
Microservice Decomposition for Transactional
Causal Consistent Platforms

Madalena Santos
madalenacsantos@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. Today, there are many software applications that have been
designed using monolithic configurations that could benefit from being
decomposed into a combination of microservices or, in some cases, state-
less functions. However, when decomposing a monolithic application in
microservices, the programmer needs to write additional code to correct
the anomalies that may be generated when executing the composition in
a decentralized system. Tools that support the decomposition of mono-
lithic applications into microservices automatically compute a number
of complexity metrics, providing an estimate for the amount of effort
required to code the compensating actions for a given decomposition.
This information guides the programmer in finding the most suitable
decomposition. A limitation of these tools is that they have been de-
veloped under the assumption that the execution environment is unable
to offer any type of support for transactions. We aim at extending these
tools with mechanisms that can consider the different consistency models
supported at runtime, in particular, Transactional Causal Consistency.
For this purpose we will use automated procedures to identify potential
anomalies generated during the execution of a given decomposition un-
der the TCC model. The identification of these anomalies can be used
to guide the development of compensating actions, and offer a principled
method to estimate the complexity associated to the deployment of a
given decomposition.

1

Table of Contents

1 Introduction . 3
2 Goals . 4
3 Background . 5

3.1 Monolithic versus Microservice Architectures 5
3.2 Serializability . 6
3.3 Consistency in Microservice Architectures . 7
3.4 Anomalies . 7
3.5 Managing Weak Consistency . 8

4 Weak Consistency Models . 9
4.1 Session Guarantees . 9
4.2 Highly Available Transactions . 10

5 Decomposing Monolithic Applications into Microservices Compositions 12
5.1 A Complexity Metric for Microservices Migration 12
5.2 Monolith Migration Complexity Tuning Through the

Application of Microservices Patterns . 13
6 Verifying Serializability of Applications to Calculate Complexity 15

6.1 Robustness Against Transactional Causal Consistency 15
6.2 Decidable Verification under a Causally Consistent Shared

Memory . 16
6.3 Static Serializability Analysis for Causal Consistency (C4) 16
6.4 Automated Detection of Serializability Violations under Weak

Consistency (ANODE) . 17
6.5 Directed Test Generation for Weakly Consistent Database

Systems (CLOTHO) . 17
6.6 Comparison . 18

7 Architecture . 19
8 Evaluation . 20
9 Scheduling of Future Work . 20
10 Conclusions . 21

1 Introduction

The microservice architectural style has been widely adopted for the past
years. In opposition to monolithic architectures, microservice architectures de-
compose an application into a set of small and well-contained services, each hav-
ing its own cohesive set of responsibilities. This modularization of the system
function offers many benefits: services are smaller and less complex, and hence
easier to implement, modify and test, and each service can be independently
deployed using the technology and hardware resources that are more appropri-
ate to its nature. Regarding system performance, microservices allow for higher
availability and fault isolation: a fault in one of the services will not bring the
whole system down, as is the case with monoliths, where one misbehaving com-
ponent could compromise the operation of the entire application. Furthermore,
each service can also be subject to independent horizontal scaling according to
its type of demand.

Implementing a microservice architecture can bring many advantages, but
can also impose additional complexity during the development: distributed com-
puting is complex, and adds intricacy to application development, testing and
deployment. Services need to be able to handle faulty behaviour and unavail-
ability of other services, and dependencies between them need to be taken into
account. Also, to ensure a high decoupling between the different microservices,
these are usually deployed on infrastructure that has no support for distributed
transactions. Instead, most microservices and FaaS architectures rely on weakly
consistent storage services. This means that a modular decomposition of the
monolithic application is exposed to intermediate states and to inconsistent data
versions that may cause the occurrence of anomalies. To mitigate the impact
of these anomalies, the programmer must develop additional code, for instance,
compensating actions, that can correct the effects of unintended behaviours gen-
erated during the execution. Monolithic versions of the same application are not
exposed to these anomalies, considering they usually rely on a transactional sub-
strate that can offer strong consistency, such as Serializability, typically offered
by a single datastore that relies on ACID properties (Atomicity, Consistency,
Isolation and Durability).

Given the tension between the benefits that come from modularity and the
additional complexity that results from the lack of isolation, the task of finding
the best decomposition for an otherwise monolithic application, i.e., the task of
defining the boundaries of each service and the redesign of the system’s function-
alities to accommodate the partition according to the consistency policy required
is not trivial. To ease this task, a number of tools to support the decomposition
of monolithic applications to microservices automatically compute a number of
complexity metrics, that provide an indicative estimate for the amount of effort
required to code the compensating actions that can correct latent anomalies dur-
ing the execution of a given composition [1,2]. A limitation of these tools is that
they have been developed under the assumption that the execution environment
is unable to offer any type of support for transactions.

3

This project is based on the insight that there are a number of transac-
tional consistency models that have been developed for geo-replicated systems
and have enormous potential to simplify the programming of applications that
use microservice and FaaS architectures. Most notably, we are interested in ma-
terialising the concept of Transactional Causal Consistency (TCC) [3, 4] in this
context. It is known today that TCC is the strongest semantics that can be im-
plemented using non-blocking algorithms and without requiring the execution of
consensus among participants in a transaction [5–7]. TCC ensures that clients
observe a sequence of write operations that respects causality and, furthermore,
guarantees that the results of a transaction are atomically visible. This prevents
a number of anomalies that can be hard or even impossible to compensate when
using the Saga pattern. In virtue of these advantages, the use of TCC has been
broadly advocated for several settings, including FaaS architectures [8].

We aim at extending previous tools to support the decomposition of mono-
lithic applications into a set of microservices with mechanisms that can take into
account the different consistency models supported at runtime, in particular,
TCC. For this purpose, we will use automated mechanisms to identify anoma-
lies that can arise during the execution of a given decomposition under the TCC
model. In particular, we plan to leverage on existing tools, such as CLOTHO [9],
a framework that detects serializability violations of Java applications executing
on top of weakly consistent distributed databases. CLOTHO employs a static
analyzer and a model checker to generate abstract executions of the input pro-
gram, discover serializability violations in these executions and translate them
back into concrete test inputs that can then be used for assessment by applica-
tion developers. The identification of these anomalies can be used to guide the
development of compensating actions, and offer a principled method to estimate
the complexity associated to the deployment of a given decomposition.

The rest of the report is organized as follows. Section 2 briefly summarizes the
goals and expected results of our work. In Sections 3, 4, 5 and 6 we present all the
background related with our work. Section 7 describes the proposed architecture
to be implemented and Section 8 describes how we plan to evaluate our results.
Finally, Section 9 presents the schedule of future work and Section 10 concludes
the report.

2 Goals

This work addresses the problem of estimating the complexity of decomposing
a monolithic system into microservices for execution environments that support
Transactional Causal Consistency.

Goals: We aim at designing a tool that takes as input a monolithic
application, generates a set of microservice decompositions for the appli-
cation, and outputs information that can help in assessing the complexity
of implementing these decompositions on top of TCC, including details
of the anomalies that can occur during the execution and hints regarding
the compensating actions required to address these anomalies.

4

To achieve this goal we plan to extend previous tools, namely the work of
Santos and Rito Silva [2], that breaks a monolithic application in different sets of
microservices, and CLOTHO [9], a tool that automatically detects the anomalies
that can occur during the execution of a distributed application.

The project will produce the following expected results.

Expected results: The work will produce i) a prototype of the pro-
posed tool; ii) an experimental evaluation using a number of monolithic
applications; iii) a comparison of the complexity metric produced by our
tool and the complexity metrics proposed in [2].

3 Background

This section aims to introduce concepts that will be relevant to the under-
standing of the document. We start by briefly discussing the advantages and
disadvantages of microservices architectures versus monolithic architectures. We
then address the challenges of providing strong consistency in microservices ar-
chitectures. Finally, we review commonly used strategies to mitigate the negative
effects of weak consistency in microservice architectures.

3.1 Monolithic versus Microservice Architectures

In a monolithic architecture, all functionalities of an application are exe-
cuted by a single machine or server that implements all the application logic.
Furthermore, the application state is typically stored in a single database. This
setup makes it straightforward to execute functionalities in the context of trans-
actions, safeguarding isolation between concurrent executions of the same or
different functionalities [10].

In a microservice architecture, different functionalities can be executed by
different machines, each making use of an independent storage system. Function-
alities that are executed uniquely inside a single microservice can be executed
employing some transactional substrate, but those that are executed over mul-
tiple microservices cannot be guaranteed to yield high isolation semantics [10],
as will be discussed below.

Both architectural patterns have advantages and disadvantages.
Monoliths, on the one hand, present limitations in performance due to the

large shared data domain that is accessed by all functionalities of the system.
This provokes a major setback in availability and fault-tolerance, and thus in-
stigates the need for a novel, distributed architectural pattern that addresses
these concerns. On the other hand, when using monoliths, the programmer can
leverage transactions to avoid reasoning about concurrency.

In turn, microservice architectures have the opposite pros and cons. For one
thing, the modularity provided by this paradigm allows the allocation of different
developer teams, programming languages, and data storage technologies to each
service. Also, individual services execute in individual processes or machines,

5

which provides the additional benefit of lowering the probability of full-scale
failure when a set of the services is anomalous. For another, distributed systems
are harder to program, and those who take up this pattern have to tackle the
overhead caused by remote communication and global synchronization of data.
Maintaining strong data consistency is immensely challenging and the tendency
of faults is significantly larger. To design performant and correct microservices,
architects and programmers need to consider all the consequences of failure for
every remote execution, as well as those deriving from the difficulty of synchro-
nizing distributed objects.

3.2 Serializability

A transaction is an abstraction that allows the programmer to group a se-
quence of operations on multiple objects of a data store such that they are exe-
cuted as an atomic unit. Transactions can either commit or rollback: if a transac-
tion commits, all its effects are permanent and visible to other transactions; if it
cannot commit, the transaction will be rolled-back, reversing all operations that
it consists of and leaving the database unchanged. Furthermore, the execution
of a transaction is isolated from the concurrent execution of other transactions,
relieving the programmer from explicitly implementing concurrency control. The
properties of transactions are also known as the ACID properties [11]: Atomicity,
stating that all changes to data are performed as if they were a single operation
and either all changes happen or none do; Consistency, which requires that the
transactions always leave the database in consistent states that respect business
rules; Isolation, specifying that intermediate states of a transaction should not
be seen by other transactions; Durability, implying that the changes to data are
to be definitive after the transaction is committed, and cannot be undone even
in the case of system failures.

Transactional systems have been widely studied in the literature, namely -
but not exclusively -, by the database community. Different consistency criteria
that characterize precisely how transactions are isolated from each other have
been proposed. The strongest consistency model for transactional systems is
serializability, stating that a concurrent execution of a set of transactions should
be equivalent to some serial execution of these transactions. Serializability is
intuitive for programmers and designers: if an application is correct in serial
executions, it will remain correct in concurrent executions.

However, enforcing serializability is expensive, because automated techniques
to enforce concurrency control introduce inefficiencies in the system operation. In
distributed systems, enforcing serializability requires ordering the transactions
in a total order and coordination, typically in the form of a two-phase commit
protocol [12]. For these reasons, the consistency models implemented by modern
datastores are often weaker than serializability. Bailis et al. [5] conducted a
survey where 18 off-the-shelf popular database systems were analyzed, and only
3 of those provided serializability as the default consistency model. Perhaps
surprisingly, 8 of the systems considered in their evaluation did not provide
serializability at all.

6

3.3 Consistency in Microservice Architectures

Microservice architectures are deployed on distributed systems and there-
fore inherit the advantages and challenges associated with distribution. On the
one hand, as discussed before, microservice architectures can be made more
fault-tolerant and more scalable than centralized systems. On the other hand,
implementing coordination among multiple services is costly and may impair
system availability. The trade-off between availability and consistency in dis-
tributed systems is captured by the CAP Theorem [13], stating that any given
distributed system can deliver only two of the following three desired characteris-
tics: consistency, availability, and partition tolerance. Intuitively, this limitation
results from the fact that nodes may not be able to coordinate when there is
a partition in the network. Therefore, in the presence of a partition, one must
choose between consistency and availability.

Most microservice architectures favour availability and, therefore, avoid de-
pending on distributed transactions that span multiple services. Instead, trans-
actions can be used internally by each individual microservice, such that func-
tionalities that are executed by the same microservice are isolated from each
other, but functionalities that are executed by multiple microservices are as-
sumed to execute without any form of concurrency control. This implies that
end-users will be exposed to intermediate states in the functionality execution
graph that would not occur in a monolithic system. Furthermore, intermediate
states of different functionalities can interact with one another, which adds to
the number of inconsistent states that the business logic of one functionality
needs to consider.

3.4 Anomalies

Given that most microservice architectures favour availability and scalabil-
ity, avoiding the costs of ensuring strong consistency, programmers need to deal
explicitly with the anomalies that may be generated when executing different
microservices concurrently, without isolation. In this section we enumerate the
main anomalies that can occur for which the programmer needs to write com-
pensating actions.

Lost Update A Lost Update occurs when one transaction T1 reads some data
object and another transaction T2 updates the same object. Then, T1 modifies
that object based on its local value for the object, never observing T2’s more
recent write.

Read Skew The Read Skew anomaly describes the case where, inside the same
transaction, two read operations to the same object return different values.

Write Skew The Write Skew anomaly can be described as a generalization
of Lost Update to multiple data objects. It occurs when transaction T1 reads
object x and writes to object y, and transaction T2 reads object y and writes
to object x. None of the transactions is able to observe the other’s updates.

7

Dirty Read This anomaly occurs whenever one transaction is able to read a
value that is being updated on a different transaction that has not yet commited.

Dirty Write Berenson et al. [14] define a Dirty Write anomaly by drawing
on the following example: some transaction T1 updates one data object and,
before it has the opportunity to commit or rollback, transaction T2 initiates and
updates the same data object. If either transaction T1 or T2 were to rollback,
it is unclear what the value for the data object should be.

3.5 Managing Weak Consistency

The Saga [15] pattern is one of the main alternatives to the use of distributed
transactions in the context of the microservice architecture. Each transaction
that spans multiple services is a saga. A saga is a sequence of local transactions,
where each local transaction updates data within a single service according to
the ACID properties, and then triggers the next local transaction in the saga.
If some local transaction fails because it somehow violates a business rule, then
the saga must execute a series of compensating transactions that will rollback
the changes made by the local transactions that precede the one that failed.

Sagas can be coordinated in two manners: a choreography is a saga where
each local transaction publishes an event upon completion that will trigger the
next local transaction in a different service; an orchestration is a saga that is
coordinated by an orchestrator object or class that is responsible for telling the
participants of the saga when to execute the corresponding local transactions.

Sagas cannot be automatically rolled back as is the case with traditional
ACID transactions. Each step of the saga commits its changes locally, thus if
one of the steps fails, the effects of each of the previous transactions must be
undone through the use of compensating transactions. The saga executes these
compensating transactions in reverse order of the forward transactions.

Considering the execution of a single saga, there are three types of local
transactions:

Pivot Transaction The pivot transaction divides the execution of the saga. It
is considered to be the go/no-go point at which the success of the saga is deter-
mined. If this transaction commits, then the saga will run until completion. An
example for this would be the last local transaction that verifies the conditions
for a money transfer to be possible, such as the confirmation that the account
has more money than the value to be withdrawn.

Compensatable Transactions In the case that the pivot transaction fails, all
transactions that have executed before it must be compensated for. These are
the compensatable transactions. There must be a compensating transaction for
all compensatable transactions that write or update data.

8

Retriable Transactions Retriable transactions are the ones that follow the
pivot transaction, and thus are guaranteed to succeed. There is no need to write
compensating transactions for these.

Sagas differ from ACID transactions in that they lack the isolation prop-
erty [10], which ensures that the result of executing a set of concurrent trans-
actions is the same as if that set of transactions was executed sequentially. In
sagas, updates made by each local transaction are immediately visible to other
sagas as soon as the transaction commits, meaning that it is possible that sagas
change data accessed by another saga while the latter is executing, and that
sagas can read the updates of others before they have completed, which can
lead to inconsistent states and anomalies. One way to deal with the lack of iso-
lation in sagas is through the use of countermeasures such as Semantic Locks,
Commutative Updates, Pessimistic View, Reread Value or Version File [10].

4 Weak Consistency Models

As we have discussed above, monoliths are commonly built on top of trans-
actional systems that offer serializability, while microservices are generally built
assuming no consistency guarantees across different services. However, there are
a number of weaker forms of consistency that can be enforced without incurring
the costs associated with serializabilty, namely without compromising availabil-
ity. There is potential in simplifying the implementation of applications using
the microservice architecture if some of these models are supported by the ex-
ecution environment. In this section, we survey some of the weak consistency
models that have been proposed in the literature.

4.1 Session Guarantees

A session is an abstraction that captures a sequence of read and write opera-
tions executed by a program. Session guarantees are properties that are ensured
by the system on individual operations of a session (in opposition to properties
enforced on groups of operations, as in transactional systems). Session guar-
antees are assured even if the program interacts with different servers during
the session, and have been defined to simplify the design of distributed applica-
tions. Terry et al. [16] define four different session guarantees: Monotonic Reads,
Monotonic Writes, Writes Follow Reads and Read Your Writes:

Monotonic Reads (MR) within a session, repeated reads to a data object
never return older versions than the last observed version.

Monotonic Writes (MW) writes become visible to other participants in the
order that they were submitted by the originating session.

9

Writes Follow Reads (WFR) if a session performs a write operation W and
afterwards performs another write operation W ′, then any other sessions that
can observe the effect of W ′ will also be able to observe the effects of W , since
W happens before W ′.

Read Your Writes (RYW) whenever a session reads a data object after
updating it, the read value will always yield the updated value, or a value that
overwrote that update.

Causal Consistency (CC) The combination of all of the four specified guar-
antees originates Causal Consistency [17, 18], which has been proven to be the
strongest guarantee compatible with high availability [5,19]. This guarantee cap-
tures the notion that causally-related operations should appear in the same order
to all sites in a system. If an update is visible at some site, then all the updates
that it is dependant on should also be visible at that site. Because causally-
consistent memory does not require the establishment of a total order of events,
it allows for scalable, partition tolerant and available implementations, and thus
is widely used in practice.

Causal+ Consistency (Causal+) Causal+ is an extension of CC. In addi-
tion to guaranteeing causality, Causal+ further ensures that copies of the same
data objects will eventually converge to the same value, by forcing that, when
concurrent updates are seen, one of the updates is applied last at all sites.

4.2 Highly Available Transactions

Session guarantees, as previously stated, are defined on individual operations,
and do not apply to groups of operations, i.e., to transactions. It is also possible,
in a transactional context, to define consistency criteria that are weaker than
serializability and do not compromise availabililty; these criteria are known to
provide Highly Available Transactions [5]. The semantics vary in their level of
transaction isolation, and those compatible with high availability are described
in the following lines.

Read Uncommited (RU) A total order for all writes is established, and up-
dates should be applied at each service according to that ordering. This isolation
level prevents the Dirty Writes anomaly.

Read Commited (RC) Isolation level RC prohibits the Dirty Writes and Dirty
Reads anomalies by buffering new updates either on the client or the server side,
until the data is able to be commited. This ensures that transactions will never
read intermediate versions of data.

10

Monotonic Atomic View (MAV) MAV provides a higher level of atom-
icity: it ensures that if some effects of a certain transaction are observed by
other transactions, then all its effects should also be seen by those transactions,
guaranteeing an ”all or nothing” visibility of transactions. MAV prevents Dirty
Reads and Dirty Writes, and is considered to be relatively stronger than RC,
but slightly weaker than TCC.

Cut Isolation (CI) Cut Isolation states that each transaction reads from a
non-changing cut or snapshot over the data items. There are two isolation levels
that stem from this concept: Item Cut Isolation (I-CI), where this property holds
over reads from discrete data items, and Predicate Cut Isolation (P-CI) where
the cut is maintained over predicate-based reads (e.g. SELECT WHERE). To
implement this, transactions store a copy of all data read, and subsequent reads
are loaded from this local copy, returning the same value observed before. This
value only changes if the transaction overwrites it itself. Cut Isolation prevents
Read Skew but allows Dirty Writes and Dirty Reads.

Transactional Causal Consistency (TCC) Causally consistent memory, as
previously discussed, is defined for single operations on single data objects. This
allows for certain abnormal behaviors to arise. Consider the following example,
based on a social network scenario, where people can create profiles for them-
selves and define reciprocal friendship relations, meaning that the profiles that
maintain this relationship can mutually access content published on the other’s
profiles. Profile A and profile B are friends with each other. Suppose that at a
certain point in time, profile A decides that it does not want profile B to access
profile A’s content anymore and it removes the friendship relationship with B.
After this, profile A publishes a post, assuming that profile B will not have access
to it. If this application is based on the aforementioned CI isolation level, the
program will mistakenly allow profile B to see the new post of profile A, because
the cached value for the friendship will not have been updated.

This anomaly happens because operations do not respect causality: profile
A’s friendship removal happens-before its new post, and thus, read operations
that observe the writing of the post, should also observe the update on the
friendship state. Transactional Causal Consistency (TCC) is an extension of
Causal+, where the definition of Causal Consistency is lifted to the level of
transactions, guaranteeing the consistency of reads and writes for a set of keys
by demanding that all operations are applied on top of the same causal snapshot.
In this specific case, it would impose that the new post from profile A is observed
together with the relationship removal, which in turn would block profile B from
seeing the new post.

TCC ensures atomic visibility of written keys - either all writes from a trans-
action are seen or none are - by using non-blocking algorithms that employ con-
trol information stored together with the data, in order to verify if transactions
are reading from a causal cut or not. However, this semantics does not require
the operations to be totally ordered - as is the case with Snapshot Isolation and
Serializability - meaning that it can be achieved without the use of expensive

11

consensus protocols and thus providing the strongest semantics attainable with
high availability [20].

5 Decomposing Monolithic Applications into
Microservices Compositions

In this section, we briefly introduce two tools that have been designed with
the goal of supporting the decomposition of monolithic applications into mi-
croservices.

5.1 A Complexity Metric for Microservices Migration

In [2], Santos and Rito Silva propose a tool to estimate the cost of migrating
a monolith to a microservice architecture, and mechanisms to generate several
different decompositions based on a proposed set of criteria. The tool works by
collecting data from the source code of the monolithic system using static anal-
ysis. More precisely, the tool assembles the read and write operations made to
the system’s domain entities and the sequence of those accesses done by each
functionality. This information is used to derive metrics of correlation between
domain entities. Intuitively, two entities are correlated if they are accessed to-
gether by one or more functionalities. The work is based on the premise that
one should favor decompositions where the entities that are more frequently ac-
cessed together should be clustered in the same service, to reduce the amount of
synchronization needed between clusters. Entity correlation is measured by four
similarity measures that are described below:

– Access: considers the number of functionalities that access two entities, for
each pair of domain entities in the system

– Read: this measure is an instance of the Access measure, where accesses
made are reads, by counting the number of functionalities that read two
given entities, for each pair of domain entities in the system;

– Write: this measure is an instance of the Access measure, where accesses
made are writes, by counting the number of functionalities that write two
given entities, for each pair of domain entities in the system;

– Sequence: considers the number of cases where the two domain entities
appear in consecutive positions in the sequence of accesses of the function-
alities, for each pair of domain entities in the system.

The values for the similarity between entities capture how coupled they are,
and this information is fed to a clustering algorithm that will generate new
candidate decompositions for the monolith.

To evaluate the candidate microservice configurations, the authors propose
complexity metrics that estimate the development effort needed to migrate the
original system into each of the decompositions. These metrics are related to the
number of accesses made by distinct microservices to correlated entities. The

12

rationale for this is that, as we have discussed earlier, when entities are accessed
by functionalities implemented by the same microservices, the accesses can be
performed in a transactional context, but when they are made by functionalities
in different microservices, the accesses cannot be protected by a transaction and
will expose anomalies that need to be compensated for, generating complexity
in development.

The authors of this work compute the value for the complexity of one candi-
date decomposition in the following manner:

Complexity of decomposition d: The complexity of a decomposition is the
average of the complexities of all the functionalities in d.

Complexity of a functionality f in a decomposition d: The complexity
of f in d is the sum of the complexities of accessing the clusters in the sequence
of accesses of f.

Complexity of accessing cluster c on the sequence of accesses of a
functionality f: The complexity of accessing c is the sum of complexities of
the accesses made by f to the entities in c.

Complexity of accessing entity e in cluster c by functionality f: The
complexity of accessing an entity depends on the type of operation being made:
if entity e is being read by f, the complexity of the access is related to the number
of other functionalities that write to e. If entity e is being written to by f, the
complexity of the access is related to the number of other functionalities that
read e.

The value for the complexity of a given decomposition helps architects and
system designers in choosing the most valuable one in the set of generated decom-
positions, taking into account the available resources (e.g. number of developers
and time) to carry out the process of partitioning a monolith.

Their work also makes a valuable contribution to the problem of deciding the
boundaries and responsibilities of each service when decomposing a monolith.
The clustering algorithm used by the authors takes as input the values of the
similarity measures for each pair of entities in the system, but the four similarity
measures can have different weights in the generation of the decomposition. For
each input monolith, different combinations for the valuation of each similarity
measure are created, and for each combination, a decomposition is generated.
After calculating the complexity for each generated decomposition, the authors
reckoned that there is no single combination for the weights of the similarity
measures that can be universally applied to all monoliths and originate the
decomposition with the lowest complexity.

5.2 Monolith Migration Complexity Tuning Through the
Application of Microservices Patterns

In [6], Almeida and Rito Silva extend the work above, and propose a refine-
ment to the complexity metric of [2] by splitting it into two new ones: the com-

13

plexity introduced specifically by the redesign of each of the monolith’s function-
alities to accommodate the decomposition into microservices and the complexity
added to the system when obliged to deal with inconsistent views introduced by
the distributed nature of the new version of the system.

The authors further explore the effort in decomposing a monolith by intro-
ducing a representation scheme for reasoning about microservice functionality: a
functionality execution graph. In this graph, the nodes are the local transactions
that execute inside a single service, and the edges are the remote invocations
between those local transactions.

A distinct contribution of this work was the creation of a set of operations to
be performed over the initial functionality execution graph. The purpose of these
operations is to redesign the execution flow of the application’s functionalities
before applying the Saga pattern to the monolith decomposition, avoiding some
compensating actions, for instance by merging local transactions and, in this way,
avoiding some intermediate state to become visible. To apply these operations,
one needs to study the source code of the application and determine which
parts of the code should be separated into different functionalities and, for each
functionality, the possible points-of-failure. Examples of this would be exception-
throwing fragments in the code, which are parts of the execution flow where, if
there is a failure, the ACID transaction in the monolith will abort. However, in
the corresponding microservice decomposition, such exceptions correspond to a
local transaction in a single service that has failed and compensating transactions
will have to be triggered. The proposed operations are described below:

Sequence Change Given a functionality and its functionality execution graph,
we will consider three distinct local transactions (nodes) lt1, lt2 and lt3, the
remote invocation (edge) ri = (lt1, lt3) and the additional information that lt3
executes after lt2. However, in the case that it is required that the microservice’s
functionalities execute as a Saga orchestration, it is useful to have one of the local
transactions trigger all the others. In this example, since lt2 executes before lt3,
that is, it does not depend on data generated by lt3, it would be possible to
replace ri by ri′ = (lt2, lt3), if lt2 was to be the orchestrator node of the Saga.

Local Transaction Merge This operation is useful for, when during the re-
design process two different local transactions in the same service become adja-
cent in the functionality execution graph, and thus, can be merged into a single
local transaction, which can aid in reducing the number of intermediate states.

Add Compensating This operation is used to add a new local transaction and a
remote invocation to connect the new node to the already existing functionality
execution graph. The new node represents the compensating transaction that
deals with one of the previously-mentioned compensatable transactions in a Saga.

14

6 Verifying Serializability of Applications to Calculate
Complexity

While the two previously-mentioned works provide essential insights on how
to determine boundaries between microservices and contribute with valuable
complexity metrics, they only reason about static relations between the entities
of the system when calculating complexity, not taking into account the specific
parameters given as inputs to the programs on each individual execution. This
does not allow for a precise identification of the interactions that may generate
concurrency problems, generating a large number of false positives when counting
potential sources of anomalies in applications.

In order to solve this, our work tends towards a more dynamic approach for
the computation of complexity. We assessed a number of works that provide
mechanisms or tools to determine consistency anomalies in the form of serializ-
ability violations of programs.

6.1 Robustness Against Transactional Causal Consistency

The work of Beillahi et al. [21] investigates the relationships between different
variations of Causal Consistency, and provides theoretical proofs for mechanisms
that automatically verify the serializability of a transactional program executing
on top of a causally consistent database. Their main effort is towards investi-
gating the decidability for the problem of checking robustness of programs. A
program executing on top of a weaker semantics is said to be robust against seri-
alizability if the effects of executing that program while enforcing serial behaviors
are equivalent to the effects of executing the same program relying instead on
the original weaker semantics.

The authors consider three different variations of Causal Consistency: weak
causal consistency (CC), causal memory (CM) and causal convergence (CCv).
CC has been discussed in section 4. CCv differs from CC because the former
enforces a total order between all transactions that defines the order in which
delivered concurrent transactions are executed at every site, guaranteeing that
all sites reach the same state after delivering all transactions. CM differs from
CC because it assures that all values read by a site can be explained by an
interleaving of the transactions consistent with the causal order. CC is strictly
weaker than both CM and CCv.

The notion of robustness presented in this work relies on an interpretation of
program behaviors as traces that document causal dependencies between trans-
actions, which allows for a more precise identification of serializability violations
than other state-based approaches. Their advances are purely theoretical, open-
ing the door to the use of existing tools and frameworks to check robustness of
applications.

15

6.2 Decidable Verification under a Causally Consistent Shared
Memory

Lahav and Boker [22], similarly to [21], make efforts towards establishing
the decidability for the problem of verifying safety properties - serializability -
of finite-state transactional programs executing on top of Causal Convergence
(CCv), which is also given the name of Strong-Release-Acquire (SRA). The au-
thors deduce that reasoning about the problem of safety verification under SRA
is equivalent to reasoning about the problem of SRA reachability : considering
the execution graph of a program P executing on top of SRA, a state p of P is
reachable under SRA if some execution of P that satisfies the conditions of SRA
generates state p. Despite providing theoretical grounds for the implementation
of novel frameworks and tools that check serializability of programs, this work
does not propose one.

6.3 Static Serializability Analysis for Causal Consistency (C4)

C4 [23] is an end-to-end static analysis framework for client-applications of
causally consistent databases. The authors propose a novel serializability crite-
rion for local evaluation and combine the already existing graph-based techniques
with the encoding of the new criterion into first-order logic formulae. This frame-
work is independent of the datastore API or programming language and thus
can be used with any system that satisfies convergence, atomic visibility and
causal consistency.

C4 starts its analysis by inferring the abstract history of the program. An
abstract history of a program is a generalization of all possible ways in which
said program can interact with the datastore. The graphic representation of an
abstract history is a Static Serialization Graph (SSG), which is derived from
the abstraction of all possible concrete Dependency Serialization Graphs (DSG).
DSGs are graphs representing concrete executions of a program, where there
is a node for each executed transaction and an edge between each two nodes
depicting session order and dependencies. If the SSG for a particular program
is acyclic, then it can be deduced that said program is serializable. Despite be-
ing fast and efficient, SSG-based analysis does not capture specific semantics
of the exact objects being manipulated because it generalizes all existing de-
pendencies for the set of possible executions of the program. In an individual
execution, the dependencies may not exist, and thus this technique generates a
considerable number of false positives. To overcome this, the authors propose
a complementary procedure to vouch for the results given by the SSG-based
analysis. It consists in the encoding of the input program’s SSG to logical for-
mulae to be checked by SMT solvers. This allows to precisely reflect control-flow
between operations to eliminate infeasible cycles in the abstract history. The
SMT-based analysis is applied whenever the SSG-based analysis indicates a po-
tential serializability violation, and produces a counter-example for each proven
anomaly.

16

For a given program executing on top of a causally consistent distributed
database, C4 either proves that the program is serializable, or detects a non-
serializable behavior. If the program is not serializable, the tool outputs the
set of violations found for up to two sessions, and determines if this result is
generalizable to an arbitrary number of sessions.

6.4 Automated Detection of Serializability Violations under Weak
Consistency (ANODE)

Nagar and Jagannathan [24] propose a fully automated approach for finding
serializability violations under any weak consistency model. The framework takes
as input a program written in a simplified version of the SQL language, which
is described in detail in their report.

Their main effort is to determine the conditions under which said transac-
tional program can be statically identified to always yield a serializable execu-
tion without the need for global synchronization. The ANODE framework can
be used with any weak consistency model whose specification can be expressed
in first-order logic.

From the input program, a dependency graph with a cycle is construed. The
framework then tries to discover a valid execution of the input program under
the given consistency specification that can result in such graph. The authors
propose two different approaches for verifying serializability: the Shortest Path
approach and the Inductive approach. Both are employed, and the anomalies
found are output to the user together with the transactions involved and their
parameters.

Since this framework is parametric over the consistency specification, it can
be used to determine the weakest consistency policy for which the program is
serializable, or simply modify the transactions where anomalies are present.

6.5 Directed Test Generation for Weakly Consistent Database
Systems (CLOTHO)

CLOTHO [9], an improvement of the tool of name ANODE discussed in
Section 6.4, is a framework that detects serializability violations of Java appli-
cations that make use of weakly consistent distributed databases. It employs a
static analyzer and a model checker to generate abstract executions of the in-
put program, discover serializability violations in these executions and translate
them back into concrete test inputs that can then be used for assessment by
application developers.

More specifically, CLOTHO takes as input a Java class that manipulates
a database through a JDBC API where each method is treated as a transac-
tion, and outputs a set of satisfying assignments to the parameters of the input
application that cause serializability anomalies.

CLOTHO generates a precise encoding of database applications, which al-
lows it to accurately represent the complex dependency relations between SQL

17

Trace/State
Original Memory
Model Assumed

Detects
Violations of

SMT-based
analysis

Filtering
Methods

Output Available

Decidable Verification
under a Causally
Consistent Shared
Memory

State CCv/SRA Serializability No No - No

Robustness Against
Transactional Causal
Consistency

Trace CC, CCv or CM Serializability No No - No

C4 State CC Serializability Yes Yes

The set of violations and
whether this result is

generalizable to an arbitrary
number of sessions

Yes

ANODE State Any (parameter of the tool) Serializability Yes No
The serializability anomalies
and the transactions involved

and their parameters
No

CLOTHO State
Any (the tool determines

the underlying
consistency model)

Serializability Yes Yes

Concrete tests to replay
the discovered anomalies

(database file and annotated
Java class files)

Yes

Table 1: Comparison of different approaches for detecting anomalies in transac-
tional programs

select and update operations. As in many other works, the authors reason over
abstract executions of input applications. An abstract execution of a program is
a generalization of its execution that captures visibility and ordering relations
among read and write operations on the database. Potential serializability vio-
lations in an abstract execution manifest as cycles in a dependency graph that
represents said visibility and ordering relations. When encountering such viola-
tions, CLOTHO synthesizes concrete tests that can be used to drive executions
of the program that will exhibit its points of failure. The abstract representation
of database programs used by CLOTHO is automatically generated from the
input program’s Java source code. It is then passed to an encoding engine that
constructs first-order logic formulae that captures the conditions under which
a dependency cycle forms. A theorem prover is then used to compute the gen-
erated SAT representation of the problem. All satisfying solutions given by the
solver are converted to test configuration files that contain the collected abstract
anomalies. Such files provide details about concrete executions that can poten-
tially manifest the discovered anomalies. This work stands out from others for
the fact that it offers a test-and-reply environment that allows mapping anoma-
lies identified in the abstract executions to be translated to concrete inputs that
can be executed subsequently.

6.6 Comparison

We now provide a brief comparison of the systems surveyed in the previous
paragraphs. Table 1 summarizes the key aspects of the different studied tools.

The work of Beillahi et al. [21] offers a trace-based approach for detecting
serializability of applications, which is more precise than the other state-based
approaches, that require the set of reachable states under serializability to be
equal to the set of reachable states under a weaker consistency model. State-
based approaches are more prone to false positives for the violations in robust-
ness. However, the authors of this work only provide the theoretical proof for

18

the decidability of this problem and do not implement any tools that we can
make use of. Similarly, neither [21] or [22] implement tools or frameworks that
we can use in our project.

The ANODE [24] and CLOTHO [9] projects have produced tools that we
can use. Since ANODE is a predecessor of CLOTHO, we have decided to adopt
the latter, as it includes a number of improvements over ANODE: while AN-
ODE receives as an input the underlying consistency model of the program to
be tested, CLOTHO discovers these semantics automatically by capturing the
various visibility and ordering relations between reads and writes. This allows
users to strengthen these characteristics of input programs as needed, while still
being able to use the testing framework to discover new serializability violations.
Only the code for CLOTHO was available at the time of this project.

To compare CLOTHO with C4, we consider the inputs and outputs of both
frameworks: while CLOTHO can be configured to address datastores with differ-
ent consistency guarantees, C4 assumes that the input program executes on top
of causally consistent databases. In the context of our project, we will be assess-
ing the impact of executing microservice compositions on top of storage layers
that provide either Transactional Causal Consistency or Eventual Consistency.
Modifying C4 to deal with Eventually Consistent datastores may be challeng-
ing. Furthermore, CLOTHO also provides a testing environment to reproduce
the discovered serializability anomalies, which can be given as an additional
output to the developers of microservices.

7 Architecture

We aim at designing a tool that aids in the decision of migrating a monolith
to a microservice architecture. The output for this tool is a set of candidate
microservice decompositions, along with a meaningful estimate value for the cost
of development of the decompositions on top of TCC, which includes detailed
reports for the consistency anomalies that are bound to happen and what should
be done in order to compensate these anomalies.

To do so, we intend to employ the efforts done by [2] and [6] considering
monolith decomposition. The generated configurations are then tested with the
aid of CLOTHO [9], a framework that will detect violations of serializability for
each decomposition previously generated. The output of CLOTHO translates
the discovered anomalies into concrete tests that can be executed in order to
replicate the points of failure of the program, which provides architects and
system designers with meaningful hints on how to solve the reported anomalies.

Since the complexity of development is inherently related to the lack of mem-
ory consistency, and therefore, to the occurrence of failures, detecting serializ-
ability violations for the execution of a set of microservices provides a purposeful
metric for estimating the effort in developing the microservices. Each serializ-
ability anomaly represents one or more compensating actions that will have to
be developed upon the decomposition of the monolith.

19

The first step towards accomplishing our goals will be to compare the com-
plexity metric generated by [2] and [6] to the one generated by CLOTHO [9], in
order to further understand if the latter can actually provide information that
is more interesting to the process of decomposing a monolith. Our intuition is
that, since our metric will be based on actual anomalies that occur given the spe-
cific parameters of transactions and not only on the static dependencies between
them, it will provide more accurate estimates.

After this, we intend to modify the encoding made by CLOTHO of the un-
derlying consistency model for the input program, so that we can compare com-
plexity levels for programs that execute on top of Eventual Consistency versus
the values for those that use Transactional Causal Consistency instead. Com-
paring these two complexity values will allow us to understand if it is worth
providing stronger semantics to a microservice architectural system and if the
level of consistency impacts the effort needed to decompose a monolith.

To experiment with the system, we will need to identify a set of monolithic
systems that can be tested using both frameworks.

8 Evaluation

In order to evaluate our efforts, we will assess, for some fixed level of decom-
position complexity, if an application providing TCC guarantees can be parti-
tioned into more services - resulting in a higher level of decentralization - when
compared to an application that does not provide any consistency guarantees.

The inverse evaluation can also be done: for a fixed level of monolith decom-
position (e.g., number of clusters generated by the decomposition), can systems
providing TCC guarantees be produced with lower levels of complexity than
systems with no consistency guarantees?

The level of complexity represents the effort needed to decompose the initial
monolith, and, on a more practical level, can be thought of as hours of work
that developers need to receive payment for. Accordingly, if the owner of an
application is willing to pay only a very low price to support the decomposition
(low complexity level), our intuition is that the attainable decomposition level
will also be low. This is, the resulting system will still be highly centralized.
However, we expect that systems guaranteeing TCC will be able to generate
more decentralized decompositions than systems with no guarantees, for a fixed
level of complexity.

9 Scheduling of Future Work

Future work is scheduled as follows:

– May 21 - August 31: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– September 1 - September 30: Perform the complete experimental evaluation
of the results.

20

– October 1 - October 31: Write a paper describing the project.
– November 1 - December 31: Finish the writing of the dissertation.

10 Conclusions

As computer systems mature and expand, the requirements for fault-tolerance
and availability increase. This explains the emergence of a novel design model,
the microservice architectural pattern. Our work discusses the main barriers to
the application of this pattern, while aiming to provide a testing framework that
aids in the decomposition of an otherwise monolithic application into a set of
microservices.

The process of decomposing a monolith into different microservices is not
straightforward: besides deciding on the boundaries and responsibilities of each
service, developer and designer teams need to sketch compensating actions and
structures to deal with the relaxation in data consistency across the new mi-
croservice architecture.

In this report, we surveyed the theoretical grounds necessary for reasoning
about microservices: we discuss the advantages and disadvantages of this pat-
tern as opposed to a monolithic one; we present serializability as a correctness
criterion in a transactional context; we examine several weak consistency models
and the anomalies they introduce; we study state-of-the-art works that propose
techniques for decomposing monoliths and discover serializability anomalies in
concurrent executions.

Our work leverages on the previously-developed methods for decomposing
monoliths and discovering anomalies in the form of serializability violations. We
use the set of discovered anomalies in a decomposition to predict the effort needed
to implement the microservice partition. We believe that this metric will guide
architects, developers and designers of computer systems in the decomposition
of monoliths, by providing accurate recommendations of points-of-failure for
applications.

Acknowledgments We are grateful to Taras Lykhenko for fruitful discussions
and comments during the initial stages of this work. We would also like to thank
Ranadeep Biswas, Daniel Ramos and Ricardo Brancas for the help in deploy-
ing CLOTHO. This work was partially supported by the projects PTDC/CCI-
INF/32038/2017 (NG-STORAGE) and by UIDB/ 50021/ 2020.

References

1. Hirzalla, M., Cleland-Huang, J., Arsanjani, A. In: A Metrics Suite for Evaluat-
ing Flexibility and Complexity in Service Oriented Architectures. Springer-Verlag,
Berlin, Heidelberg (2009) 41–52

2. Santos, N., Rito Silva, A.: A complexity metric for microservices architecture mi-
gration. In: 2020 IEEE International Conference on Software Architecture (ICSA).
(2020) 169–178

21

3. Lu, H., Hodsdon, C., Ngo, K., Mu, S., Lloyd, W.: The SNOW theorem and latency-
optimal read-only transactions. In: 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), Savannah, GA, USENIX Association
(November 2016) 135–150

4. Tomsic, A.Z., Bravo, M., Shapiro, M.: Distributed transactional reads: The strong,
the quick, the fresh & the impossible. In: Proceedings of the 19th International
Middleware Conference. Middleware ’18, New York, NY, USA, Association for
Computing Machinery (2018) 120–133

5. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions: Virtues and limitations. Proc. VLDB Endow. 7(3) (Novem-
ber 2013) 181–192

6. Almeida, J.F., Silva, A.R.: Monolith migration complexity tuning through the ap-
plication of microservices patterns. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 12292 LNCS (2020) 39–54

7. Aguilera, M.K., Leners, J.B., Kotla, R., Walfish, M.: Yesquel: Scalable sql stor-
age for web applications. In: Proceedings of the 2015 International Conference
on Distributed Computing and Networking. ICDCN ’15, New York, NY, USA,
Association for Computing Machinery (2015)

8. Wu, C., Sreekanti, V., Hellerstein, J.M.: Transactional causal consistency for
serverless computing. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’20, New York, NY, USA, Associ-
ation for Computing Machinery (2020) 83–97

9. Rahmani, K., Nagar, K., Delaware, B., Jagannathan, S.: CLOTHO: Directed test
generation for weakly consistent database systems. Proc. ACM Program. Lang.
3(OOPSLA) (October 2019)

10. Richardson, C.: Microservices Patterns: With examples in Java. Manning Publi-
cations (2018)

11. Vossen, G. In: ACID Properties. Springer US, Boston, MA (2009) 19–21
12. Lechtenbörger, J. In: Two-Phase Commit Protocol. Springer US, Boston, MA

(2009) 3209–3213
13. Gilbert, S., Lynch, N.: Perspectives on the CAP theorem. Computer 45(2) (2012)

30–36
14. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique

of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’95, New York, NY, USA,
Association for Computing Machinery (1995) 1–10

15. Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’87, New York, NY,
USA, Association for Computing Machinery (1987) 249–259

16. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.: Session
guarantees for weakly consistent replicated data. In: Proceedings of 3rd Interna-
tional Conference on Parallel and Distributed Information Systems. (1994) 140–149

17. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distributed Computing 9(1) (1995)
37–49

18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (July 1978) 558–565

19. Mahajan, P., Alvisi, L., Dahlin, M.: Consistency, availability, and convergence. (05
2012)

22

20. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: Scalable causal consistency for wide-area storage with cops. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles. SOSP
’11, New York, NY, USA, Association for Computing Machinery (2011) 401–416

21. Beillahi, S.M., Bouajjani, A., Enea, C.: Robustness against transactional causal
consistency. CoRR abs/1906.12095 (2019)

22. Lahav, O., Boker, U.: Decidable verification under a causally consistent shared
memory. In: Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2020, New York, NY, USA,
Association for Computing Machinery (2020) 211–226

23. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.: Static serializability analysis
for causal consistency. In: Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2018, New York, NY,
USA, Association for Computing Machinery (2018) 90–104

24. Nagar, K., Jagannathan, S.: Automated detection of serializability violations under
weak consistency. CoRR abs/1806.08416 (2018)

23

