offs that can expect from a certain adaptation. The system

designer or designers describe the expected behavior for the system, and what is considered

desirable, by characterizing that behavior through a goal policy. This separation reduces the

human effort in managing the system, allowing a more flexible handling of both the adaptations

pool and the goal policy. The component developers can easily add new adaptations without

being concerned with the existing ones. The system designer can easily change the goal policy

without being concerned with the adaptations.

The key to using knowledge from both groups of human operators is the collection of KPIs.

The goal policy is specified in function of these KPIs, and the adaptations describe impacts on

the base observables of these KPIs. While for some systems, the necessary KPIs are obvious,

for others several iterations may be necessary to reach an adequate set of KPIs. By describing

the adaptation impacts over observables, it is possible to bypass this issues. While adding new

KPIs do not necessarily affect existing adaptations, changing a KPI or the set altogether, will

demand that the goal policy is re-specified.

If the KPIs bridge the gap between developers’ knowledge and system designer’s aims, the

ranks make the specification of a goal policy a high-level task. At first glance, the expressiveness

of rank-based policies might seem not ample enough for expressing more complex scenarios such

as G1 : k1 Below v1 is more important than G2 : k2 Below v2 and G2 is more important

than G3 : k3 Below v3 but we prefer to have G2 and G3 both satisfied than to have just

G1. However, with the definition of appropriate CKPIs, we can easily address this type of

scenarios. Specifically, we would just have to define a CKPI k23 = (v2
.− k2) ∗ (v3

.− k3), a goal

G4 : k23 Above 0, and a policy with the goals G4, G1, G2, G3, in this order. Note also that

CKPIs can be used to define weight-based policies. For instance, one could also represent that

we prefer the conjunction of G2 and G3 to G1 by defining the following CKPI:

kw = w1 · signal(v1 − k1) + w2 · signal(v2 − k2) + w3 · signal(v3 − k3)

where signal(x) = 1 if x > 0 and 0 if x ≤ 0, and then setting the weights as w1 = 0.4, w2 = 0.35,

and w3 = 0.25, respectively. This together with the goal:

Goal Gw : Maximize kw MinGain 0 .01 Every 100
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shows how we can describe goals with weights in the policy. We opted by having rank-based

goal policy because our aim is to make the policy definition a high-level task. Using ranks is

far simpler to specify and be sure of what the policy does, than if one needs to rely exclusively

on weights. A weight-based approach demands that the operator decide exactly the weight of

each goal compared to others—a task that is far more complex than simply identifying which

goals are more important than others. Furthermore, it is harder for the operator to verify if the

given weights have the effect she expects in terms of system behavior. Finally, the extension of

a weight-based policy with an additional goal also demands more effort than simply adding the

new goal somewhere in the policy.

Ultimately, the success of the goal-oriented planning is tied to a sensible goal policy, but,

above all, to efficient descriptions of adaptations. When describing an adaptation, the component

developer must effectively identify which KPIs will be affected by the adaptation. Failing to do

so, may cause unexpected behaviors and the self-management will fail. Another aspect that is

crucial is an accurate measure of the impact of the adaptation in the KPIs, or in other words, the

impact functions. The impact functions are obtained through experience, either when developing

the component or after testing and benchmarking the component. The more accurate is an

impact function, the more effort and time it demands. It is important that impact functions are

accurate enough so that the self-management is not misguided. The necessary level of accuracy

will depend on the KPI and the adaptation. This is the part of an adaptation description that

will take the most effort. However, any self-adaptive approach also spends the majority of its

time/effort in trying to understand the effects, benefits and trade-offs of an adaptation to build

the action policy.

Summary

This chapter describes how the proposed approach tackles the planning activity. It presents

the two reifications: rule-oriented and goal oriented. For each reification, it covers the elements

that intervene and how they operate in detail. The chapter also includes a discussion of both

reifications, namely their limitations and challenges.
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Change is not merely necessary to life; it is life.

Alvin Toffler, in Future Shock

Chapter 6

Adaptation Execution

There are many aspects that need to be considered when executing an adaptation. They

range from how the execution should be performed to the actual implementation of the changes.

This chapter discusses the aspects and considerations necessary to describe how an adaptation

is executed. We begin by discussing the concerns and needs that motivated the decisions behind

the execution support and the design of the effector and executor models. Next, we address in

more detail the specification of strategies, namely, we present some of the existing strategies in

the literature and how they can be described in the executor model. We conclude this chapter

with the application of multiple strategies at one time, when a set of adaptations is the output

of the planning activity.

Figure 6.1 shows how the execution support fits in the approach context. The main elements

engaged in this activity are the effectors and the adaptation executor. However, the system

representation manager is also tied to this activity as the system representation is necessary to

execute the adaptations and the manager updates the representation after the execution.

6.1 Execution Needs and Runtime Support

The execution of an adaptation must be tailored to the change being made but also consider

the target or targets and the system. The needs to perform a structural adaptation are often

different from the ones of a behavioral adaptation, as the adaptation of a distributed component

101
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Figure 6.1: The adaptation execution in context

has needs that adapting a non-distributed component does not have. These needs vary greatly

according to the adaptation, the target, and the system. Thus, there are several approaches

that provide solutions for specific components or scenarios, as analyzed in Section 2.2.4.

The adaptation needs can be placed in three different categories according to the phase of

the execution: before, during, and after the adaptation. The pre-adaptation needs refer to the

preparation of a target or targets for adaptation. Depending on the component, this may involve

stopping or pausing a component instance so that the adaptation can be safely performed, or

reaching a quiescent state. If it is necessary to exchange a component instance by another, it

may be useful to retrieve the state of the old component instance and use it to initialize the

new one. In terms of needs during the actual adaptation, they are essentially the adaptations

themselves. Finally, in terms of post-adaptation needs, it may involve resuming or starting

a component instance, or, initialize a new one with previously captured state. These needs

were already identified and translated into a set of commands described in Section 4.5, where

the effector model is covered. Table 6.1 shows the commands and relates them to the type of

concerns they address.

The design of the runtime support reflects not only the needs of behavioral and structural

adaptations in distributed system, but also reflects these pre and post adaptation concerns.

As depicted in Figure 6.2, the support consists in the adaptation executor, reconfiguration
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Command Pre Adaptation Post
addComponent x
removeComponent x
setParameter x
stop x
start x
pause x
resume x
makeQuiescence x
getState x
stateSet x

Table 6.1: Adaptations associated with each concern

agents, and different types of effectors. As described in Section 3.6.2, the adaptation executor

is responsible for executing the adaptations selected by the planning activity. The executor

performs two tasks. One task is to combine different strategies, when more than one adaptation

is selected during the planning. The other task is to control and coordinate the reconfiguration

agents to execute the adaptations. Each node instance has a reconfiguration agent that works

as an intermediary between the executor and the effectors. There are three types of effectors:

system, node, and component. There is only one system effector that performs changes in

terms of setting the value of a system parameter and adding or removing nodes. For each node

instance, there is a node effector that is prepared to add and remove components from that node.

Finally, each component instance has a component effector that is prepared to set the value of the

parameters of the component and execute any pre and post-adaptation concerns. All effectors

are oblivious to each other, even if they are tied to instances of distributed components. However,

each effector registers the reconfiguration agent that controls it, and is aware and prepared to

receive commands from the agent.

The reconfiguration agent directly controls the effectors in that node. The agent is prepared

to receive a batch of commands from the executor and send each command to the target effector.

For instance, if the agent receive a batch of two commands: addComponent and start ; it will

send the addComponent to the node effector, and the start command to the new component

effector. The reconfiguration agent also handles the state transfer that may be required when

one component is replaced by another component that provides the same service (for instance, to
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Figure 6.2: The interaction between executor, reconfiguration agents and effectors

deploy a software upgrade). The agent saves the state that results from a getState command for

later use in a putState. In this way the state of the component, that may be large, is not required

to be transferred across the network from the node to the executor and from the executor back

to the node. Finally, after collecting the results of all commands in the batch, the agent returns

them the executor.

It is important to note that, while the reconfiguration agent is prepared to transfer state

during replacements in the node it is located, it is not prepared to transfer state from an

existing component in a node and new component of the same type in another node. In this

case, the state transfer must be done by the executor, who will retrieve the state and then

send it to initialize the new component. In the particular case of distributed components, such

as Infinispan, whose new instances must be initialized according to a number of configuration

options, it is the component itself that controls the initialization of new instances in this case.

6.2 Specifying Strategies

Reconfiguration strategies define how an adaptation is applied through nodes and how is

achieved locally in each node. From this point forward we will use reconfiguration to denote

the changes made to the system to achieve an adaptation. The strategy describes a sequence of

reconfigurations and pre and post-adaptation needs over the adaptation target. This target may

be an instance of a component, (all the instances of) a distributed component, a node instance,
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or the system, which is inherited from the selected adaptation.

The strategy itself is defined in terms of an orchestration protocol and a local reconfiguration

technique. An orchestration defines the coordination among nodes, while the local reconfigu-

ration technique describes how the reconfiguration is performed locally at each node. The

combination of different orchestrations and local reconfigurations yields a large set of viable

strategies, that can be applied in several distinct contexts.

Different adaptations typically have different coordination requirements. For instance, the

reserved memory space for a caching service can be changed in multiple nodes without requiring

inter-node coordination. However, the reconfiguration of the communication services used by the

nodes (by replacing TCP by UDP, for instance), needs to be performed in a coordinated fashion,

as communication would be impossible if each node is using a different communication service.

Similarly, different adaptations may have different needs in terms of local reconfiguration, with

varying costs and applicability constraints. For instance, changing the timeout value of a failure

detector service in a given application can be performed on-the-fly with little cost; whereas

replacing the implementation of a complex service may require to place the affected service(s)

in a quiescent state, and even to capture and transfer part of the service’s state to the new

implementation. It is important to note that the local reconfiguration technique is, to some

extent, independent of the orchestration adopted. Thus, we consider that is possible to reason

about a reconfiguration strategy in terms of different combinations of distinct orchestrations and

local reconfiguration techniques, as described in detail in the next paragraphs.

6.2.1 Orchestrations

An orchestration defines how nodes coordinate to perform the adaptation. Each orchestra-

tion depends on the exchange of messages between the adaptation executor and the reconfigu-

ration agents or system effector. The exchange of messages allows the manager to communicate

which reconfiguration needs to be performed and how, including if coordination is required. The

coordination between the nodes involved in the reconfiguration works very much like a synchro-

nization barrier, where none of the agents proceeds with further reconfiguration steps until all

agents have completed the step and are ready for the next. An orchestration can have zero, one,
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or multiple synchronization points. A k-orchestration will enclose k synchronization points and,

therefore, k + 1 steps.

From our experience, there can be any number of orchestration steps in strategies, thus, we

use a generic formulation where a strategy can have k steps: k-orchestration, with k = 0, 1, ..., n.

In the literature, the most frequent orchestrations are those with k = 0, 1, 2, as depicted in

Table 6.2.

k Orchestration Name
0 Uncoordinated
1 Single Sync
2 Double Sync

Table 6.2: Orchestrations

6.2.2 Local Reconfiguration Techniques

A local reconfiguration technique is concerned with the manner the adaptation is performed

locally, namely the reconfigurations that have to be performed to achieve it. One adaptation can

be several reconfigurations together. Independently of the orchestration used, we have identified

three different techniques to perform an adaptation in a given node:

• Unprepared: In this case, it is possible to execute the adaptation without any previ-

ous preparation of the adaptation target. This happens when the reconfiguration can be

performed immediately. For instance, if the target is a component instance, then the re-

configuration can be performed without disturbing its operation or of the other component

instances that interact with the target. Changing the fidelity level of a catalog component

instance is an operation that can be performed immediately; the reconfiguration basically

consists in changing a flag, that is consulted when a request arrives. Thus, it can be

changed even in the middle of processing requests without causing failure to the request

processing.

• Prepared: In this case, the adaptation cannot be executed without some preparation,

otherwise the safety of the system may be affected. Consider for instance an adapta-

tion that removes a total order protocol from a group communication system such as
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Appia [MPR01] or Ensemble [vRBH+98]. In those systems, if the protocol is removed

form the stack while the system is processing messages, it risks that messages are lost.

Therefore, before the adaptation takes place, the group communication system needs to

be placed in a quiescent state. The prepared local reconfiguration technique typically in-

cludes three phases: i) a pre-adaptation preparation phase; ii) an adaptation execution

phase and; iii) a post-adaptation resume phase. Relevant actions that may be performed

in the pre-adaptation preparation phase include: to place an instance in a quiescent state,

capture the instance state, and to pause or stop the component instance. As noted above,

relevant actions in the post-adaptation phase include to load the state on newly instan-

tiated components, and to resume or start the execution of previously paused/stopped

instances.

• Assisted: In this case, adaptation is performed with the assistance of a helper component

that is instantiated locally so that the reconfiguration can be performed with minimal

impact to the running system. The idea of using helper components has been used mainly

in the context of protocol stacks, to avoid the interruption in the message processing

caused by the prepared strategy discussed above. In this context, the helper components

are called protocol switchers and multiplexers, as introduced in Section 2.2.4. Typically,

an assisted technique also requires three phases: i) a pre-adaptation preparation phase,

where the helper components are instantiated; ii) an adaptation execution phase, that is

delegated to the helper components, and; iii) a post-adaptation phase, where the helper

components are de-activated.

One final note regarding quiescence and achieving a quiescence state. Quiescence is often

required in situations that demand a strong coordination between instances of the of the dis-

tributed component, but can also be required in a situation without coordination. For instance,

when a service implementation is replaced by another compatible implementation (e.g. to in-

stall a bug-fix on-the-fly), it may not be necessary to coordinate the reconfiguration in all nodes.

However, in each node, it may be necessary to put the service in a quiescent state to replace it.
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6.2.3 Combining Orchestrations with Local Reconfiguration Techniques

A strategy is a combination of an orchestration and a local reconfiguration technique. We

describe a number of relevant combinations employed in the examples and case-studies mentioned

in this thesis. The description relies on the effector operators that were introduced in Section 4.5.

It is not the goal of this section to explore or discuss the complete space of strategies that may

be defined.

6.2.3.1 Flash

This strategy is adequate to adaptations that do not require coordination (i.e., that can

be executed in a single step) and have no pre or post-adaptation concerns. It consists in a

0-orchestration and a unprepared local reconfiguration technique. The strategy simply lists the

commands corresponding to the changes made. For instance, an adaptation toLowFidelity that

sets to low the fidelity parameter of a Catalog component instance can be performed using this

strategy, as presented in Listing 6.1.

Listing 6.1: Example of a flash strategy
de f au l t t o L owF i d e l i t y Strategy f l a s h Pa r a l l e l

Step :

e f f e c t o r I n s t a n c e ( t a r g e t ) . s e tPa ramete r ( f i d e l i t y , low )

The flash strategy can also be used to execute more complex adaptations, that consist in

several reconfigurations, even pre and post adaptation concerns, as long as there are no needs

for synchronization. For instance, the adaptation deployComponents, described in Listing 4.14,

adds several component instances to an empty node and starts the instances. Since the node is

not operational, all the reconfigurations can be performed in a single step without any synchro-

nization.

Listing 6.2: Example of a flash strategy with multiple actions
de f au l t deployComponents Strategy f l a s h Pa r a l l e l

Step :

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( WebServer )

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( I n f i n i s p a n )

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( HomeCatalog )

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( Bu s i n e s sCa t a l o g )
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. . .

f o r a l l e : e f f e c t o r sDep l o y ed I nNode ( t a r g e t )

e . s t a r t ( )

6.2.3.2 State-aware Flash

This strategy is suitable for adaptations that do not require coordination, but need to

perform state transfer between components. It consists in a 0-orchestration and a prepared

local reconfiguration technique. The strategy is particular useful to replace a non-distributed

component instance, retrieving the state of the old instance and initializing the new instance

with it. This strategy can be used to upgrade the Catalog, Account and User components in

the running example. Listing 6.3 presents one such adaptation for the HomeCatalog instances

and the state-aware flash strategy that executes the upgrade.

Listing 6.3: Example of a state-aware flash strategy
Adaptation upgradeHomeCatalog :

Target :

ServerNode

Impacts :

t a r g e t . componentRemoved ( HomeCatalog )

t a r g e t . componentAdded ( HomeCatalog2 . 1 )

S t a b i l i z a t i o n :

60

de f au l t upgradeHomeCatalog Strategy s t a t e−aware f l a s h

Step :

e o l d = e f f e c t o r S e l e c t ( HomeCatalog , t a r g e t )

e o l d . g e tS t a t e ( )

e o l d . s top ( )

e f f e c t o r I n s t a n c e ( t a r g e t ) . removeComponent ( HomeCatalog )

new = e f f e c t o r I n s t a n c e ( t a r g e t ) . addComponent ( HomeCatalog2 . 1 )

e new = e f f e c t o r s I n s t a n c e ( new )

e new . pu tS ta t e ( )

e new . s t a r t ( )

6.2.3.3 Stop-and-go

This strategy is suitable for adaptations that require synchronization of all the adaptation

targets before performing the reconfiguration, and after it. The strategy is composed by a
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2-orchestration and a prepared local reconfiguration technique; it relies on a pre-adaptation

preparation step, that halts the operation of all the targets. Only when all targets are halted,

the strategy continues to the next step and the actual reconfiguration. After the successful

reconfiguration of all the targets, their operation is resumed in a post-adaptation step.

The activateTotalOrder adaptation, presented in Listing 4.20 of Section 4.6, could be exe-

cuted using this strategy, as it caters to all its needs. Listing 6.4 presents the strategy for this

adaptation. In the first step, all the instances of Infinispan are paused. After that, in the second

step, the value of the global parameter multicast properties is set to total in all of the Infinispan

instances. Finally, in the last step the operation of all Infinispan instances are resumed. It is

worth of notice that in the particular case of Infinispan the parameter multicast properties is set

in all instances. This depends on the implementation of the components. In some components,

it may be possible to set the value of the global parameter in one instance, and the component

itself has mechanisms to propagate the new value to the remaining instances. In the case of

Infinispan, while this parameter has to be equal in all instances, the component does not offer

mechanisms to propagate the change.

Listing 6.4: Example of a stopAndGo strategy
de f au l t a c t i v a t eTo t a lO r d e r Strategy stopAndGo

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . pause ( )

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , t o t a l )

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . resume ( )

6.2.3.4 Switcher-based

This strategy is customized for the exchange of distributed components with minimal inter-

ruption of the service. The strategy relies on having both the old and new component operating

simultaneous with the support of helper components. The helper components route the requests
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to one of components during the switching phase, until all requests are routed to the new com-

ponent. There are several approaches to this type of strategy, as discussed in Section 2.2.4, some

rely on a single helper component while others rely on two. The description of this strategy

is inspired on the generic switching mechanism described in Section 2.2.4.3, but with a single

helper component that handles all the incoming requests to the components. The strategy relies

on a 4-orchestration and in an assisted local reconfiguration technique.

Listing 6.5 presents the switcher-based strategy for the adaptation Seq2TokenRAppia

that exchanges the implementation of the communication protocols in the RAppia frame-

work [RRL07]. The adaptation exchanges two different implementations of total order protocols:

sequencer-based is replaced by token-based. In the first step, an instance of the helper com-

ponent and of the token protocol is added to all node instances. In the second step, the new

instances are started. In the third step, the sequencer protocol is forced to achieve a quiescent

state. In the last step, the sequencer protocol instances are stopped and removed, as well as

the instances of the helper component. While this adaptation would be possible in the running

example, the implementation of JGroups and Infinispan does not provide the support necessary

for a switcher-based strategy. Thus, in the running example, the stop-and-go strategy would

have to be used instead.

Listing 6.5: Example of a switcher-based strategy

Adaptation Seq2TokenRAppia :

Target :

ServerNode

Impacts :

f o r a l l sn : g e tNode I n s t anc e s ( ServerNode , Sequence rP ro to co l )

sn . componentRemoved ( Sequence rP ro to co l )

sn . componentAdded ( TokenProtoco l )

. . .

S t a b i l i z a t i o n :

100

de f au l t Seq2TokenRAppia Strategy Swi tche r−based

Step :

f o r a l l en : e f f e c t o r s S e l e c t ( ServerNode , Sequencer )

en . addComponent ( Token )

en . addComponent ( Sw i t che r )

Step :
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f o r a l l ec : e f f ec to r sComponentType (Token )

ec . s t a r t

f o r a l l ec : e f f ec to r sComponentType ( Sw i t che r )

ec . s t a r t

Step :

f o r a l l ec : e f f ec to r sComponentType ( Sequencer )

ec . makeQuiescent

Step :

f o r a l l ec : e f f ec to r sComponentType ( Sequencer )

ec . s top ( )

f o r a l l en : e f f e c t o r s S e l e c t ( ServerNode , Sequencer )

en . removeComponent ( Sequencer )

en . removeComponent ( Sw i t che r )

6.3 Executing Adaptations

When the planning activity decides on a single adaptation, the adaptation executor will

execute the corresponding strategy. If the rule-oriented planning is used, the strategy is given in

the rule description; if the goal-oriented planning is used, the executor finds the default strategy

for that adaptation and executes it. The commands are exchanged with the reconfiguration

agents that oversee the affected effectors. However, the planning phase may select multiple

adaptations to be applied. In this case, the adaptations are executed in the order as in the set

of the adaptations, unless there are dependencies. When there are dependent adaptations, the

dependency order (as specified in the adaptation model) is respected. For instance, if the selected

adaptation is addNode, then, the depending adaptation will be performed after by order. Which

means that the adaptation deployComponents will be performed next, and the activateNode

adaptation is the final one to be executed (these adaptations were presented in Section 4.4).

However, not all adaptations need to be executed in some serial order. For instance, if the

selected set of adaptations is a collection of toLowFidelity adaptations, each one changing the

fidelity parameter to low in different component instances, then there is no conflict among them.

Thus, they could be performed in parallel. However, the default execution mode described above

would execute them one by one. Clearly, this may result in very inefficient execution plans. To

address these scenarios, two strategies can be marked as parallel, which causes the execution of
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Listing 6.6: Example of parallel strategies
Pa r a l l e l

Seq2TokenRAppia : Sw i tche r−based AND toLowF i d e l i t y : F l a sh

a c t i v a t eTo t a lO r d e r : Stop−and−go AND toLowF i d e l i t y : F l a sh

the affected adaptations concurrently, as presented in Listing 6.6. Two strategies are declared

to be parallel with regard to each other, if they do not need to be executed serially on different

or even in the same target. Thus, the description of Parallel states that any subset of the set

described as parallel can be executed in parallel.

The adaptation executor explores the strategy parallelism to improve the execution of mul-

tiple adaptations performing two procedures: first parallel strategy grouping and then strategy

step merging. The purpose of parallel strategy grouping is to combine the strategies in the min-

imum number of disjoint groups, such that all strategies in the same group can be executed

in parallel. The purpose of parallel step merging is to generate a plan that allows to execute

strategies that have been placed in the same group, and, thus, can be safely executed together.

A plan has as many steps as the strategy with the largest number of steps. Each step is the

collection of all the commands in that step of all the strategies in the group. For instance, the

first step is the collection of all the commands of all the first steps in all the strategies. The order

between commands in the same step of one strategy is maintained when the plan is generated.

The execution of the plan is similar to a strategy, where the commands in the same step are

executed in serial order, and a new step is only started after all the commands of the previous

step are concluded.

Consider again the strategies associated with the adaptations toLowFidelity (in Listing 6.1)

and activateTotalOrder (in Listing 4.20). Assume that as a result of the planning phase one needs

to execute the adaptation toLowFidelity using the flash strategy on instances of HomeCatalog

hc1 and hc2, and the adaptation activateTotalOrder using the stopAndGo strategy on component

Infinispan with instances ifn1 and ifn2. Since these two strategies can be performed in parallel

(see Listing 6.6), the plan that would execute these strategies in parallel would be the following.

Listing 6.7: Combined Execution Plan

Step :
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effector(hc1) . s e tPa ramete r ( f i d e l i t y , low )

effector(hc2) . s e tPa ramete r ( f i d e l i t y , low )

effector(ifn1) . pause ( )

effector(ifn2) . pause ( )

Step :

effector(ifn1) . s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , t o t a l )

effector(ifn2) . s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , t o t a l )

Step :

effector(ifn1) . resume ( )

effector(ifn2) . resume ( )

One noteworthy detail is that the stabilization period after the execution of the adaptations

will be the larger of the adaptations involved.

6.4 Discussion

The execution of adaptations depends on a large number of low-level aspects and properties

of the system. The description of some strategies is so tied to the component that only a

component developer, aware of all the details, is equipped to describe them. The stop-and-go

strategy for the activateTotalOrder adaptation is one such example. While the system designer

could describe such a strategy, she would need to have detailed knowledge about the component

characteristics and its operation. The number of low-level aspects that are part of a strategy

also difficult the task of improving the simultaneous execution of multiple adaptations. This

approach follows a conservative approach to guarantee that the execution is always safe, with

base on developers’ and designers’ knowledge.

The proposed approach allows that an adaptation may be executed by different strategies.

In these cases, there are trade-offs between the strategies, very often in terms of resource cost

and interruption time. The best strategy for a given adaptation depends of many factors, such

as the adaptation target, the system implementation, the load, and any SLAs of the application,

among many other factors. In the approach, the best strategy is either defined in the rules of the

closed action policy or is marked as default. In the latter case, the selection of a default strategy

is a compromise that that strategy is probably the best in the majority or in the common

scenarios.

There are other solutions that attempt to make a better selection of the strategies, relying
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on the study of the trade-offs involved in using one or the other strategy. In this topic we have

made some research in the following topics:

• We have investigated the tradeoffs involved in using generic switchers (that can be applied

to different communication protocols) and specialized switchers [FRR09]. That research

has shown that it is advantageous to support multiple switchers in the same architecture,

as specialized switchers can outperform a generic switcher.

• We have studied how to augment the Appia group communication framework to sup-

port switcher-based adaptation. This research culminated in the proposal of a number of

new mechanisms for the Appia system [RRL07], that have been later implemented in the

context of a MSc dissertation by another member of the group [Tav10].

While the study of the trade-offs of different strategies and selection of the best strategy are

topics of interest in adaptive systems, they are somehow orthogonal to the main topic of this

thesis. Therefore, we have opted to omit from the text further details on these ramifications of

our work.

Summary

This chapter addresses the execution of adaptations selected by the policy interpreter. We

discuss the main concerns of executing adaptations and the runtime support necessary to ad-

dress those concerns. We address in detail the specification of strategies, which consist in an

orchestration and a local reconfiguration technique. We provide examples of the most common

strategies and how they are described in the approach. We also analyze how different strategies

can be combined to improve the execution time of multiple adaptations. The chapter concludes

with a discussion of how the low-level details have impact on the description of strategies and

other work done in this topic.
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Ever tried? Ever failed? No matter. Try again.

Fail again. Fail better.

Samuel Beckett in Worstward Ho

Chapter 7

Evaluation

In this chapter we cover the evaluation of the proposed approach. The evaluation is based

on the case study introduced in Section 3.1 and is divided in two parts. While the system is

always distributed, the first part addresses only non-distributed components. The second part

focus solely on how the distribution of components is handled. The case study also illustrates

how to apply in practice the concepts and abstractions proposed in this thesis.

7.1 Non-Distributed Components

In this section, we describe how the approach can be applied to the non-distributed compo-

nents of the case study introduced in Section 3.1. To analyze the scalability and performance of

the approach, we opted by synthetically generated adaptations to increase the set of adaptations

for evaluating scalability and performance. The results obtained are presented in Section 7.1.6.

7.1.1 Revisiting the Case Study

We start by considering only the non-distributed components of the case study, as depicted

in Figure 7.1. This involves the following components: Catalog , User , and Account . The

Catalog component handles the product webpages, which consist in static content only. The

User component handles dynamically generated content, customized to the user, and relies

on the Recommendation and Search engines, at a different machine. The Account component

117
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handles sensitive content. The Catalog , User and Account components serve two types of users:

business and home. The server executes all these components as well as the Apache HTTP web

server, which is not adapted.

Client Client Client Client Client ClientClient

Virtual Server load balancing

Database
Recomendation

Search

Apache HTTP Server

Infinispan

Cat JGroupsUser

Account

Server 1

Backend

Apache HTTP Server

Infinispan

Cat JGroupsUser

Account

Server

NAS

Figure 7.1: Case study: focus on non-distributed components

The website relies on a classical three-tier architecture: presentation, application, and data

tiers. The application logic is executed in the middle-tier, typically in an application server ;

and the data tier consists of a database and its management services executed in a data server.

In the case study, we use different machines to run the application server and the data server,

as depicted in Figure 7.2. The first machine runs a web server and the set of components that

implement the application logic. The data server runs the search and recommendation engines,

as well as the database that stores the catalog and user data. Despite this separation in different

nodes, in this section, this is transparent for for the self-management, thus, no node description

is required.

In the next sub-sections, we describe the knowledge model and goal policies employed for

this case study.

7.1.2 Knowledge Model

In this section, we describe the relevant portions of the knowledge model for the case study.

While the case study also includes the recommendation and search engines in a backend server,
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Application Server Machine Data Server Machine

Web Server

Non-adaptable
Components

Adaptable 
Components

User

Catalog

Account

Search Engine

Database

Recommendation 
Engine

Figure 7.2: Interaction between components

they are not adapted directly. Therefore, we will focus on the adaptable components: the

Catalog , User and Account components. We will start with the description of the architecture

model, followed by the sensor and context models, the adaptation model, and finally the effector

and executor models.

7.1.2.1 Architecture Model

As previously mentioned, the components in the case study are of types WebServer , Catalog ,

User , Account , and Engine, running in two types of nodes: ServerNode and Backend. Next, we

describe all the component and node types, as well as the system. Their description is presented

in Listing 7.1.

The components of type Catalog provide the product descriptions pages, which are static

content webpages sent in a non-secure manner to the client. This component type has two sub-

types: HomeCatalog and BusinessCatalog, for home and business users, respectively. The dif-

ference between components of both sub-types relies on the content provided to clients, namely,

different prices and information displayed. Both component types have two fidelity modes:

regular and low ; in low fidelity the components offers lower image quality.

The components of type User generate user customized webpages, which are sent in a non-

secure manner. The components generate webpages with personalized product recommendations

and searches, when the user is logged in. This component type has two different sub-types:

HomeUser and BusinessUser, which rely on search and recommendation engines [LS98, MCS00].
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Both engines can provide fresh and cached results. The former demands more resources and

takes longer to be generated, while the latter consumes fewer resources and can be provided

with faster processing times. In the search engine, the fresh content is a list of products that

fit the search keywords, sorted by current popularity indexes [LSY03]. The cached content is

a previously generated product list, whose popularity indexes may no longer be up to date.

The recommendation engine provides a list of recommended products, a content that is used

to customize the web experience to a particular user. In the recommendation engine, the fresh

recommendations depend on information regarding the user session and previous orders while

the cached recommendations are produced from time to time or are the result of previously

generated recommendations.

The components of type Account handle webpages that deal with sensitive user information.

This information refers to account login, credit card information, billing and shipping addresses,

and account settings, among others. There are two different sub-types of Account : HomeAccount

and BusinessAccount. The latter includes invoice and budget management features. Both

component types have two fidelity modes: regular and low.

The node of type ServerNode handles the applications server, while the node of type Backend

handles data server. According to the description, the System can include the two types of nodes

and can have at most two nodes.

Listing 7.1: Case study (ND): architecture model
Abstract Component S t o r e S e r v i c e

Abstract Component Bus i n e s s

Abstract Component Home

Abstract Component Engine

Abstract Component Cata log

subtype S t o r e S e r v i c e

Parameters

f i d e l i t y :{ r e g u l a r , low}

Component Bus i n e s sCa t a l o g

subtype Cata log , Bu s i n e s s

Component HomeCatalog

subtype Cata log , Home

Abstract Component User
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subtype S t o r e S e r v i c e

Parameters

s e a r c h :{ f r e s h , cache }
recommendat ion :{ f r e s h , cache }

Component Bus i n e s sU s e r

subtype User , Bu s i n e s s

Component HomeUser

subtype User , Home

Abstract Component Account

subtype S t o r e S e r v i c e

Parameters

f i d e l i t y :{ r e g u l a r , low}

Component Bus ine s sAccount

subtype Account , Bu s i n e s s

Component HomeAccount

subtype Account , Home

Component SearchEng ine

subtype Engine

Component RecommendationEngine

subtype Engine

Component WebServer

Node ServerNode

Parameters

i s a c t i v e : boo l ean

Components

WebServer

Cata log

User

Account

Node Backend

Components

Engine

System

Parameters

max nodes = 2

Nodes

ServerNode

Backend
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The system initial configuration is presented in Listing 7.2.

Listing 7.2: Initial system configuration
System

ServerNode = 1

Backend = 1

Nodes

ServerNode : { i s a c t i v e=t r u e} : {WebServer , HomeCatalog , Bus i n e s sCa ta l og , HomeUser ,

Bus i ne s sUse r , HomeAccount , Bus ine s sAccount}
Components

Cata log : { f i d e l i t y=r e g u l a r }
User : {recommendat ion=f r e s h , s e a r c h=f r e s h }
Account : { f i d e l i t y=r e g u l a r }

7.1.2.2 Sensor and Context Models

Online retail web sites face dynamic workloads, with predictable periods of overload, such as

holiday season, but also with unexpected peaks, such as flash crowds [AHM+03]. The adaptive

behavior in this case study aims at avoiding overload and at maintaining an appropriate balance

between resource consumption and service quality. Thus, the description of the sensor and

context models must address all these aspects.

In terms of load and resources, we consider that the load of the application server is captured

by the consumed CPU time (for a discussion of other metrics that could have been used, see for

instance [GMMR06, DHPB03]). The closer this resource is to the limit, the closer the system is

to overload. By maintaining the CPU consumption below a certain value, it is possible to avoid

the system overload. For the data server, the number of queries made to the engines is a good

indication of the load. The higher the number of queries, the higher is the load. Similarly to the

application server, maintaining the number of queries below a certain threshold helps to avoid

the overload of the data server.

Regarding the service quality, it can be expressed as a combination of different factors: Cata-

log and Account components may provide content to the client with different fidelity levels; User

components also have impact on the service quality due to the freshness of recommendations

and searches provided to the client.



7.1. NON-DISTRIBUTED COMPONENTS 123

Listing 7.3: Case study (ND): sensor model
Sensor

Target : S t o r e S e r v i c e

Observable doub l e CPUuse ( ) : RMargin 0 .01 p e r i o d i c a l l y : 30

Observable i n t e g e r Proces s ingT ime ( ) : RMargin 0 .2 p e r i o d i c a l l y : 30

Sensor

Target : Eng ine

Observable i n t e g e r q u e r i e s ( ) : RMargin 10 p e r i o d i c a l l y : 30

Sensor

Target : system

Observable i n t e g e r hm s e r v i c e s ( ) : RMargin 0 p e r i o d i c a l l y : 30

Observable i n t e g e r b s n s e r v i c e s ( ) : RMargin 0 p e r i o d i c a l l y : 30

Listing 7.3 presents the sensor model for the case study. The model has descriptions of

sensors for components of type StoreService and Engine, and for the system. The instances of

type StoreService will have a sensor that provides information on the CPU consumption every

30 seconds. The WebServer component will provide metrics on the mean processing time for

requests made to the business and home services separately. The components of type Engine

give information regarding the number of queries received. The system will provide information

regarding the number of active business and home services.

Listing 7.4 presents the context model for the case study. The model describes the composite

observables that are used in the description of the system-wide observables that will be used as

KPIs. Table 7.1 summarizes all the KPIs and CKPIs described in the context model.

Listing 7.4: Case study (ND): context model

Composite Sensor

Target : Ca ta log

Observable

i n t e g e r f i d e l i t y ( ) : RMargin 0

p e r i o d i c a l l y : 60

t a r g e t . f i d e l i t y

Composite Sensor

Target : Account

Observable

i n t e g e r f i d e l i t y ( ) : RMargin 0

p e r i o d i c a l l y : 60

t a r g e t . f i d e l i t y
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Composite Sensor

Target : Bu s i n e s sU s e r

Observable

i n t e g e r recmmdBsn ( ) : RMargin 0

p e r i o d i c a l l y : 60

t a r g e t . recommendation

Observable

i n t e g e r sea rchBsn ( ) : RMargin 0

p e r i o d i c a l l y : 60

t a r g e t . s e a r c h

Composite Sensor

Target : HomeUser

Observable

i n t e g e r recmmdHm() : RMargin 0

p e r i o d i c a l l y : 60

t a r g e t . recommendation

Observable

i n t e g e r searchHm ( ) : RMargin 0

p e r i o d i c a l l y : 60

t a r g e t . s e a r c h

Composite Sensor

Target : system

KPI System−wide Observable

i n t e g e r r e s o l u t i o n b s n ( ) : RMargin 0

p e r i o d i c a l l y : 60

from f i d e l i t y f o r Bus i n e s s with AF : Sum CF : Sum

KPI System−wide Observable

i n t e g e r r e s o l u t i o n hm ( ) : RMargin 0

p e r i o d i c a l l y : 60

from f i d e l i t y f o r Home with AF : Sum CF : Sum

KPI System−wide Observable

doub l e recommend bsn ( ) : RMargin 0

p e r i o d i c a l l y : 60

from recmmdBsn with AF : Sum CF : Sum

KPI System−wide Observable

doub l e recommend hm ( ) : RMargin 0

p e r i o d i c a l l y : 60

from recmmdHm with AF : Sum CF : Sum

KPI System−wide Observable

doub l e s e a r c h b s n ( ) : RMargin 0

p e r i o d i c a l l y : 60

from sea rchBsn with AF : Sum CF : Sum

KPI System−wide Observable

doub l e search hm ( ) : RMargin 0

p e r i o d i c a l l y : 60

from searchHm with AF : Sum CF : Sum
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KPI System−wide Observable

doub l e p t r b s n ( ) : RMargin 0

p e r i o d i c a l l y : 60

from Proces s ingT ime f o r Bus i n e s s with AF : Sum CF : Sum

KPI System−wide Observable

doub l e search hm ( ) : RMargin 0

p e r i o d i c a l l y : 60

from Proces s ingT ime f o r Home with AF : Sum CF : Sum

KPI System−wide Observable

i n t e g e r q u e r y l o a d ( ) : RMargin 10

p e r i o d i c a l l y : 60

from q u e r i e s with AF : Sum CF : Sum

KPI System−wide Observable

doub l e cpu use ( ) : RMargin 0 .01

p e r i o d i c a l l y : 60

from CPUuse with AF : Sum CF : Sum

Composite Sensor

Target : system

KPI Composed−System−wide Observable

doub l e mrt bsn ( ) : RMargin 0 .2

with JF : (2∗ p t r b s n ) / b s n s e r v i c e s

KPI Composed−System−wide Observable

doub l e mrt hm ( ) : RMargin 0 .2

with JF : (2∗ ptr hm ) / hm s e r v i c e s

KPI Composed−System−wide Observable

i n t e g e r q l t b s n ( ) : RMargin 0

with JF : r e s o l u t i o n b s n+recommend bsn+s e a r c h b s n

KPI Composed−System−wide Observable

i n t e g e r q l t hm ( ) : RMargin 0

with JF : r e s o l u t i o n hm+recommend hm+search hm

The last four descriptions in the context model presented in Listing 7.4 are CKPIs. They

aggregate different KPIs to provide a more general view of certain system aspects. One aspect

is the overall quality of service. Catalog and Account components can provide images with

different quality, while User components can provide different levels of freshness for search and

recommendation results. The CKPIs qlt bsn and qlt hm gather the metrics referring to all

component to give the overall quality by business and home services. The other aspect is the

system processing time by business and home services, which is given by CKPIs mrt bsn and

mrt hm, which give feedback on the processing time for requests, independently of the request

distribution (IRD).

The context model also includes composite events, but they are generated automatically by
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Name Description

cpu use CPU consumption
resolution bsn Image quality of business services
resolution hm Image quality of home services

recommend bsn Freshness of business recommendations
recommend hm Freshness of home recommendations

search bsn Freshness of business searches
search hm Freshness of home searches
ptr bsn Mean processing time of business requests
ptr hm Mean processing time of home requests

query load Rate of search and recommendation queries
mrt bsn Mean processing time IRD
mrt hm Mean processing time of IRD
qlt bsn Overall quality of business services
qlt hm Overall quality of home services

Table 7.1: KPIs and CKPIs used in the case study.

the rule generator. Thus, they are addressed in Section 7.1.4.

7.1.2.3 Adaptation Model

As discussed before, all Catalog , User and Account components have configuration param-

eters that can be changed at runtime. By taking advantage of their adaptability capabilities,

we have defined 32 adaptations. The impact values used in the case study are either obtained

from the component developers, such as impacts regarding changes to image quality, or from

benchmarks, for instance to compare cache retrieved recommendations and recommendations

generated on request. To ensure some variety in terms of adaptation impacts, even similar

adaptations (such as the ones described in Listing 7.5) have different impacts. Below, we detail

the description of two adaptations.

The adaptations change the fidelity of Catalog components from regular to low. As stated

in the Impacts statements, they reduce CPU consumption at the cost of degrading the service

quality. In fact, the decrease in image quality reduces the CPU consumption and also the request

processing time. Note also that the degradation of service quality in the business catalog allows

a larger cut in CPU consumption than in the home catalog; this is due to the larger number

and size of images that are involved in the business service.

The case study includes a total of 32 adaptations in total. The complete listing of all the

adaptations is presented below:

Adaptation ToLowCata logBus iness
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Listing 7.5: Case study (ND): excerpt of the adaptation model
Adaptation ToLowCata logBus iness

Component :

Bu s i n e s sCa t a l o g

Requires :

t a r g e t . f i d e l i t y = = r e g u l a r

Impacts :

t a r g e t . s e tPa ramete r ( f i d e l i t y , low )

t a r g e t . CPUuse ÷= 2.01

t a r g e t . f i d e l i t y −= 1

t a r g e t . Proces s ingT ime ÷= 1.99

S t a b i l i z a t i o n :

p e r i o d = 60

Adaptation ToLowCatalogHome

Component :

HomeCatalog

Requires :

t a r g e t . f i d e l i t y = = r e g u l a r

Impacts :

t a r g e t . s e tPa ramete r ( f i d e l i t y , low )

t a r g e t . CPUuse ÷= 1.92

t a r g e t . f i d e l i t y −= 1

t a r g e t . Proces s ingT ime ÷= 1.4

S t a b i l i z a t i o n :

p e r i o d = 60
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Adaptation ToRegu l a rCa ta l ogBus i n e s s

Adaptation ToLowCatalogHome

Adaptation ToRegularCatalogHome

Adaptation ToFreshRecommBusinessKeepSF

Adaptation ToFreshRecommBusinessKeepSC

Adaptation ToCacheRecommBusinessKeepSF

Adaptation ToCacheRecommBusinessKeepSC

Adaptation ToFreshRecommFreshSearchBus iness

Adaptation ToFreshRecommCacheSearchBusiness

Adaptation ToCacheRecommFreshSearchBusiness

Adaptation ToCacheRecommCacheSearchBusiness

Adaptation ToFreshSearchBus inessKeepHF

Adaptation ToFreshSearchBus inessKeepHC

Adaptation ToCacheSearchBusinessKeepHF

Adaptation ToCacheSearchBusinessKeepHC

Adaptation ToFreshRecommHomeKeepSF

Adaptation ToFreshRecommHomeKeepSC

Adaptation ToCacheRecommHomeKeepSF

Adaptation ToCacheRecommHomeKeepSC

Adaptation ToFreshRecommFreshSearchHome

Adaptation ToFreshRecommCacheSearchHome

Adaptation ToCacheRecommFreshSearchHome

Adaptation ToCacheRecommCacheSearchHome

Adaptation ToFreshSearchHomeKeepHF

Adaptation ToFreshSearchHomeKeepHC

Adaptation ToCacheSearchHomeKeepHF

Adaptation ToCacheSearchHomeKeepHC

Adaptation ToLowAccountBusiness

Adaptation ToRegu la rAccountBus ines s

Adaptation ToLowAccountHome

Adaptation ToRegularAccountHome

7.1.2.4 Effector and Executor Models

The Catalog , User , and Account components are targets of adaptations, therefore, each one

has an effector associated. All the effectors are prepared to handle the component state, achieve

quiescence, and control the component operation by starting, resuming, stopping and pausing

the execution. The description of Catalog and Account effectors is similar, as they have a same

name adaptable parameter. The description of the User effectors focus on the two parameters

that can be adapted. The description of the effectors is presented in Listing 7.6.

The adaptations available in the adaptation model do not have any execution requirements.

Without pre, during, and post-adaptation needs, the adaptations can be executed using the
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Listing 7.6: Case study (ND): executor model
Ef f e c to r

Target :

Cata log

Commands

makeQuiescent ( )

g e t S t a t e ( )

pu tS ta t e ( s t a t e )

s e tPa ramete r ( f i d e l i t y ,{ low , r e g u l a r })

s t a r t ( )

s top ( )

pause ( )

resume ( )

Ef f e c to r

Target :

User

Commands

makeQuiescent ( )

g e t S t a t e ( )

pu tS ta t e ( s t a t e )

s e tPa ramete r ( sea rch ,{ f r e s h , cache })

s e tPa ramete r ( recommendation ,{ f r e s h , cache })

s t a r t ( )

s top ( )

pause ( )

resume ( )

Ef f e c to r

Target :

Account

Commands

makeQuiescent ( )

g e t S t a t e ( )

pu tS ta t e ( s t a t e )

s e tPa ramete r ( f i d e l i t y ,{ low , r e g u l a r })

s t a r t ( )

s top ( )

pause ( )

resume ( )
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Listing 7.7: Case study (ND): excerpt of the executor model
de f au l t ToLowCata logBus iness Strategy f l a s h

Step :

e f f e c t o r I n s t a n c e ( t a r g e t ) . s e tPa ramete r ( f i d e l i t y , low )

de f au l t ToFreshRecommFreshSearchBus iness Strategy f l a s h

Step :

e f f e c t o r I n s t a n c e ( t a r g e t ) . s e tPa ramete r ( recommendation , f r e s h )

e f f e c t o r I n s t a n c e ( t a r g e t ) . s e tPa ramete r ( sea rch , f r e s h )

most simple strategy: flash. Listing 7.7 provides examples of strategies for two adaptations,

representative for the remaining adaptations and their strategies. All the strategies can be

executed in parallel. Thus, the description of the parallel adaptations includes all the strategies.

It is important to note, that despite some adaptations being conflicting because they have the

same target, the Parallel description does not override the conflicts, it simply states that any

subset of the adaptations and strategies can be executed in parallel.

7.1.3 Goal Policies

We have considered two different goal policies to guide the self-management. The reasons

to present different policies are twofold. For one, to illustrate that it is possible to have different

business strategies with the same knowledge model. The other reason is that it shows how

the rank of goals affects the selection of adaptations, and that it is possible to have different

behaviors just with a change in the rank order.

The goal policies have been designed to avoid system overload, while offering the best

possible service quality. To avoid system overload, both the application server and the data

server must be observed. We have considered relevant two different metrics: the CPU usage and

the number of queries made to the search and recommendation engines. A limit to the CPU

usage in the application server makes it possible to avoid its overload. Since several processes

compete for the CPU, the limit only refers to the usage by adaptable components. For the same

purpose, a limit to the number of queries is imposed on the data server.

Listing 7.8 and 7.9 present the policies used. They reflect the insights provided by related

research, including policies to achieve optimal resource use for web servers [DHPB03, AB99],
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Listing 7.8: Goal policy A
Goal l i m i t c p u : cpu use Below 0 .35

Goal l i m i t q u e r y l o a d : q u e r y l o a d Below 1200

Goal l i m i t m r t b s n : mrt bsn Below 1 .6

Goal max q l t b sn : Maximize q l t b s n MinGain 1 Every 900

Goal l im i t mr t hm : mrt hm Below 1 .9

Goal max qlt hm : Maximize q l t hm MinGain 1 Every 1300

Listing 7.9: Goal policy B
Goal l i m i t c p u : cpu use Below 0 .35

Goal l i m i t q u e r y l o a d : q u e r y l o a d Below 1200

Goal l im i t mr t hm : mrt hm Below 1 .9

Goal max qlt hm : Maximize q l t hm MinGain 1 Every 1300

Goal l i m i t m r t b s n : mrt bsn Below 1 .6

Goal max q l t b sn : Maximize q l t b s n MinGain 1 Every 900

intermediary adaptation systems [Maz06, IMS06, GMMR06], and web server and user experience

improvement [Sou08]. The thresholds used in the goals were obtained from experience, by

benchmarking the system.

Policy A starts with the limit cpu and limit query load goals. The purpose of these goals is

to avoid overloads by limiting the cpu use of adaptable components in the application server and

limiting the engines’ query load in the data server. In this manner, it is possible to avoid resource

exhaustion, without causing underuse of resources. The limit mrt bsn and limit mrt hm goals

refer to processing time, limiting the processing time for a request. Finally, the max qlt bsn and

max qlt hm goals refer to content quality, urging the maximization of the content quality. The

goals referring to the business clients come first in this policy to reflect their priority.

In contrast, policy B gives priority to home clients. The same goals are employed, however,

using a different order: the goals referring to home clients are given higher priority then the

equivalent goals for business clients. By switching between policies A and B one can favor a

given type of clients according to some business target, for instance, by favoring the type that

provides a better revenue at a given point in time.
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7.1.4 Open Action Policy

The open action policy is built using the events extracted from the goal policy and the

adaptations selected from the adaptation model. There are as many rules in the policy, as there

are triggers. The triggers and events extracted from the goals are presented in Table 7.2. Thus,

the open action policy has six rules.

Type Goal Event Trigger

Exact limit cpu Above limit cpu cpu use> (0.35 + 0.01)
Exact limit query load Above limit query load query load> (1200 + 10)
Exact limit mrt bsn Above limit mrt bsn mrt bsn> (1.6 + 0.2)
Optimiz max qlt bsn Increase max qlt bsn Every 900 s
Exact limit mrt hm Above limit mrt hm mrt hm> (1.9 + 0.2)
Optimiz max qlt hm Increase max qlt hm Every 1300 s

Table 7.2: Events extracted from the goals used in the case study.

Besides the event, a rule also includes the viable combinations of all the adaptations screened

for that event. For instance, the rule activated by the event Above limit cpu requires adaptations

that decrease the CPU use, as those presented in Section 7.1.2.3. Similar adaptations for the

Account component also decrease the CPU use. Thus, as presented in Listing 7.10, the rule will

have several combinations of all these adaptations.

Listing 7.10: Above cpu use rule

When above cpu use

Do

Se lect { [ ToLowCata logBus iness ] , [ ToLowCatalogHome ] , [ ToLowAccountBusiness ] , [

ToLowAccountHome ] , [ ToLowCata logBus iness , ToLowCatalogHome ] , . . . ,

[ ToLowCata logBus iness , ToLowCatalogHome , ToLowAccountBusiness ,

ToLowAccountHome ] }

The open action policies generated for both goal policies have the same rules, since the order

is not used in this process. As mentioned before, the open action policy has 6 rules, one for each

goal of the policy. Each rule in the policy may have between 4 to 10 useful adaptations, used

to generate the viable combinations. The rule with the largest number of combinations has 35

and the largest combination has 4 adaptations
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7.1.5 Implementation and Experimental Setup

We conducted a study to evaluate the proposed approach, namely to analyze how successfully

the rules generated offline drive the runtime adaptation, given changes that carry the system

outside the desirable or acceptable behavior. We also analyzed how the approach handles the two

different adaptive behaviors described in Section 7.1.3. To do so, we implemented a prototype

of the framework in JavaTM, and developed experiments for the autonomic management of

web-based applications.

The prototype implementation consists of the overall framework and the website. The

Apache web server (http://httpd.apache.org) running on Linux is used to execute requests. To

monitor the execution context a monitoring tool was implemented in Python and integrated

with the framework prototype. The monitoring tool can be configured in terms of the time

interval between readings, among other options. These configuration options are defined in the

framework configuration file. The tool monitors the CPU usage, the number of requests and

queries, and the mean processing time for each request. This information is collected per request

and then interpreted to give information per service.

To analyze how the policy drives changes in the service quality when the resource consump-

tion varies, we generated several workloads to force different adaptations. In periods when the

load is high, the system will adapt one or more components to provide a lower quality. In periods

when the load is light and the service quality is not at its best, the system will adapt to provide

a higher service quality. After adapting, the KPIs readings are temporarily ignored until the

end of the stabilization period.

The experimental testbed consists of 4 machines. The application server machine runs

the Apache Web Server and all the components that implement the business logic. The data

server machine runs the recommendation and search engines. The remaining two machines

run workload generators, functioning as clients. All machines are connected by a 100 Mbps

Ethernet. The application machine is a 8 x 3.22 GHz Xeon processor with 8 GB RAM running

Linux (kernel v2.6.24-21). We used Apache HTTP Server v2.2.8 configured with 150 MaxClients

and a KeepAliveTimeout of 15 seconds, with CGI, SSL, and rewriting modules enabled. The

application server machine is a 2.8 GHz Pentium IV processor with 2 GB RAM running Linux
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(Kernel v2.6.20-17). The client machines are similar to the application server and they run

Pylot (http://www.pylot.org), an open source tool for testing performance and scalability of

web services based on an XML file that describes the workload. The tool also allows to control

the number of clients and the interval between requests. We modified the original Pylot tool to

run several workloads in sequence, each for a period of time.

The backend adaptable components are implemented as follows. The Catalog components

are implemented using several HMTL pages containing text and images with different sizes

(from 5 to 500 KB), each one with a lightweight and a regular version. The User components

are implemented as several CGIs that generate the HTML pages on the fly, and perform queries

to the application machine’s engines to retrieve the necessary information. The replies consist

of a number of recommended products or search result products. The generated pages include

images and text. Finally, the Account components consist of dynamically generated pages

requested over HTTPS (with text and media), where a lightweight and a regular version are

available.

To execute the adaptations, the change of component fidelity is achieved using the rewrite

module of Apache web server. This module allows the requested URL to be rewritten on the

fly. It allows us to add a fidelity, search or recommendation argument to the url, to control the

component execution. For instance, if the BusinessCatalog component is using the lightweight

version, the module will add low as an argument to the url.

7.1.6 Results

To demonstrate the advantages and evaluate particular aspects of the proposed approach,

the system was subject to two distinct overload scenarios. The first scenario employs a workload

that causes CPU overload, while the workload in the second scenario causes an overload in terms

of queries performed to the engines. The experiments allow us to illustrate the rule evaluation

process and the flexibility and ease of using different policies, by comparing and quantifying the

gains of adaptation. In the analysis of these gains, it is important to note that the needed impact

varies from workload to workload. In some workloads, an adaptation with a less dramatic effect

is sufficient, while in others a larger impact is needed. Similarly, the impact of an adaptation
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may be far greater than necessary, as it may be the only available adaptation or the only one

with large enough impact to satisfy a goal.

These experiments are followed by another two, that address performance and scalability.

The first experiment evaluates how the approach scales in term of large numbers of adaptations

and how that affects the time necessary to complete the planning activity. The second experi-

ment evaluates the performance gains of separating the goal-oriented planning in an offline and

online phases.

7.1.6.1 CPU Use Overload

This scenario allows us to illustrate how the system behavior changes in face of a significant

increase in the number of requests made by clients, causing overload in terms of CPU use. It

is also of interest to see if the system is able to return to the best service quality when the

overload ceases. Components were initially deployed with a configuration that yields the best

service quality: Catalog and Account web pages are served with regular quality, while User web

pages have fresh recommendations and search results.

In this experiment, the system was subject to a workload that consists in four consecutive

load steps: light (LW), medium (MW), heavy (HW), and light (LW). The light step allows all

services to be offered with maximum service quality. The medium step requires the service

quality to be lowered in order to respect the cpu use threshold. The heavy step requires the

system to operate with an even lower service quality. Finally, the light step brings the load back

to the start, allowing the system to offer the best service quality again.

The three load steps include requests to all components. Table 7.3 presents the number of

clients and the interval between requests to each component. The difference between load steps is

the decrease in the interval time, thus, increasing the request frequency. Each load step consists

of a collection of URLs that are requested by each client. These requests are submitted in a

random order. Each client waits for a reply before sending another request. Our experiment

used 90 clients running concurrently. The client ramp up takes 5 seconds. The clients start

sending requests as soon as they start.

We measured the system performance and resource consumption without and with adap-
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Workload Clients Catalog Int. (ms) User Int. (ms) Account Int. (ms)

Light 90 300 3500 3500
Medium 90 150 3500 3500
Heavy 90 150 3500 900

Table 7.3: Load steps used in the first experiment’s workload

tation. The first case corresponds to an empty goal policy. The system never adapts and the

load continuously increases, resulting in overload. In the second case, two analysis were made,

one for each of the policies described in Section 7.1.3. Under the workload described above,

the behavior of the system under policies A or B is relatively similar and, hence, we opt for

presenting only the results obtained with policy A. This happens because the two policies only

differ on the type of clients they favor (business/home) and since the change in the load imposed

on the system in this experiment is very significant, in order to keep the CPU use below the

threshold, the system is required to decrease the quality of service for both types of clients.

The results that are depicted in Figures 7.3, 7.4, and 7.5 compare the behavior of the non-

adaptive and of the adaptive system in terms of CPU use and processing time in face of the same

workload. The change of load step is marked by vertical dashed lines, thus, we can observe the

load and the resource consumption increasing until stabilizing, or decreasing when returning to

LW in the end. The adaptations (when they occur) are marked by vertical full lines. Straight

horizontal lines mark the goal limit for a particular KPI.
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Figure 7.3: Comparison of CPU consumption with and without adaptation
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Concerning CPU consumption, Figure 7.3 shows that the system can sustain significant load

increases at the expense of degrading the service quality, when its behavior is adaptive. The

figure illustrates that the increasing load results in higher CPU consumption. If the system is

not adaptive, the load will push the CPU use to the limit. This happens during the HW, when

the system is already consuming all the available CPU. On the other hand, if the system adapts,

the CPU consumption can be maintained at a reasonable level, able to sustain any load peaks

by degrading the service quality or offering the best service quality if the CPU consumption

allows. The top of the plot shows the service quality evolution. The baseline is the service

quality without adaptation, at its maximum value. The remaining lines are the service quality

layered by business and home. The adaptations are triggered by violations of the limit cpu goal.

The decision on how to adapt is made according to the current system state and strongly

depends on the ranking of goals in the policy. The first adaptation (around minute 15) degrades

the quality of business services qlt bsn, and we can observe the CPU use slowly decreasing until

it stabilizes below the limit. The second adaptation (around minute 28) degrades the fidelity

of both business and home services, affecting the qlt bsn and qlt hm. These adaptations avoid

system overload. The last two adaptations take place at the final workload, returning the system

to its best quality, which is visible for qlt bsn around minute 39, and for qlt hm around minute

48. Note that policy B (not depicted in the figure) returns the system to the best quality using a

different sequence of adaptations: since policy B favors home users, the effects on qlt hm appear

before the effects on qlt bsn. For the reasons explained before, this is the only difference between

the effects of the two policies for this concrete workload.

To analyze in more detail the impact of adaptation in terms of CPU savings, Figure 7.4

shows the CPU use layered by Catalog and Account components. The User components are

not depicted because the CPU consumption of these components is the same during the entire

experiment. The overall CPU use is also included, so that it is visible when the cpu use goal

is violated. We can observe that the CPU consumption of each component evolves through the

sequence of load steps. The first adaptation changes the BusinessCatalog component to low

fidelity, during the MW step. During the HW step, both BusinessAccount and HomeCatalog

components are adapted to cut down on CPU consumption. When the load decreases, the Busi-
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Figure 7.4: CPU consumption by component and overall

ness components are first returned to their best quality, followed by HomeCatalog component.

Note that only Catalog and Account components can be adapted to cut down on CPU consump-

tion: the contribution of User components is disregarded, since the majority of computations

are performed at the application machine.

Figure 7.5 compares the processing times in both scenarios. The results show that by

avoiding the overload with adaptation it is possible to maintain the baseline processing times.

The processing times are layered by business and home services and the same applies to the

service quality. If the system is not adaptive, there is a clear increase in the mean processing time

when the load step changes from LW to MW, and from MW to HW. However, if the system is

adaptive, when the system reacts to the violations of limit cpu goal (addressed in Figure 7.3), it

avoids resources exhaustion, maintaining the mean processing time. This is particularly visible

around minute 28, where the mrt bsn suffers an accentuated decrease. There are less perceptive

decreases also in mrt bsn around minute 15 and in mrt hm around minute 28. Therefore, there

is an improvement in terms of processing time at the expense of service quality. Avoiding the

overload is not the only factor that favors better processing times: the decrease in the amount

of content to be sent to clients also contributes to this goal. Sending less content not only allows

faster sending times, but also frees more resources. When the load decreases, in the last LW
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Figure 7.5: Catalog and Account mean processing time with and without adaptation

step, the value of the mean processing time per request is similar to the initial one, due to the

adaptations that improve service quality again.

7.1.6.2 Query Rate Overload

We also provide results for a different workload scenario to illustrate how the system behavior

changes in face of an increase in the number of requests handled by the User components, causing

overload in terms of query load. Furthermore, the experiment in this scenario also illustrates

how, under certain workloads, policies A and B cause the system to adapt in different manners.

Finally, the experiment highlights the trade-offs involved when setting the evaluation period for

optimization goals.

In this experiment, the system was subject to a workload that consists of three consecutive

load steps: LW step, Inter step (IW) and MW step. The newly introduced inter step increases

the load in terms of User requests, without violating the CPU use limit but making the engines

query load go beyond the established limit. As a result, service quality must be degraded to

avoid overload. The IW step is characterized in Table 7.4. When compared to IW, the MW

step increases the number of requests made to Catalog components, but decreases the number of

requests made to the User components. This load step makes the system again degrade service

quality to avoid overload, but, at the same time, also improves the service quality since the
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number of queries to engines is no longer close to the limit.

Workload Clients Catalog Int. (ms) User Int. (ms) Account Int. (ms)

Inter 90 300 2600 3500

Table 7.4: Inter load step used in the second experiment’s workload

Figures 7.6 and 7.7 present the individual processing times for all home and business services

for both goal policies. They show the evolution of query load, and mrt hm and mrt bsn KPIs, on

a component basis, through out the workload. Again, the vertical dashed lines mark a change

in the workload, while the full vertical lines mark when adaptation takes place. The horizontal

line marks the query load limit.

Figure 7.6 shows how the system performs under policy A. When the IW step starts there

is an accentuated increase in the query load that leads to the violation of the limit query load

goal and to the system adaptation. The selected adaptation degrades the qlt hm, showing the

preference for business users. When the workload goes from IW to MW, the limit cpu goal is

violated and the system adapts as in the first experiment.
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Figure 7.6: Processing time for requests under the first goal policy

Figure 7.7 shows the performance under policy B. When the limit query load goal is violated,

the selected adaptation degrades the qlt bsn instead of the qlt hm, reflecting the preference for
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home clients expressed in the policy. In the next workload, the limit cpu goal is violated and

the system adapts as with policy A.
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Figure 7.7: Processing time for requests under the new goal policy

Recall that when an exact goal is violated, to correct the system behavior faster, only the

adaptations that affect the violated KPI are considered. Any adaptations tied to optimization

goals will wait for the next evaluation period. We can observe this phenomenon in this experi-

ment: when the workload changes from IW to MW, the system does not converge immediately

to the optimal configuration; only the adaptations that help in reacting to the limit cpu violation

are immediately applied, other adaptations reacting to the lower query rate are only applied

when the optimization goals are next evaluated (not depicted in the figure).

The evaluation of optimization goals is performed according to the defined time period.

The situation just described also illustrates the trade-off involved in the specification of such

time periods. The time period should be large enough to prevent the system from consuming

an excessive amount of resources, but small enough to avoid delaying too long the necessary

adaptations to achieve the optimal behavior. The definition of the appropriate value for this

parameter is an important part of the policy specification. The approach favors the correction

of exact goals. Thus, when the system enters a state that violates an exact goal, the framework

attempts to correct it as fast as possible. The framework is less eager with respect to optimization
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goals if the system is in a correct (but potentially sub-optimal) configuration. The larger the

time period defined for the evaluation of optimization goals, the longer the system will take to

reach the optimal behavior.

7.1.6.3 Scalability and Reaction Time

In this section, we report on the study conducted to evaluate the approach’s performance

and scalability using a larger number of adaptations. We extended the existing case study to

allow another level in the fidelity of components Catalog and Account , now also accepting high.

The number of adaptations increased to a total of 48, from the previous 32. The system was

subject to the same workload, and despite some differences in the adaptations selected, the

reaction times are depicted in Table 7.5 for the CPU overload scenario. As expected, the results

show that there is an overall increase in the reaction times, a consequence of the larger number

of adaptations and, consequently, adaptation sets to evaluate during the online phase. While,

in the context of the case study this increase is not significative, these results alone do not allow

to extract any conclusion about the scalability of the approach.

Event 32 Adapt. Time (ms) 48 Adapt. Time (ms)

Above cpu use (1st) 13.3 27.1
Above cpu use (2nd) 9.6 20.3
Increase qlt bsn 2.7 10.6
Increase qlt hm 2.9 11.4

Table 7.5: Reaction time during the cpu overload experiment for 32 and 48 adaptations

Therefore, to better analyze the scalability of the proposed approach in larger case studies,

we opted to use several variations of the artificial case study (with adaptations and impacts

randomly generated), instead of further extending the original case study. The variations are

achieved by changing the number of available adaptations in the adaptation model. The use of

an artificial case study offers two main advantages: to increase the adaptations specification size

to virtually any size, while avoiding the effort and time necessary to devise the adaptations and

their impacts. The policy for the artificial case study has 6 goals, 6 components, and 20 KPIs.

The size of the adaptations specification is configurable, as well as the maximum number of

impacts per adaptation. The adaptations and their impacts are generated randomly, according

to the configuration. The number of adaptations ranges from 100 to 700. The number of impacts
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Number of Adaptations: 100 200 300 400 500 600 700

Number of Sets 95 539 2699 7055 15679 25199 125999
Reaction Time (s) 0.141 0.327 0.961 1.483 2.885 4.545 23.58
RT/Sets (ms) 0.67 1.65 2.81 4.76 5.43 5.34 5.34

Table 7.6: Reaction times for different sizes of the adaptations specification

Number of Adaptations: 100 200 300 400 500 600 700

RT First (s) 0.029 0.130 0.229 1.433 2.186 4.347 7.916

Table 7.7: Reaction times using the First heuristic

goes up to 5 impacts, on different KPIs. To evaluate the reaction time, we artificially trigger

an event with a corresponding state (where the KPI value of the violated goal is out of the

threshold). The results obtained are depicted in Table 7.6 and are organized by the size of the

adaptations specification, showing the number of evaluated sets and the corresponding Reaction

Time (RT) for the algorithm.

As expected, the results show that as the number of adaptations increases, so does the

reaction time to find the optimal solution. In fact, as depicted in Table 7.6, this time grows

exponentially due to the increase in the number of sets of adaptations. However, in time con-

strained applications, one can often trade optimality for lower reaction times. In particular,

when some exact goal is violated, what is important it is to find quickly a set of adaptations

that corrects the problem. This can be achieved using a simple heuristic, as shown in Table 7.7.

The First heuristic finds the first solution that allows to satisfy the goal corresponding to the

triggered event. This solution may not be the optimal solution, as the goals ranked below the

goal being addressed are not considered, or a better solution may be further down the list of

combinations. This heuristic allows to substantially reduce the reaction times in the experi-

ment (of course, in the worst case scenario, it will take as long as the regular algorithm), at

the expense of optimality. Although the research for more sophisticated heuristics is out of the

scope of this work, the results show that is possible to quickly find a set of adaptations that

is able to address the state deviation identified, and search later for the optimal solution. For

the latter purpose, our approach has the advantage of being automated and to benefit from the

offline pre-processing phase. Furthermore, the reaction times obtained for the different cases are

substantially lower than any human reaction time.
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7.1.6.4 Policy Evaluation and Reaction Time

In the goal-oriented planning, we advocate the use of a two-phase approach to evaluate the

goal policies. The offline phase identifies which adaptations correct each kind of violation of

the policy goals. This selection relies on the static analysis of the impact functions and can

become quite complex if we do not limit the classes of impact functions that can be used (e.g.,

to linear functions). The calculation of the viable combinations of adaptations, which can also

be statically determined, is also performed in this phase. During the online phase, it is only

necessary to get the actual system state and calculate the impact of each of the adaptations

previously selected.

Alternatively, the policy evaluation could be carried out exclusively at runtime by calculating

the impact of every adaptation that affects the KPI of the goal which is tied to the triggered

event. The calculation of the viable combinations of adaptations that contribute to solve the

violation, would be calculated afterwards. Given that this process is simpler, it is important

to evaluate the performance gains achieved with the two-phase approach. In this section, we

evaluate these gains in the context of the case study (the original with 32 adaptations) and of

the artificial case study introduced in the previous section.

We considered the events triggered during the workload sequences described in previous

sections and measured the time necessary to decide how the system should adapt in each case,

using the two-phase and the single-phase approaches. The results are presented in Table 7.8

for the cpu overload and query rate overload experiments. As it can be seen, for all events,

gains can be obtained when using the two-phase approach. A large fraction of the work is

performed offline, improving the processing time of the system. The results also show that the

gains obtained with the two-phase approach increase as the number of adaptations that have

impact on the same KPI also increases. In the example, the fact that the number of adaptations

that can be used to decrease cpu use is larger than the number of adaptations available for the

other events is reflected in the larger difference between reaction times observed for the first

instance of Above cpu use event. This difference is much smaller in the second instance of this

event. This happens because, when the second instance of Above cpu use event is triggered, the

system has already been subject to adaptation and, as a result, some adaptations available for
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dealing with Above cpu use event are not applicable anymore.

CPU Overload Events 2-phase RT (ms) Single-phase RT (ms)
Above cpu use (1st) 13.3 71.5
Above cpu use (2nd) 9.6 18.1
Increase qlt bsn 2.7 10.7
Increase qlt hm 2.9 10.9
Query Rate Overload Events 2-phase RT (ms) Single-phase RT (ms)
Above query load 12.5 29.2
Above cpu use 13.1 32.7

Table 7.8: Reaction times per event, during both experiments

It is also interesting to compare both approaches in terms of scalability. Table 7.9 depicts

the reaction time of the single-phase approach for different variations of the artificial case study.

When comparing the results obtained from both approaches (see Table 7.6 for the two-phase

approach), they show that the two-phase approach takes less time to find the best set, despite

analyzing a larger number of sets. This outcome is due to the offline generation of viable

combinations of adaptations, which allows to reduce the reaction time.

Number of Adaptations: 100 200 300 400 500 600 700
Number of Sets 47 399 2591 3455 6911 20647 38879
Reaction Time (s) 0.113 0.394 1.911 2.826 21.981 719.541 1485.753

Table 7.9: Single-phase reaction times for different sizes of the adaptation specification

7.2 Distributed Components

In this section, we discuss the evaluation of the approach using the case study introduced

in Section 3.1 with focus on the distributed components. These components are an in-memory

distributed data grid and the underlying communication support. In-memory distributed data

grids (IMDDGs) supply applications with a scalable storage repository where data can be ac-

cessed without bottlenecks and shared across a pool of virtual servers. The IMDDG used is

Infinispan and the communication service is JGroups. Both have a large potential for adapta-

tion. We focus on adaptations that are related with the distribution, such as scaling up and

down the number of instances and adapting global parameters in distributed components.



146 CHAPTER 7. EVALUATION

7.2.1 Revisiting the Case Study

As previously mentioned, the case study used in this experiment focus on distribution, ad-

dressing the adaptation of only a subset of the components, as depicted in Figure 7.8. We

summarize the adaptable components next. The system relies on Infinispan to speed up web

servers’ access to data, with a local instance serving each of system web servers. The local

instance has its own cache that serves as a proxy to query and update remote caches of the

platform. The website content is generated from data that is available in the cache of In-

finispan. If the data is not available in cache (local or remote), it will be requested to the

non-distributed components (Catalog and User components) and added to cache. Infinispan

does not cache sensitive data, thus any requests that involve such data are made directly to

the Account components. JGroups provides communication and coordination support between

Infinispan instances. The management of the database is not considered in this case study.

Client Client Client Client Client ClientClient

Virtual Server load balancing
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Recomendation

Search

Apache HTTP Server

Infinispan

Cat JGroupsUser
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Server 1
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Apache HTTP Server
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Figure 7.8: Case study: focus on distribution

The case study’s self-management aims at taking advantage of the reconfigurability of the

Infinispan and JGroups. The goal is to optimize performance in order to maintain user satis-

faction, but at the same time to minimize resource consumption to cut on costs. Furthermore,

and as mentioned before, we are also concerned with fault-tolerance and healing properties. The

development and evaluation of the case study will focus on these goals.
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7.2.2 Knowledge Model

In this section, we address the models that composed the knowledge model. The knowledge

model introduced in Section 7.1.1 addresses the non-distributed components only. The knowl-

edge model presented in this section complements that model, but only describes the distributed

components Infinispan and JGroups. We also consider the WebServer component for compre-

hension purposes. We start with the architecture model, followed by the sensor and context

models, the adaptation model, and we conclude with the effector and executor models.

7.2.2.1 Architecture Model

The case study is composed of WebServer , Infinispan, and JGroups components, running

in nodes of type ServerNode. Next, we describe the component and nodes types employed in the

case study, together with the system and the initial configuration. Their description is presented

in Listing 7.11.

Infinispan is a distributed component that caches the Catalog and User data. Infinispan is

prepared to support different clustering modes: local, replicated, invalidation, distribution, L1

caching. In this case study, the component is running in replicated mode all the time. This

means that all the local caches have the same content, which allows speedy access to data in

any instance, and sharing of cached content. The component has three different adaptable pa-

rameters. The nb threads and the multicast properties were already covered in Section 4.1. The

global communication parameter determines which communication service is used. Infinispan

uses JGroups as the default communication service, but there are other communication services

such as RAppia. The JGroups component is also distributed and provides group communication

services. It has an adaptable parameter multicast properties, which control what type of order

is used: causal or total.

Listing 7.11: Case study (D): architecture model
Dis t r i bu ted Component I n f i n i s p a n

Parameters

Globa l communicat ion :{ j g r oups , r a pp i a }
Global m u l t i c a s t p r o p e r t i e s :{ cau sa l , t o t a l }
nb th r e ad s : i n t e g e r
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Dis t r i bu ted Component JGroups

Parameters

Globa l m u l t i c a s t p r o p e r t i e s :{ cau sa l , t o t a l }

Node ServerNode

Parameters

i s a c t i v e : boo l ean

Components

WebServer

I n f i n i s p a n

JGroups

System

Parameters

max nodes = 10

Nodes

ServerNode

The system initial configuration is presented in Listing 7.12. The initial set up consists

of three instances of ServerNode, where Infinispan and JGroups instances are deployed and

prepared to used causal order.

Listing 7.12: Initial system configuration
Conf igurat ion

System

ServerNode = 3

Nodes

ServerNode : { i s a c t i v e=t r u e} : {WebServer , I n f i n i s p a n , JGroups}
Components

I n f i n i s p a n : {communicat ion=jg roups , m u l t i c a s t p r o p e r t i e s=causa l , n b t h r e ad s=2}
JGroups : {m u l t i c a s t p r o p e r t i e s=c au s a l }

7.2.2.2 Sensor and Context Model

The user satisfaction is tied to the waiting time, which directly depends on the performance

of Infinispan. Therefore, managing the operation of Infinispan is key to the system. In Infinispan

there are two main aspects of interest to assess its performance: the service ratio and the latency

of processing requests. The service ratio (SR) gives information on the requests processing rate.

It it obtained from the rate of incoming (RI ) (read and write) requests performed to Infinispan,

and the rate at which these requests are served (RS ). Thus, the service ratio is defined as

SR = RS/RI. Ideally, the service ratio should be 1, otherwise, requests start to be queued and,
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eventually, the application needs to be blocked or requests need to be dropped. The service

latency (AL) is the average time needed to process the read and write requests to the Infinispan

cache. Typically, writes are slower than reads given that multiple copies of the data may need

to be updated and/or invalidated in response to a write request. AL is either low (1) or high

(2), as it abstracts the high or low contribution of Infinispan for the system average latency.

The other concerns of this case study are the availability and healing properties. The

availability depends on the abort ratio, while the healing properties through the number of

active nodes. The abort ratio (AR) is the aborted requests per second and the global value

is the average of the abort ratios observed in all instances of Infinispan. Infinispan is heavily

optimized for read requests. A read does not require to acquire an explicit lock for the cache

entries, instead directly read the entry in question. A write request, on the other hand, needs

to acquire a write lock. This ensures only one concurrent write per entry, causing concurrent

writes to queue up to change an entry. The write requests that cannot obtain the lock on all

instances abort after a timeout. For instance, let us assume a key K, that is hashed to nodes

A, B, and transactions TX1 and TX2 that have to acquire the lock for K. If TX1 starts in A

and TX2 starts in B simultaneously, TX1 will acquire the lock for K in A first, while TX2 will

acquire it in B. When they try to acquire the lock on the remote node that also has K, both

transactions will be waiting for one another. They will fail after the timeout period elapses. The

number of active servers (active nodes) describes how many instances of ServerNode are up and

running.

While not a mandatory requirement in this case study, saving resources when they are not

necessary allows to cut down on costs. The power consumed (PC ) by the system is a metric

that captures how many resources are used to maintain the cache operational. It is important

that Infinispan is able to scale elastically with demand to save resources.

The metrics introduced in the previous paragraphs are described in the context model,

using information from the sensor model. The sensor model is described in Listing 7.13 and the

context model in Listing 7.14. These metrics are used to describe seven KPIs, summarized in

Table 7.10.
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Listing 7.13: Case study (D): sensor model
Sensor

Target : I n f i n i s p a n

Observable i n t e g e r l oad ( ) : RMargin 0 p e r i o d i c a l l y : 60

Observable i n t e g e r th roughput ( ) : RMargin 0 p e r i o d i c a l l y : 60

Observable i n t e g e r l a t e n c y ( ) : RMargin 5 p e r i o d i c a l l y : 60

Observable doub l e a b o r t r a t i o ( ) : RMargin 0.00000001 p e r i o d i c a l l y : 60

Observable Globa l doub l e w r i t eP e r c e n t a g e ( ) : RMargin 0 .01 p e r i o d i c a l l y : 60

Sensor

Target : ServerNode

Observable i n t e g e r power consumpt ion ( ) : RMargin 1 p e r i o d i c a l l y : 60

Sensor

Target : system

Observable i n t e g e r nodes ( ) : RMargin 0

Event n o d e f a i l e d with f a i l e d n o d e : ServerNode

Name Description

active nodes number of active ServerNodes

AL Abstraction of average latency
AR Ratio of aborted requests
RS Requests throughput
RI Requests load
PC Power consumption
SR Ratio of requests processed (throughput÷load)

Table 7.10: KPIs and CKPIs used in the case study

7.2.2.3 Adaptation Model

In the case study, we focus on two settings to configure the platform: the replication degree

and the replica update protocol. Regarding the first, while Infinispan can handle changes in

the number of local instances running, it does not offer any support to adapt it during runtime.

For instance, it does not adapt the number of servers to address changes in the workload. As

already mentioned, by adding a new server/replica we are able to process more incoming requests

(improve the service ratio), but at the same time, write requests will take longer to be performed

and cost increases. In terms of replica update protocol, Infinispan uses a fixed configuration

defined at deployment time. The adaptation of the configuration may yield improvements in

performance, namely, through the activation of the total order guarantee for the communication.

This allows to reduce the abort ratio at the expense of increasing the request latency. There
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Listing 7.14: Case study (D): context model
Composite Sensor

Target : system

Observable

i n t e g e r wr i teT ime ( ) : RMargin 0

p e r i o d i c a l l y : 60

The writeTime() is given as described in the work by Didona et al [DRPQ12]

Composite Sensor

Target : system

KPI System−wide Observable

i n t e g e r a c t i v e n o d e s ( ) : RMargin 0

p e r i o d i c a l l y : 60

from nodes f o r system with AF : Sum CF : Sum

KPI System−wide Observable

i n t e g e r RI ( ) : RMargin 10

p e r i o d i c a l l y : 60

from l o ad f o r I n f i n i s p a n with AF : Sum CF : Sum

KPI System−wide Observable

i n t e g e r RS ( ) : RMargin 10

p e r i o d i c a l l y : 60

from th roughput f o r I n f i n i s p a n with AF : Sum CF : Sum

KPI System−wide Observable

doub l e AL( ) : RMargin 0 .05

p e r i o d i c a l l y : 60

from l a t e n c y f o r I n f i n i s p a n with AF : Sum CF : Avg

KPI System−wide Observable

doub l e AR( ) : RMargin 0

p e r i o d i c a l l y : 60

from a b o r t r a t i o f o r I n f i n i s p a n with AF : Avg CF : Avg

KPI System−wide Observable

doub l e PC( ) : RMargin 10

p e r i o d i c a l l y : 60

from power consumpt ion f o r ServerNode with AF : Sum CF : Sum

Composite Sensor

Target : system

KPI Composed−System−wide Observable

doub l e SR( ) : RMargin 0 .01

with JF : RS÷RI
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Listing 7.15: Case study (D): adaptations
Adaptation a c t i v a t eT o t a l O r d e r I n f

Adaptation a c t i v a t e C a u s a lO r d e r I n f

Adaptation a c t i v a t eTo t a lO rd e r JG

Adaptation a c t i v a t eCau s a lO rd e r JG

Adaptation removeNode

Adaptation addNode

Adaptation deployComponents

Adaptation ac t i v a t eNode

are eight possible adaptations, as presented in Listing 7.15. From the adaptations possible, we

discuss in detail the adaptations shown in Listing 7.16.

The first adaptation activates the total order guarantee in all instances of the Infinispan

component, increasing its contribution to the service latency, decreasing the abort ratio, and with

impact on throughput. The second adaptation allows the same, but in the JGroups component.

The third adaptation adds a new node, and the fourth adds the components. This is achieved by

adding all the necessary components to the node: the WebServer , Infinispan, and JGroups. As a

result, the number of active nodes increases and has impact on RS. The impact on RS is specified

using the average write time, computed by the context analyzer as described in [DRPQ12].

While this adaptation may affect the latency, the impact is negligible (compared with the first

adaptation), thus, we do not consider it. The fifth adaptation activates the new node.

The impact functions of the available adaptations in RS are based on results obtained from

distinct benchmarks made to the system, where different combinations of the write percentage,

the key pool size, and the number of servers were explored. The impact functions used are not

exact, but they do provide enough accuracy for the purpose in hand.

The dependencies and conflicts described in the adaptation model are presented in List-

ing 7.17. The explicit conflicts are two pairs which describe adding a new node and deactivating

a old one, and vice-versa. The dependencies refer to the addition of nodes and to activating the

total order in both distributed component, and vice-versa.
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Listing 7.16: Case study (D): excerpt of adaptation model
Adaptation a c t i v a t eT o t a l O r d e r I n f :

Target :

I n f i n i s p a n

Requires :

t a r g e t . m u l t i c a s t p r o p e r t i e s = = cau s a l

Impacts :

t a r g e t . parameterChanged ( m u l t i c a s t p r o p e r t i e s , t o t a l )

AL += 1

AR ÷= 3.33

RS ∗= (11− writePercentage ∗ log(1.2 ∗ active nodes))

S t a b i l i z a t i o n :

p e r i o d = 60 s e c s

Adaptation a c t i v a t eTo t a lO rd e r JG :

Target :

JGroups

Requires :

t a r g e t . m u l t i c a s t p r o p e r t i e s = = cau s a l

Impacts :

t a r g e t . parameterChanged ( m u l t i c a s t p r o p e r t i e s , t o t a l )

S t a b i l i z a t i o n :

60

Adaptation addNode :

Target :

system

Requires :

a c t i v e n o d e s ( ) < t a r g e t . max nodes

Impacts :

t a r g e t . nodeAdded ( ServerNode )

S t a b i l i z a t i o n :

60

Adaptation deployComponents :

Target :

ServerNode

Impacts :

t a r g e t . componentAdded ( WebServer )

t a r g e t . componentAdded ( I n f i n i s p a n )

t a r g e t . componentAdded ( JGroups )

S t a b i l i z a t i o n :

60

Adaptation ac t i v a t eNode :

Target :

ServerNode

Requires :

t a r g e t . i s a c t i v e = = f a l s e

Impacts :

t a r g e t . parameterChanged ( i s a c t i v e , t r u e )

senso rSys tem ( ) . a c t i v e n o d e s ( ) += 1

RS = (writePercentage ∗ (1−AR) ∗ writeT ime)−1

S t a b i l i z a t i o n :

60
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Listing 7.17: Case study (D): conflicts and dependencies
Con f l i c t s

Adaptations ( deac t i va teNode , addNode )

Adaptations ( ac t i va teNode , removeNode )

Adaptations ( a c t i v a t eTota lO rde r JG , a c t i v a t e C a u s a lO r d e r I n f )

Adaptations ( a c t i v a t eCausa lO rde r JG , a c t i v a t e I n f i n i s p a n O r d e r I n f )

Dependencies

I f addNode Apply

deployComponents with Target t a r g e t . NodeAdded ( ServerNode )

ac t i v a t eNode with Target t a r g e t . NodeAdded ( ServerNode )

I f a c t i v a t eT o t a l O r d e r I n f Apply

a c t i v a t eTo t a lO rd e r JG

I f a c t i v a t e C a u s a lO r d e r I n f Apply

a c t i v a t eCau s a lO rd e r JG

7.2.2.4 Effector and Executor Models

The Infinispan and JGroups components are targets of adaptations, as well as the system,

with the addition and removal of ServerNodes. The effector model describes the effectors for

the system, ServerNode nodes, JGroups and Infinispan, which are presented in Listing 7.18.

The component effectors are similar, catering to pre-adaptation and post-adaptation needs, and

allowing to set the parameters. The ServerNode effector accepts commands to place the entire

node in quiescence and add/remove all the components. The system effector is prepared to add

and remove nodes of type ServerNode.

The adaptations described in the adaptation model are not executed in the same manner,

therefore, there are different strategies. Listing 7.19 shows the strategy description for three

different adaptations. The deployComponents adaptation is executed using the flash strategy.

The adaptations activateTotalOrderJG and activateCausalOrderInf are executed using a differ-

ent strategy, the stop-n-go. Listing 7.11 shows default the strategies for each adaptation and if

they are parallel. In terms of parallel strategies, they are shown in Listing 7.20.

7.2.3 Goal Policy

The self-management is guided by the following objectives. One is to optimize performance,

balancing the different trade-offs in terms of service ratio, service latency, and abort ratio. The
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Listing 7.18: Case study (D): effector model
Ef f e c to r

Target :

I n f i n i s p a n

Commands

makeQuiescent ( )

s ta t eType g e tS t a t e ( )

pu tS ta t e ( s t a t e )

s e tPa ramete r ( communication , { j g r oups , r a pp i a})

s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , {cau sa l , t o t a l })

s e tPa ramete r ( nb th r ead s , i n t e g e r )

s t a r t ( )

s top ( )

pause ( )

resume ( )

Ef f e c to r

Target :

JGroups

Commands

makeQuiescent ( )

s ta t eType g e tS t a t e ( )

pu tS ta t e ( s t a t e )

s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , {cau sa l , t o t a l })

s t a r t ( )

s top ( )

pause ( )

resume ( )

Ef f e c to r

Target :

ServerNode

Commands

makeQuiescent ( )

addComponent ( WebServer )

removeComponent ( WebServer )

addComponent ( I n f i n i s p a n )

removeComponent ( I n f i n i s p a n )

addComponent ( JGroups )

removeComponent ( JGroups )

Ef f e c to r

Target :

System

Commands

addNode ( ServerNode )

removeNode ( ServerNode )



156 CHAPTER 7. EVALUATION

Listing 7.19: Case study (D): excerpt of the executor model
de f au l t deployComponents Strategy f l a s h Pa r a l l e l

Step :

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( WebServer )

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( I n f i n i s p a n )

e f f e c t o r s I n s t a n c e ( t a r g e t ) . addComponent ( JGroups )

f o r a l l e : e f f e c t o r sDep l o y ed I nNode ( t a r g e t )

e . s t a r t ( )

de f au l t a c t i v a t eTo t a lO rd e r JG Strategy stopAndGo

Step :

f o r a l l e : e f f ec to r sComponentType ( JGroups )

e . pause ( )

Step :

f o r a l l e : e f f ec to r sComponentType ( JGroups )

e . s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , t o t a l )

Step :

f o r a l l e : e f f ec to r sComponentType ( JGroups )

e . resume ( )

de f au l t a c t i v a t eT o t a l O r d e r I n f Strategy stopAndGo

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . pause ( )

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . s e tPa ramete r ( m u l t i c a s t p r o p e r t i e s , t o t a l )

Step :

f o r a l l e : e f f ec to r sComponentType ( I n f i n i s p a n )

e . resume ( )

Listing 7.20: Case study (D): parallel strategies
Pa r a l l e l

a c t i v a t eT o t a l O r d e r I n f : Stop−n−go AND ac t i v a t eTo t a lO rd e r JG : Stop−n−go

a c t i v a t e C a u s a lO r d e r I n f : Stop−n−go AND ac t i v a t eCau s a lO rd e r JG : Stop−n−go
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Adaptation Strategy Parallel

activateTotalOrderInf stop-n-go no
activateCausalOrderInf stop-n-go no
activateTotalOrderJG stop-n-go no
activateCausalOrderJG stop-n-go no

removeNode flash yes
addNode flash yes

deployComponents flash yes
activateNode flash yes

Table 7.11: Adaptations and corresponding strategies

aim is to have the highest possible service ratio, and the lowest service latency and abort ratio,

guaranteeing that user satisfaction is the best possible. Another objective is to be energy-

efficient, namely, by reducing the power consumption required to maintain the system, thus,

cutting on costs. Another objective is fault-tolerance, providing self-healing and self-protection

features to the system, so that it can tolerate server failures without loss of data.

Considering these objectives, the goal policy chosen for the case study is one among several,

as it is possible to derive different policies that give distinct priorities to different objectives. The

policy consists in five goals. The first is to maintain the redundancy, i.e., a minimum number of

servers/replicas. This self-healing property is the most important goal because it will allow the

system to recover from fail overs and avoid downgrading the service to a critical level. The next

three goals address performance and user satisfaction issues. The second goal limits the abort

ratio because, when it is higher than the 0.008 threshold, the system becomes irresponsive, a

consequence of being blocked most of the time (the threshold was determined experimentally,

through benchmarks). In the third goal, the system attempts to process as many requests as

possible, to maximize the service ratio. The fourth goal is to minimize the latency. Finally, the

last goal minimizes the resource consumption, if other goals are not violated, to cut on costs.

Goal ma in ta i n r edundancy : a c t i v e n o d e s Above 3

Goal l i m i t a b o r t r a t i o : AR Below 0 .008

Goal maximize SR : Maximize SR MinGain 0 .05 Every 300

Goal min l a t e n c y : Minimize AL MinGain 0 .05 Every 400

Goal m i n c o s t r e s o u r c e s : Minimize a c t i v e n o d e s Every 500
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7.2.4 Open Action Policy

With the information described before, the planning is now able to generate the rules that

will be used to manage the system. The extracted events are described in Table 7.12, one

per goal. Before generating the adaptation rules, the specified adaptations need to be unfold.

Since the maximum number of nodes is 10 and only one concrete node type is accepted by the

system, the system may have nodes ranging from {ServerNode1, ..., ServerNode10}. Table 7.13

presents the adaptations that need unfolding and how many variants result from the process.

The first four adaptations do not need unfolding because they target global parameters. The

remaining adaptations need to be unfolded for every possible node, thus, each will have 10

variants.

Type Goal Event Trigger
Exact maintain redundancy Below maintain redundancy active nodes < 3
Exact limit abort ratio Above limit abort ratio AR> (0.008 + 0.0001)
Optimiz maximize SR Increase maximize SR Every 300 s
Optimiz min latency Decrease minimize latency Every 400 s
Optimiz min cost resources Decrease min cost resources Every 500 s

Table 7.12: Extracted events

Adaptation Unfolding #Variants

activateTotalOrderInf no no
activateCausalOrderInf no no
activateTotalOrderJG no no
activateCausalOrderJG no no

removeNode flash 10
addNode flash 10

deployComponents flash 10
activateNode flash 10

Table 7.13: Unfolding of adaptations and number of variants

The open action policy is presented in Listing 7.21. The list of viable combinations presented

for each rule is not exhaustive.

7.2.5 Results

To illustrate the operation of our autonomic manager and the effect of the high-level goal

policy, a deployment of the system was subject to a variable load. All experiments follow the
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Listing 7.21: Case study (D): open action policy
When be l ow ma in t a i n r edundancy

Do

Se lect { [ addNode ( ServerNode1 ) , deployComponents ( ServerNode1 ) , a c t i v a t eNode (

ServerNode1 ) ] , . . . , [ addNode ( ServerNode10 ) , a c t i v a t eNode ( ServerNode10 ) ,

deployComponents ( ServerNode10 ) ] , . . . }

When a b o v e l i m i t a b o r t r a t i o

Do

Se lect { [ a c t i v a t eTo t a lO r d e r I n f , a c t i v a t eTo t a lO rd e r JG ] }

When i n c r e a s e max im i z e SR

Do

Se lect { [ a c t i v a t eTo t a lO r d e r I n f , a c t i v a t eTo t a lO rd e r JG ] ,

[ addNode ( ServerNode1 ) , deployComponents ( ServerNode1 ) , a c t i v a t eNode (

ServerNode1 ) ] , . . . }

When d e c r e a s e m i n im i z e l a t e n c y

Do

Se lect { [ a c t i v a t eC a u s a lO r d e r I n f , a c t i v a t eCau s a lO rd e r JG ] ,

[ addNode ( ServerNode1 ) , deployComponents ( ServerNode1 ) , a c t i v a t eNode (

ServerNode1 ) ] , . . . }

When d e c r e a s e m i n c o s t r e s o u r c e s

Do

Se lect { [ removeNode ( ServerNode1 ) ] , . . . , [ removeNode ( ServerNode10 ) ] , . . . }
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same pattern: we first let the system stabilize in the best configuration for a given workload,

then we change the workload characterization and observe how the system reacts.

7.2.5.1 Implementation and Experimental Setup

We used Infinispan version 5.0.0, extended with a number of sensors to export monitoring

data and effectors to support the runtime change of the number of instances. Infinispan was

deployed in full replication (i.e., each data item is replicated in every active instance) and, for

the remaining parameters, with the default configuration included in the official distribution.

Furthermore, we have used JGroups 2.11.0, which has been also augmented with an effector

that is able to activate or deactivate the total order layer of the JGroups group communication

stack. As before, we have deployed JGroups using the default configuration; for total order we

use JGroups sequencer protocol. The load imposed by the web servers is emulated by Radargun

benchmark [Rad], version 1.1.0. The benchmark simulates the clients, the virtual server load

balancer, and the web servers at each node. The benchmark detects when a new server is

added to the cluster, through a monitoring agent present in each node. This agent notifies the

analyzer when an instance is locally created at the node, which in turn notifies the virtual server’s

load balancer. Radargun emulates the operation of the web server, by performing requests to

Infinispan: it is possible to configure the load profile by setting parameters of the benchmark

such as the read/write ratio, the size of the pool of objects to be requested, among other options.

We have also performed a number of incremental improvements to the benchmark that allow

us to have a finer control of the workload, including the definition of the RI and the length (in

time) of each experiment. All software components of our deployment have been implemented

in the JavaTMprogramming language. The external autonomic controller (analyzer, generator,

interpreter, and executor components) is executed in a dedicated machine. The experimental

testbed consists of eleven machines. One hosts the autonomic controller and the remaining

machines can run an instance of the Infinispan/JGroups (up to 10 instances total). Each machine

is a Dual Intel Xeon Quad-Core, 2.13 GHz clock speed, and 8 GB of RAM running Linux (kernel

2.6.32-21-server). All machines are connected by a 1 Gbps Ethernet.

Changes to the workload are made such that different adaptations are more appropriate
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Workload Object Pool % of Writes RI

HC-3 100 90 200
LC-3 5000 40 30
LC-5 5000 40 2400
LC-6 5000 40 2750

Table 7.14: Workloads

in each experiment. The workload transitions are based on the four workloads described in

Table 7.14. The workloads are differentiated by two main characteristics: high contention (HC)

or low contention (LC), and load (measured by the rate of incoming requests RI ). The high

contention workload captures a scenario where concurrent accesses to the same item occur often,

which creates many opportunities for deadlocks and a potential increase in the abort ratio. This

is achieved using a write-dominated sequence of requests accessing a small pool of objects. The

low contention workloads capture scenarios where conflicts are infrequent and the potential

number of aborts due to contention is small. This is achieved using a more balanced read-write

ratio and a much larger object pool. The difference between the three LC scenarios is the total

load, where 3, 5 and 6 state the number of servers that are necessary to keep the SR near to

one.

Using this set of workloads, we have experimented 4 different transitions. Transitions LC-3

to HC-3; ii) HC-3 to LC-3; iii) LC-5 to LC-6; and iv) LC-6 to LC-5. Each of these transitions

is discussed in detail next.

7.2.5.2 High and Low Contention

Transition LC-3 to HC-3 In the first scenario, the workload changes from low contention

to high contention. When operating with low contention, JGroups is running without total

order, as it allows to obtain a lower latency. When the workload changes, there is a significant

increase in the abort ratio, which also worsens the service ratio, as fewer requests are served

with success. The abort ratio and service ratio after the workload change and before the system

reconfiguration are depicted in Figure 7.9a on the first part of the plot (until the vertical line

that marks the adaptation). As the graphic shows, the abort ratio violates the limit abort ratio

goal, because it is above the threshold specified in the policy.

When the context analyzer triggers an Above limit abort ratio event, the interpreter evalu-
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ates the corresponding rule, using the current system state carried by the event. The selected

adaptation is to activateTotalOrder guarantee. As a result, the abort ratio decreases and,

consequently, the service ratio increases, which can also be observed in Figure 7.9a, after the

adaptation, when the system stabilizes.

Transition HC-3 to LC-3 The second scenario illustrates the inverse adaptation. The system

is initially under HC-3, which demands total order. Then the workload is changed to a low

contention profile. This results in a decrease of the contention level and of the abort ratio. In

this scenario, no exact goal is violated, but approximation goals still play a role in improving

the system performance. This happens when the event Decrease min latency is triggered. The

interpreter determines that it is possible to improve the latency without compromising any of

the higher ranked goals, namely the service ratio or the abort ratio. The selected adaptations

are DeactivateTotalOrder for Infinispan and JGroups. Figure 7.9b shows that not only the

service ratio is not degraded by the adaptation, but the write latency is reduced. This effect is

noticeable by observing the average write time (available as context information).

7.2.5.3 Variable Load

Transition LC-5 to LC-6 In the third scenario, the system is operating under a low con-

tention scenario, such that total order is not required, and the load requires 5 instances to remain

active to avoid the SR dropping below 1. Then, the workload is changed by increasing the rate

of incoming requests, such that the 5 instances become overloaded. As a result, the service

ratio decreases. When the event Increase maximize SR is triggered, the interpreter will select

the AddNode adaptation (and the dependent adaptations) to increase the system capacity, thus,

increasing the rate of served requests and, consequently, the service ratio. Figure 7.10a depicts

the service ratio before and after the adaptation, which shows a clear improvement after the

adaptation, returning the service ratio to 1. However, this demands more power consumption,

since the newly active server is no longer idle, as Figure 7.10a also depicts. We opted to show

the average power consumption because power consumption is not steady over time.
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(a) First scenario: activating the total order guarantee
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(b) Second scenario: deactivating the total order guarantee

Figure 7.9: Experimental results some minutes before and after the adaptation

Transition LC-6 to LC-5 This final scenario is the inverse of the previous scenario. We

simply decrease the rate of incoming requests, such that 6 instances are no longer required to

maintain a SR of 1. Thus, after the change in the workload, the system is operating in a sub-

optimal configuration, since resources are being unnecessarily consumed by the sixth Infinispan

instance. While this is not a violation of an exact goal, it is tied to an approximation goal. When

the event Decrease min cost resources is triggered, the interpreter will select the RemoveNode

adaptation to decrease the resource consumption. Figure 7.10b shows that after the adaptation,

the service ratio is maintained, thus, still processing all incoming requests, and power is saved.

7.3 Discussion

The results show that the proposed approach is able to automatically manage the system

during runtime; it successfully satisfies the management objectives in distinct scenarios, taking



164 CHAPTER 7. EVALUATION

0

1000

2000

3000

4000

0 1 2 3 4 5

0

1

Time (minutes)

S
er

vi
ce

 R
at

io

P
ow

er
 (W

at
ts

)

(a) Third scenario: adding a new instance
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(b) Fourth scenario: removing one instance

Figure 7.10: Experimental results some minutes before and after the adaptation

advantage of the available adaptations to improve the system performance and enforce desig-

nated properties. The approach provides enough flexibility to change the system’s adaptive

behavior, which is achieved by changing the goal policy. Therefore, the adaptation and self-

management support does not require re-development. The proposed approach is also easy to

extend. From our experience developing the case study, making the system evolve through the

addition of new components or more adaptations of existing components can be done without

need for a new goal policy. New KPIs and corresponding goals can be added without need to

completely re-design the knowledge model and the goal policy.

While other approaches that employ high-level goal policies [BLMR04, SHMK08] lack the

ability to balance conflicting goals, the proposed approach is well suited to express the trade-offs

found when managing system. During the development of the case study, we encountered several

trade-offs related with performance that were easily translated to goals. Nonetheless, it still is

necessary to identify which aspects are more important, to rank the goals.

The description of adaptations is a more delicate issue. The proposed approach relies on the
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assumption that is possible to establish a reasonable approximation for the impact of adaptations

on KPIs in terms of their current value. To describe the impacts, other KPIs or context variables

can be employed to allow a better estimation. For instance, the impact on the network utilization

of an adaptation that would require notification to be sent to a set of listeners could be expressed

as a function of the number of listeners, where n listeners is a context variable whose value

is known at runtime: Component.net uti+ = unit cost ∗ n listeners. With the case study,

we found that, while exact functions tend to be quite complex, rough approximations might

be sufficient for the purpose at hand. The case study shows this aspect, using either rough

approximations for cases where the impacts are more complex to determine, such as the latency,

or the CPU consumption.

In some cases, the adaptation impact may be dependent on the system configuration prior

to the system evolution. As a result, instead of a single adaptation, several descriptions may be

necessary to cover all the different impacts. The estimation of an adaptation impact may also

pose some challenges. For example, the exchange of components requires some experimental

testing to quantify the impact of changing from one component to the other.

Still, we recognize that our assumptions may constrain the domain of applicability of the

approach. However, it is important to recognize that other approaches also have their drawbacks.

For instance, we have experimented with the use of machine learners to predict the behavior of

adaptive systems and we were faced with the complexity of feature selection [CRR10]. Therefore,

with the current state of the art, it is relevant to explore different directions in the design space.

Most likely, future systems will embody a combination of different techniques. We believe that

the current work contributes to the understanding of the benefits and limitations of an interesting

path that has been under-explored in the literature.

Summary

This chapter presents the evaluation of the proposed approach, using the case study intro-

duced in Chapter 3. It describes the knowledge model and goal policies used to manage the

case study and presents the results obtained. The evaluation is separated in non-distributed and

distributed components and concludes with a discussion of the obtained results and experiences
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while developing the case study.



Chapter 8

Final Remarks

This thesis addresses the challenges of autonomously adapt systems built from multiple

adaptable components, which may be distributed. It tackles two particular aspects. One is how

the complexity of these systems affects the self-management support, and the other is to minimize

the human effort of providing the knowledge and the adaptation logic for the adaptation. Thus,

this work proposes a conceptual framework for the self-management of composed systems. The

approach allows for action policies to describe the adaptation logic, but also novel goal policies to

control the adaptive behavior and explore more efficiently the knowledge of system designers and

component developers. The latter depends on an automatic process to generate an action policy

that will be used to manage the system behavior. Furthermore, the approach also automatizes

the selection of reconfiguration strategies to execute adaptations, using cost functions to select

the best strategy.

The evaluation of the proposed approach was focused on the planning and execution ac-

tivities of the self-management. Several prototypes were developed as proof of concepts of the

approach, using different services, middleware, components, and applications. The results show

that the prototypes provide the necessary self-management support to control and adapt the

managed system. The goal-oriented planning clearly provides a more friendly approach to hu-

mans and takes advantage of the detailed knowledge of developers instead of burdening the

system designer with all the knowledge gathering. The use of reconfiguration strategies, auto-

matically selected, also relieves the system designer of developing a strategy for each adaptation.

167
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The prototypes were also used in several experiments to explore and study the performance

and scalability of the approach, as well as how it handles the distribution of components. In

terms of performance and scalability, the approach can handle large numbers of adaptations

with reaction times substantially lower than those by human operators. We also explore how

the reaction times can be lowered at the expense of optimality, experimenting with different

techniques.

During the design, development, and evaluation of the proposed approach, a number of

realizations, observations and experiences became obvious. They are addressed next. Moreover,

several aspects that could be improved were identified, as well as the open challenges that this

approach still faces. They are discussed at the end of the chapter.

8.1 Lessons Learned from Experience

During the development of the approach and the prototypes, we have encountered several

obstacles, issues and challenges. This section describes some of the more interesting issues we

have found and the lessons learned while trying to overcome them.

In the literature overview, many adaptive solutions are for a particular system, protocol,

service or component. These solutions take advantage of some adaptation and evaluate the gains

obtained in different scenarios. The adaptation is identified by someone who is experienced with

the system or elements, and that has a fairly good knowledge of its use and configurations. From

our experience, this is not a trivial or simple matter. To identify the adaptations of components

not developed by us, namely Apache HTTP Web Server and Infinispan, it was necessary to

extensively benchmark and study the components to assess the adaptations, the gains they offer

and the trade-offs involved. Furthermore, assessing this in distributed components (Infinispan

and JGroups) increases the complexity of this task. As a result, despite several adaptations

available, the effort of studying the adaptations is better spent if limited to those that have

more promising impacts on the system behavior.

Benchmarking components or systems to study how the adaptations and different configura-

tions affect their behavior just provides a starting point. In goal-oriented planning, these changes

have to be quantified in actual impacts. This depends on the ability to identify the key factors
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that affect the component behavior. While for some components this may be straightforward,

for others it can be a complex task, as demonstrated by the impact functions of some adapta-

tions of Infinispan. But this effort is compensated by greatly decreasing the system designer

effort.

The system designer most important effort is to determine the desired behavior for the

system. This may depends on several aspects, and it is usually not just one goal but several

goals. In the goal-oriented planning, the description of the goal policy also means identifying the

trade-offs and which goals are more important than others. The ranking of goals instead of using

utility functions is one of the lessons learned. The description of a goal policy often demands

more than one attempt, specially when there are trade-offs involved. Saying which goals are

more important than others is far more simple than attributing a weight to a goal and tune it

through several attempts. However, we did find some scenarios, as discussed in Section 5.2.6,

where the ranking is not enough. In these cases the use of CKPIs allows to have apply weights

to only the necessary goals, instead of all.

8.2 Open Challenges and Future Work

In an approach covering so many aspects of the self-management support, there is plenty

of room for improvement, at all levels and activities. The planning activity, as one of the key

contributions of this work, is the aspect that we are more acquainted with and, thus, can better

discuss the challenges and future work directions.

The selection algorithm of the goal-oriented planning is an obvious aspect worth exploring.

The algorithm described in this thesis identifies the optimal combination of adaptations based

on the goal satisfaction and improvement. However, the algorithm also includes other criteria,

such as selecting all adaptations when none satisfies the goal. It would be interesting to enrich

the algorithm with different criteria and see how it performs. There are also other possible

algorithms to select the optimal combinations; comparing the selections made by other possible

algorithms would also be interesting. A comparison between solutions regarding performance,

scalability, and reaction time would allow us to assess better the proposed algorithm in this

work.
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An aspect worth exploring are the variants of the algorithm that trade optimality by smaller

reaction times. In this thesis, we addressed three different variants, two cut back on the number

of evaluated sets and the other uses a different selection mechanism. It would be interesting

to explore other variants and understand the advantages and drawbacks of each, and in which

systems they would perform better. It would also be interesting to experiment them not only

with larger numbers of adaptations, but also more components, KPIs, and larger goal policies.

This would allow us to study how the different factors affect the reaction time.

The description of impacts is another aspect that could be improved. The main concern

with impacts, is when the predicted impact does not match the real impact on the system. While

the proposed approach can overcome these situations and continue to improve the system, it

would be interesting to explore mechanisms that tune the impacts of adaptations. Reinforcement

learning is one solution, while prediction of future states could also be used to tune the impacts,

using for instance machine learning or Markov chains.

Another aspect that was not explored as in-depth as it should be is the expressiveness of the

goal-oriented planning. It would interesting to select a number of policies that employ utility

functions and try to describe them using goal policies. This would provide, not only a more

complete study of the goal policies+CKPIs solution, but also identify any aspects lacking or

further improvements needed.
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Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive

Systems, pages 109–127. Springer-Verlag, Berlin, Heidelberg, 2009.

[HSUW00] Matti Hiltunen, Richard Schlichting, Carlos Ugarte, and Gary Wong. Survivability

through customization and adaptability: The cactus approach. In DARPA In-

formation Survivability Conference and Exposition, volume 1, pages 294–307, Los

Alamitos, CA, USA, 2000. IEEE Computer Society.

[IMS06] Gennaro Iaccarino, Delfina Malandrino, and Vittorio Scarano. Personalizable edge

services for web accessibility. In International Cross-disciplinary Workshop on Web

accessibility, pages 23–32, New York, NY, USA, 2006. ACM Press.

[Inf] Infinispan. See www.jboss.org/infinispan.

[JGr] JGroups. See www.jgroups.org/.



176 BIBLIOGRAPHY

[KC03a] John Keeney and Vinny Cahill. Chisel: A policy-driven, context-aware, dynamic

adaptation framework. In Fourth IEEE International Workshop on Policies for

Distributed Systems and Networks, pages 3–10, Washington, DC, USA, 2003. IEEE

Computer Society.

[KC03b] Jeffrey Kephart and David Chess. The vision of autonomic computing. Computer,

36(1):41–50, 2003.

[Kep05] Jeffrey Kephart. Research challenges of autonomic computing. In Twenty-seventh

International Conference on Software Engineering, pages 15–22, New York, NY,

USA, 2005. ACM Press.

[KKK96] Thomas Koch, Christoph Krell, and Bernd Kraemer. Policy definition language

for automated management of distributed systems. In Second IEEE International

Workshop on Systems Management, pages 55–64, Washington, DC, USA, 1996.

IEEE Computer Society.

[KM98] Jeff Kramer and Jeff Magee. Analysing dynamic change in software architectures: a

case study. In Fourth International Conference on Configurable Distributed Systems,

pages 91–100, Washington, DC, USA, 1998. IEEE Computer Society.

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural challenge. In

2007 Future of Software Engineering, pages 259–268, Washington, DC, USA, 2007.

IEEE Computer Society.

[KT91] Frans Kaashoek and Andrew Tanenbaum. Group communication in the amoeba

distributed operating system. In Eleventh International Conference on Distributed

Computing Systems, pages 222–230, Washington, D.C., USA, 1991. IEEE Computer

Society Press.

[KW04] Jeffrey Kephart and William Walsh. An artificial intelligence perspective on au-

tonomic computing policies. In Fifth IEEE International Workshop on Policies

for Distributed Systems and Networks, pages 3–12, Los Alamitos, CA, USA, 2004.

IEEE Computer Society.



BIBLIOGRAPHY 177

[LCJS01] Yongzin Li, Ming Chen, Xuping Jiang, and Lihua Song. A logic-based policy defini-

tion language for network management. In Twenty-sixth Annual IEEE Conference

on Local Computer Networks, pages 34–40, Washington, DC, USA, 2001. IEEE

Computer Society.

[LM98] Daniel Le Métayer. Describing software architecture styles using graph grammars.

IEEE Transactions on Software Engineering, 24(7):521–533, 1998.

[LS98] Gerald Lohse and Peter Spiller. Electronic shopping. Communications ACM,

41(7):81–87, 1998.

[LSY03] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item

collaborative filtering. IEEE Internet Computing, 7(1):76–80, jan. 2003.

[LvRB+01] Xiaoming Liu, Robbert van Renesse, Mark Bickford, Christoph Kreitz, and Robert

Constable. Protocol switching: Exploiting meta-properties. In Twenty-first Inter-

national Conference on Distributed Computing Systems Workshops, pages 37–42,

Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[Maz06] Francesca Mazzoni. Efficient provisioning and adaptation of Web-based services.
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