
Fault Reproduction for Multithreaded Applications
(extended abstract of the MSc dissertation)

Angel Manuel Bravo Gestoso
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Writing distributed and parallel applications is
rather difficult. Because of this difficulty, many bugs appear
during development and frequently, on deployed applications.
Classical debugging techniques are not enough anymore be-
cause of the non-determinism induced by this kind of applica-
tions.

Record and replay techniques have been created in order
to help developers. These techniques are composed by two
main phases. The record phase captures all non-deterministic
events of the execution. Then, during the replay phase, the
original execution can be repeated in order to find the causes
of the bugs. Unfortunately, tracing all non-deterministic events
introduces a large overhead.

This thesis presents Symber, a record and replay tool for
multithreaded Java applications that combines partial logging
with an inference mechanism based on symbolic execution.
Thus, Symber is able to reduce the overhead introduced by
only logging the local execution path and the order in which
the locks are acquired.

Our results demonstrate that Symber produces a competitive
overhead in comparison to other techniques and still maintains
the ability to efficiently replay concurrency bugs.

I. INTRODUCTION

Parallel and distributed applications are extremely difficult
to design and implement. Furthermore, the code is very
difficult to debug because some errors only appear when a
specific thread interleaving occurs, and these interleavings
may be hard to produce during test runs. In fact, there
is evidence that a majority of this bugs are related to
concurrency problems[1]. As a result, it is not rare that
concurrent applications are deployed with bugs, including
some large and widely used applications such as MySQL,
Apache, Mozilla and OpenOffice.

Classical debugging techniques, such as cyclic debugging,
consist of repeating the faulty execution until the cause of the
bug is found. Unfortunately, this mechanism cannot be easily
applied for parallel and distributed systems, because of the
non-deterministic nature of the executions may prevent the
interleaving that causes the error to be reproduced in an
useful number of re-executions. The bugs that do not appear
deterministically in every execution, even if the same input is
provided, are called “heisenbugs”. All these issues make the
development and debugging of applications more complex.

Record and replay techniques have been designed to miti-
gate these difficulties. The goal is to log enough information
during the “normal” execution of the application such that,

if an error occurs, the development team can later reproduce
the buggy execution. In detail, logging runs with the appli-
cation and tries to capture as many non-deterministic events
as possible. Since the amount of non-deterministic events
can be extremely large, and the application may be required
to execute for a long period of time before a bug is found,
the main challenge of this phase is to be able to perform
logging with small spatial and time overhead. On the other
hand, the replay phase is aimed at re-executing the original
execution by using the logs that have been created during
the record phase.

The first record/replay techniques have been designed for
reproducing the bug on the first attempt. Although this is a
desirable goal, this resulting approach is quite expensive in
terms of spatial and time overhead of the recoding phase,
because all non-deterministic events have to be traced in
runtime. In consequence, alternative approaches have been
attempted recently. In particular, systems such as [2] and [3],
are based on the observation that the overhead imposed
on the user-side execution can be more disruptive than
a longer developer-side debugging execution. Thus, these
techniques reduce the overhead of the recording phase by not
tracing all non-deterministic events, at the cost of possibly
longer replay phases. Since in order to replay the buggy
execution one needs to deterministically reproduce all non-
deterministic events, these new approaches introduce a new
phase between the recording and the replaying phase. This
new phase is in charge of inferring the information that has
been omitted from the logs.

Our work extends these results, by introducing techniques
that allow to further reduce the logging overhead while, at
the same time, being able to provide sufficient information to
the developers in order to help them to find the causes that
produce the bug. We take CLAP [3] as our starting point,
since we believe that among all approaches does the best
balance between recording overhead, inference time and the
information that is provided to the developers. Therefore, our
system, named Symber, is an evolution of the CLAP system.
Symber is aimed at substantially reducing and simplifying
the inference phase by slightly increasing the recording
overhead.

The rest of this document is organized as follows. Sec-
tion II provides an introduction to the different technical
areas related to this work. Section III introduces Symber.

1



Section IV presents the phases involved in a Symber exe-
cution and Section V presents in detail Symber’s constraint
model. Section VII shows the results of the experimental
evaluation study. Finally, Section VIII concludes this docu-
ment by summarizing its main points and future work.

II. RELATED WORK

Considerable work has been done in the development
of deterministic replay debugging techniques. The main
problem that these techniques face when applied to parallel
and distributed applications is that different executions can
produce different outputs. Non-determinism is one of the
main challenges in the design, optimization, and debugging
of parallel applications. In this section we review some of
the solutions related to our work.

Order-based approaches are based on tracing the order
in which non-deterministic events occur. In the context of
parallel programs, the solutions are mainly concern about the
order in which threads access to shared memory positions.
Thus, solutions, such as InstantReplay[4], LEAP[5], and
Ditto[6], trace during the record phase the order in which
threads access to the shared variables. These solutions are
able to faithfully replay the buggy execution by following
the trace, generated in runtime, during the replay phase.
However, tracing all non-deterministic events introduces an
unbearable runtime overhead in many cases.

Search-oriented approaches are envisioned to reduce
the runtime overhead introduced by order-based approaches.
They are based on the observation that the efficiency of the
user-side execution is more critical than the efficiency of
the developer-side execution. Thus, search-based solutions
provide an efficient user-side execution by partially logging
the non-deterministic events. Due to the missing informa-
tion, a new phase that searches for the faulty execution
is needed between the record and the replay phases. The
efficiency of the ”search-phase” directly depends on the
amount of information that was not traced during the record
phase. Examples of this approach are ODR[2], CLAP[3],
and DCR[7].

Symber can be seen as an evolution of CLAP. It is aimed
at dramatically reducing the search space of the ”search-
phase” by slightly increasing the runtime overhead.

III. SYMBER OVERVIEW

The main goal of Symber is to deterministically replay
a buggy execution in multithreaded applications. Since di-
rectly applying record and replay techniques introduces an
unbearable overhead, Symber combines the techniques used
by tools such as [6] and [5] with an inference phase, that
helps to reduce both the spatial and time overhead incurred
by the tool. It is worth to mention that, to the best of our
knowledge, Symber is the first record/replay tool for Java
that uses symbolic execution as inference mechanism.

The idea of using inference has been previously ap-
plied with success in systems like ODR [2], DCR [7], and
CLAP [3]. However, we consider that previous works have

not thoroughly addressed all the factors that must be con-
sidered when inference is used. Namely, we are concerned
in achieving the right tradeoff among the following factors:
• The time overhead of the record phase.
• The time that the inference phase takes.
• The amount of debugging information that the tool

provides to the developer. We consider that a useful tool
should not only be able to replay the bug, but it should
also provide some useful information to the developer
in order to find the origin of the bug.

Our hypothesis is that by adding a small overhead in the
record phase (when compared to what CLAP and ODR do),
it should be possible to dramatically reduce the inference
phase. The design and development of Symber was per-
formed with the goal of validating this hypothesis.

A regular execution of Symber starts with a static analysis.
The goal of this analysis is to prepare the target application
for Symber. This preparation is basically an instrumentation
of the application code. As an output of this phase, a
record and a replay version of the application are generated.
Subsequently, the record phase can start. Traces are filled
during this phase with not only the execution path but
also with the locking order. Then, using the traces, the
inference phase starts. This is the most complex and slow
phase because it has to find an execution that triggers the
same bug than the original execution among all the possible
executions. Once the buggy execution has been found, a
trace of the accesses to shared variables is created and fed to
the replay phase. Then, the buggy execution can be replayed
as many times as needed using the trace generated during
the inference phase. Figure 1 illustrates the different phases
involved in a Symber execution.

Static
Analysis

Record
Phase

Replay
Phase

Inference
Phase

Sync. Ops. Trace

Shared Accesses TracePath Trace

Sync. Ops. Trace

Figure 1. Symber phases.

The inference phase is based on symbolic execution [8]
[9] [10]. It uses both the path and the locking order traces
to guide the execution. It creates a new fresh symbolic
symbol for each shared variable read. Therefore, Symber
does not assume anything with regard to data races. During
the symbolic execution, Symber creates constraints that
represent the execution and feeds them to a constraint solver.
The constraint solver sequentially outputs solutions for those
constraints that represent thread schedule candidates. The
candidates are sequentially checked until the bug is repro-
duced. Finally, once the buggy execution has been found, a
trace with the shared accesses order and the locking order
is generated and sent to the replayer.

2



CLAP Symber
It only records the execution path It records the execution path and

the locking order
Its symbolic execution is only
guided by the path trace

Its symbolic execution is guided by
the path trace and the locking order

Its constraint model contains syn-
chronization order constraints that
increments the complexity of the
constraints

It is capable of discard the synchro-
nization order constraints; there-
fore, the final formula is easier to
solve

Most of the solutions proposed by
the constraint might represent an
infeasible execution

Reduced number of infeasible
thread schedule candidates. It sim-
plifies the solution generation and
the solution checking phases.

Table I
MAIN DIFFERENCES BETWEEN SYMBER AND CLAP

Symber uses some ideas that were introduced by CLAP;
nevertheless, it differs in many aspects. Similarly to CLAP,
it locally logs the execution path on runtime. This path
profiling does not need any synchronization among threads;
therefore, it is substantially cheaper than other techniques
based on tracing the order or the value of shared memory
accesses. However, we believe that logging the local execu-
tion path does not provide sufficient useful information. In
consequence, the inference phase could need to generate and
check an unbearable number of execution candidates. For
this reason, Symber not only logs the execution path but it
also traces the locking order (by locking order we refer to a
global order of synchronization operations such as signal
and wait operations or lock and unlock operations). In
consequence to this decision, the inference phase of Symber
differs in many parts to the inference phase of CLAP as we
will see in the following sections.

Table I lists the main differences between Symber and
CLAP.

IV. PHASES IN DETAIL

This section is aimed at explaining in detail the phases
that are involved in a Symber execution. It also motivates the
need for those phases and how they have been implemented.
The multiple phases are depicted in Figure 1.

A. Static analysis

This is the first phase of Symber’s execution. It statically
analysis the target application. It identifies all shared variable
accesses and logs them into a file. This file will be used
during the inference phase. Furthermore, during this phase,
the record and the replay version are created.

On one hand, for the record phase, the static analysis
needs to prepare the application for tracing the execution
path and the locking order. In order to trace the execution
path, we opted for a simple approach. For each if statement,
two method invocations are inserted. One right before the
statement (beforeIfStmt hereafter) and one right after (after-
IfStmt hereafter). Thus, beforeIfStmt is called in case the if
statement is about to be executed and afterIfStmt is executed
only if the condition is satisfied.

Switch statements are instrumented in a different way.
The tool injects one method invocation after any of the
targets of the switch statement. Thus, we are able to trace
which case clause has been executed on runtime. In addition,
a method is inserted right before the switch as it is done with
if statements.

We are aware that some more efficient approaches could
have been used for tracing the execution path [11]. Never-
theless, that is not the goal of Symber. Therefore, due to the
temporal constraints we had to develop the prototype, we
opted for this more straightforward approach.

On the other hand, in order to trace the locking order, we
not only need to trace lock acquisitions but we also have
to log any signal and wait operation. The instrumentation is
made by inserting beforeMonitorEnter method before any
signal operations and afterMonitorEnter method right after
any wait operation or lock acquisition.

Regarding the replay version instrumentation, read/write
operations are wrapped by beforeRead, afterRead, be-
foreWrite and afterWrite methods. Furthermore, since it
also has to follow the locking order trace, synchronization
operations are also wrapped by beforeMonitorEnter and
afterMonitorEnter methods.

B. Record phase

This phase uses the version generated by the static anal-
ysis. It basically runs the application and generates both the
path trace and the locking order trace.

Figure 2 shows an example of how the path profiler
algorithm works. In the figures, methods in bold are the in-
strumented methods. The method beforeIfStmt, which goes
right before an if statement, provisionally stores (represented
by [] in the example) a ”false” on the thread’s path trace. If
the next method for that thread, among those two methods,
is an afterIfStmt method, that value is changed to true and
stored in the permanent path execution log. In case next
invocation is another beforeIfStmt, the provisional ”false” is
stored into the permanent path execution log. A similar idea
is used for loops and switch statements.

beforeIfStmt()
if (c1){
    afterIfStmt()
    stmt 1
}else{
    stmt2
}
stmt3
beforeIfStmt()
if (c2){
    afterIfStmt()
    stmt4
}
...

[F]

T

T , [F]

[F]

T

T , [F]

T , T

c1 == True
c2 == False

c1 == False
c2 == True

[F]

F , [F]

F , T

[F]

F , [F]

c1 == True
c2 == True

c1 == False
c2 == False

Figure 2. Path profiler.

3



On the other hand, for tracing the locking order, we have
been inspired by the algorithms implemented by Ditto[6].
We consider synchronization operations any monitor acqui-
sition (synchronized method, synchronized block or lock
method) and any signal/wait operation (wait, notify, noti-
fyAll, await, signal, and signalAll ). These algorithms are
aimed at tracing the global order of synchronization opera-
tions per locking object. For this purpose, Symber maintains
a clock for each locking object and for each thread.

Apart from filling the logs, this phase also generates
the replay driver. It basically links the generated trace and
the target application with the replayer. The goal of this
driver is to automatize the process. Thus, once the inference
phase finishes (and, in consequence, the trace that represents
the buggy execution has been generated), the user simply
needs to run the replay driver to faithfully replay the buggy
execution.

C. Inference phase
This is the most complex phase. We can divide it into

smaller phases in order to better explain in detail how it
works. Figure 3 shows how the phase is divided and how
those sub-phases interact.

Symbolic
Execution

Constraint
Generation

Trace
Generation

Solution
Generation

Match?

Solution 
Check

yes

no

Figure 3. Inference phase in detail.

Symbolic execution: First, the path, locking order, and
shared variable operation traces are read. Then, the symbolic
execution starts. It is a concolic symbolic execution; there-
fore, some variables are concrete and some are symbolic.
In our tool, any shared read operation creates a new fresh
symbolic variable. The identification of shared variable
operations is made using the shared variable operation trace
generated by the static analysis phase. This trace simply lists
all shared memory operations.

Path and locking order traces are used for guiding the
symbolic execution. Thus, for each branch in which at least
one of the operands is symbolic, the decision is taken based
on the path trace. On the other hand, before executing a
synchronization operation, the locking order trace has to be
checked. In the case the thread is invoking the lock in the
logged order, the thread continues the execution. Otherwise,
the thread gets blocked and a context switch is executed.
The thread keeps blocked until it is his turn according to
the locking order trace.

The goal of the symbolic execution is to gather as
much information about the execution as possible. For this
purpose, it records the following useful information:
• Path condition (PC): It gathers constraints related to the

symbolic branch decisions. Thus, when a decision is
taken, it is translated into a constraint and added to the
PC. For instance, considering the following if statement
(where sym1 is a symbolic variable): if(sym1 > 5).
If, according to the path trace, the condition was
satisfied in the original execution, the constraint that
is added to the path condition would be written as
sym1 > 5, otherwise sym1 ≤ 5.

• Shared memory accesses sorted by thread. Thus, it
represents a local order of shared memory accesses.

• Write set and read set per shared variable.
• Initial values of the shared variables.
• Synchronized shared memory accesses sorted by lock-

ing object. Since the symbolic execution is guided by
the locking order, we can be sure that this order is part
of the buggy execution.

Once the symbolic execution has finished and all the
information has been gathered, the symbolic execution sub-
phase finishes and the constraint generation phases starts.

Constraint generation: This sub-phase takes all the in-
formation produced by the symbolic execution and generates
a global formula. This formula represents the set of possible
executions to which the buggy execution belongs. Section V
presents the constraint model in detail.

Solution generation: Once all the constraints have been
created, the formula is solved by a constraint solver. We are
not interested on the values of the symbolic variables; we are
just interested on the global order of read/write operations
because it represents how the threads interleave during the
execution.

Having the symbolic execution guided by the locking
order let us to create the synchronization order constraints.
This substantially reduces the search space and the number
of infeasible solutions that the solver might suggest.

Solution check and trace generation: The checker takes
the solution proposed by the solver and executes the target
application in order to check whether in produces the bug
or not. In case the bug is reproduced, the final trace is
generated and the inference phase finishes. Otherwise, it
requests another solution to the constraint solver and the
solution check phase starts again. Since the buggy execution
belongs to the group of the possible solutions, this phase will
always finish.

An optimization has been applied in order to reduce the
size of the generated traces. The idea is to store deltas values
instead of absolute values. Thus, large numbers are never
traced and a cheaper representation can be used (such as
short instead of int).

D. Replay Phase

The replay phase starts by reading the trace generated
by the inference phase and the record phase. This trace

4



contains the order in which read/write operations and the
synchronization operations have to be executed for reproduc-
ing the buggy execution. Then, the execution begins. Since it
runs the instrumented version of the target application, each
time a read/write operation or a synchronization operation
is about to be executed, our injected methods (beforeRead,
beforeWrite, or beforeMonitorEnter) are invoked. The pur-
pose is to block the thread in case it does not have to
execute the operation. Once, the thread has been allowed to
execute the operation (because the trace matches the current
execution), the trace advances and the clocks are updated by
our second part of injected methods (afterRead, afterWrite,
and afterMonitorEnter).

V. CONSTRAINT MODEL

Symber’s final formula is a composition of constraints. It
can be written as:
α = αpc ∧ αrw ∧ αmo ∧ αso ∧ αb

where αpc denotes the path condition constraints, αrw

represents the read-write relationship constrains, αmo rep-
resents the memory order constraints, αso denotes the syn-
chronization order constraints and αb represents the bug.

Path condition (αpc): It represents the execution path.
Thus, each constraint bounds the value of the symbolic
variables involved in the if statement that has generated the
constraint. These group of constraints restrict the number of
solutions for the read/write constraints.

Bug constraint (αb): It is the translation of the bug
into a constraint. It helps to bound the possible solutions of
the formula to those in which the bug is triggered.

Read-Write constraint (αrw): It expresses the rela-
tionship between read and write operations for a specific
shared variable. Thus, it tries to infer which write operation
precedes each read. The constraints for each read operation
(r) are written as follows:(

Vr = init
∧
∀wj∈W Or < Owj

)∨
∀wi∈W

(
Vr = wi ∧

Owi < Or

∧
∀wj 6=wi

Owj < Owi ∨Owj > Or

)
where Vr is the read value, init is the initial value of the

shared variable, W is the write set for that shared variable,
Or denotes the order of r and Owi the order of the write
operation wi.

Memory order constraint (αmo): It represent the
local order for all read/write operations executed by a thread.

Synchronization order constraint (αso): It represents
the global order of shared variable accesses under a specific
locking object. For those read/write operations that are
performed in a synchronized block, we can assume a global
order among all threads.

Although Symber constraint model is inspired by CLAP,
it is substantially simpler. Symber does not need to infer
the locking order because it has been traced. Therefore, it
can discard CLAP’s “Synchronization Order Constraints”
whose, according to CLAP, size can be written as:
Nlo(2|S|3+2|S|)+Njo+Nfo+Nsv(2|SG||WT |+|SG|)
where Nlo denotes the number of locking objects, S

denotes the set of lock/unlock pairs of a specific locking
object, Njo denotes de number of join operations, Nfo

represents the number of fork operations (start method in
Java), Nsv denotes the number of signal variables, SG is
the set of signal operation that operates in a specific signal
variable and WT represents the set of wait operations that
can be mapped by a specific signal operation.

We note that removing these constraints from our formula
simplifies the constraint solving task, considering that we
discard a cubic formula from our model. Furthermore, CLAP
cannot straightly solve the formula since the majority of the
solutions might represent a infeasible execution (in constrast
to Symber solutions) and going trough all the solutions
might require an unreasonable amount of time. The lack
of the locking order trace is the cause of this drawback.

A. Example
Figure 4 shows a simple example that helps to visualize

the benefits of Symber in comparison to CLAP. It represents
a multithreaded application that contains both synchronized
and non-synchronized accesses to shared variables. Rxn
(Wxn) denotes a read (write) operation over the shared
variable x (n simply denotes the line in the source code).

Thread-1
     lock()
1:      x++
     unlock()
2:  y=x+2

Thread-2
     lock()
3:      x=3
     unlock()
4:  x=x+1

initially x==0 Rx1 = SYM_1
Wx1 = SYM_1 + 1
Rx2 = SYM_2
Wx3 = 3
Rx4 = SYM_3
Wx4 = SYM_3 + 1 

Figure 4. Simple multithreaded program.

During the symbolic execution phase of CLAP and Sym-
ber, shared read/write operations are identified and logged.
A read operation creates a new fresh symbolic symbol (E.g.
the operation Rx1 creates the symbolic symbol SYM 1).
In addition, the tools store the value that it is written by
every shared write operation.

Once the symbolic execution has finished, both CLAP and
Symber generate a set of constraints that helps to infer the
original execution. Figure 5 presents a simplified version of
the constraints that CLAP and Symber would generate for
the example. ORxn denotes the order of the corresponding
operation (Rxn) in the to-be-computed thread schedule.
Memory-order constraints represent the order in which the
operations have been locally executed by each thread.

Figure 5 shows that the read-write constraints generated
by Symber are simpler than the constraints generated by
CLAP. For instance, according to CLAP’s constraint model,
SYM 1 can be equal to 0, 3 or SYM 3 + 1, while for
Symber, SYM 1 can only be equal to 0.

This simplification can be achieved because Symber, apart
from logging the local execution path, logs the order in
which locks are acquired. Thus, Symber has the symbolic
execution guided by the path trace and the locking order.
In consequence, information regarding the global execution
path is generated by the symbolic executor (in case the

5



((SYM_1 = 0 & (ORx1<OWx1) & (ORx1<OWx3) & (ORx1<OWx4)) |
(SYM_1 = 3 & (OWx3<ORx1) & (OWx1<OWx3 | OWx1<ORx1) & (OWx4<OWx3 | OWx4<ORx1)) |
(SYM_1 = SYM_3+1 & (OWx4<ORx1) & (OWx1<OWx4 | OWx1<ORx1) & (OWx3<OWx4 | OWx3<ORx1)))

&&
((SYM_2 = SYM_1+1 & (OWx1<ORx2) & (OWx3<OWx1 | OWx3<ORx2) & (OWx4<OWx1 | OWx4<ORx2)) |
(SYM_2 = 3 & (OWx3<ORx2) & (OWx1<OWx3 | OWx1<ORx2) & (OWx4<OWx3 | OWx4<ORx2)) |
(SYM_2 = SYM_3+1 & (OWx4<ORx2) & (OWx1<OWx4 | OWx1<ORx2) & (OWx3<OWx4 | OWx3<ORx2)))

&&
((SYM_3 = SYM_1+1 & (OWx1<ORx4) & (OWx3<OWx1 | OWx3<ORx4) & (OWx4<OWx1 | OWx4<ORx4)) |
(SYM_3 = 3 & (OWx3<ORx4) & (OWx1<OWx3 | OWx1<ORx4) & (OWx4<OWx3 | OWx4<ORx4)))

read/write constraints

(ORx1 < OWx1 < ORx2) &&
(OWx3 < ORx4 < OWx4)

memory-order constraints
(ORx1 < OWx1 < ORx2) &&
(OWx3 < ORx4 < OWx4)

(SYM_1 = 0 & (ORx1<OWx1) & (ORx1<OWx3) & (ORx1<OWx4))
&&

((SYM_2 = SYM_1+1 & (OWx1<ORx2) & (OWx3<OWx1 | OWx3<ORx2) & (OWx4<OWx1 | OWx4<ORx2)) |
(SYM_2 = 3 & (OWx3<ORx2) & (OWx1<OWx3 | OWx1<ORx2) & (OWx4<OWx3 | OWx4<ORx2)) |
(SYM_2 = SYM_3+1 & (OWx4<ORx2) & (OWx1<OWx4 | OWx1<ORx2) & (OWx3<OWx4 | OWx3<ORx2)))

&&
(SYM_3 = 3 & (OWx3<ORx4) & (OWx1<OWx3 | OWx1<ORx4) & (OWx4<OWx3 | OWx4<ORx4))

(ORx1 < OWx1 < OWx3)

memory-order constraints
CLAP

read/write constraints

synchronization constraints
SYMBER

(a) (b)

Figure 5. Constraints generated by CLAP for the example shown in the Figure 4.

application has synchronization operations). E.g. assuming
that the original run follows the execution depicted by the
arrows in Figure 4, Symber has the ability to generate the
synchronization constraints that represent the locking order.
Thus, Symber can assume that the instruction x + + was
executed before the instruction x = 3. Knowing this extra
information, let Symber simplify the read-write constraints,
and, in consequence, the number of possible solutions. For
the example depicted by the Figure 4, Symber read-write
constraints only have three solutions, while, for CLAP, the
number of solution is multiplied by four (12).

CLAP also needs to infer the order in which the locks
were acquired during the original execution which might be
a tedious task.

VI. IMPLEMENTATION

Symber is completely implemented in Java. Soot [12] tool
has been used for the static analysis and the instrumentation
of the target application. On the other hand, we have used the
open source project Java PathFinder [13] for implementing
Symber’s symbolic executor. This executor not only uses jpf-
core, which is the basic package, but it also uses multiple
extensions such as jpf-symbc [14], which is envisioned for
symbolic execution, and jpf-concurrent.

Regarding the constraint solvers, we have implemented
Symber thinking of the constraint solver component as a
pluggable element. Therefore, it is quite straight forward to
substitute it by a different one. We mainly experiment with
Choco2 [15].

A. Challenges

We had to overcome many challenges during the imple-
mentation phase. In the following paragraphs, we detail how
we solved some of the most significant challenges we have
faced.

Thread consistent identification: Different execution of
the same multithreaded application can identify threads in a
different way. Since Symber executes the same application
several times along all the phases, we need to remove that
non-determinism from our tool. Therefore, all our compo-
nents implement the same mechanism for identifying the
threads.

The main thread is assigned to the identifier ”1”. When
a new thread is created, its identifier is created by the
concatenation of his parent-id, ”:”, and a children counter
that gets incremented every time a new thread is created.
The children counter is local for each thread.

Thread termination: Symber only logs the local execu-
tion path and the locking order. Therefore, Symber does not
know which is the last instruction executed by each thread.
In order to circumvent this problem in the inference phase, if
during the symbolic execution, the thread is about to execute
an if statement or a synchronization operation, and the trace
for any of those statements has been already consumed, the
thread is immediately killed. A similar approach is used by
the replayer.

We are aware that this is not the perfect solution since
some extra instructions might be executed; nevertheless,
we consider that those extra instruction do not modify the
accuracy of our tool.

Shared variable identification: Other record and replay
tools, such as LEAP [5], opt for a field identification of
shared variables. Thus, different instances of the same class
are treated as one. This increments the recording overhead
(for those tools that also record read/write operations order)
and it is not compatible with our inference tool since some of
the constraints in the path condition might not be compatible
with the read/write constraints. In consequence, we decided
to identify shared variables by the instance. This makes our
constraint solver to generate less constraints and to correctly
work.

VII. EVALUATION

In this section, we present an experimental evaluation of
the Symber system.

A. Evaluation Methodology

Our evaluation addresses the following three complemen-
tary aspects of the tool:
• The overhead imposed by Symber, namely the record-

ing overhead and the space overhead (trace files size).
• The Symber capacity for reproducing bugs. This crite-

rion mainly tells us whether Symber is able to repro-
duce the bug in the tested applications.

6



#Threads #Branches #Accesses #Shared %Syn.
Vars. Accesses

MB 1 variable 107 107 4 50%
MB 2 4 107 variable 4 50%
MB 3 4 107 107 4 0%
MB 4 4 107 107 variable 0%
MB 5 4 variable 107 4 0%
MB 6 4 107 107 4 variable

Table II
MICROBENCHMARKS

• The number of solutions that are checked by the
inference tool until the buggy execution is found.
This criterion captures how efficient Symber’s inference
phase is.

In order to have a comparative assessment of how well
Symber performs with regard to other tools, we have also
implemented a non-optimized version of Ditto and a simpli-
fied version of CLAP.

We have evaluated Symber using a combination of micro-
benchmarks and third-party benchmarks. All experiments
were run in a machine with an Intel Core 2 Duo at 2.26
Ghz, with 4 GB of RAM, and running Mac OS X.

B. Time and Spatial Overhead
The experiments presented in the section have two main

goals:
• Demonstrate that Symber’s recording overhead is

slightly larger than CLAP’s recording overhead but still
competitive in comparison to the baseline.

• Show that Symber still introduces substantially smaller
overhead in comparison to full-recording tools.

1) Microbenchmarks: We have used a number of mi-
crobenchmarks for intensively analyze and compare Symber.
In our experiments, we have varied one parameter and
kept constant the rest of them. Thus, we can appreciate
how the isolated variation of one of the parameters affects
both the time and the spatial overhead of the recording
phase. Using this methodology, we have defined six different
microbenchmarks, depicted in Table II.

Using these benchmarks we have measured the perfor-
mance of: 1) the baseline time (without tracing any in-
formation); 2) a Ditto-like implementation that traces the
order of synchronization operations and shared read/write
operations; 3) CLAP that only traces the execution path,
and; 4) Symber that traces the execution path and the order
of synchronization operations (the locking order).

Our experiments have demonstrated that the optimized
version of Symber creates insignificant trace sizes. We now
describe in detail, the results of each microbenchmark with
regard to the runtime overhead.

Number of threads: In this experiment we assess
how Symber scales as the number of threads increases. The
results confirm that both CLAP and Symber execution times
are close to the baseline. We can conclude that for both
tools the number of threads does not affect the execution

 0

 50

 100

 150

 200

 1000  10000  100000  1e+06  1e+07

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Synchronization Ops.

Recording overhead

Baseline
Ditto-like

CLAP
Symber

Figure 6. Results for Microbenchmark 3.

time. On the other hand, for the Ditto-like application, apart
from incurring a considerable larger overhead in comparison
to the other approaches, the more threads the application
runs, the greater the time overhead is (from 34 seconds to
40 seconds). This is due to the synchronization of shared
read/write operations produced by the recording algorithm.

Number of shared accesses: This experiment, us-
ing Microbenchmark 2, checks how Symber behaves, in
comparison to the other approaches, when the number of
shared read/write operations increases. Since we keep the
percentage of synchronized accesses, as the number accesses
is increased, the number of synchronization operations is
also increased.

As expected, the increment of accesses does no affect
CLAP that maintains the same distance to the baseline along
the experiment (7s). Still, since the number of synchroniza-
tion operations also increases, Symber slightly augments the
distant to both CLAP and the baseline. Finally, the Ditto-like
tool is heavily affected.

Number of synchronization operations: This exper-
iment assesses how Symber scales as the number of syn-
chronization operations increases. Figure 6 shows the time
overhead imposed with Microbenchmark 3. Both CLAP and
Symber start almost from the same point. This is due to the
small amount of synchronization operations (only 1000). As
the number of synchronization operations increases, the gap
between Symber and CLAP executions increases. However,
the distance between them holds quite small.

This results confirm that even for large amounts of
synchronization operations, Symber is still competitive in
comparison to CLAP.

Number of shared variables: This experiment checks
how the number of shared variables affects the performance
of Symber. As it is expected, neither Symber nor CLAP are
affected by the increment of shared variables.

Number of branches: This experiment measures how
the number of branches affects Symber. This is also useful
to visualize when a full-recording tool and a tool based
on tracing the execution path (Symber or CLAP) might
converge.

7



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Branches (millions)

Recording overhead

Baseline
Ditto-like

CLAP
Symber

Figure 7. Results for Microbenchmark 5.

Program LOC #Threads #sv #Br Bug
TwoStage 136 16 3 164 Two-stage

Piper 165 21 4 160 Missing condition
for Wait

Table III
DESCRIPTION OF THE IBM CONTEST BENCHMARK APPLICATIONS

USED IN THE EXPERIMENTS

Figure 7 shows the time overhead using Microbench-
mark 5. As expected, when number of branches is zero,
Symber and CLAP are close to the baseline (actually CLAP
does not incur any overhead). As the number of branches
increases, both CLAP and Symber become separated from
the baseline. Since the number of synchronization operation
is constant, the distance between CLAP and Symber is also
steady. Furthermore, we can notice that when the number of
branches is 25 millions, the overhead of tracing the branches
almost compensate the overhead introduced by the Ditto-like
tool.

Synchronized accesses vs non-synchronized ac-
cesses: This experiment tests how the approaches behaves
when the ratio between synchronized and non-synchronized
shared read/write operations varies. Regarding runtime over-
head, we expect Symber to converge to CLAP when there
are no synchronized accesses. As we were expecting, CLAP
and Symber converge when there are no synchronized ac-
cesses. The maximum difference between them is produced
when all the accesses are synchronized since Symber has
more synchronization operations to trace.

2) Third-party Benchmarks: In order to test Symber
with more realistic applications, third-party benchmarks
have been used. The IBM ConTest benchmark suite [16] is
composed by multiple applications that contain concurrency
bugs. Table III shows a brief description of the used appli-
cations in terms of lines of code (LOC), number of threads
(#Threads), number of shared variables (#sv), number of
branches (#Br) and the bug-pattern.

Figure 8 shows the slowdown (times slower) introduced
by the approaches. In the figure, the baseline, CLAP,

 0

 0.5

 1

 1.5

 2

 2.5

 3

Piper TwoStage TicketOrder

Sl
ow

do
w

n

Application

Third-party Benchmark Performance

Baseline
CLAP

Symber
Ditto-like

Figure 8. Third-party benchmarks. Performance slowdown.

Symber, and a full-recording tool are compared. Thus, as
expected, the full-recording tool introduces a large slowdown
(almost 3x for Piper application). On the other hand, CLAP
and Symber maintain an effective overhead that never goes
beyond the 51%.

Table IV reports the results. All data were average over
ten runs. The reduction of the overhead produced by Sym-
ber in comparison to the full-recording tool is significant.
Furthermore, Symber still maintains a competitive overhead
in comparison to CLAP.

Figure 9 presents the slowdown introduced by Symber
in detail. Thus, for each benchmark, the slowdown has
been divided into three boxes. The black box represents the
naive application, the white box represents the slowdown
introduced by tracing the locking order and the grey box
represents the slowdown introduced by the path profiler. As
the figure shows, Symber incurs a similar overhead for all
applications. This totally depends on the application as the
michrobenchmarks suggest. Nevertheless, as the Figure 9
shows, the slowdown introduced by both tracing mecha-
nisms tends to be similar. None of the tracing mechanisms
need extra synchronization; therefore, their use is always
more efficient than tracing the order of shared read/write
operations.

C. Capacity of Reproducing Bugs

Apart from measuring both the time and the spatial
overhead that Symber introduces during the record phase,
we also have to evaluate Symber’s capacity for reproducing
bugs. Thus, we decided to use the third-party benchmarks
used in the previous section to test Symber.

Symber was able to find the buggy execution in all the
tested applications (Table III). Furthermore, the experiments
have proven that Symber is very efficient finding the buggy
execution. E.g. for the TwoStage application, Symber was
able to find the faulty execution by only checking the
first solution suggested by the solver. On the other hand,
these experiments have shown that even for medium-size
applications, the number of constraints generated by the

8



Program Baseline Ditto-like CLAP Symber
Piper 17.8668ms 49.1391ms (175%) 24.5357ms (37%) 26.9579ms (51%)

TwoStage 16.5868ms 38.293ms (131%) 20.4114ms (23%) 24.9112ms (50%)
TicketOrder 9.176ms 22.06ms (140%) 17.0288ms (85%) 17.8709ms (95%)

Table IV
RUNTIME OVERHEAD COMPARISON BETWEEN DITTO-LIKE TOOL, CLAP AND SYMBER

 0

 0.5

 1

 1.5

 2

 2.5

Piper TwoStage TicketOrder

Baseline Lock trace Path trace

Figure 9. Third-party benchmarks. Symber detailed slowdown.

constraint generator might be pretty large. For instance, the
TwoStage program, with only 136 LOC and 274 shared
read/write operations, generates 1,113,117 constraints.

D. Efficiency of the Inference Mechanism

Finally, we have also compared Symber with CLAP in
terms of number of constraints and number of variables
generated. Table V presents the results. As it is expected,
Symber dramatically reduces the number of both constraints
and variables seen by the constraint solver.

E. Discussion

Evaluating our system in comparison to CLAP, the base-
line and a full-recording tool (Ditto-like) serves us to confirm
that a full-recording tool introduces an unbearable runtime
overhead in many cases. The results also confirm that locally
tracing the execution path introduces a tolerable runtime
overhead. Furthermore, the size of the traces generated by
the path profiler are almost insignificant.

More importantly, the results confirm that tracing the
locking order is a cheap operation. Every experiments has
denoted that the overhead introduced by tracing the syn-
chronization operations is rather low. E.g. in the worst case
situation when the number of synchronization operations is
107, the overhead introduced by Symber in comparison to
CLAP is lower than 7%. This confirmation is important since
Symber is mainly based on this observation. Furthermore,
real applications tend to have a greater number of branches
than synchronization operations; therefore, we consider that
tracing the path is a more expensive mechanism in terms of
time overhead than tracing the locking order.

When using the third-party benchmarks, Symber has
proved its ability to replay concurrency bugs very efficiently.
Nevertheless, we consider that additional evaluation effort
needs to be done, in order to fully analyze Symber’s capa-
bility.

Regarding the comparison between Symber and CLAP,
results are promising, since a very significant reduction in
terms of number of constraints and number of variables is
achieved. This reduction directly diminishes the search space
of the constraint solver. This implies that the worst case
scenario (when all possible solutions have to be checked in
order to find the buggy execution) is also reduced. Still, we
would like to experiment with Symber and CLAP in order
to confirm these observations.

Finally, it is important to emphasize that Symber is
still a research prototype that, currently, has the following
limitations:
• Exceptions affect the execution path. Thus, simply

tracing the output of if and switch statements is not
enough.

• The constraint solving phase, with the current system
implementation, may take a very large amount of time
for medium-large applications.

• We still believe that tracing every if /switch statement
is considerable expensive.

VIII. CONCLUSIONS

This thesis has presented Symber, a record/technique that
proposes a cheaper record phase in order to reduce the
runtime overhead. Symber reduces the recording overhead
by not tracing all non-deterministic events. Thus, a new
phase is introduced in order to infer the missing information.
A regular Symber execution is composed by three phases:
the record phase, the inference phase and the replay phase.
The record phase traces the local execution path and the
order in which locks are acquired. The inference phase in-
fers the missing information needed for faithfully replaying
the buggy execution. This phase is based on a symbolic
execution guided by both the local execution path and the
locking order where every shared read operation creates a
fresh symbolic symbol. Finally, when the inference phase
has found the buggy execution, the replay phase uses the
trace generated by the inference phase for replaying the
faulty execution.

Although there are other approaches that use symbolic
execution in its inference phase ([2], [7], and [3]), we believe
that Symber provides a new and interesting tradeoff among
the following factors: recording overhead, efficiency of the

9



#Variables #Constraints
Program CLAP Symber Reduction CLAP Symber Reduction
TwoStage 5407122 1113282 ↓71.4% 5406748 1113117 ↓71.4%

Piper 580609 37793 ↓93.5% 579686 37617 ↓93.5%

Table V
#CONSTRAINTS AND #VARIABLES COMPARISON BETWEEN CLAP AND SYMBER

inference phase, and the information that the tool gives to
the developers.

The evaluation of the tool has shown that tracing the
locking order is not an expensive mechanism. Furthermore,
the results have shown that Symber is capable to efficiently
reproduce concurrency bugs.

Although this document has presented an intensive evalu-
ation of Symber, we plan to improve it further with real
applications. Furthermore, as Section VII-E suggests, we
need to experimentally compare Symber to CLAP. For this
purpose, a full CLAP tool for Java applications has to be
implemented.

On the other hand, we have realized that Choco2 (the
constraint solver used by Symber) performs poorly for the
kind of constraints that Symber generates. We are consider-
ing to add MiniZinc and Z3 constraint solvers to Symber.
Furthermore, some parts of the inference phase, such as the
“Execution Checker”, can be parallelized.

Finally, we still believe that tracing the local execution
path is an expensive mechanism. We are convinced that
probabilistic record/replay can be combined to Symber in
order to reduce the recording overhead.

ACKNOWLEDGMENTS

Parts of this work have been performed in collaboration
with other members of the Distributed Systems Group at
INESC-ID, namely, Nuno Machado, Nuno Diegues and João
Matos.

REFERENCES

[1] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes:
a comprehensive study on real world concurrency bug charac-
teristics,” in Proceedings of the 13th international conference
on Architectural support for programming languages and
operating systems, ser. ASPLOS XIII. Seattle, Washington,
USA: ACM, 2008, pp. 329–339.

[2] G. Altekar and I. Stoica, “ODR: output-deterministic re-
play for multicore debugging,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,
ser. SOSP’09. Big Sky, Montana, USA: ACM, 2009, pp.
193–206.

[3] J. Huang, C. Zhang, and J. Dolby, “CLAP: recording local
executions to reproduce concurrency failures,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’13. Seattle,
Washington, USA: ACM, 2013, pp. 141–152.

[4] T. LeBlanc and J. Mellor-Crummey, “Debugging parallel pro-
grams with Instant Replay,” Computers, IEEE Transactions
on, vol. C-36, no. 4, pp. 471–482, 1987.

[5] J. Huang, P. Liu, and C. Zhang, “LEAP: lightweight deter-
ministic multi-processor replay of concurrent java programs,”
in Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, ser. FSE
’10. Santa Fe, New Mexico, USA: ACM, 2010, pp. 207–216.

[6] J. Silva, “Ditto - deterministic execution replay for java
virtual machine on multi-processor,” Master’s thesis, Instituto
Superior Técnico.

[7] G. Altekar and I. Stoica, “DCR: Replay-Debugging for the
Datacenter,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-33, March 2010.

[8] R. Floyd, “Assigning meanings to programs,” in Program
Verification, ser. Studies in Cognitive Systems, T. Colburn,
J. Fetzer, and T. Rankin, Eds. Springer Netherlands, 1993,
vol. 14, pp. 65–81.

[9] J. C. King, “Symbolic execution and program testing,” Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[10] C. Cadar and K. Sen, “Symbolic execution for software
testing: three decades later,” Commun. ACM, vol. 56, no. 2,
pp. 82–90, Feb. 2013.

[11] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceed-
ings of the 29th annual ACM/IEEE international symposium
on Microarchitecture, ser. MICRO 29. Paris, France: IEEE
Computer Society, 1996, pp. 46–57.

[12] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan, “Soot - a Java bytecode optimization
framework,” in Proceedings of the 1999 conference of the
Centre for Advanced Studies on Collaborative research, ser.
CASCON ’99. Mississauga, Ontario, Canada: IBM Press,
1999, pp. 13–.

[13] W. Visser, K. Havelund, G. Brat, and S. Park, “Model check-
ing programs,” in Automated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International
Conference on, Grenoble, France, 2000, pp. 3–11.

[14] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: sym-
bolic execution of Java bytecode,” in Proceedings of the
IEEE/ACM international conference on Automated software
engineering, ser. ASE ’10. Antwerp, Belgium: ACM, 2010,
pp. 179–180.

[15] N. Jussien, G. Rochart, X. Lorca et al., “Choco: an open
source java constraint programming library,” in CPAIOR’08
Workshop on Open-Source Software for Integer and Con-
straint Programming (OSSICP’08), Paris, France, 2008, pp.
1–10.

[16] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and how
to test them,” in Proceedings of the 17th International Sym-
posium on Parallel and Distributed Processing, ser. IPDPS
’03. Nice, France: IEEE Computer Society, 2003.

10


