
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

UNDER ERASMUS MUNDUS PROGRAMME

Metadata Management in Causally Consistent
Systems

Angel Manuel Bravo Gestoso

Supervisor: Doctor Luís Eduardo Teixeira Rodrigues
Co-Supervisor: Doctor Peter Van Roy

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction and Honour

2018

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

UNDER ERASMUS MUNDUS PROGRAMME

Metadata Management in Causally Consistent
Systems

Angel Manuel Bravo Gestoso

Supervisor: Doctor Luís Eduardo Teixeira Rodrigues
Co-Supervisor: Doctor Peter Van Roy

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction and Honour

Jury

Doctor Charles Nicolas Lucien Pecheur, Ecole Polytechnique de Louvain, Univer-
sité catholique de Louvain, Belgium

Doctor Luís Eduardo Teixeira Rodrigues, Instituto Superior Técnico, Universidade
de Lisboa

Doctor Gregory Chockler, Royal Holloway, University of London, UK

Doctor Etienne René Paul Riviere, Ecole Polytechnique de Louvain, Université
catholique de Louvain, Belgium

Doctor Helena Isabel de Jesus Galhardas, Instituto Superior Técnico, Universidade
de Lisboa

Funding Institutions
European Union

Fundação para a Ciência e Tecnologia

2018

“No será peor de lo que era.
No será peor, seguro que es mejor.”

To my family.

Abstract

Causal consistency has emerged as a key ingredient among the many consistency models and client
session guarantees that have been proposed and implemented in the last decade. In fact, it has been proved
to be the strongest consistency model that does not compromise availability.

Despite its benefits, causal consistency is not trivial to guarantee: one has to keep track of causal
dependencies, and to subsequently ensure that operations are delivered in causal order. Interestingly, the
granularity at which causal dependencies are tracked impacts significantly the system’s performance. When
precisely tracking causal dependencies, the costs associated with the processing and transferring of meta-
data have a significant impact in throughput. It is possible to mitigate this impact by compressing metadata
to reduce the amount of metadata handled. Nevertheless, this comes with the cost of losing precision,
which penalizes remote visibility latencies—the delay before an operation’s effect is observable at remote
replicas, due to the creation of false causal dependencies—two concurrent operations which are ordered as
an artifact of the metadata management. This tension between throughput and remote visibility latency is
inherent to previous work, and it is typically exacerbated when one wants to support partial replication.

This thesis proposes a set of techniques, which combined, alleviate this tension, allowing designers
of causally consistent geo-replicated systems to optimize both throughput and remote visibility latency
simultaneously, and attain genuine partial replication—a key property to ensure scalability when the number
of geo-locations increases. The key technique is a novel metadata dissemination service, which relies on
a set of metadata brokers, organized in a tree topology. This thesis experimentally demonstrates that,
when the topology is well configured, this mechanism allows to implement genuine partial replication and
optimize remote visibility latency while keeping the size of the metadata small and constant, crucial to
avoid impairing throughput. Furthermore, this service can be decoupled from the service responsible for
managing the data, promoting modular architectures for geo-replicated systems.

The metadata dissemination service assumes that each datacenter is able to serialize, in an order con-
sistent with causality, all updates issued locally. This thesis shows how it is possible to efficiently achieve
this by integrating services that operate out of the clients’ critical operational path.

We have built a prototype, namely SATURN, that integrates all the aforementioned techniques. SATURN
is designed as a metadata service that can be used in combination with several replicated data services. We
evaluate SATURN in Amazon EC2 using realistic benchmarks under both full and partial geo-replication.
Results show that weakly consistent datastores can lean on SATURN to upgrade their consistency guarantees
to causal consistency with a negligible penalty on performance: with only 2% reduction in throughput and
11.7ms of extra remote visibility latency in geo-replicated settings. Also, our extensive evaluation shows
that our techniques compare favorably to previous state-of-the-art solutions: SATURN exhibits significant
improvements in terms of throughput (38.3%) compared to solutions that favor remote visibility latency;
while exhibiting significantly lower remote visibility latency (76.9ms less on average) compared to solutions
that favor high throughput.

Résumé

La cohérence causale est devenue un élément clé parmi les nombreux modèles de cohérence et les
garanties de session client qui ont été proposés et mis en œuvre au cours de la dernière décennie. Il a été
démontré être le modèle de cohérence le plus fort qui ne compromet pas la disponibilité.

Malgré ses avantages, la cohérence causale n’est pas triviale à garantir : il faut garder une trace des dé-
pendances causales, et ensuite s’assurer que les opérations sont livrées dans un ordre causal. Fait intéressant,
la granularité à laquelle les dépendances causales sont suivies a un impact significatif sur la performance
du système. Lorsque l’on suit les dépendances causales avec précision, les coûts associés au traitement et
au transfert des métadonnées ont un impact significatif sur le débit. Il est possible d’atténuer cet impact
en compressant les métadonnées. Néanmoins, cela entraîne une perte de précision, ce qui pénalise la la-
tence de visibilité à distance—le délai avant que l’effet d’une opération ne soit observable sur des réplicas
distants—en raison de la création de fausses dépendances. Cette tension entre le débit et la latence de visi-
bilité à distance est inhérente au travaux de recherche antérieurs, et elle est typiquement exacerbée lorsque
l’on veut supporter une réplication partielle.

Cette thèse propose un ensemble de techniques qui atténuent cette tension, permettant aux concep-
teurs de systèmes géo-répliqués respectant la causalité d’optimiser le débit et la latence de visibilitè à dis-
tance simultanément, et d’obtenir une réplication partielle authentique—une propriété importante lorsque
le nombre de géo-localisations augmente. Nous encapsulons ces techniques dans un nouveau service de
diffusion de métadonnées, qui repose sur un ensemble de courtiers de métadonnées organisés selon une to-
pologie arborescente. La thése démontre expérimentalement que, lorsque la topologie est bien configurée,
ce service permet de réaliser une réplication partielle authentique et d’optimiser la latence de visibilité à dis-
tance tout en gardant la taille des métadonnées petite et constante, crucial pour maintenir le débit. De plus,
ce service peut être découplé du service de gestion des données, ce qui donne une architecture modulaire
pour les systèmes géo-répliqués.

Le service de diffusion des métadonnées suppose que chaque centre de données soit capable de sériali-
ser, dans un ordre compatible avec la causalité, toutes les opérations émises localement. Cette thèse montre
comment il est possible d’y parvenir efficacement en introduisant un nouveau service, Eunomia, qui opère
en dehors des chemins critiques des clients.

Nous avons construit un prototype, SATURN, qui intègre toutes les techniques mentionnées ci-dessus.
SATURN est conçu comme un service de métadonnées pouvant être utilisé en combinaison avec plusieurs
services de données répliqués. Nous évaluons SATURN dans Amazon EC2 en utilisant des tests réalistes
sous géo-réplication complète et partielle. Les résultats montrent que les services de données faiblement
cohérents peuvent s’appuyer sur SATURN pour obtenir la cohérence causale avec une pénalité négligeable
sur les performances : seulement 2% de réduction du débit et 11,7 ms de latence de visibilité à distance sup-
plémentaires dans un cadre géo-répliqué. En outre, notre évaluation approfondie montre que nos techniques
se comparent favorablement à l’état de l’art antérieur : SATURN présente des améliorations significatives en
termes de débit (38,3%) par rapport aux solutions qui favorisent la latence de visibilité à distance ; tout en
présentant une latence de visibilité à distance significativement plus faible (76,9 ms de moins en moyenne)
par rapport aux solutions qui favorisent un débit élevé.

Resumo

Apesar das suas vantagens, a coerência causal não é trivial de garantir: concretizar este modelo obriga
a manter um registo das dependências entre as operaões e a coordenar a aplicação destas operações em cada
centro de dados, de forma a respeitar estas dependências. Manter as dependências causais de forma precisa
obriga a manter e transferir uma quantidade significativa de metadados, o que limita o d’ebito do sistema.
É possível reduzir o tamanho dos metadados mas, tipicamente, isto obriga a perder precisão, criando falsos
positivos, isto é, sugerindo relações causa-efeito potencias que não correspondem a dependências reais, o
que amplifica a latência na entrega das mensagens. Esta tensão entre a latência e o débito é comum a todos
os trabalhos anteriores, e é tipicamente ampliada quando se pretende suportar replicação parcial.

Esta tese propõe novas estratégias para concretizar coerência causal em sistemas replicados suportando
replicação parcial que pretendem superar o compromisso entre o débito e a latência acima referido. A téc-
nica chave para conseguir este objectivo consiste na utilização de um serviço de propagação de informação
sobre as dependências causais, organizado na forma de um grafo acíclico de encaminhadores de metadados.
A tese mostra experimentalmente que, quando a topologia do grafo é escolhida de forma apropriada, é pos-
sível capturar as dependências causais recorrendo a poucos metadados e assegurar que os falsos-positivos
que resultam desta compressão não afectam de forma significativa a latência das operações, conciliando
desta forma o elevado desempenho com a baixa latência. Este serviço pode ser usado de forma desacoplada
dos processos de transferências do conteúdo das operações, promovendo arquitecturas de gestão de dados
replicados mais modulares.

O serviço de metadados pressupõe que cada centro de dados é capaz de seriar, de forma coerente com
a causalidade, todas as operações que são executadas localmente, antes de as propagar para o serviço de
metadados. Esta tese mostra como é possível integrar serviços que executam esta tarefa fora do caminho
crítico do cliente, como o Eunomia, de forma eficiente, de forma a criar uma arquitectura coerente para
gestão de coerência global em larga-escala.

Desenvolvemos um protótipo deste serviço de gestão de metadados, que designamos por SATURN.
Este protótipo foi construído de forma a facilitar a sua integração com diversos serviços de dados replica-
dos. Apresenta-se uma avaliação do SATURN, numa configuração que usa os serviços da Amazon EC2,
recorrendo a bancadas de teste realistas, em configurações com replicação total e replicação parcial. Os
resultados ilustram que as técnicas propostas, ao contrário dos trabalhos anteriores, conseguem de facto
oferecer garantias de coerência causal com uma degradação residual do débito e da latência, quando com-
paradas com sistemas que não fornecem quaisquer garantias de ordenação.

Keywords

Keywords
Causal consistency

Metadata service

Geo-replication

Partial replication

Key-value storage

Mots clés
Cohérence causale

Service de métadonnées

Géo-réplication

Réplication partielle

Stockage de clé-valeur

Palavras chave
Coereência causal

Serviço de metadados

Replicação geográfica

Replicação parcial

Armazenamento chave-valor

ix

Acknowledgments

I would like to deeply thank those that shared this journey with me and helped me along
the way.

First of all, I would like to thank my advisors Luís Rodrigues and Peter Van Roy,
without them this thesis would not have been possible. They were always supportive and
encouraging. Special thanks to Luís. Without his energy, ideas and guidance, this thesis
would only be a poorer version of itself. I am glad to have crossed paths with him once
again. I hope we keep in touch for many years.

To the SyncFree and LightKone family. It has been real pleasure to have participated in
both projects and have met so many inspiring people. Discussions with all the researchers
and practitioners involved definetely pushed my research forward. A special word for Valter
Balegas, Christopher Meiklejohn, Tyler Crain, Deepthi Akkoorath, Nuno Preguiça, Marc
Shapiro, João Leitão, Annette Bieniusa, Carla Ferreira, Rodrigo Rodrigues, and Carlos
Baquero.

To all the wonderful master students I was lucky enough to collaborate with, it is al-
ways very rewarding working with enthusiastic, bright young students. A special word to
Chathuri Gunawardhana. It was great working with her.

To my EMJD-DC, INESC-ID and UCL colleagues, especially to Shady Issa, Em-
manouil Dimogerontakis, João Loff, Vasia Kalavri, Jingna Zeng, Ying Liu, João Neto,
Ruma Paul, Cheng Li, Nancy Estrada, Paolo Laffranchini, Amin Mohtasham, Amin Kahn,
Sileshi Demesie, Subhajit Sidhanta, Pedro Joaquim, Diogo Barradas, Mennan Selimi, Daniel
Porto, Richard Martínez, and David Gureya for always being available to discuss ideas, and
for the good times we spent together.

A special mention to Alejandro Tomsic, Zhongmiao Li and Igor Zavalyshyn. They
belong to all the groups of people highlighted here as they are collaborators, colleagues and
overall friends. Without the countless conversations, lunches, dinners, and drinks shared,
these years would have been much tougher.

To Brussels, and Lisbon for being so entertaining, beatiful cities; and to their welcom-
ing people.

xi

xii

To all the people that took care of all the administrative matters at each of the universi-
ties. Special thanks to Vanessa Maons, Sophie Renard and Paula Barrancos.

Finally and most importantly, I would like to thank all the friends and members of my
family that made this journey more bearable. My parents Miguel and Mariangeles, my
sister Candela, and Virginia overall. A special mention to Pablo who visisted me countless
times, and shared many many musical, summer nights with me.

This work was supported in part by the Erasmus Mundus Joint Doctorate in Dis-
tributed Computing (EMJD-DC) funded by the Education, Audiovisual and Culture Ex-
ecutive Agency (EACEA) of the European Commission under the FPA 2012-0030; the
Fundação para a Ciência e Tecnologia (FCT) via projects PTDC/ EEI-SCR/ 1741/ 2014
(Abyss), UID/ CEC/ 50021/ 2013, and the individual doctoral grant SFRH/ BD/ 115972/
2016; the FP7 project 609 551 SyncFree; and the Horizon 2020 project 732 505 LightKone.

Madrid, 12 June 2018

Manuel Bravo

Contents

List of Figures xvii

List of Algorithms xix

List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis contributions . 3

1.2.1 Summary of contributions . 5
1.2.2 Summary of results . 5
1.2.3 Publications . 6

1.3 Outline . 7

2 Causal consistency: model & challenges 9
2.1 Causal consistency . 9

2.1.1 Why causal consistency . 9
2.1.2 Definition . 11
2.1.3 Causality in practice . 12

2.2 Throughput at odds with remote visibility latency 13
2.3 Is partial replication easy to adopt? . 14

2.3.1 A case for partial replication . 14
2.3.2 Efficient causal consistency in conflict with partial replication . . . 15
2.3.3 Genuine partial replication . 16

3 The design of Saturn 19
3.1 Design . 19

3.1.1 Overview . 20
3.1.2 Labels: structure and properties 22

3.2 Label propagation . 23
3.2.1 Rationale . 23
3.2.2 Selecting the best serializations 25
3.2.3 Architecture of the metadata dissemination service 25

3.3 The configuration problem: finding the topology 27

xiii

xiv CONTENTS

3.3.1 The configuration service . 27
3.3.2 Modelling the problem . 28
3.3.3 Configuration generator . 29

3.4 Datacenter operation: unobtrusive ordering 31
3.4.1 Client interaction . 32
3.4.2 Integration of the Eunomia service 34
3.4.3 Handling remote operations . 37
3.4.4 Client migration support . 37

3.5 Fault-tolerance . 38
3.5.1 Replicating Eunomia . 38
3.5.2 Failures in label propagation . 40

3.6 Adaptability . 40
3.6.1 Assisted (fast) reconfiguration . 40
3.6.2 Unassisted (slower) reconfiguration 41

4 Evaluation 43
4.1 Goals . 43
4.2 Implementation . 44
4.3 Setup . 45
4.4 Evaluating the internals of Saturn . 45

4.4.1 The architecture of SATURN matters 46
4.4.2 The importance of genuine partial replication 47
4.4.3 Impact of latency variability on SATURN 48

4.5 SATURN vs. the state-of-the-art . 49
4.5.1 GentleRain and Cure . 49
4.5.2 Throughput experiments . 51
4.5.3 Visibility latency experiments . 53
4.5.4 Facebook benchmark . 54

5 Related work 57
5.1 A taxonomy for causally consistent systems 57
5.2 Causally consistent replicated systems . 59

5.2.1 Sequencer-based solutions . 59
5.2.2 Solutions based on explicit check messages 64
5.2.3 Solutions that rely on background stabilization 66
5.2.4 Solutions based on lazy resolution 69
5.2.5 Other solutions . 71

5.3 Summary and comparison . 72
5.3.1 Summary of existing systems . 72
5.3.2 Correlation between metadata size and false dependencies 73
5.3.3 A comparison with SATURN . 74

6 Conclusion 77

CONTENTS xv

6.1 Aspects to consider when building causally consistent geo-replicated stor-
age systems . 77

6.2 Limitations of our approach . 78
6.3 Other explored directions and collaborations 80
6.4 Future work . 81

6.4.1 Supporting stronger semantics . 81
6.4.2 Moving towards edge computing 82
6.4.3 Coping with composed services 84

6.5 Final remarks . 84

Bibliography 87

List of Figures

1.1 Problems faced by current causally consistent geo-replicated storage systems.
Results are normalized against eventual consistency. The latencies among data-
centersLeft: Tradeoff between throughput and remote visibility latency. Right:
How partial replication affects remote visibility latency. 2

2.1 Social network interaction among three users: Alice, Bob and Joe. 12
2.2 Example of interaction among three datacenters in a partially replicated set-

ting. In the example, all three operations (each issued by a different client) are
logically serialized to minimize metadata (abc). Each operation only carries
(within brackets) its predecesor in the serialization as dependency. 16

3.1 General architecture. SATURN is integrated with a data service, which spans
multiple datacenters. System operators configure SATURN through a config-
uration service. Clients interact with the datacenters of the underlying data
service. 20

3.2 Label propagation scenario. 24
3.3 The configuration service. It is composed of two subcomponents: the solver

and the topology generator. 27
3.4 Datacenter operation. 31

4.1 Left: Ireland to Frankfurt (10ms); Right: Tokyo to Sydney (52ms) 46
4.2 Benefits of genuine partial replication in remote update visibility. 47
4.3 Impact of latency variability on remote update visibility in SATURN. 49
4.4 Dynamic workload throughput experiments: varying the operation’s payload

size (bytes) . 51
4.5 Dynamic workload throughput experiments: varying the read:write ratio 52
4.6 Dynamic workload throughput experiments: varying the correlation distribution 52
4.7 Dynamic workload throughput experiments: varying the percentage of remote

reads . 53
4.8 Left (best-case scenario): Ireland to Frankfurt (10ms); Right (worst-case sce-

nario): Ireland to Sydney (154ms) . 54
4.9 Facebook-based benchmark results. 55

xvii

xviii List of Figures

5.1 Remote update visibility (left) and throughput penalty (right) exhibited by Gen-
tleRain and Cure when varying the time interval between stabilization runs. . . 67

5.2 Graphic distribution of existing causally consistent systems based on the meta-
data size used to capture causal dependencies and the amount of false depen-
dencies that each solution generates. Colored cells represent the diagonal. M,
N, and K refers to the number of datacenters, partitions and keys respectively . 74

List of Algorithms

3.1 Find the best configuration. 30
3.2 Operations at frontend q of datacenter m 33
3.3 Operations at gear n of datacenter m (gm

n) 35
3.4 Operations at Eunomia of datacenter m 36
3.5 Operations at Eunomia replica ef . 39

xix

List of Tables

3.1 Notation used in the protocol description. 32

4.1 Average latencies (half round-trip-time) among Amazon EC2 regions 44

5.1 Summary of causally consistent systems. The metadata sizes are computed
based on the worst case scenario. M, N, and K refers to the number of dat-
acenters, partitions and keys respectively. I, P, DC and G refers to data-item,
partition, intra-datacenter and inter-datacenter false dependencies respectively.
These types of false dependencies are described in detail in §5.1. 76

xxi

Chapter 1

Introduction

In this first chapter of the dissertation, we motivate the work by arguing why the study of
efficient mechanisms to support causal consistency is of high relevance to both theoreti-
cians and practitioners. Furthermore, we describe two open challenges faced by designers
of causally consistent geo-replicated systems. In order to support this argumentation, we
present a motivational experiment involving two state-of-the-art, causally consistent geo-
replicated systems: GentleRain and Cure. Then, we describe the contributions of this the-
sis, enumerating a summary of its main contributions and results. Finally, we conclude
the chapter with a brief description of the content included in each of the chapters of this
document.

1.1 Motivation

Distributed data services are a fundamental building block of modern cloud services. These
aim at providing an always-on experience to millions of concurrent users, which expect
their requests to always be successfully served in a short period of time. Unfortunately, as
proved by the CAP theorem [32, 53], some of these tight availability, latency, and through-
put requirements are in conflict with data consistency. Specifically, the CAP theorem proves
that it is impossible to design a distributed system that it is always available, tolerant to net-
work partitions and strongly consistent.

As a result, a broad class of services have opted for favoring availability and partition
tolerant at the cost of strong consistency [44, 3, 66]. Nevertheless, the observation that
delegating consistency management entirely to the programmer makes the application code
error prone [15] have spurred the quest for meaningful weaker consistency models, which
allow the system to remain always available and can be supported effectively by a data
service.

Among the several consistency models proposed, causal consistency seems to be piv-
otal in the consistency spectrum, given that it has been proved to be the strongest consis-
tency model that does not compromise availability [13, 74]. In fact, ensuring that updates
are applied and made visible respecting causality has emerged as a key ingredient among

1

2 CHAPTER 1. INTRODUCTION

-20
-16
-12

-8
-4
 0

 3 4 5 6 7Th
ro

ug
hp

ut
 p

en
al

ty
 (%

) GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

R
em

ot
e

vi
sb

ilit
y

 la
te

nc
y

ov
er

he
ad

 (%
)

Number of datacenters

 0
 200
 400
 600
 800

5 4 3 2

R
em

ot
e

vi
sb

ilit
y

 la
te

nc
y

ov
er

he
ad

 (%
)

Replication degree

GentleRain

Figure 1.1 – Problems faced by current causally consistent geo-replicated storage systems.
Results are normalized against eventual consistency. The latencies among datacentersLeft:
Tradeoff between throughput and remote visibility latency. Right: How partial replication

affects remote visibility latency.

the many consistency criteria and client session guarantees that have been proposed and
implemented in the last decade. Mechanisms to preserve causality can be found in systems
that offer from weaker [98, 71, 9, 103] to stronger [92, 69, 20] consistency guarantees.

A causally consistent system guarantees that an update does not become visible to
users of that system until all its causal dependencies are also visible. Causal dependencies
among operations are established as clients interact with the system. Informally, an oper-
ation b depends on a second operation a, denoted a b, either because the client issuing
b has previously observed the effects of a or because she has observed the effects of an-
other operation c such that a c [67, 5] (§2.1.2 gives a more formal definition of causal
consistency). Ensuring this invariant, it is useful for applications such as social networks.
Consider, for instance, the interaction of Alice and Bob, two users of a social network. Al-
ice wants to share a photo with Bob. Thus, Alice first uploads the photo and then adds it to
an album, such that the album contains a reference to the photo. Under weaker consistency
models, such as eventual consistency, Bob could first read the album, getting a list of photo
references (in which the recently uploaded photo is included) and then try to read the photo
without success. Under causal consistency, updating the album will causally depend on the
photo. Therefore, if Bob reads a version of the album that includes the photo, Bob should
be able to successfully retrieve the photo.

Unfortunately, the designer of a causally consistent geo-replicated storage system is
still faced today with a dilemma: there appears to be a tradeoff between throughput and
remote visibility latency—the delay before an operation’s effect is observable at remote
replicas, derived from the granularity at which causality is tracked [28, 56]. Figure 1.1 re-
ports the results of an experiment that illustrates this tradeoff in current systems. In the two
plots starting from the left, we compare the performance of two state-of-the-art solutions,
GentleRain [49] and Cure [7]1. The former opts for a coarse-grained tracking by compress-

1We have chosen these two solutions for two main reasons. First, both solutions share a very similar

1.2. THESIS CONTRIBUTIONS 3

ing metadata into a single scalar. The latter opts for a more fine-grained approach by relying
on a vector clock with an entry per datacenter, an approach that most of the causally consis-
tent geo-replicated storage systems in the literature go for. The performance is compared
against a store that only guarantees eventual delivery, ensuring no consistency guarantees
and therefore requiring no metadata management. In this experiment—deployed in Ama-
zon EC2, we vary the number of datacenters from 3 to 7. The datacenters are added in
an order such that each addition increases the maximum latency between any two data-
centers. The average latencies among them are listed in Table 4.1. As it can be seen, by
keeping little metadata, GentleRain induces a low penalty on throughput but hampers re-
mote visibility latency. This is due to the large number of false dependencies inevitably
introduced when compressing metadata [39, 40] (a false dependency is created when two
concurrent operations are serialized as an artifact of the metadata management). The oppo-
site happens with Cure, that exhibits a low (constant) remote visibility latency penalty but
severely penalizes throughput due to the computation and storage overhead associated with
the metadata management [16, 49].

Furthermore, current solutions are not designed to fully take advantage of partial repli-
cation, a setting of practical relevance [41, 34] in which each datacenter may replicate
a different subset of the key-space. The culprit is that causal graphs (a directed graph
in which nodes are operations and the edges represent causal dependencies) are not eas-
ily partitionable. This fact may force sites to manage not only the metadata associated
with the data items stored locally, but also the metadata associated with items stored re-
motely [71, 16, 103]. Attempts to reduce this effect, by limiting the amount of metadata
managed at each site, magnifies the problem of false dependencies, forcing solutions to
delay the visibility of remote operations due to operations on data items that are not even
replicated locally. To illustrate this problem we run an experiment in which we start from
full replication incrementally decreasing the replication degree of each item, until only dat-
acenters close to each other replicate the same data. Figure 1.1 (far right plot) shows the
additional visibility latency that is introduced to enforce causal consistency, when using
GentleRain. One can observe that GentleRain is incapable of taking advantage of partial
replication, imposing longer delays as we reduce the replication factor.

This dissertation studies the fundamental tradeoff, derived from the accuracy in which
causality is tracked, between throughput and remote visibility latency, and its relation to
both full and partial replication. Is throughput always at odds with remote visibility la-
tency?

1.2 Thesis contributions
In this thesis, we propose a novel modular architecture that integrates a set of techniques,
which combined, demonstrate that it is possible to alleviate this tension such that both
throughput and remote visibility latency can be optimized simultaneously.

design with the difference being the amount of metadata used to track causality. This fact serves us to better
illustrate the tradeoff. Second, they are—from our perspective—the most scalable and performant solutions of
the literature.

4 CHAPTER 1. INTRODUCTION

The proposed architecture does a clear separation of the consistency concerns from
the responsibilities of the underlying storage system—such as replication and durability—
based on the separation between metadata and data management.

The key technique is a novel metadata dissemination service. This service is responsi-
ble for notifying datacenters about the order in which these must make remote operations
visible to local clients such that causal consistency is guaranteed. The service is devoted
exclusively to metadata management. We experimentally demonstrate that when the ser-
vice is well configured, it enables causally consistent data services to optimize throughput
and remote visibility latency simultaneously. In order to add minimal overhead due to
metadata handling, the service only requires managing small pieces of metadata, indepen-
dently of the number of clients, servers, partitions, and locations. This fact is a crucial
requirement to avoid impairing throughput. Unfortunately, due to the aggressive metadata
compression strategy, a large number of false dependencies is unavoidably generated. In
order to diminish its impact on remote visibility latency, the service exploits the fact that
causal consistency is a partial order to enforce at each datacenter a different serialization of
remote operations, crafted to maximize the performance of that datacenter.

The architecture of the metadata dissemination service is key to achieve these, a priori
conflicting, goals. The service is distributed geographically by means of a set of metadata
brokers organized in a tree topology. The fact that a tree topology permits ensuring causal
consistency trivially enables the service to only handle small pieces of metadata. Neverthe-
less, in order to optimize remote visibility latency not every tree topology is valid. In this
thesis, we propose a configuration service that finds a tree topology that optimizes the av-
erage remote visibility latency, given the latencies among the datacenters, a set of possible
locations where to place the metadata brokers and the relative importance of paths between
pairs of datacenters, reflecting the business goals of the application.

Interestingly, the tree topology is also key to support partial replication efficiently.
Thus, the metadata dissemination service only notifies datacenters about the order of those
remote operations replicated locally, omitting the order between these and other remote op-
erations of no local interest. This enables genuine partial replication, a desirable scalability
property that requires datacenters to manage only the data and metadata concerning items
replicated locally.

Finally, although the design of the metadata dissemination service is decoupled from
the implementation details of each datacenter, the service—naturally—needs to interact
with each datacenter. In this thesis, we also study the requirements imposed by the meta-
data dissemination service to the datacenter implementation. Specially relevant is the fact
that the metadata dissemination service requires each datacenter to generate a causal seri-
alization of the updates issued locally. This thesis addresses this problem and shows how
a service operating out of the client’s critical operational path is ideal to efficiently solve
it. Concretely, we demonstrate how to integrate an existing metadata serialization service,
namely Eunomia [59], with the metadata dissemination service and the rest of the intra-
datacenter components.

We have built a prototype, namely SATURN, integrating all these techniques that we

1.2. THESIS CONTRIBUTIONS 5

have deployed on Amazon EC2. Our evaluation using both microbenchmarks and a realistic
Facebook-based benchmark shows that eventually consistent systems can use SATURN to
upgrade to causal consistency with negligible performance overhead (namely, with only
2% reduction in throughput and 11.7ms of extra remote visibility latency in geo-replicated
settings) under both full and partial replication. Furthermore, our solution offers significant
improvements in terms of throughput (38.3%) compared to previous solutions that favor
remote visibility latency [7]; while exhibiting significantly lower remote visibility latency
(76.9ms less on average) compared to previous solutions that favor high throughput [49].

In the following subsections, we first summarize the main contributions and results of
this thesis. Then, we present a list of publications that include some of the results presented
in this document.

1.2.1 Summary of contributions
In summary, the primary contributions of this dissertation are as follows:

• The design of a modular architecture for ensuring causal consistency in geo-replicated
systems. The architecture does a clear separation of the consistency concerns from
the responsibilities of the underlying storage system—such as replication and durability—
based on the separation between metadata and data management.

• The design of a novel metadata dissemination service responsible for notifying data-
centers about the order in which these must make remote operations visible to local
clients such that causal consistency is guaranteed. This service leverages a set of
metadata brokers, organized in a tree topology, to handle the efficient dissemination
of causal metadata among datacenters.

• The design of a configuration service. Pre-configuring the metadata dissemination
service is fundamental for its well functioning. We model the problem of config-
uring the metadata dissemination service as an optimization problem and rely on a
heuristic technique that leverages a constraint solver to find a “good” configuration
in a reasonable amount of time.

• Specification of the requirements of service provided by the metadata dissemination
service and how it should interoperate with the data services’ components. Ulti-
mately, this resulted in the design of Eunomia, a metadata serialization service able
to efficiently generate a causal serialization of all operations local to a datacenter by
operating out of the clients’ critical operational path. The actual implementation of
Eunomia was carried out in [59].

1.2.2 Summary of results
The main results of this dissertation are as follows:

• The design and implementation of a variant of both GentleRain and Cure with sup-
port for partial replication.

6 CHAPTER 1. INTRODUCTION

• The design and implementation of SATURN, the first distributed metadata service for
causal consistency capable of efficiently supporting partial replication, and optimiz-
ing both throughput and remote visibility latency simultaneously.

• A tool to configure SATURN such that remote visibility latencies are optimized on
average, given a deployment and the application’s business goals.

• A sound and complete evaluation of the SATURN’s components, as well as a compar-
ison with GentleRain [49] and Cure [7], two of the most performant state-of-the-art
solutions.

1.2.3 Publications
Some of the results presented in this thesis have been published as follows:

• M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. Rodrigues. On the use of clocks
to enforce consistency in the cloud. IEEE Data Engineering Bulleting, 38(1):18-31,
2015 [28].

• M. Bravo, L. Rodrigues, and P. Van Roy. Towards a scalable, distributed metadata
service for causal consistency under partial geo-replication. In Proceedings of the
Doctoral Symposium of the 16th International Middleware Conference, Middleware
Doct. Symposium ’15, pages 5:1-5:4, Vancouver, BC, Canada, 2015 [29].

• M. Bravo, L. Rodrigues, and P. Van Roy. Saturn: A distributed metadata service for
causal consistency. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 111-126, Belgrade, Serbia, 2017 [30].

• C. Gunawardhana, M. Bravo, and L. Rodrigues. Unobtrusive deferred update sta-
bilization for efficient geo-replication. In Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX ATC ’17, pages 83-95, Santa
Clara, CA, USA, 2017 [59].

During my doctoral studies, I have also explored other directions and collaborated in
several projects that have helped me to get insights on the challenges of providing consis-
tency in geo-replicated systems. These efforts have led me to contribute to the following
publications:

• I. Briquemont, M. Bravo, Z. Li, and P. Van Roy. Conflict-free partially replicated
data types. In Proceedings of the 7th International Conference on Cloud Computing
Technology and Science, CloudCom ’15, pages 282-289, Vancouver, BC, Canada,
2015 [33].

• M. Bravo, P. Romano, L. Rodrigues, and P. Van Roy. Reducing the vulnerability
window in distributed transactional protocols. In Proceedings of the First Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC ’15, pages
10:1-10:4, Bordeaux, France, 2015 [31].

1.3. OUTLINE 7

• M. Couceiro, G. Chandrasekara, M. Bravo, M. Hiltunen, P. Romano, and L. Ro-
drigues. Q-opt: Self-tuning quorum system for strongly consistent software defined
storage. In Proceedings of the 16th Annual Middleware Conference, Middleware
’15, pages 88-99, Vancouver, BC, Canada, 2015 [42].

• C. Bartolomeu, M. Bravo, and L. Rodrigues. Dynamic adaptation of geo-replicated
crdts. In Proceedings of the 31st Annual ACM Symposium on Applied Computing,
SAC ’16, pages 514-521, Pisa, Italy, 2016 [21].

• D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,
and M. Shapiro. Cure: Strong semantics meets high availability and low latency.
In Proceeding of the IEEE 36th International Conference on Distributed Computing
Systems, ICDCS ’16, pages 405-414, Nara, Japan, 2016 [7].

In Chapter 6, we provide further details on how these results relate to this dissertation.

1.3 Outline
The remainder of this disseration is organized as follows.

Chapter 2 provides background on cloud services and causal consistency. Furthermore, we
discuss two fundamental aspects to consider when implementing causal consistency: the
tradeoff between throughput and remote visibility latency; and the challenges of adopting
partial replication.

Chapter 3 presents the design of SATURN, our prototype that integrates all the proposed
techniques. The chapter includes the description of the novel metadata dissemination ser-
vice; a solution to find the right configuration of the service such that remote visibility
latencies are optimized; a list of requirements that the service imposes to geo-replicated
dataservices; and its integration with metadata serialization services, such as Eunomia, that
operate out of the clients’ critical operation path. The chapter also discusses the fault-
tolerance and adaptability aspects of our approach.

Chapter 4 presents a complete and sound evaluation of our techniques. We evaluate each of
them individually, comparing them to alternative approaches. Also, we compare SATURN,
attached to a data service, to state-of-the-art causally consistent data services.

Chapter 5 proposes a taxonomy to classify existing causally consistent systems and dis-
cusses the most relevant existing solutions.

Chapter 6 concludes this dissertation with a list of take away messages, a discussion about
the limitations of our approach, a list of topics for future work, and final remarks.

Chapter 2

Causal consistency: model & challenges

In this chapter, we first discuss why causal consistency is relevant for today’s cloud ser-
vices. Then, we formally define it. Finally, we discuss two characteristics inherent to
causal consistency that should be taken into consideration when designing causally consis-
tent distributed database systems: the throughput vs. remote visibility latency tradeoff; and
why partial replication is at odds with metadata compression.

2.1 Causal consistency

2.1.1 Why causal consistency

To better understand why causal consistency is an interesting consistency criterium in prac-
tice, we first overview current cloud services architectures and the requirements they im-
posed over the distributed database systems they rely on to manage the application state.

Cloud services: architecture and requirements

Cloud services handle millons of client requests per second. These services are usually
composed of two tiers: the application tier and the storage tier. The former is composed
of a set of stateless servers that handle client requests by executing application code that
reads and updates the storage tier. The application tier shields clients from the internal
complexities of the storage tier; e.g. which machines to contact to read or update a specific
piece of data, or how many replicas are maintained. The latter maintains the application
state sharded across multiple servers and replicated among multiple datacenters.

These services would ideally require the distributed database system featuring the stor-
age tier to have the following properties:

1. Always-on. A cloud service should provides an “always on” user experience to keep
users engaged. This implies that the service is always available and that requests are
always served in a reasonable amount of time. Therefore, these systems have to be
tolerant to network partitions and should exhibit low latency.

9

10 CHAPTER 2. CAUSAL CONSISTENCY: MODEL & CHALLENGES

Network partitions occur within and across datacenters, as some recent studies report
[54, 19, 99]. For instance, a study that measures and analyses network failures in sev-
eral Microsoft datacenters reports that more than 13,300 network failures occurred
during one-year period whose effects were observable by end-users [54]. The study
also reports that it took five minutes to repair each failure on average, taking up to a
week for some of them.

Low latency is fundamental for cloud services to keep users engaged. In fact, studies
have shown that even small increases on latency have a direct negative impact on
revenue [46, 88, 70]. Ensuring low latency is challenging under geo-replication as
remote communication have substantial cost given the distance among datacenters.
For instance, among the São Paolo and Singapore Amazon EC2 regions, ping packets
exhibit an average 362.8ms round-trip-time [14]. Besides, the fact that a single user
request can be forked in thousand of sub-requests—as reported by Facebook [6]—
augments the problem.

2. Scalability. The database system should scale-out horizontally. Thus, cloud services
operators expect that, when adding new resources to the database system, the aggre-
gate computational and storage power increases accordingly. This is fundamental,
as the alternative, namely vertical scaling, could potentially make deployment cost
soar, given current load and the necessity to adapt to increases in load.

3. Strong consistency. Ideally, systems should ensure linearizability [60], the strongest
consistency model. This criterium creates the illusion that the distributed database is
a centralized component. This allows developers to reason more simply about what
to expect when reading and updating the database, greatly simplifying application
development. Under linearizability, operations seem to take effect in the entire sys-
tem at a single point in time between the moment in which the request is received
and the moment in which is completed (the moment the result of the operation is
sent to back to the user). Once the system acknowledges the completion of a write
operation on a item, all subsequent reads on that item will reflect the written state.
Linearizability precludes anomalies observable by end-users; e.g., a user that would
not observe its own writes, or a user that would observe a set of events in an order
that does not match reality (the order in which an external observer would witness the
succession of events). Also, under linearizability, maintaining application invariants
becomes trivial; e.g., keeping the balance of a bank account above zero.

Unfortunately, linearizability is expensive to implement in practice, specially under
geo-replication. The absence of consistency can be compensated by ad-hoc mech-
anisms at the application level, but this is error prone [15]. Thus, weaker, but still
meaningful, consistency models have been proposed; from stronger models such as
RedBlue consistency [69] to weaker models such as causal consistency [71].

2.1. CAUSAL CONSISTENCY 11

Casual consistency, a sweet spot

Unfortunately, some of the desirable properties are in conflict. As stated by the CAP the-
orem [32, 53], a replicated distributed system cannot offer strong consistency and ensure
availability (more concretely be tolerant to network partitions) simultaneously. As a result,
one property has to be sacrificed. Interestingly, cloud services have chiefly chosen to fa-
vor availability [44, 66], sacrificing consistency. Nevertheless, one does not have to give
up consistency completely. Weaker consistency models have been proposed that do not
compromise availability [98, 71, 97].

Causal consistency seems to be pivotal in the consistency spectrum, as it has been
proved to be the strongest consistency model that an “always-on” system can ensure [13,
74]. Thus, causal consistency is the strongest model that a distributed database system with
availability requirements can aim at, making the study of efficient mechanisms to support
causal consistency of absolute practical relevance.

2.1.2 Definition

Causal consistency defines intuitive semantics: it guarantees that, for any operation j, all
operations on which j causally depends, take effect before j. Causal dependences are
determined by the happened-before relation () [67, 5], which is defined by three rules:

1. Thread of execution: If a and b are two operations executed by the same thread of
execution (e.g., by the same client), then a b if a happens before b.

2. Reads from: If a is a write operation and b is a read operation that reads the value
written by a, then a b.

3. Transitivity: If a c and c b, then a b.

Definition 1 (Causal consistency). A data service is causally consistent if, when a certain
operation is visible to a client, then all of its causal dependencies are also visible.

Causal consistency precludes some consistency anomalies otherwise observable by
end-users under weaker consistency models, e.g., a set of comments in a social network
that are displayed in an order that make no sense from the point of view of the observer.
Figure 2.1 shows an example. A user Alice posts in a social network that Joe (another user)
is in the hospital. Subsequently, Alice discovers that it is nothing serious and comments
on her own post: “He is fine, already home”. A third user Bob, which is friend of Joe,
reads the second comment and reacts to it replying “That’s great!”. If causal consistency is
not enforced, when Joe logs in to the social network and reads the conversation, he could
observe Joe’s “That’s great!” comment before Alice’s “He is fine” comment (or not ob-
serve the latter at all), suggesting that Bob was actually celebrating the fact that Joe had
to go to the hospital. Under causal consistency, Joe could observe only the first comment
of Alice, the first and the second, or all of them, but never Bob’s comment without both
Alice’s comments.

12 CHAPTER 2. CAUSAL CONSISTENCY: MODEL & CHALLENGES

Alice

Bob

Joe is in the hospital :(He is fine, already home!⤳

That’s great!

⤳
non-causal

view

causal
view

Sad Joe

(

Happy Joe

(

Figure 2.1 – Social network interaction among three users: Alice, Bob and Joe.

Figure 2.1 also serves us to illustrate the three rules of the happened-before relation.
Both Alice’s comments are causally related due to the first rule (thread of execution). The
second comment of Alice causally precedes Bob’s, as Bob reads it before commenting.
This is due to the second rule (reads from). Finally, The first comment of Alice also causally
precedes Bob’s due to the third rule (transitivity).

Finally, an alternative way of thinking of causal consistency is as the set of all client
(or session) guarantees [97]. There are four: read-my-writes, monotonic-reads, monotonic-
writes, and writes-follow-reads. The read-my-writes guarantee ensures that writes made by
a client are visible to subsequent reads made by that client. The monotonic-reads guaran-
tee ensures that a read made by a client includes at least the effects of the writes already
observed by a previous read made by that client. The monotonic-writes guarantee ensures
that a write made by a client only takes effect after all previous writes made by that client.
Finally, the writes-follows-reads guarantee ensures that writes made by a client take effect
only after the writes whose effects were observed by reads made by that client. A database
system ensuring the four guarantees, ensures causal consistency [35].

2.1.3 Causality in practice

The great advantage of causal consistency over stronger consistency models is that transpar-
ently allows for asynchronous replication. This fact has significant impact on the properties
a cloud database can feature. First, operations can be completed in a single datacenter, re-
quiring no inter-datacenter coordination. The consequences of this fact are twofold: (i) the
system becomes tolerant to network failures (at least to the most damaging ones); (ii) long
communication round-trip-times are removed from the clients’ critical operational path,
allowing to achieve lower latencies. Second, casual consistency does trivially allow for
sharding, enabling horizontal scaling.

Practical implementations of causal consistency share a common pattern. Read and
writes are completed in a single datacenter without requiring synchronous coordination

2.2. THROUGHPUT AT ODDS WITH REMOTE VISIBILITY LATENCY 13

with other datacenters. Writes are tagged with a piece of metadata identifying operation’s
causal dependencies. Each datacenter asynchronously propagates local writes to the rest
of the datacenters replicating the data item being updated. The causal dependencies are
either tracked by the clients [71, 47] or by the datacenter servers [103, 9]. In most of
the implementations of causal consistency, the effects of a write operation cannot become
visible to clients in a datacenter until all operations, on which the write causally depends,
have taken effect in that datacenter. Some implementations simply defer applying writes
until the dependencies are known to have taken effect [103, 71]; others simply preclude its
visibility [49, 7].

2.2 Throughput at odds with remote visibility latency

Interestingly, precisely tracking dependencies have a significant impact on throughput. The
cost is associated to the computational and storage overhead derived from the amount of
metadata used to represent these dependencies. As a reaction to this problem, the commu-
nity have proposed solutions to reduce the amount of metadata being handled. One can
compress the metadata by serializing sources of potential concurrency. This is for instance,
considering that all write operations local to a datacenter happen one after the other, in-
stead of capturing the inherent concurrency of those operations performed concurrently by
different clients and on possibly different servers. Therefore, if one depends on two opera-
tions local to the same datacenter, it would be enough keeping track of only the operation
ordered last, reducing the amount of metadata used considerably.

Unfortunately, when compressing metadata, one penalizes remote visibility latencies.
We define remote visibility latency as the time interval between the instant in which an up-
date is installed at its originating datacenter and when it becomes visible at remote datacen-
ters. The fundamental problem is that when compressing metadata, one is fusing sources
of concurrency and thus creating false dependencies. A false dependency is created when
two concurrent operations are serialized as an artifact of the metadata management. Thus,
a datacenter receiving an operation that according to its “real” causal dependencies (those
captured by the three rules of the happened-before relation) could be applied locally im-
mediately, may have to defer its installation due to another operation, which is concurrent
according to the happened-before relation but that appears to be a causal dependency due
to the metadata compression.

Let us illustrate this with a simple example. Assume that we opt for serializing all
operations local to a datacenter. In this setting, if an operation c causally depends on two
other operations a and b, concurrent among them and local to the same datacenter, c only
has to carry one of the two as dependency: the operation that comes later in the serialization.
Therefore, assuming that a is serialized before b, c will only need to carry b as dependency,
as b will carry a as its own dependency, and by transitivity in order to make c visible, one
needs to have installed both a and b. This reduces the size of the metadata but adds a false
dependency between operations a and b, which are concurrent, forcing datacenters to wait
until a is visible before making b visible.

14 CHAPTER 2. CAUSAL CONSISTENCY: MODEL & CHALLENGES

The impact of increasing this latency is twofold. (i) Users observe a staler view of
the database, leading to a worse user experience and possibly impacting revenue for some
services; e.g., advertising services whose costumers pay based on the pre-agreed number
of ad imprints [11]. (ii) Users moving across datacenters experience longer delays. Users
may move due to roaming, failures or partial replication.

The research community has extensively explore this tradeoff; proposing solutions that
optimize throughput by aggressively compressing the metadata [49], solutions that barely
compress metadata [71, 47]—favoring remote visibility latency and solutions that opt for
an intermediate approach [7, 103, 9].

2.3 Is partial replication easy to adopt?
Surprisingly, most of previous solutions have been designed for a full replication setting in
which all datacenters replicate the full application state. Is partial replication a setting that
it is challenging to adopt under causal consistency or it is simply a setting not considered
previously? In this section, we take a closer look to this. First, we motivate why partial
replication is an interesting setting. Then, we discuss the fundamental challenges when
adopting partial replication under causal consistency. Finally, we define genuine partial
replication, which is ideally the type of partial replication that a solution should aim at
implementing.

2.3.1 A case for partial replication
Partial replication is a setting of practical relevance and has the potential of bringing sig-
nificant savings in deployment costs. We now list a set of anecdotical evidence and recent
studies that support our statement:

1. It is obvious that partial replication has the potential of bringing significant savings
in deployment costs. One of the fundamental reasons for services to replicate appli-
cation state in multiple distant locations is to reduce the end-user observable latency.
Nevertheless, it seems to be a waste of resources to replicate the full application
state, as a single user is usually not interested in accessing all data. Interestingly, in
some applications, there seems to be a correlation between the data accessed and the
geographical location of the users. For instance, A. Brodersen et al. [34] study the
geographic popularity of more than 20 millions of YouTube videos. The study con-
cludes that for about 50% of the videos, more than 70% of their views, correspond to
users belonging to a single geographical region. Therefore, minimizing the amount
of data shared among datacenters should be something to consider as it could bring
significant storage and operational savings, without impacting end-user observable
latency substantially.

2. Cloud service providers already consider partial replication when designing their dis-
tributed database systems; e.g., Google’s Spanner database [41], which is offered as
service to users of the Google Cloud Platform [2] and used by multiple Google cloud

2.3. IS PARTIAL REPLICATION EASY TO ADOPT? 15

services such as F1 [91], is specifically designed to allow applications to partition
data across different datacenters.

3. Interestingly, given the ever-growing massive amount of data handled by large cloud
services, it seems that partial replication will soon become the default setting for
them. For instance, Facebook reported in 2014 that “while the small data stores
are replicated globally, Facebook’s data warehouse cannot be stored in any single
datacenter, so it’s partitioned globally” [1].

4. Research community have acknowledged that the design of causally consistent database
systems with support for partial replication [71, 16, 103] is an interesting research
challenge. For instance, P. Bailis et al. state that “While weaker consistency models
are often amenable to partial replication (i.e., replicating to a subset of participants),
allowing flexibility in the number of datacenters required in causally consistent repli-
cation currently remains an interesting aspect of future work” [16].

5. Edge and fog computing are promising computing paradigms which aim at reducing
end-user latency and enhancing scalability by performing data processing at nodes
situated at the logical extreme of a network (closer to end-users). An edge network
therefore is composed by a set of heterogeneous computing nodes; e.g., points-of-
presence, mobile devices, datacenters, and more. Under these paradigms, partial
replication is mandatory, as the storage, computation and data transmission capabil-
ities of many of the devices situated on the edge are severely constrained.

2.3.2 Efficient causal consistency in conflict with partial replication
Implementing efficient causally consistent database systems requires minimizing the amount
of metadata being handled. As discussed before, when compressing metadata, we merge
sources of concurrency; e.g. serializing all operations local to a datacenter, all operations
on the same data item, or even all operations happening in the system. This allows solu-
tions to represent multiple causal dependencies as it is was only one, reducing the size of
the metadata. Unfortunately, this fact makes difficult for solutions to take full advantage of
partial replication.

Let us illustrate this with a simple example (Figure 2.2). Assume a deployment with
three datacenters dc1, dc2, and dc3 in which the metadata is compressed into a single scalar,
meaning that all operations happening in the system are serialized. Clients in dc1 issue two
operations a and b such that a is serialized before b. a has to be replicated in all datacenters,
b only in dc2. A client in dc2 reads the effects of b (once this has been installed in dc2) and
issues a third operation c such that c is serialized after b. c has to be replicated in dc3.
In order to take advantage of the metadata compression, each operation only carries as
dependency, the operation that precedes it in the serialization (benefiting from transitivity).
Thus, c can only be installed in a datacenter once b has been installed. Since dc3 is not
interested in b (e.g.; the data item updated by b is not replicated in dc3), one could say that
dc3 can install c immediately. This is false, as by transitivity, c depends on, not only b, but
also a. Therefore, in order to make c visible, dc3 has to ensure that all dependencies of b are

16 CHAPTER 2. CAUSAL CONSISTENCY: MODEL & CHALLENGES

b

a

b

c

a []

b [a]

a []

c [b]

Figure 2.2 – Example of interaction among three datacenters in a partially replicated
setting. In the example, all three operations (each issued by a different client) are logically

serialized to minimize metadata (abc). Each operation only carries (within brackets) its
predecesor in the serialization as dependency.

already installed, if replicated locally. Unfortunately, information about b’s dependencies
is only carried by operation b. This means that even though b does not need to be replicated
locally, it has to be received by dc3 (not necessarily the payload of the operation, but at
least the information regarding dependencies). The implication is twofold: (i) there is
some computational overhead as datacenters still need to handle at least the metadata of
some operations that are not replicated locally; (ii) this fact augments the problem of false
dependencies, affecting remote visibility latencies negatively.

The culprit is that causal graphs (a directed graph in which nodes are operations and
the edges represent causal dependencies) are not easily partitionable. Otherwise, one could
eliminate this problem by: (i) partitioning the application state in groups of data items
such that there will never be causal dependencies among operations mutating data items
belonging to different groups; (ii) serializing all operations mutating data items that belong
to the same group.

Of course, in our illustrative example, we are aggressively compressing metadata and
therefore the impact of this problem is more significant. Nevertheless, the problem is still
present in solutions that opt for a fine-grained tracking of causal dependencies such as [71],
as we later discuss.

2.3.3 Genuine partial replication

Among the possible implementations of partial replication, the most interesting, due to its
scalability properties, is genuine partial replication. Roughly speaking, a partially geo-
replicated database system is genuine if datacenters are required to manage only the data

2.3. IS PARTIAL REPLICATION EASY TO ADOPT? 17

and the metadata of the data items replicated locally. This enhance scalability. First, it
minimizes the computational overheads of non-genuine implementations, as these have
to handle metadata and possibly data of operations which are irrelevant locally. Second,
it shields the remote visibility latency of the operations being replicated locally from the
effects caused by operations on data items that are not replicated locally.

Genuineness was introduce in the context of atomic multicast in asynchronous dis-
tributed systems [57] to characterized scalable implementations of atomic multicast. R.
Guerraoui et al. [57] state that an atomic multicast implementation is genuine if only the
process that sends the message and the processes that have to receive it are involved in the
protocol required to deliver the message. Our definition is just a specialized variant in the
context of geo-replication, in which processes are datacenters. Genuine partial replication
has also been used to characterized distributed transactional protocols [85, 80].

We claim that a causally consistent geo-replicated database system should implement
genuine partial replication in order to take full advantage of partial replication.

Chapter 3

The design of Saturn

In this chapter, we describe the key techniques proposed in this thesis. We describe these
in detail as we present SATURN, a prototype that integrates them all. In Chapter 4, we use
SATURN to evaluate our techniques and compare them to state-of-the-art alternatives.

We first give a general view of the techniques integrated in SATURN and how all the
parts blend to achieve our goal: to alleviate the tension between throughput and remote
visibility latency inherent to causal consistency, while supporting scalable partial replica-
tion (§3.1). Second, we describe the main contribution of this thesis: a novel metadata
dissemination service that leverages a set of metadata brokers, namely serializers, orga-
nized in a tree topology to propagate causal metadata among datacenters (§3.2). Third, we
propose a method to configure the metadata dissemination service. Configuring the service
implies finding a tree topology that, given a deployment, permits the optimization of re-
mote visibility latencies. This step is key for the well functioning of SATURN. We model
the problem as an optimization problem and rely on a heuristic technique that leverages a
constraint solver to find a “good” solution in a reasonable amount of time (§3.3). Then, we
describe what the metadata dissemination service requires from data services in order to
be attachable (§3.4). Among the requirements, the metadata dissemination service requires
datacenters to serialize local updates in an order consistent with causality. In order to max-
imize the system’s throughput, SATURN integrates Eunomia [59], an existing fault-tolerant
datacenter service that efficiently undertakes this task at each datacenter. Finally, in the last
two sections of the chapter, we discuss the fault-tolerant and adaptability aspects of our
techniques.

3.1 Design
SATURN is a metadata service designed to be attached to already existing geo-replicated
data services to orchestrate inter-datacenter update visibility. SATURN aims at enforc-
ing causal consistency, with negligible performance penalty under both full and partial
geo-replication, such that: clients always observe a causally consistent state (as defined
in [5, 67]) of the storage system independently of the accessed datacenter. It follows that:
i) the metadata handled by SATURN has to be small and fixed in size, independently of the

19

20 CHAPTER 3. THE DESIGN OF SATURN

clients

system
operators dcndc2dc1

data service

configuration
service

specs
Saturn

Figure 3.1 – General architecture. SATURN is integrated with a data service, which spans
multiple datacenters. System operators configure SATURN through a configuration

service. Clients interact with the datacenters of the underlying data service.

system’s scale; ii) the impact of false dependencies [39, 40], unavoidably introduced when
compressing metadata, has to be mitigated; and, for obvious scalability reasons, (iii) a data-
center should not receive or store any information relative to data that it does not replicate
(i.e., it must support genuine partial replication [57]).

3.1.1 Overview

Figure 3.1 shows a schematic view of the parties involved. SATURN is attached to a data
service that spans multiple datacenters. These are geographically distributed and store the
application state. Clients interact with the datacenters by issuing read and update opera-
tions. SATURN is responsible for ensuring that causal consistency is always guaranteed
by orchestrating the dissemination of update operations among datacenters. To ensure the
well functioning of the system—the optimization of the remote visibility latency, SATURN

has to be configured by system operators through a configuration service in a prior step.
SATURN also integrates mechanisms to allow for online reconfiguration (§3.6).

SATURN is devoted exclusively to metadata management. Thus, it assumes the exis-
tence of some bulk-data transfer scheme that fits the application business requirements. The
decoupling between data and metadata management is key in the design of SATURN. First,
it relieves the datastore from managing consistency across datacenters, a task that may be
costly [16, 49]. Second, this separation permits SATURN to handle heavier loads indepen-
dently of the size of the managed data. To the best of our knowledge, SATURN is the first
decentralized implementation of a metadata manager for causal consistency (a centralized
metadata service has been previously proposed in [51]).

SATURN only manages small pieces of metadata, called labels, in order to add minimal
overhead due to metadata handling. Labels uniquely identify operations and have constant
size. In SATURN, datacenters are responsible for (i) generating labels (when clients issue
update requests), (ii) passing them to the SATURN’s metadata dissemination service, in an

3.1. DESIGN 21

order that respects causality, and (iii) attaching them to its corresponding update payload
before delivering the updates to the bulk-data transfer mechanism. SATURN integrates the
necessary mechanisms to support this efficiently. It includes a metadata serialization ser-
vice (§3.4), namely Eunomia [59], that totally orders all labels local (generated at) to a
datacenter in an order consistent with causality and pushes them to the SATURN’s metadata
dissemination service. Although the Eunomia service is not fundamental for the operation
of SATURN (other services, such as a sequencer, could be used instead), it is important to
attain high throughput. Finally, label generation and its subsequent attachement to opera-
tion payloads is handled by a subcomponent named gear, which is attached to each of the
datacenter’s servers.

SATURN is then responsible for propagating labels among datacenters and for deliv-
ering them to each interested datacenter in causal order. In turn, each datacenter applies
remote updates locally when it has received both the update payload (via the bulk-data
transfer mechanism), and its corresponding label from the metadata dissemination service.
SATURN exploits the fact that causal consistency is a partial order to diminish the impact of
false dependencies, otherwise created due to the constraint amount of metadata used. Thus,
SATURN delivers to each datacenter a different serialization of labels, which is crafted to
maximize the performance of that datacenter. In addition, labels include information w.r.t
the data being updated. Based on this information, SATURN can selectively deliver labels
to only the set of interested datacenters, enabling genuine partial replication.

The architecture of the metadata dissemination service (§3.2) is key to ensure the well
functioning of SATURN. The service leverages a set of metadata brokers, distributed geo-
graphically and organized in a tree topology, to propagate labels from the origin datacenter
to the possibly multiple destinations. Nevertheless not any tree topology is capable of op-
timizing the remote visibility latency. SATURN requires thus a prior step, before being
operational, to find the appropriate topology. In §3.3, we present a method that, given some
characteristics of the deployment and the application—e.g., the number of datacenters and
the latencies among them, finds a topology of metadata brokers that effectively optimizes
remote visibility latency. Roughly, the topology of metadata brokers must connect nearby
datacenters through fast paths and establish slower paths among distant ones.

We assume that clients communicate via the storage system (with no direct communi-
cation among them). A client normally connects to a single datacenter (named the preferred
datacenter). Clients may switch to other datacenters if they require data that it is not repli-
cated locally, if their preferred datacenter becomes unreachable, or when roaming. Clients
maintain a label that captures their causal past (more precisely, this is maintained by library
code that runs with the client). This label is updated whenever the client reads or writes
an item in the datastore if the new operation is not already included in the client’s causal
history. The client label is also used to support safe—without violating causality—client
migration among datacenters.

Finally, like many other competing systems [71, 72, 47, 49, 7], SATURN assumes that
each storage system datacenter is linearizable [60]. This simplifies metadata management
without incurring any significant drawback: previous work has shown that linearizability
can be scalably implemented in the local area [10], where latencies are low and network

22 CHAPTER 3. THE DESIGN OF SATURN

partitions are expected to only occur very rarely, especially in modern datacenter networks
that incorporate redundant paths between servers [8, 55].

3.1.2 Labels: structure and properties

SATURN implements labels as follows. Each label is a tuple 〈type, src, ts, target〉 that
includes the following fields:

• type captures the type of the label. SATURN uses two different label types, namely
update and migration. An update label is generated when a client issues a write
request. A migration label is created when a client needs to migrate to another data-
center. Migration labels are not strictly required to support client movement but may
speedup this procedure.

• src (source) includes the unique identifier of the entity that generated the label.

• ts (timestamp) is a single scalar.

• target: indicates either the data item that has been updated (meaningful for update
labels), or the destination datacenter (meaningful for migration labels).

Labels have the following properties:

Property 1 (Uniqueness). The combination of the ts and src fields makes each label unique.

Property 2 (Comparability). Let la and lb be two labels assigned to different updates by
SATURN. Assuming that source ids are totally ordered, we say that la < lb iff:

la.ts < lb.ts ∨ (la.ts = lb.ts ∧ la.src < lb.src) (3.1)

Labels can therefore be totally ordered globally. The total order defined by labels re-
spects causality. In particular, given two updates, a and b, if b causally depends on a
(denoted a b) then la < lb. Similarly to Lamport clocks [67], the converse is not nec-
essarily true, i.e. having lx < ly does not necessarily indicate that x y. In reality, x
could be concurrent with y and still lx < ly. This derives from the fact that causal order
is a partial order and, therefore, there are several serializations of the labels that respect
causality (the serialization defined by their timestamps is just one of these).

Interestingly, the fact that the timestamp order respects causality, enhances the robust-
ness and availability of the architecture. Therefore, in the unlikely case of a SATURN out-
age (SATURN has been implemented as a fault-tolerant service), a datacenter may always
fallback to make updates visible in timestamp order.

3.2. LABEL PROPAGATION 23

3.2 Label propagation

In this section, we present the design of the SATURN’s component in charge of propagating
labels among datacenters: the metadata dissemination service. We start with an intuitive
example that aims at introducing the tradeoffs involved in the design of this service and
at highlighting the potential problems caused by false dependencies. We then define pre-
cisely the goals that the metadata dissemination service should meet. Finally, we discuss a
concrete architecture for the service.

3.2.1 Rationale

The role of SATURN is to deliver, at each datacenter, in a serial order that is consistent with
causality, the labels corresponding to the remote updates that need to be applied locally.
Given that there may exist several serial orders matching a given partial causal order of
events, the challenge is to select (for each datacenter) the “right” serial order that allows
enhancing the system’s performance.

In many aspects, SATURN’s metadata dissemination service acts as a publish-subscribe
system. Datacenters publish labels associated with updates that have been performed lo-
cally. Other datacenters, which replicate the item associated, subscribe to those labels. SAT-
URN is in charge of delivering the published events (labels) to the interested subscribers.
However, SATURN has a unique requirement that, to the best of our knowledge, has never
been addressed by any previously designed publish-subscribe system: SATURN must mit-
igate the impact of false dependencies that are inevitably introduced when information
regarding concurrency is lost in the serialization process. As we have seen, this loss of
information is an unavoidable side effect of reducing the size of the metadata managed by
the system.

In this section, we use a concrete example to convey the intuition of the tradeoffs in-
volved in the design of SATURN to match the goal above. Consider the scenario depicted
in Fig. 3.2. Here, we consider a scenario with four datacenters. Some items are replicated
at dc1 and dc4 and some other items are replicated at dc3 and dc4. Let us assume that the
bulk-data transfer from dc1 to dc4 has a latency of 10 units while the transfer from dc3 to
dc4 has a latency of just 1 unit (this may happen if dc3 and dc4 are geographically close to
each other and far away from dc1). For clarity of exposition, let us assume that these delays
are constant. There are three updates, a, b and c. For simplicity, assume that the timestamp
assigned to these updates is derived from an external source of real time, occurring at time
t = 2, t = 4 and t = 6 respectively. Let’s also assume that b c and that a is concur-
rent with both b and c. The reader will notice that there are three distinct serializations of
these updates that respect causal order: abc, bac, and bca. Which serialization should be
provided to dc4?

In order to answer this question, we first need to discuss how the operation of SAT-
URN’s metadata dissemination service can negatively affect the performance of the system.
For this, we introduce the following two concepts: data readiness and dependency readi-
ness. Data readiness captures the ability of the system to provide the most recent updates

24 CHAPTER 3. THE DESIGN OF SATURN

Saturn (metadata transfer)

b(4)

bulk-data transfer

dc2

a(2) c(6) ?
1 u

10 u

dc3dc1 dc4
1 u

Figure 3.2 – Label propagation scenario.

to clients, as soon as its bulk-data transfer is completed. Dependency readiness captures
the ability of the system to serve a request, because all of its causal dependencies (both
real dependencies and false dependencies that are created as an artifact of the metadata
compression) have been previously applied.

Considering data readiness alone, we would conclude that SATURN should deliver la-
bels to remote datacenters as soon as possible. However, the reader may have noticed that
there is no real advantage of delivering label a before instant t = 12, as the update can only
be applied when the bulk-data transfer is completed. On the contrary, delivering label a
very soon may create a false dependency that may affect the dependency readiness of other
requests. Assume that SATURN opts to deliver to dc4 the labels in the serial order abc. This
is not only consistent with causality but also consistent with the real time occurrence of the
updates. Unfortunately, this serialization creates a false dependency among update a and
updates b and c, i.e., updates b and c need to be applied after update a as a result of the
serialization procedure. This introduces unnecessary delays in the processing of the later
updates: although update b and update c are delivered to dc4 at times 5 and 7 respectively,
they will have to wait until time 12 (while this was not strictly required by causality, given
that a is concurrent with b and c). A more subtle consequence is that a correct but “incon-
venient” serialization may increase the latency observed by clients. Assume that a client
reads from dc3 update b at time t = 5 and then migrates to dc4 (to read some item that
it is not replicated at dc3). That client should be able to attach to dc4 immediately, as by
time t = 5 update b has been delivered to dc4 and could be made visible. However, the
false dependency introduced by the serialization above requires the client to wait until time
t = 12 for the attachment to complete.

The example above shows that while trying to maximize data freshness by delivering
labels not after the data-bulk transfer of its corresponding operations is completed, SAT-
URN should avoid introducing false dependencies prematurely. A prematurely delivered
label may unnecessarily delay the application of other remote operations, having a nega-
tive impact on the latency experienced by clients and increasing remote updates visibility

3.2. LABEL PROPAGATION 25

latencies. Therefore, SATURN has to select a serialization per datacenter which does the
best tradeoff between these two aspects. In the example above, if a is only delivered at dc4
after b and c, by selecting the serialization bca, clients migrating from dc3 to dc4 would not
be affected by the long latency of the bulk-data transfer link from dc1 to dc4; and a, b and
c will become visible at dc4 as soon as the bulk-data transfer is completed.

3.2.2 Selecting the best serializations
In order to precisely define which is the best serialization that should be provided to a given
datacenter, we first need to introduce some terminology.

Let ui be a given update i performed at some origin datacenter dco, and li the label for
that update. Let ti be the real time at which the update was created at the origin datacenter
dco. Let dcr be some other datacenter that replicates the data item that has been updated.
Let ∆(dco, dcr) be the expected delay of the bulk-data transfer from the origin datacenter
to the replica datacenter. For simplicity of notation we assume that ∆(dco, dcs) = 0 if
datacenter s does not replicate the item, and therefore, it is not interested in receiving the
update. The expected availability time for the update at dcr would be ti + ∆(dco, dcr).
Finally letH(ui) = {uj , uk, ...} the set of past updates that are in the causal past of ui.

Definition 2 (Optimal visibility time). We then define the optimal visibility time, denoted
vtri of an update i at some replica dcr, as the earliest expected time at which that update
can be applied to dcr. The optimal visibility time of an update at a target datacenter dcr is
given by:

vtri = max(ti + ∆(dco, dcr), max
ux∈H(ui)

vtrx) (3.2)

From the example above it is clear that if the label li is delivered at dcr after vtri data
freshness may be compromised. If li is delivered at dcr before vtri , delays in other requests
may be induced due to false dependencies and lack of dependency readiness. Thus, SAT-
URN should—ideally—provide to each datacenter dcr a serialization that allows each label
li to be delivered exactly at vtri on that datacenter.

3.2.3 Architecture of the metadata dissemination service
SATURN’s metadata dissemination service is implemented by a set of metadata brokers,
namely serializers, in charge of aggregating and propagating the streams of labels col-
lected at each datacenter. We recall that our main goal is to provide to each datacenter a
serialization of labels that is consistent with causality. This can be obtained by ensuring
that serializers and datacenters are organized in a tree topology (with datacenters acting
as leaves), connected with FIFO channels, and that serializers forward labels in the same
order it receives them.

Let us illustrate its principles with the simplest example. Consider for instance a sce-
nario with 3 datacenters dc1, dc2 and dc3 connected to a single serializer S1 in a star net-
work. Consider a data item that is replicated in all datacenters and two causally dependent
updates to that item, a and b (a b), where a is performed at dc1 and b is performed at

26 CHAPTER 3. THE DESIGN OF SATURN

dc2 (both updates need to be applied at dc3). In this scenario, the following sequence of
events would be generated: a is applied at dc1 and its label is propagated to S1. In turn, S1
propagates the label to dc2 which, after receiving its payload (via the bulk-data transfer),
applies update a locally. Following, at dc2, some local client reads a and issues update b.
The label associated with b is sent to S1, that in turn will forward it to the other datacenters.
Since serializers propagate labels preserving arrival order, datacenter dc3 will necessarily
receive a before b, as S1 observes, independently of arbitrary network delays, a before b1.

Although a star network, with a single server, will trivially satisfy causality, such a
network may offer sub-optimal performance. In the previous section, we have seen that
the metadata dissemination service must deliver a label to a datacenter approximately at
the same time the associated bulk data is delivered; for this requirement to be met, the
metadata path cannot be substantially longer than the bulk data path. In fact, even if labels
are expected to be significantly smaller than data items (and therefore, can be propagated
faster), their propagation is still impaired by the latency among the SATURN serializers and
the datacenters. Consider again the example of Fig. 3.2: we want labels from dc3 to reach
dc4 within 1 time unit, thus any servers on that metadata path must be located close to those
datacenters. Similarly, we want labels from dc1to reach dc2 fast. These two requirements
cannot be satisfied if a single server is used, as in most practical cases, a single server
cannot be close to both geo-locations simultaneously.

To address the efficiency problem above we use multiple serializers distributed geo-
graphically. Note that the tree formed is shared by all datacenters, and labels are propagated
along the shared tree using the source datacenter as the root (i.e., there is no central root for
all datacenters). This ensures that we can establish fast metadata paths between datacenters
that are close to each other and that replicate the same data.

Resorting to a network of cooperative serializers has another advantage: labels regard-
ing a given item do not need to be propagated to branches of the tree that contain serializers
connected to datacenters that do not replicate that item. This fact enables genuine partial
replication at the data service: datacenters will only receive labels that correspond to the
data items replicated locally. Nevertheless, the metadata dissemination service itself is not
genuine as defined by R. Guerraoui et al. [57] (a multicast implementation is genuine if
only the process that sends the message and the processes that have to receive it are in-
volved in the protocol required to deliver the message) as in order to propagate a label from
the origin datacenter to a destination datacenter, this has to traverse a set of serializers,
which may include serializers located at a third datacenter location. Nevertheless, the fact
that the service is distributed prevents all serializers from processing all labels, contributing
to the scalability of the system.

Finally, since we expect labels to be disseminated faster that their correspondent bulkier
payloads, it may happen that labels become available for delivery before their optimal
visibility time. In fact, in current systems, and for efficiency reasons, bulk data is not

1One can easily derive a correctness proof for any tree topology based on the idea that for any two causally
related updates a and b (a b) such that b was generated at dci (this implies that a was visible at dci before b
was generated), the lowest common ancestor serializer between dci and any other datacenter interested in both
updates, observes a label before b label.

3.3. THE CONFIGURATION PROBLEM: FINDING THE TOPOLOGY 27

system
operators

configuration service
specs

Saturn

solver

topology
generator

number serializers
location serializers
topology
delays

latencies among datacenters
and candidate serializers
locations
workload characterization solve(tree)

{placement, delays, ranking}

Figure 3.3 – The configuration service. It is composed of two subcomponents: the solver
and the topology generator.

necessarily sent through the shortest path [62]. Thus, for optimal performance, SATURN

may introduce artificial delays in the metadata propagation, as discussed in §3.3.

3.3 The configuration problem: finding the topology
As discussed in the previous section (§3.2.3), SATURN relies on a network of metadata
brokers, organized in a tree topology, to disseminate the metadata among datacenters. Nev-
ertheless, in order to optimize remote visibility latencies not every tree topology is valid.
Thus, the quality of the serialization served by SATURN to each datacenter depends on how
the metadata dissemination service is configured.

In this section, we present a configuration service that can be used to find a SATURN’s
configuration that allows to optimize remote visibility latencies given a deployment and
certain application characteristics. This is a fundamental step that has to be done before
deploying SATURN in order to ensure the well functioning of the service.

3.3.1 The configuration service

The configuration service is composed of two main components: the topology generator
and the solver. The former iterates through multiple tree topologies and relies on the solver
component to determine the one that optimizes remote visibility latencies, given a deploy-
ment.

Figure 3.3 shows the interaction between these two components, the input that the
service expects, and the output that it generates.

Inputs

The configuration service expects the following inputs (the first three items of the list cor-
respond to the first input in Figure 3.3, the last item corresponds to the last input in the
figure):

• The set V of datacenters that need to be connected (we denote N = |V | the total
number of datacenters).

28 CHAPTER 3. THE DESIGN OF SATURN

• The latencies of the bulk data transfer service among these datacenters; latij denotes
the latency between datacenters i and j. Note that latij and latji are not necessarily
equal.

• The set W of potential locations for placing serializers (M = |W |). Note that,
in practice, when deploying SATURN, one has not complete freedom to select the
geo-location of serializers. Instead, the list of potential locations for serializers is
limited by the availability of suitable points-of-presence that results from business
constraints. Since each datacenter is a natural potential serializer location, W is
a superset of V and M ≥ N . Let dij denote the latency between two serializer
locations i and j.

• If available, a characterization of the workload generated by the applications using
the data service to which SATURN is attached, e.g.; the distribution of clients requests
among items and datacenters.

Outputs

The configuration service outputs a SATURN’s configuration. This is defined by:

• The number of serializers to use and where to place them.

• A topology: how these serializers are connected, among each other and with data-
centers.

• What delays (if any) should a serializer artificially add when propagating labels (in
order to match the optimal visibility time).

3.3.2 Modelling the problem

Given a limited set of potential locations to place serializers and the constraint of having
to organize them in a tree topology, it is unlikely (impossible in most cases) to match the
optimal label propagation latency for every pair of datacenters. Therefore, the best we can
aim when setting-up SATURN is to minimize the mismatch between the achievable label
propagation latency and the optimal label propagation latency.

The optimal label propagation latency is determined by the expected arrival time of
the data. It approximates the optimal visibility time (Equation 3.2) as follows. The latter
defines the earliest expected time at which an update can be applied at a remote (target)
datacenter. This time is determined by the time that it takes to propagate the update and its
causal dependencies to the target datacenter. Given that our architecture (the tree topology
of serializers) ensures that the label of an update is always serialized after its causal de-
pendencies, the best we can do is to approximate that the arrival time of an update’s label
matches the arrival time of that update’s payload.

Let us precisely model the optimization problem. Consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is composed by a set of serializers

3.3. THE CONFIGURATION PROBLEM: FINDING THE TOPOLOGY 29

PM
i,j = {Sk, ..., So}, where Sk connects to datacenter i and So connects to datacenter j.

The latency of this path ∆M (i, j) is defined by the latencies (d) between adjacent nodes in
the path, plus any artificial delays that may be added at each step—δij denotes the artificial
delay added by serializer i when propagating metadata to serializer j., i.e.:

∆M (i, j) =
∑

Sk∈P M
i,j \{So}

(dk,k+1 + δk,k+1) (3.3)

and the mismatch between the resulting latency and the optimal label propagation latency
is given by:

mismatchi,j = |∆M (i, j)−∆(i, j)| (3.4)

Finally, one can observe that in general, the distribution of client requests, among items
and datacenters may not be uniform, i.e., some items and some datacenters may be more
accessed than others. As a result, a mismatch that affects the data visibility of a highly
accessed item may have a more negative effect on the user experience than a mismatch on
a seldom accessed item. Therefore, in the scenario where it is possible to collect statistics
regarding which items and datacenters are more used, it is possible to assign a weight ci,j

to each metadata path PM
i,j , that reflects the relative importance of that path for the business

goals of the application. Using these weights, we can now define precisely an optimization
criteria that should be followed when setting up the serializers topology:

Definition 3 (Weighted Minimal Mismatch). The configuration that better approximates
the optimal visibility time (Equation 3.2) for data updates, considering the relative rel-
evance of each type of update, is the one that minimizes the weighted global mismatch,
defined as:

min
∑
∀i,j∈V

ci,j · mismatchi,j (3.5)

Note that we are summing the mismatches as we want to optimize the average remote
visibility latency. If one wants to optimize for the worst-case, the weighted minimal mis-
match should rather multiply mismatches.

3.3.3 Configuration generator

The problem of finding a configuration that minimizes the Weighted Minimal Mismatch
criteria, among all possible configurations that satisfy the constraints of the problem, is
NP-hard.2 Therefore, we have designed a heuristic that approximates the optimal solution
using a constraint solver as a building block. We have modeled the minimization problem
captured by Definition 3.5 as a constraint problem that for a given tree, the solver finds
the optimal location of serializers (for a given set of possible location candidates) and the
optimal (if any) propagation delays.

2A reduction from the Steiner tree problem [63] can be used to prove this.

30 CHAPTER 3. THE DESIGN OF SATURN

Algorithm 3.1 Find the best configuration.
1: function FIND_CONFIGURATION(V, Threshold)
2: 〈First, Second〉 ← PICK_TWO(V)
3: InitTree = rooted tree with First and Second as leaves
4: Trees← {InitTree}
5: V ← V \ {First, Second}
6: while V 6= ∅ do
7: NextDC← HEAD(V)
8: NewTrees← ∅ . ordered set
9: for all Tree ∈ Trees do

10: NTree← NEW_ROOTED(NextDC, Tree)
11: NTree.ranking← SOLVE(NTree)
12: NewTrees← NewTrees ∪ {NTree}
13: for all Edge ∈ Tree do
14: NTree← NEW_TREE(NextDC, Tree, Edge)
15: NTree.ranking← SOLVE(NTree)
16: NewTrees← NewTrees ∪ {NTree}
17: V ← V \ {NextDC}
18: Trees← FILTER(Threshold, NewTrees)
19: return HEAD(Trees)

The proposed algorithm, depicted in Alg. 3.1, works as follows. Iteratively, starting
with a full binary tree with only two leaves (Alg. 3.1, line 3), the algorithm generates
all possible isomorphic classes of full binary trees with N labeled leaves (i.e., datacenters).
The algorithm adds one labeled leaf (datacenter) at each iteration until the number of leaves
is equal to the total number of datacenters. For a given full binary tree T of f leaves, there
exist 2 ∗ f − 1 isomorphic classes of full binary trees with f + 1 leaves. One can obtain
a new isomorphic class by either inserting a new internal node within an edge of T from
which the new leaf hangs (Alg. 3.1, line 14), or by creating a new root from which the new
leaf and T hang (Alg. 3.1, line 10). We could iterate until generating all possible trees ofN
leaves. Nevertheless, in order to avoid a combinatorial explosion (for nine datacenters there
would already be 2,027,025 possible trees), the algorithm selects at each iteration the most
promising trees and discards the rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of ranked trees, if the difference
between the rankings of two consecutive trees T1 and T2 is greater than a given threshold,
T2 and all following trees are discarded (Alg. 3.1, line 18). At the last iteration, among all
trees with N leaves, we pick the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3.1 always returns a binary tree. Nevertheless, SATURN does not
require the tree to be binary. One can easily fuse two serializers into one if both are directly
connected, placed in the same location, and the artificial propagation delays among them
are zero. Any of these fusions would cause the tree to change its shape without reducing

3.4. DATACENTER OPERATION: UNOBTRUSIVE ORDERING 31

dc1

front
end

front
end

...

remote
proxy

dc2

bulk-data transfer

Saturn (metadata transfer)

dc3 dcn

...

Eunomia

Figure 3.4 – Datacenter operation.

its effectiveness.

3.4 Datacenter operation: unobtrusive ordering
The design of SATURN is decoupled from the implementation details of each datacenter.
In this way, SATURN can be cast to operate with different geo-replicated data services.
Naturally, SATURN needs to interact with each datacenter, and the datacenter implemen-
tation must allow attaching the hooks that provide the functionality required by SATURN:
the generation of labels associated with each update, the propagation of remote labels to
the local storage, and the capability of exporting a single serial stream—consistent with
causality—of labels, as if it were a logically centralized store, even when each datacenter’s
storage service spans multiple servers.

SATURN could employ well-known solutions to meet these goals. For instance, systems
with similar requirements [9, 103] resort to a logically centralized service (one at each data-
center) to address the problem of generating a single causal serialization of local updates.
This service, namely sequencer, totally orders local updates by assigning increasing se-
quence numbers. In order to trivially ensure that the total order derived from the sequence
is consistent with causality, the coordination between storage servers, which handle clients
requests, and the sequencer is done synchronously before returning to clients.

Unfortunately, sequencers are known to limit datacenter’s concurrency and increase
operation latencies. In order to use SATURN to the best advantage, we integrate Eunomia,
a recent metadata serialization service [59]. Eunomia is conceived to replace sequencers
as building blocks in weakly consistent geo-replicated storage systems. Unlike traditional
sequencers, Eunomia lets local client operations execute without synchronous coordination.
Then, in the background, Eunomia establishes a serialization of all updates occurring in
the local datacenter in an order consistent with causality, based on timestamps generated
locally by the individual servers that compose the datacenter. We refer to this process as site
stabilization procedure. Thus, Eunomia is capable of abstracting the internal complexity of
a multi-server datacenter without limiting the concurrency.

32 CHAPTER 3. THE DESIGN OF SATURN

M Number of datacenters
N Number of partitions

Labelc Client c label
pm

n Partition n at datacenter m
gm

n Gear attached to pm
n

Clockm
n Current physical time at pm

n

MaxTsm
n Greatest timestamp ever assigned by gm

n

la Label assigned to operation a
Labelsm Set of unstable labels at the Eunomia service of datacenter m

VectorTimem Vector with an entry per gear at the Eunomia service of datacenter m

Table 3.1 – Notation used in the protocol description.

In order to give full support to the functionality required by SATURN, together with the
Eunomia service (the fundamental piece), we have designed three more subcomponents,
as illustrated by Figure 3.4. Note that in the exposition, we assume that the key-space is
divided intoN non-overlapping partitions distributed among the storage servers composing
the datacenter. Table 3.1 provides a summary of the notation used in the algorithms. These
subcomponents have the following responsibilities:

• Stateless frontends shield clients from the details of the internal operation of the data-
center (how the key-space is partitioned, how many replicas of each item are kept,
etc). Frontends intercept client requests before they are processed by partitions—
therefore storage servers. They have two roles: (i) to ensure that clients observe a
causally consistent snapshot of the datastore; and (ii) to forward updates to responsi-
ble partitions and later return the labels assigned to the operations to clients.

• Gears are responsible for generating labels, and propagating the data and metadata
associated to each update. A gear is associated to each partition; it intercepts update
requests (coming from a frontend) and, once it is made persistent, ships the update
to remote datacenters via the bulk-data transfer service. Furthermore, it forwards
locally generated labels to the Eunomia service.

• The Eunomia service is a logically centralized component that collects all the labels
associated with the updates performed in the local datacenter and forwards them to
the metadata transfer service of SATURN, in a serial order that is compliant with
causality.

• The remote proxy applies remote operations in causal order. For this, it relies on the
order proposed by SATURN and on the label timestamp order as explained in §3.4.3.

3.4.1 Client interaction
Clients interact directly with the frontends through the client library. A frontend exports
four operations: attach, read, write, and migrate. The latter is described in §3.4.4. Algo-

3.4. DATACENTER OPERATION: UNOBTRUSIVE ORDERING 33

Algorithm 3.2 Operations at frontend q of datacenter m
. Handles the attachement of a client to a datacenter

1: function ATTACH(Labelc)
2: gk

n← Labelc.src . gear n of dc k
3: if k == m then . Labelc was locally generated
4: return ok
5: else . Labelc was remotely generated
6: WAIT_FOR_STABILIZATION(Labelc)
7: return ok
. Forwards an update request to the responsible storage server. Note the operation is
intercepted by the gear attached to it.

8: function UPDATE(Key, Value, Labelc)
9: server← RESPONSIBLE(Key)

10: send UPDATE(Key, Value, Labelc) to server
11: receive Label from server
12: return Label

. Forwards a read request to the responsible storage server. Note the operation is
intercepted by the gear attached to it.

13: function READ(Key)
14: server← RESPONSIBLE(Key)
15: send READ(Key) to server
16: receive 〈Value, Label〉 from server
17: return 〈Value, Label〉

. Forwards a migration request to any gear
18: function MIGRATE(TargetDC, Labelc)
19: gm

n ← GEAR(random_key) . gear n of local dc m
20: send MIGRATION(TargetDC, Labelc) to gm

n

21: receive Label from gm
n

22: return Label

rithms 3.2 and 3.3 describe how events are handled by frontends and gears, the two key
subcomponents to understand the generation of labels and the interaction with clients.

Attach. Before issuing an update, read, or migration request, a client c is required to
attach to a datacenter. Being attached to a datacenter m signifies that client c causal past
is visible in m and, therefore, c can safely interact with m without violating causality.
A client attaches to a datacenter by providing the latest label it has observed (stored in
the client’s library). The frontend waits until that label is causally stable, i.e., until it is
sure that all updates that are in the causal past of the client have been locally applied.
When this condition is met, it replies back to the client. From this point on, the client may
issue requests. The condition that indicates the stability of the presented label depends
on the type and source of the label. If the label was created on the same datacenter, the
fronted may return immediately (Alg. 3.2, line 4). If the label was created on a remote

34 CHAPTER 3. THE DESIGN OF SATURN

datacenter (Alg. 3.2, line 5), and it is of type migration (§3.4.4 discusses the generation of
this type of labels), it waits until SATURN delivers that label and all previous labels have
been applied (in the order provided by SATURN). Finally, if the label was created on a
remote datacenter, and it is of type update, the frontend waits until an update with an equal
or greater timestamp has been applied from every remote datacenter.

Update. A client c’s update request is first intercepted by the client library, then tagged
with the label that captures the client’s causal past (Labelc), and forwarded to any local
frontend. The frontend forwards the update operation to the local responsible partition
(Alg. 3.2, line 9). This operation is intercepted by the gear attached to that partition gm

n .
The gear first generates a new label for that update (Alg. 3.3, line 2). Then, the value and
its associated label are persistently written to the store. Subsequently, the update’s payload
—tagged with its corresponding label— is sent to the remote replicas (Alg. 3.3, lines 5–6),
and the label is handed to the local Eunomia service (Alg. 3.3, line 7). The new label is
then returned to the frontend that forwards it to the client library. Finally, the new label
replaces the client’s old label, capturing the update operation in the client’s causal past.

Read. A read request on a data item Key is handled by a frontend by forwarding the request
to the local responsible partition (Alg. 3.2, line 14). The request is intercepted by the gear
gm

n attached to the partition that returns the associated value and label (Alg. 3.3, line 11).
The label associated is the one assigned by gm

n to the update operation that generated the
current version. If the label associated with the value is greater than the label stored in the
client’s library (Labelc), the library will replace the old label by the new one, including thus
the retrieved update into the client’s causal past.

3.4.2 Integration of the Eunomia service

Eunomia requires that the labels, assigned by gears to client operations, satisfy the follow-
ing two properties.

Property 3 (Site-causality). Given two operations a and b, both local to the same data-
center, if a causally depends on b, then the timestamp assigned to lb (lb.ts) is strictly greater
than la.ts.

Property 4 (Gear-monotonicity). For two labels la and lb received by Eunomia coming
from the same gear gm

n , if la is received before lb then lb.ts is strictly greater than la.ts.

These two properties imply that labels are causally ordered across all gears and that
once Eunomia receives a label coming from a gear gm

n , no label with a smaller timestamp
will ever be received from gm

n .

Label generation. In addition to the restrictions imposed by Eunomia to the generation of
labels, SATURN requires labels to be unique and their timestamp order to respect causality,
not only within a datacenter (as the Property 3 of Eunomia) but across datacenters. Our
design ensures that labels guarantee these four properties

3.4. DATACENTER OPERATION: UNOBTRUSIVE ORDERING 35

Algorithm 3.3 Operations at gear n of datacenter m (gm
n)

. Updates the local store and propagates to remote datacenters
1: function UPDATE(Key, Value, Labelc)
2: Ts← GENERATE_TSTAMP(Labelc.ts)
3: Label← 〈update, Ts, gm

n , Key〉
4: ok← KV_PUT(Key, 〈Value, Label〉)
5: for all k ∈ REPLICAS(Key) \{m} do
6: send NEW_PAYLOAD(Label, Value) to k
7: send NEW_LABEL(Label) to Eunomia
8: return Label 5
. Reads the most recent version of Key from the local store

9: function READ(Key)
10: 〈Value, Label〉 ← KV_GET(Key)
11: return 〈Value, Label〉

. Generates a migration label
12: function MIGRATION(TargetDC, Labelc)
13: Ts← GENERATE_TSTAMP(Labelc.ts)
14: Label← 〈migration, Ts, gm

n , TargetDC〉
15: send NEW_LABEL(Label) to Eunomia
16: return Label

. Sends a heartbeat to Eunomia
17: function HEARTBEAT . Every δ time
18: if no update for δ time then
19: Ts← GENERATE_TSTAMP(0)
20: send HEARTBEAT(gm

n , Ts) to Eunomia
. Generates a timestamp larger than Min

21: function GENERATE_TSTAMP(Min)
22: MaxTsm

n ← MAX(Clockm
n ,MaxTsm

n + 1,Min+1)
23: return MaxTsm

n

First, the gear-monotonicity property is guaranteed by ensuring that each gear generates
monotonically increasing timestamps. As the combination of a label’s fields timestamp
and source make it unique, this also guarantees the uniqueness property. Second, ensuring
a causal order among labels requires that, when generating a label for an update issued
by some client c, the timestamp assigned to that label is strictly greater than all the labels
that c has previously observed. In SATURN, each client’s causal past is represented by the
greatest label the client has observed when interacting with the system (Labelc). Since
clients are not tied to a specific frontend, this label has to be stored in the client’s library
and be piggybacked with client requests. Therefore, upon an update request, gears only
need to guarantee that the timestamp of the label being generated (Alg. 3.3, lines 2 and 13)
is greater than the client’s label timestamp. Note that to ensure correctness, client libraries
have to update client’s labels (as described in §3.4.1) when they interact with SATURN

36 CHAPTER 3. THE DESIGN OF SATURN

Algorithm 3.4 Operations at Eunomia of datacenter m
. Queues a new label

1: function NEW_LABEL(la)
2: Labelsm← Labelsm ∪ la
3: VectorTime[gm

n]← la.ts

. Handles the reception of a heartbeat coming from a local gear
4: function HEARTBEAT(gm

n , Ts)
5: VectorTime[gm

n]← Ts
. Computes and processes stable labels

6: function PROCESS_STABLE . Every θ time
7: STime← MIN(VectorTimem)
8: SLabels← FIND_STABLE(Labelsm, STime)
9: PROCESS(SLabels)

10: Labelsm← Labelsm \ SLabels

frontends to ensure that all operations observed by the client are included in the client’s
causal past. Third, given that the Eunomia’s site-causality property is strictly weaker than
ensuring the global causal order of labels required by SATURN, the above method also
ensures the site-causality property of Eunomia.

Gears rely on hybrid clocks [64] to generate labels’ timestamps, which combine logical
and physical time (Alg. 3.3, lines 21–23). Although we could simply use logical clocks and
still be correct, the rate at which clocks from different partitions progress would depend on
the rate in which partitions receive update requests. This may cause Eunomia services to
process local updates in a slower pace and thus increase remote visibility latencies, as the
stable time is set to the smallest timestamp received among all partitions. Differently, phys-
ical clocks naturally progress at similar rates independently of the workload characteriza-
tion. This fact—previously exploited by [49, 7]—makes stabilization procedures resilient
to skewed load distribution. Unfortunately, physical clocks do not progress exactly at the
same rate, forcing protocols to wait for clocks to catch up in some situations in order to
ensure correctness [48, 49, 7, 50]. The logical part of the hybrid clock makes the protocol
resilient to clock skew by avoiding artificial delays due to clock synchronization uncertain-
ties [64]. Briefly, if a gear gm

n receives an update request with Labelc.ts> Clockm
n , instead

of waiting until Clockm
n > Labelc.ts to ensure correctness (monotonicity and causal order

among labels), the logical part of the hybrid clock (MaxTsm
n) is moved forward. Then,

when gm
n receives an update from any client, if the physical part Clockm

n is still behind the
logical (MaxTsm

n), the update is tagged with MaxTsm
n + 1.

Stabilization Procedure. When Eunomia receives a label from a given gear gm
n , it adds

it to the set of non-stable labels Labelsm and updates the gm
n entry in the VectorTimem

vector with the label’s timestamp (Alg. 3.4, lines 2–3). A label la is considered stable
when one is sure that no label with a smaller timestamp will be received from any gear
(i.e., when Eunomia is aware of all labels with timestamp la.ts or smaller). Periodically,
Eunomia computes the value of the maximum stable timestamp (STime), which is computed

3.4. DATACENTER OPERATION: UNOBTRUSIVE ORDERING 37

as the minimum of the VectorTimem vector (Alg. 3.4, line 7). Property 4 implies that no
partition will ever timestamp an update with an equal or smaller timestamp than STime.
Thus, Eunomia can confidently serialize all operations tagged with a timestamp smaller
than or equal to STime (Alg. 3.4, line 8). Eunomia serializes them in timestamp order,
which is consistent with causality (Property 3), and then hands them to SATURN’s metadata
dissemination service (Alg. 3.4, line 9). Note that non-causally related updates coming
from different partitions may have been timestamped with the same value. In this case,
operations are concurrent. Eunomia processes concurrent labels according to Property 2.

Heartbeats. If a gear gm
n does not receive a client update request for a fixed period of time

(δ), it will send a heartbeat including its current time to Eunomia (Alg. 3.3, lines 17–20).
Thus, even if a gear receives updates at a slower pace than others, it will not slow down the
processing of other gears updates at Eunomia. When Eunomia receives a heartbeat from
gm

n , it simply updates its entry in the VectorTimem vector (Alg. 3.4, line 5).

3.4.3 Handling remote operations
The remote proxy collects updates generated at remote datacenters and applies them lo-
cally, in causal order. A remote proxy has at its disposal two sources of information to
derive an order that does not violate causality: the timestamp order of the labels associ-
ated with the updates (that defines one valid serialization order), and the label serialization
provided by SATURN, which also respects causal order (although it may differ from the
timestamp order). As we will show in the evaluation section, SATURN can establish a valid
remote update serialization order significantly faster than what is feasible when just rely-
ing on timestamp values Therefore, unless there is an outage on the metadata service, the
serialization provided by SATURN is used to apply remote updates, and timestamp order is
used as a fallback. Moreover, these two causal serialization can also be leveraged by the
remote proxy to infer that two remote operations a and b are concurrent. Specifically, this
can be inferred if SATURN delivers their corresponding labels (la and lb) in an order that
does not match timestamp order. Since both serializations are consistent with causality, the
fact that they order two operations differently means that both operations are concurrent,
otherwise at least one of the serializations would not be consistent with causality. This can
be exploited by remote proxies to increase the parallelism when handling remote opera-
tions. By using this optimization, remote proxies can issue multiple remote operations in
parallel to the local datacenter.

3.4.4 Client migration support
Applications may require clients to switch between datacenters, especially under partial
replication, in order to read data that is not replicated at the client’s preferred datacenter.
In order to speedup the attachment at remote datacenters, SATURN (frontends specifically)
expose a migration operation. When a client c –attached to a datacenterm– wants to switch
to a remote datacenter, a migration request is sent to any local frontend fm

q , specifying the
target datacenter (TargetDC) and the client’s causal past Labelc. fm

q forwards the request
to any local gear. The receiving gear gm

n generates a new label and hands it to the local

38 CHAPTER 3. THE DESIGN OF SATURN

Eunomia service (Alg. 3.3, lines 13–15). gm
n guarantees that the generated label is greater

than Labelc to ensure that Eunomia hands it to SATURN after any update operation that c
has potentially observed. In turn, SATURN will deliver the label in causal order to the target
datacenter, which will immediately allow client c to attach to it, as c’s causal past is ensured
to be visible locally.

The procedure above, in particular the creation of a migration label, is not strictly re-
quired to support client migration, but aims at optimizing this process. In fact, when attach-
ing to a new datacenter, the client could just present the update label that captures its causal
past. However, the stabilization procedure could force the client to wait until an update
from each remote datacenter with a timestamp equal or greater than the timestamp of the
client’s label has been applied locally. The creation of an explicit migration label prevents
the client from waiting for a potentially large number of false dependencies.

3.5 Fault-tolerance
In this section, we discuss the fault-tolerant mechanisms of the components in charge of the
propagation of labels among datacenters: the metadata dissemination service and the intra-
datacenter metadata serialization service. We disregard others failures in datacenters—such
as partitions, as the problem of making data services fault-tolerant has been widely studied
and is orthogonal to the contributions of this thesis.

3.5.1 Replicating Eunomia

In §3.4, we have described how the Eunomia metadata serialization service integrates with
the metadata dissemination service and the rest of intra-datacenter components. Naturally,
as any other service in a datacenter, Eunomia must be made fault-tolerant. In fact, if Eu-
nomia fails, the site stabilization procedure stops, and thus, local updates can no longer
be propagated to other datacenters. Although these mechanisms are described in detail in
[59], for self-containment, we include here a brief description of the techniques used to
avoid such limitation. Our description of a fault-tolerant Eunomia service follows closely
the one presented in [59].

In the fault-tolerant version, Eunomia is composed by a set of Replicas. Algorithm 3.5
shows the behaviour of a replica ef of the fault-tolerant Eunomia service. We assume the
initial set of Eunomia replicas is common knowledge: every replica knows every other
replica and every gear knows the full set of replicas. Gears send labels and heartbeats
(Alg. 3.3, lines 7, 15 and 20) to the whole set of Eunomia replicas. The correctness of the
algorithm requires the communication between gears and Eunomia replicas to satisfy the
prefix-property [98]: an Eunomia replica rf that holds a label lb originating at gm

n also holds
any other label la originating at gm

n such that la.ts < lb.ts. This property can be ensured
with inexpensive protocols that offer only at-least-once delivery. Stronger properties, such
as inter-gear order or exactly-once delivery are not required to enforce the prefix-property.
Our implementation achieves the prefix-property by having each gear keeping track of the
latest timestamp acknowledged by each of the Eunomia replicas in a vector denoted as

3.5. FAULT-TOLERANCE 39

Algorithm 3.5 Operations at Eunomia replica ef

. Processes a new batch by queueing new labels
1: function NEW_BATCH(Batch, gm

n)
2: for all la ∈ Batch,VectorTimef [gm

n] < la.ts do
3: VectorTimef [gm

n]← la.ts
4: Labelsf ← Labelsf ∪ la
5: send ACK(VectorTimef [gm

n]) to gm
n

. Computes and processes stable labels
6: function PROCESS_STABLE . Every θ time
7: if Leaderf == ef then
8: STime← MIN(VectorTimef)
9: SLabels← FIND_STABLE(Labelsf , STime)

10: PROCESS(SLabels)
11: Labelsf ← Labelsf\ SLabels
12: send STABLE(STime) to Replicasf \ {ef}

. Discards already stable labels
13: function STABLE(STime)
14: SLabels← FIND_STABLE(Labelsf , STime)
15: Labelsf ← Labelsf\ SLabels
16: for all gm

n ∈ VectorTimef do
17: VectorTimef [gm

n]←MAX(VectorTimef [gm
n],STime)

. Sets the new leader
18: function NEW_LEADER(eg)
19: Leaderf ← eg

Ackn. Thus, to each Eunomia replica ef , a gear gm
n sends not only the lastest label but

the set of labels including all labels la such that la.ts >Ackm
n [f]. Upon receiving a new

batch of labels Batch (Alg. 3.5, lines 1–5), ef process it—in timestamp order—filtering out
those labels already seen, and updating both Labelsf and VectorTimef accordingly with
the timestamps of the unseen labels. After processing Batch, ef acknowledges gm

n includ-
ing the greatest timestamp observed from labels originating at gm

n (VectorTimef [gm
n]). Al-

though this algorithm adds redundancy as some labels are sent multiple times, it is resilient
to message loss and unordered delivery.

In addition, to avoid unnecessary redundancy when exchanging metadata among data-
centers, a leader replica is elected to propagate this information. The existence of a unique
leader is not required for the correctness of the algorithm; it is simply a mechanism to save
network resources. Thus, any leader election protocol designed for asynchronous systems
(such as Ω [38]) can be plugged into our implementation. A change in the leadership is no-
tified to a replica ef through the NEW_LEADER function (Alg. 3.5, line 19). The notion of a
leader is used to optimize the service’s operation as follows. When the PROCESS_STABLE

event is triggered, only the leader replica computes the new stable time and processes stable

40 CHAPTER 3. THE DESIGN OF SATURN

labels (Alg. 3.5, lines 7–10). Then, once the labels have been processed, the leader sends
the recently computed STime to the remaining replicas (Alg. 3.5, line 12). When a replica
ef receives the new stable time, it removes the labels already known to be stable from its
pending set of labels, since it is certain that those operations have been already processed
and sent to metadata dissemination service of SATURN (Alg. 3.5, lines 14–15).

3.5.2 Failures in label propagation

Although SATURN’s metadata service is instrumental to improve the global system per-
formance (in particular, to speedup update visibility and client migration), it is never an
impairment to preserve data availability. The fact that the global total order of labels de-
fined by timestamps respects causality makes SATURN robust to failures. Thus, even if the
metadata service suffers a transient outage, and stops delivering labels, updates can be still
applied based on the timestamp order (we recall that labels are also piggybacked in the
updates delivered by the bulk-data service).

A transient outage may be caused by a serializer failure or a network partition among
serializers. Both situations lead to a disconnection in the serializers tree topology, possi-
bly preventing the metadata service from delivering each label to all interested datacenters.
Failures in serializers can be tolerated using standard replication techniques. Our current
implementation assumes a fail-stop fault model [86], as serializers are made resilient to
failures by replicating them using chain replication [100]. Nevertheless, SATURN’s design
does not preclude the use of other techniques [87, 37] in order to weaken the fault assump-
tions that we have made when building the current prototype. Connectivity problems in
the tree may be solved by switching to a different tree, using the online reconfiguration
procedure described next.

3.6 Adaptability

Configuring SATURN is an offline procedure performed before the system starts operating.
Substantial changes in the workload characterization may require changes in the serializers
tree topology. A change to a new tree may be also required if connectivity issues affect the
current tree (backup trees may be pre-computed to speedup the reconfiguration).

In this last section of the chapter, we discuss two on-line reconfiguration protocols that
enable SATURN to switch among configurations: a fast reconfiguration that relies on the
old configuration to accelerate the transition, and a slower reconfiguration that must be
used when the metadata dissemination service in its current configuration is unusable.

3.6.1 Assisted (fast) reconfiguration

We have implemented a simple mechanism to switch among configurations without inter-
rupting SATURN’s operation. Let C1 denote the configuration currently being used. Let
C2 denote the tree configuration to which we have decided to switch. SATURN switches
configurations as follows:

3.6. ADAPTABILITY 41

• All datacenters input a special label, namely epoch change, in the system through the
C1 tree.

• At each datacenter, labels produced after the epoch change label are sent via the C2
tree.

• A datacenter can start applying labels arriving from the C2 tree as soon as it has re-
ceived the epoch change label for every datacenter and all previously received labels
delivered by the C1 tree have been applied locally.

• During the transition phase, labels delivered by the C2 tree are buffered until the
epoch change is completed.

This mechanism provides fast reconfigurations, namely, in the order of the largest la-
tency among the metadata paths in C1 (in our experiments, always less than 200ms).

3.6.2 Unassisted (slower) reconfiguration
When reconfiguring because C1 has failed, or if C1 breaks during the reconfiguration, the
following (slower) switching protocol is used:

• During the transition phase, updates are delivered in timestamp order and labels de-
livered by the C2 tree are buffered.

• A datacenter can start applying labels arriving from the C2 tree as soon as the update
associated with the first label delivered by C2 is stable in timestamp order.

In this case, the reconfiguration time is bounded by the time it takes to stabilize updates by
timestamp order.

Chapter 4

Evaluation

In this chapter, we present the evaluation of SATURN, our prototype. We evaluate SATURN

in Amazon EC2. In order to compare SATURN, a metadata service, to state-of-the-art so-
lutions, which are data services, we attach SATURN to a data service that only guarantees
eventual delivery: eventually, every update operation is received by each of the datacenters
that replicate the data item updated by the operation. This data service exhibits no perfor-
mance penalty due to consistency management. We also use it, detached from SATURN, as
baseline to quantify the performance overhead produced by our techniques.

The main result of the evaluation is the experimental demonstration that the techniques
integrated in SATURN are valid to build causally consistent geo-replicated systems that op-
timize both throughput and remote visibility latencies simultaneously. Our experiments
show that upgrading our baseline to causal consistency only produces a 2% of throughput
penalty and 11.7ms of extra remote visibility latency on average in both full and partial
geo-replicated settings. Also, we show that our techniques compare favorably to previ-
ous state-of-the-art solutions: SATURN exhibits significant improvements in throughput
(38.3%) compared to solutions that favor remote visibility latency such as Cure [7]; while
exhibiting significantly lower remote visibility latency (76.9ms less on average) compared
to solutions that favor high throughput such as GentleRain [49].

The chapter also presents a set of experiments that investigate few internal aspects of
the features included in SATURN. In §4.4.1, we experimentally demonstrate that the choice
of relying on a set of metadata brokers organized in a tree topology is key to optimize
remote visibility latencies. In §4.4.2, we show the benefits of genuine partial replication by
comparing SATURN to non-genuine solutions. Finally, in §4.4.3, we study the impact of
latency variability by artificially injecting extra delays between datacenters.

4.1 Goals

Our primary goal is to determine if, unlike previous work (see §4.5.1), a data service at-
tached to SATURN can simultaneously optimize throughput and remote update visibility
latency under both full and partial geo-replication. For this, we run SATURN and other

43

44 CHAPTER 4. EVALUATION

N. California Oregon Ireland Frankfurt Tokyo Sydney
N. Virginia 37 ms 49 ms 41 ms 45 ms 73 ms 115 ms

N. California - 10 ms 74 ms 84 ms 52 ms 79 ms
Oregon - - 69 ms 79 ms 45 ms 81 ms
Ireland - - - 10 ms 107 ms 154 ms

Frankfurt - - - - 118 ms 161 ms
Tokyo - - - - - 52 ms

Table 4.1 – Average latencies (half round-trip-time) among Amazon EC2 regions

relevant competing solutions under:

(i) Synthetic workloads that allow us to explore how the different parameters that char-
acterize a workload impact the performance (§4.5); and

(ii) A benchmark based on the Facebook’s dataset and access patterns, to obtain an as-
sessment of SATURN under complex realistic workloads (§4.5.4).

Secondarily, we evaluate a set of other characteristics of SATURN. First, we experiment
with alternative architectures of the metadata dissemination service to better understand its
impact on remote update visibility (§4.4.1) and the importance of genuine partial replication
(§4.4.2). We then study the impact of latency variability in SATURN (§4.4.3).

In order to compare SATURN with other solutions from the state-of-the-art (data ser-
vices), we attached SATURN to an eventually consistent geo-replicated data service we have
built. This service ensures eventual delivery: eventually, every update operation is received
by each of the datacenters that replicate the data item updated by the operation. Replication
between datacenters is done asynchronously. Throughout the evaluation, we use this data
service as the baseline, as it adds no overheads due to consistency management (remote op-
erations are not delivered in any specific order at each datacenter), to better understand the
overheads introduced by SATURN. Note that this baseline represents a throughput upper-
bound and a latency lower-bound. Thus, when we refer to the optimal visibility latency
throughout the experiments, we are referring to the latencies provided by the eventually
consistent system.

4.2 Implementation
Our SATURN prototype implements all functionality described in §3. It has been built
using the Erlang/OTP programming language. To balance the load among frontends at
each datacenter, we use Riak Core [23], an open source distribution platform.

Eunomia internally uses a red-black tree [58], a self-balancing binary search tree opti-
mized for insertions and deletions, which guarantees logarithmic search, insert and delete
cost, and linear in-order traversal cost. Note that for Eunomia to work, we need to store
a potentially large number of labels, coming from all the gears composing a datacenter,
and periodically traverse them in timestamp order when a new stable time is computed. In
our case, the red-black tree turned out to be more efficient than other self-balancing binary

4.3. SETUP 45

search trees such as AVL trees [4]: red-black trees are more efficient than AVL trees in
add/delete intensive tasks, the type of task demanded by our instantiation of Eunomia.

The SATURN’s configuration service is implemented in Scala. The solver, which mod-
els the optimization problem defined by Definition 3.5 and it is used by Algorithm 3.1, is
implemented using OscaR [96], a Scala toolkit for solving Operations Research problems.
The solver uses a depth-first search algorithm to find the optimal solution for a given tree.

4.3 Setup

We use Amazon EC2 m4.large instances running Ubuntu 12.04 in our experiments.
Each instance has two virtual CPU cores, and 8 GB of memory. We use seven different
regions in our experiments. Table 4.1 lists the average latencies we measured among re-
gions. Our experiments simulate one datacenter per region. Clients are co-located with
their preferred datacenter in separate machines. Each client machine runs its own instance
of a custom version of Basho Bench [22], a load-generator and benchmarking tool. Each
client eagerly sends requests to its preferred datacenter with zero thinking time: a client
issues her next request as soon as she gets the response on her previous request. We deploy
as many clients as necessary in order to reach the system’s maximum capacity, without
overloading it. Each experiment runs for more than 5 minutes. In our results, the first and
the last minute of each experiment are ignored to avoid experimental artifacts. We measure
the visibility latencies of remote update operations by storing the physical time at the ori-
gin datacenter when the update is applied locally, and subtracting it from the physical time
at the destination datacenter when the update becomes visible. To reduce the errors due
to clock skew, physical clocks are synchronized using the NTP protocol [77] before each
experiment, making the remaining clock skew negligible in comparison to inter-datacenter
travel time.

4.4 Evaluating the internals of Saturn

In this section, we experiment with a few aspects of SATURN.

In §4.4.1, we compare the architecture of the SATURN’s metadata dissemination service
(a multi-serializer architecture) to two alternative architectures: a centralized version in
which the architecture is composed of a single serializer; and a variant that completely
dispenses with serializers in which the metadata is not necessarily delivered in causal order
at each datacenter. Our experiment shows that our chosen architecture compares favorably
to both alternatives.

In §4.4.2, we show the benefits of genuine partial replication by comparing SATURN to
a non-genuine solution. The experiment shows how genuineness have a positive impact on
remote visibility latencies under partial replication.

Finally, in §4.4.3, we study the impact of latency variability by artificially injecting
extra delays among datacenters. We show that, unless a large latency variability is experi-

46 CHAPTER 4. EVALUATION

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250

C
D

F

Remote update

P-conf

 0 100 200 300 400 500
visibility (milliseconds)

M-conf S-conf

Figure 4.1 – Left: Ireland to Frankfurt (10ms); Right: Tokyo to Sydney (52ms)

enced, SATURN does not need to be reconfigured. In our experiment, only when the latency
between two datacenters is 5× the original, reconfiguring SATURN is worthy.

4.4.1 The architecture of Saturn matters

We compare different architectures of the metadata dissemination service to better under-
stand their impact on the system performance. We compare three alternative architectures:
(i) a centralized, single-serializer architecture (S), (ii) a multi-serializer architecture (M),
and (iii) a peer-to-peer version of SATURN that relies on the conservative label’s timestamp
order to apply remote operations (P). The P-architecture does not require the usage of seri-
alizers as an operation’s metadata is sent directly from the origin datacenter (the datacenter
local to the client that issued the operation) to the destination datacenters. We focus on the
visibility latencies provided by the different implementations.

For the S-architecture, we placed the serializer in Ireland. For the M-architecture, we
build the serializers tree by relying on Algorithm 3.1. We run an experiment with a read
dominant workload (90% reads). Figure 4.1 shows the cumulative distribution of the la-
tency before updates originating in Ireland become visible in Frankfurt (left plot) and before
updates originating in Tokyo become visible in Sydney (right plot). Results show that both
the S and M architectures provide comparable results for updates being replicated in Frank-
furt. This is because we placed the serializer of the S-architecture in Ireland, and therefore,
the propagation of labels is done efficiently among these two regions. Unsurprisingly, when
measuring visibility latencies before updates originating in Tokyo become visible in Syd-
ney, the S-architecture performs poorly because labels have to travel from Tokyo to Ireland
and then from Ireland to Sydney. Plus, results show that the P-architecture, that relies on
the label’s timestamp order, is not able to provide low visibility latencies in these settings.
This is expected as, when tracking causality with a single scalar, latencies tend to match
the longest network travel time (161ms in this case) due to false dependencies. In turn,
the M-architecture is able to provide significantly lower visibility latencies to all locations

4.4. EVALUATING THE INTERNALS OF SATURN 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280

C
D

F

Remote update visibility (milliseconds)

Saturn
Vector

Figure 4.2 – Benefits of genuine partial replication in remote update visibility.

(deviating only 8.2ms from the optimal on average).

4.4.2 The importance of genuine partial replication
In this section, we study the importance of genuine partial replication, a feature imple-
mented by SATURN. Apart from the obvious scalability gains that brings—each datacenter
only stores the data it replicates, genuine partial replication fully shields datacenters from
updates on data that it is not replicated locally.

The problem is that, when compressing metadata to make causal consistency afford-
able, without genuine partial replication, updates on data items that are not replicated lo-
cally, may negatively impact the visibility of other updates unnecessarily. Let us illustrate
this phenomenon with a simple example. Assume a system deployed in three datacenters
dc1, dc2 and dc3 that compresses metadata into a vector clock with an entry per datacenter
(V C). dc1 generates update a with vector [1, 0, 0], which has to be replicated in dc2 but
not in dc3; while dc2 generates update b with vector [1, 1, 0], which is replicated in dc3. a
does not depend on any other update. b is ordered after a. In this case, dc3 should be able
to make b visible as soon as it is received, as a is not replicated locally. Nevertheless, dc3
can only make b visible when it receives an update from dc1 such that can infer that a is not
replicated locally; i.e., by receiving an update from dc1 such that V C[dc1] > 1, assuming
FIFO links between datacenters.

In order to experimentally measure this phenomenon, we run a simple experiment in
which we compare SATURN with a system, namely Vector, that compresses metadata into
a vector with an entry per datacenter, as many solutions in the state-of-the-art do [7, 103,
59, 9]. The implementation of the latter is done on the codebase of SATURN by enriching
the metadata, removing the propagation tree and replacing it by a peer-to-peer propaga-
tion schema in which datacenters multicast local updates to only the datacenters that repli-
cate the data items being updated. Furthermore, a datacenter sends a heartbeat to another
datacenter if this did not propagate any update to it during the last 5ms. Heartbeats are
fundamental to ensure liveness and to reduce the negative impact of not having genuine

48 CHAPTER 4. EVALUATION

partial replication. We chose to compare to a solution that compresses the metadata into
a vector because it allows us to better assess the benefits of genuine partial replication. If
we compared to a system that compresses causal dependencies in a single scalar without
diminishing the impact of false dependencies [49], the potential gains of SATURN would
come from two sources: the mitigation of false dependencies and the implementation of
genuine partial replication. When comparing to Vector, the number of false dependencies
observed in SATURN will, in the best case, match the ones observed in Vector. Therefore,
the potential benefits would exclusively come from implementing genuine partial repli-
cation. We expect these benefits to be more substantial when compared to non-genuine
systems that compress metadata into a single scalar.

We deploy both systems in 7 datacenters. Clients at each datacenter randomly read and
update data items (each with potentially different replication groups) except for the clients
in N. Virginia that only update keys replicated locally and in Ireland; and the clients in
Ireland that only read the updates from N. Virginia and update data replicated locally and
in Sydney. The idea is to create situations as the described above to measure its impact
in both SATURN and Vector. Figure 4.2 shows a cumulative distribution of the latency be-
fore updates originating in Ireland become visible in Sydney. The results confirm that, by
implementing genuine partial replication, SATURN is shielded from this phenomenon, as
the latencies observed are considerably close to the averaged latency among the datacen-
ters. Vector, unlike SATURN, exhibits latencies that significant deviate from the average.
Starting from the 60th percentile, latencies start increasing significantly. For instance in the
90th percentile, Vector adds already 80ms of latency when compared to the ones observed
in SATURN. This is a strong result. It shows that using less metadata than other solutions,
SATURN is able to provide better visibility latencies under partial replication. Next sec-
tions further confirm this result and also demonstrate that the size of the metadata have a
significant negative impact in throughput.

4.4.3 Impact of latency variability on Saturn

The goal of this section is to better understand how changes in the link latency affect SAT-
URN’s performance. We have just seen that the correct configuration of the serializers’
tree has an impact on performance. Therefore, if changes in the link latencies are large
enough to make the current configuration no longer suitable, and these changes are perma-
nent, a reconfiguration of SATURN should be triggered. In practice, transient changes in
link latencies are unlikely to justify a reconfiguration; therefore we expect their effect on
performance to be small.

To validate this assumption, we set up a simple experiment with three datacenters, each
located in a different EC2 region: N. Carolina, Oregon and Ireland. For the experiment,
we artificially inject extra latency between N. Carolina and Oregon datacenters (average
measured latency is 10ms). From our experience, we expect the latency among EC2 regions
to deviate from its average only slightly and transiently. Nevertheless, to fully understand
the consequences of latency variability, we also experimented with unrealistically large
deviations (up to 125ms).

4.5. SATURN VS. THE STATE-OF-THE-ART 49

 0

 10

 20

 30

 40

 50

 60

0 25 50 75 100 125

E
xt

ra
 v

is
ib

ili
ty

 la
te

nc
y

(m
s)

Injected delay (ms)

T1
T2

Figure 4.3 – Impact of latency variability on remote update visibility in SATURN.

Figure 4.3 shows the extra remote visibility latency that two different configurations
of SATURN add on average when compared to an eventually consistent storage system
which makes no attempt to enforce causality. Both configurations, T1 and T2, use a single
serializer: configuration T1 places the serializer in Oregon, representing the optimal con-
figuration under normal conditions and configuration T2, instead, places the serializer in
Ireland.

As expected, under normal conditions, T1 performs significantly better than T2, con-
firming the importance of choosing the right configuration. As we add extra latency, T1
degrades its performance, but only slightly. One can observe that, in fact, slight deviations
in the average latency have no significant impact in SATURN: even with an extra delay of
25ms (more than twice the average delay), T1 only adds 14ms of extra visibility latency on
average. Interestingly, it is only with more than 55ms of injected latency that T2 becomes
the optimal configuration, exhibiting lower remote visibility latency than T1. Observing a
long and sustained increase of 55ms of delay on a link that averages 10ms is highly unlikely.
Indeed, this scenario has the same effect of migrating the datacenter from N. Carolina to
São Paulo. Plus, if such large deviation becomes the norm, system operators can always
rely on SATURN’s reconfiguration mechanism to change SATURN configuration.

4.5 Saturn vs. the state-of-the-art
We compare the performance of SATURN against eventual consistency and against the most
performant causally consistent storage systems in the state-of-the-art.

4.5.1 GentleRain and Cure
We consider GentleRain [49] and Cure [7] the current state-of-the-art. These solutions
are, from our perspective, the most scalable and performant solutions of the literature. We
do not compare to solutions that rely on sequencers to compress metadata because (i) the
Eunomia paper [59] already experimentally demonstrates that relying on Eunomia (the

50 CHAPTER 4. EVALUATION

metadata serialization service that our prototype integrates) to compress metadata is more
efficient than relying on sequencers, and (ii) GentleRain and Cure are representative of
most of the sequencer-based solutions in terms of the amount of metadata used, as most
of these use, as GentleRain, a single scalar [98, 81, 102, 43], or, as Cure, a vector with
an entry per datacenter [26, 65, 9, 103]. Note that all these solutions, unlike SATURN,
do not rely on clever metadata dissemination services. Therefore, the remote visibility
latency is mostly determined by the precision in which causality is tracked (the size of
the metadata). We have also experimented with solutions based on explicit dependency
checking such as COPS [71] and Eiger [72]. Nevertheless, we concluded that approaches
based on explicit dependency checking are not practical under partial geo-replication. Their
practicability depends on the capability of pruning client’s list of dependencies after update
operations due to the transitivity rule of causality [71]. Under partial geo-replication, this
is not possible, causing client’s list of dependencies to potentially grow up to the entire
database.

At their core, both GentleRain and Cure implement causal consistency very similarly:
they rely on a background stabilization mechanism that requires all partitions in the system
to periodically exchange metadata. This equips each partition with sufficient information
to locally decide when remote updates can be safely–with no violation of causality—made
visible to local clients. In our experiments, GentleRain and Cure’s stabilization mecha-
nisms run every 5ms following the authors’ specifications. The interested reader can find
more details in the original papers [49, 7]. We recall that SATURN does not require such a
mechanism, as the order in which labels are delivered to each datacenter already determines
the order in which remote updates have to be applied.

The main difference between GentleRain and Cure resides in the way causal consis-
tency is tracked. While GentleRain summarizes causal dependencies in a single scalar,
Cure uses a vector clock with an entry per datacenter. This enables Cure to track causal-
ity more precisely—lowering remote visibility latency—but the metadata management in-
creases the computation and storage overhead—harming throughput. Concretely, by rely-
ing on a vector, Cure remote update visibility latency lower-bound is determined by the
latency between the originator of the update and the remote datacenter. Differently, in Gen-
tleRain, the lower-bound is determined by the latency to the furthest datacenter regardless
of the originator of the update [49, 7, 59].

In order to guarantee a fair comparison between SATURN, GentleRain and Cure, we
have implemented our own version of the last two in the codebase of SATURN. The orig-
inal systems where implemented in different programming languages (GentleRain is im-
plemented in C++, and Cure and SATURN are implemented in Erlang/OTP). Also, Gen-
tleRain and Cure include extra features such as causally consistent read-only transactions,
or the integration of high level data types with rich confluent semantics (CRDTs) [36, 90]
that may be costly to support and add extra overhead unrelated to the cost of maintaining
causal consistency.

4.5. SATURN VS. THE STATE-OF-THE-ART 51

0

20K

40K

60K

80K

100K

120K

8 32 128 512 2048

T
hr

ou
gh

pu
t (

op
s/

se
c)

Eventual
Saturn

GentleRain
Cure

Figure 4.4 – Dynamic workload throughput experiments: varying the operation’s payload
size (bytes)

4.5.2 Throughput experiments

In the following set of experiments, we aim at understanding how different parameters of
the workload characterisation may impact SATURN’s throughput in comparison to state-of-
the-art solutions. We explore the workload space varying a single parameter, setting the
others to a fixed value. We play with multiple aspects (default values within the parenthe-
sis): values size (2B), read/write ratio (9:1), the correlation among datacenters (exponen-
tial), and the percentage of remote reads (0%).

Value size. We vary the size of values (operation’s payload) from 8B up to 2048B. Sizes
have been chosen based on the measurement study discussed in the work of Armstrong et
al. [12]. Results (Figure 4.4) show that all solutions remain unaffected up to medium size
values (128B). Nevertheless, as we increase the value size up to 2048B, solutions exhibit,
as expected, a similar behavior handling almost the same amount of operations per second.
This shows that, with large value sizes, the performance overhead introduced by GentleRain
and, above all, Cure, is masked by the overhead introduced due to the extra amount of data
being handled.

R/W ratio. We vary the read/write ratio from a read dominant workload (99% reads) to
a balanced workload (50% reads). Results (Figure 4.5) show that solutions are similarly
penalized as the number of write operations increases.

Correlation. We define the correlation between two datacenters, as the amount of data
shared among them. The correlation determines the amount of traffic generated in SAT-
URN due to the replication of update operations. We define four patterns of correlation:
exponential, proportional, uniform, and full. The exponential and proportional patterns fix
the correlation between the datacenters based on their distance. Thus, two datacententers
closely located (e.g., Ireland and Frankfurt) have more common interests than distant dat-
acenters (e.g., Ireland and Sydney). The exponential pattern represents a more prominent

52 CHAPTER 4. EVALUATION

0

20K

40K

60K

80K

100K

120K

50:50 75:25 90:10 99:1

T
hr

ou
gh

pu
t (

op
s/

se
c)

Eventual
Saturn

GentleRain
Cure

Figure 4.5 – Dynamic workload throughput experiments: varying the read:write ratio

0

20K

40K

60K

80K

100K

120K

exponential proportional uniform full

T
hr

ou
gh

pu
t (

op
s/

se
c)

Eventual
Saturn

GentleRain
Cure

Figure 4.6 – Dynamic workload throughput experiments: varying the correlation
distribution

partial geo-replicated scenario by defining very low correlation among distant datacenters.
The proportional pattern captures a smoother distribution. The uniform pattern defines
an equal correlation among all datacenters. Lastly, the full pattern captures a fully geo-
replicated setting. Results show that the more prominent the partial geo-replication sce-
nario is, the better results SATURN presents when compared to GentleRain and Cure, that
are required to send heartbeats constantly, adding an overhead when compared to SATURN.
Interestingly, even in the full geo-replicated scenario, the best case scenario for GentleRain
and Cure, SATURN still provides a throughput comparable to GentleRain and significantly
outperforms Cure (15.2% increase).

Remote reads. We vary the percentage of remote reads from 0% up to 40% of the to-
tal number of reads. Interestingly, results show (Figure 4.7) that GentleRain and, above
all, Cure are significantly more disrupted than SATURN by remote reads. To better under-
stand the cause of this behavior, we need to explain how remote reads are managed in our

4.5. SATURN VS. THE STATE-OF-THE-ART 53

0

20K

40K

60K

80K

100K

120K

0% 5% 10% 20% 40%

T
hr

ou
gh

pu
t (

op
s/

se
c)

Eventual
Saturn

GentleRain
Cure

Figure 4.7 – Dynamic workload throughput experiments: varying the percentage of
remote reads

experiments by GentleRain and Cure. As in SATURN, a client requiring to read from a
remote datacenter first needs to attach to it. An attach request is performed by providing
the latest timestamp observed by that client (a scalar in GentleRain and a vector in Cure).
The receiving datacenter only returns to the client when the stable time—computed by
the stabilization mechanism—is equal or larger than client’s timestamp. This significantly
slows down clients. Results show that with 40% of remote reads, SATURN outperforms
GentleRain by 15.7% and Cure by 60.5%.

We can conclude that SATURN exhibits a performance comparable to an eventually
consistent system (2.2% of overhead on average) while showing a slightly better throughput
than GentleRain (4.8% average) and significantly better than Cure (24.7% on average).
Cure overhead is dominated by the managing of a vector for tracking causality instead of
a scalar as in GentleRain and SATURN. Regarding GentleRain, SATURN exhibits slightly
higher throughput due to the overhead caused by GentleRain’s stabilization mechanism.

4.5.3 Visibility latency experiments

In the following experiment, we measure the visibility latency provided by each of the
systems. We expect SATURN to exhibit lower visibility latencies on average than both Cure
and GentleRain. We expect to slightly outperform Cure as we avoid the costs incurred by
Cure’s stabilization mechanism. We expect to significantly outperform GentleRain since
it does not mitigate false dependencies and the exhibited remote visibility latencies should
theoretically tend to match the longest travel time among datacenters.

In addition to measuring the average visibility latencies provided by each solution, we
analyze both the best and the worst case for SATURN. Given that serializers possible lo-
cations are limited, labels traversing the whole tree of serializers are likely to be delivered
with some extra undesired delay. Concretely, in the following experiment, the major de-
viation from the optimal latencies is produced by the path connecting Ireland and Sydney

54 CHAPTER 4. EVALUATION

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200

C
D

F

Remote update

Gentlerain Cure

 0 50 100 150 200
visibility (milliseconds)

Eventual Saturn

Figure 4.8 – Left (best-case scenario): Ireland to Frankfurt (10ms); Right (worst-case
scenario): Ireland to Sydney (154ms)

(extra 20ms).

For these experiments, we have used the default values defined in §4.5. Results show
that SATURN only increases visibility latencies by 7.3ms on average when compared to
the optimal, outperforming GentleRain and Cure that add 97.9ms and 21.3ms on average
respectively. Figure 4.8 shows the cumulative distribution of the latency before updates
originating in Ireland become visible in Frankfurt (left plot) and Sydney (right plot). The
former represents the best case scenario with no extra delay imposed by the tree. The
latter represents the worst case scenario. Figure 4.8 shows that SATURN almost matches
the optimal visibility latencies in the best case scenario (only 7ms of extra delay in the
90th percentile) and, as expected, adds an extra of 20.4ms (90th percentile) in the worst
case. Results also show that SATURN is able to provide better visibility latencies than both
GentleRain and Cure in the best case and to GentleRain in the worst case. As expected,
GentleRain tends to provide visibility latencies equal to the longest network travel time,
which in this case is between Frankfurt and Sydney. Interestingly, in SATURN’s worst case,
Cure only serves slightly lower latencies (3.6ms less in the 90th percentile). Although the
metadata used by Cure to track causality theoretically allows it to make visible remote
updates in optimal time, in practice, the stabilization mechanism results in a significant
extra delay.

4.5.4 Facebook benchmark

To obtain an assessment of SATURN’s performance under complex realistic workloads,
we experiment with a social networking workload we integrated into Basho Bench, our
benchmarking tool. Our workload generator is based on the study of Benevenuto et al. [24].
The study defines a set of operations (e.g., browsing photo albums, sending a message,
editing user settings among many others) with its corresponding percentage of occurrence.
This serves us not only to characterize the workload in terms of the read/write ratio, but

4.5. SATURN VS. THE STATE-OF-THE-ART 55

0

20K

40K

60K

80K

100K

120K

5 4 3 2

T
hr

ou
gh

pu
t (

op
s/

se
c)

Eventual
Saturn

GentleRain
Cure

(a) Throughput. The horizontal axis defines the maximum number of replicas per data item.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200

C
D

F

Remote update

Gentlerain Cure

 0 50 100 150
visibility (milliseconds)

Eventual Saturn

(b) Left (best-case scenario): Ireland to Frankfurt (10ms); Right (worst-case scenario): Ireland to
Tokyo (107ms).

Figure 4.9 – Facebook-based benchmark results.

it also tells us whether an operation concerns user data (e.g., editing settings), a friend’s
data (e.g., browse friend updates), or even random user data (e.g., universal search), which
relates to the number of remote operations.

We use a public Facebook dataset [101] of the New Orleans Facebook network, col-
lected between December 2008 and January 2009. The dataset contains a total of 61096
nodes and 905565 edges. Each node represents a unique user, which acts as a client in our
experiments. Edges define friendship relationships among users. In order to distribute and
replicate the data among datacenters (seven in total), we have implemented the partitioning
algorithm described in [82], augmented to limit the maximum number of replicas each par-
tition may have, to avoid partitionings that rely extensively on full replication. As in [82],
partitions are made to maximize the locality of data regarding a user and her friends, thus,
minimize remote reads.

We examine the throughput of SATURN in comparison to an eventually consistent sys-
tem, GentleRain, and Cure. Figure 4.9a shows the results of a set of experiments in which

56 CHAPTER 4. EVALUATION

we fix the minimum of replicas to 2, and vary the maximum from 2 to 5, which indirectly
varies the number of remote read operations. Results show that SATURN exhibits a through-
put comparable to an eventually consistent system (only 1.8% of averaged overhead) and
significantly better than GentleRain and Cure, handling 10.9% and 41.9% more operations
per second on average respectively.

In a second experiment, we measure the remote update visibility latency exhibited by
the solutions. SATURN increases visibility latencies by 16.1ms on average when compared
to the optimal, outperforming GentleRain and Cure that add 79.2ms and 23.7ms on average
respectively. In addition, we analyze the best and the worst case scenario for SATURN. Fig-
ure 4.9b shows the visibility latency of updates replicated from Ireland to Frankfurt (on the
left) and Tokyo (on the right). The former represents the best case scenario for SATURN;
the latter represents the worst. In the worst case scenario, SATURN introduces significant
overheads when compared to the optimal (47.2ms in the 90th percentile). This is expected,
as it has to traverse the whole tree. Nevertheless, it still exhibits a performance compa-
rable to both GentleRain and Cure, only adding 0.9ms and 9.9ms respectively in the 90th

percentile. Moreover, in the best case scenario, SATURN exhibits visibility latencies very
close to the optimal (represented by the eventually consistent line), with only a difference
of 8.7ms in the 90th percentile.

Chapter 5

Related work

This chapter describes, classifies and compares the most relevant techniques and solutions
proposed in the past. We focus on causally consistent systems. We do not include strongly
consistent systems such as Spanner [41] in our discussion, as in our opinion these are de-
signed to satisfy the needs of a different set of application designers. Causally consistent
solutions are proposed to help developers to program applications with strict availability
and performance requirements. In constrast, strongly consistent systems prioritize con-
sistency at the cost of penalizing performance: these require using coordination-intensive
protocols, such as distributed agreement [68, 78], to guarantee consistency.

We start by introducing a taxonomy that classifies previous systems based on the char-
acteristics of their solution and the features that integrate. Secondly, using our taxonomy,
we describe, in detail, each of the most relevant previous solutions. Then, we compare
them, discussing the advantages and disadvantages of each solution for different settings.
Finally, we briefly compare them to our work.

5.1 A taxonomy for causally consistent systems
We group solutions in four categories based on the key technique behind their implemen-
tation of causal consistency:

• Sequencer-based. This group of solutions rely on centralized components, com-
monly called sequencers, to compress causal metadata. Sequencers allow designers
to trivially serialize multiple sources of concurrency. Typically, solutions use a se-
quencer per datacenter, being able to compress causal metadata into a vector with an
entry per datacenter.

• Explicit check. This group of solutions tag remote updates with a list of explicit de-
pendencies. Upon arrival to a remote datacenter, dependencies are locally checked by
issuing a set of dependency check messages to the corresponding datacenter servers.

• Background stabilization. This group clusters solutions that rely on some sort of
background stabilization. These mechanisms are typically used to ensure that re-

57

58 CHAPTER 5. RELATED WORK

mote operations are only made visible in a datacenter to local clients when its causal
dependencies are already visible locally.

• Lazy resolution: Finally, this last group clusters solutions that allow datacenters to
install remote operations as these are received without any consistency check. Then,
causality is enforced when clients read by ensuring that the version returned is not in
conflict with clients’ causal history (what a client has already observed).

Within each of the above groups, we characterize each solution based on four cate-
gories:

• Metadata size: This category characterizes the amount of metadata a solution uses
to capture causal dependencies. Under causal consistency, datacenters replicate lo-
cal operations asynchronously in other datacenters. In order to make remote updates
visible in an order that does not violate causal consistency, operations are tagged
with a piece of metadata, capturing operations’ causal dependencies. The size of the
metadata is usually proportional to some characteristics of the system. For instance,
it can be proportional to the number of datacenters, or to the number of data items.
When metadata is not compressed, the size its variable and proportional to the num-
ber of causal dependencies each operation has. In solutions in which the metadata is
aggressively compressed, its size is constant independently of the system characteri-
zation. We introduce the following notation: M denotes the number of datacenters;
N the number of partitions per datacenter (we assume that each datacenter is equally
partitioned to simplify the notation); and K the total number of data items.

• False dependencies: The metadata structure determines, in most of the cases, the
amount of false dependencies artificially created by the solutions. This category
quantifies the number of false dependencies introduced as an artifact of the metadata
management. We identify four types of false dependencies: data-item (I) that rep-
resents dependencies among concurrent update operations over the same data item
local to different replicas, partition (P) that represents dependencies among concur-
rent update operations on data items belonging to the same logical partition or shard,
intra-datacenter (DC) that represents dependencies among concurrent update opera-
tions local to the same datacenter, inter-datacenter (G) that represents dependencies
among concurrent update operations local to different datacenters.

Note that not all types of false dependencies are equally damaging. Out of the
four, the inter-datacenter (G) is the most harmful one. This is because a G-false-
dependency will force a datacenter to prevent the installation of a remote update
coming from a nearby datacenter until the false dependency, originating at a farther
datacenter, is received. Given that latencies among datacenters can be of more than
160ms (see Table 4.1), this type of false dependencies will add significant extra de-
lays in remote visibility latencies. Contrary, other types of false dependencies, such
as the intra-datacenter type, will impact the remote visibility latency less signifi-
cantly, as the latency among parties is of few milliseconds at the most.

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 59

• Partial replication support: This category captures the ability of the systems to
support partial replication or not (whether this setting was considered in the design
or not). A system can be characterized as one of the following: no support if they
assume full replication, non-genuine if it supports partial replication but it is no gen-
uine, or genuine if the solution implements genuine partial replication.

• Type of dissemination: Solutions propose different ways of disseminating updates
among replicas. In previous work, we have identified three schemes:

– The all-to-all scheme in which only the update’s origin datacenter (the one local
to the client that issued the update operation) propagates to the rest of interested
datacenters.

– The pair-wise scheme in which datacenters periodically synchronize pair-wise:
one datacenter propagates to a second datacenter all update operations (origi-
nated in any datacenter) that have not been seen by the latter.

– The master-slave scheme in which each data item gets assigned a master replica.
Updates are all first executed in the master replica and then propagated to the
slave replicas. Reads can generally be executed at any replica (master or slave).

5.2 Causally consistent replicated systems

In this section, we describe the most relevant solutions. For each of the groups introduced
before, we first describe in detail how each technique works and discuss its advantages
and disadvantages. Then, we describe each solution characterizing it based on our four
categories: metadata structure, false dependencies, partial replication support and type of
dissemination; and briefly discussing additionally features that may integrate.

5.2.1 Sequencer-based solutions

Sequencers are centralized components that trivially enable metadata compression, key to
efficiently implement causal consistency. Imagine a database system, in which the appli-
cation state is sharded among multiple servers, and therefore, update requests may be han-
dled in parallel by different servers. Having a sequencer allows these servers to establish
a total order—compliant with causality—among clients’ update requests without requiring
explicit coordination among them, as this coordination is done through the sequencer. In
such a setting, before an update is considered completed, and thus made visible to other
clients, the sequencer is contacted. This assigns a timestamp to the request. The sequencer
proposes increasing timestamps (usually monotonically increasing), establishing thus a to-
tal order among update requests that is a linear extension of the causal order defined by
them. It is simple to see that the total order is compliant with causality. An update request
a can only be a causal dependency of another update b, if a was completed before b: either
because both were executed one after the other by the same client, the client that executed b

60 CHAPTER 5. RELATED WORK

observed a before, or by transitivity (§2.1.2). Therefore, if a b, the sequencer would as-
sign a timestamp to a before than to b. Since the sequencer assigns increasing timestamps,
a will be ordered before b in the total order, consistently with causality.

Having a central serialization point, instead of having to devise a distributed algorithm
among the entities that one wants to serialize, greatly simplifies the problem. Unfortunately,
to ensure that the total order is consistent with causality, sequencers have to operate in the
critical operational path of clients, limiting concurrency. Thus, sequencers represent, not
only single points of failure, but also potential performance bottlenecks. The system’s
throughput upper-bound is then limited by the amount of requests a sequencer can order
per unit of time. Furthermore, delays on the sequencer are directly observable by end-users.

Typically, sequencer-based solutions rely on a sequencer per datacenter [98, 43, 26,
65, 103, 9]. This way, the metadata is compressed into a Vector of scalars with an entry
per datacenter. The vector indicates on which update from each datacenter, the update
b tagged with Vector, depends. Thus, Vector[dc1] indicates that update b depends on all
updates generated in dc1 with timestamp ts (assigned by the sequencer local to dc1) such
that ts≤Vector[dc1]1. Thus, a datacenter can only make a remote update visible once all its
dependencies are already visible locally.

Note that some of the solutions [26, 65, 43, 98] we are including in the group of
sequencer-based solutions do not explicitly use sequencers, as they assume single-machine
replicas. Nevertheless, we argue that in order to adapt their design to the multi-server archi-
tecture of current datacenters, using a sequencer is the most straightforward way of doing
it.

Another relevant, common characteristic of this group of solutions is that they require
a logically-centralized, unique receiver per datacenter. This fact adds another single point
of failure and makes these solutions not only bounded performance-wise by the sequencer
capacity, but also by the receivers capacity. Receivers queue remote updates until its depen-
dencies are known to be installed locally. Thus, when the pace in which remote updates are
received is faster than the pace in which remote updates are installed in the local datacenter,
the queue grows indefinitely, increasing the remote visibility latency of updates until the
receiver starts dropping incoming remote updates or simply crashes due to a memory issue.

We now describe each of the systems individually, highlighting the particularities of
each of them.

The ISIS toolkit [26] is a distributed programming environment that integrates three mul-
ticast primitives: a casual multicast primitive called cbcast, an atomic multicast primitive
called abcast, and a group multicast primitive called gbcast. It assumes single-machine
replicas. One could implement a causally consistent geo-replicated database system by us-
ing the cbcast primitive. In order to ensure causal consistency in a fully replicated setting,
cbcast uses a vector clock with an entry per datacenter (replica) to track causal dependen-
cies. Authors also propose a solution to provide causal consistency under partial replica-

1Except for the entry in the vector that corresponds to the update’s local datacenter dclocal, as, in such a
case, the update depends on any other update with timestamp ts originating at the same datacenter such that
ts<Vector[dclocal]

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 61

tion. In the latter case, the metadata is enriched to a set of vectors, one per replication group.
The size (number of entries) of each vector is equal to the number of replicas composing
the replication group it represents. In the worst case, each update would need to carry a
total of 2dcs-1 (total number of possible replication groups given a set a datacenters) vec-
tors, significantly increasing the metadata size and penalizing throughput. We name this
variant of cbcast that supports partial replication cbcast∗. Both cbcast and cbcast∗ adds
intra-datacenter false dependencies, as each datacenter generates a single stream of totally
ordered update requests.

Lazy Replication [65] proposes a way of building causally consistent replicated systems.
In this solution, update operations local to a replica are tagged with their causal dependen-
cies, and sent asynchronously to the rest of the replicas. A remote replica only installs an
operation coming from another replica when its dependencies are satisfied locally. In their
proposed implementation, they argue that in order to make their solution efficient, causal
dependencies are compressed into a vector with an entry per replica (each datacenter in
the setting being considered). It assumes single-machine replicas. Thus, it adds intra-
datacenter false dependencies as their metadata does not reflect the concurrency exhibited
internally at each datacenter. Their solution is envisioned for a fully replicated setting.
R. Ladin et al. propose two additional types of operations to cope with applications that
require stronger-than-causal consistency: forced, and immediate. Forced operations are to-
tally ordered among themselves and installed in all replicas respecting such order. This is
useful, for instance, to ensure uniqueness; e.g., to ensure that two users do not successfully
sing up with the same user-name. Immediate operations are the stronger type of opera-
tions. They are installed in every replica in the same order relative to every other operation
(immediate, forced, and causal). These operations are ordered consistently with external
events [52], making immediate operations a very powerful primitive.

Bayou [98, 81] is a causally consistent, replicated storage system designed for mobile com-
puting. It assumes single-machine replicas and that each replica stores the whole database
(full replication). It allows replicas to modify the database state while being disconnected
and synchronize with any other replica that happens to find. Bayou ensures that each replica
eventually reaches the same final state. To achieve this, it integrates conflict detection
and resolution mechanisms that may cause operations to be reordered. Bayou relies on a
log-based (updates are stored in a causally ordered log) pair-wise replica synchronization.
When a replica receives an update coming from a local user, it timestamps it and adds it
to the log. Replicas generate monotonically increasing scalar timestamps. When a replica
(the receiving replica) wants to synchronize with other replica (the sending replica), it first
notifies the latter which updates are already in its local log. This information is maintained
in a vector clock with an entry per replica that stores the timestamp of the latest update
installed from each of the replicas. The sender replica, by comparing the timestamps of the
operations in its log and the corresponding entries in the receiving replica vector clock, can
then determine which operations have to be sent to the receiving replica. These operations
have to be installed at the receiving replica in the sender’s log order. Since each log is
causally consistent and when synchronizing, the sender replica do not only send its local

62 CHAPTER 5. RELATED WORK

updates but any other update that may precede it in the causal order, this dissemination
scheme trivially ensures causal consistency. Regarding the amount of false dependencies,
it will depend on how the replicas synchronize; e.g., if all replicas synchronize with all, this
solution would probably only introduce intra-datacenter false dependencies. Bayou does
not support partial replication.

TACT [102] is a middleware layer that enables replicated systems to tune the level of
inconsistency allowed among replicas based on three metrics: numerical error, order er-
ror, and staleness. Numerical error limits the number of writes a replica can install before
propagating to other replicas; order error limits the number of operations whose final global
order is still unknown, and therefore are subject to reordering, a replica can have in their
local log; and staleness bounds with real-time the delay of update propagation among repli-
cas. Independently of the values of each of the three boundary metrics, the system always
remains causally consistent. The underlying mechanism that ensures causality is similar
to Bayou’s. Therefore, the TACT solution has the same characteristics than Bayou’s so-
lution in terms of metadata structure, false dependencies, and dissemination scheme. As
Bayou, TACT does not includes support for partial replication and assumes single-machine
replicas.

The PRACTI [43] approach defines a set of three properties that, according to the authors,
an ideal replication framework should provide: partial replication; arbitrary consistency,
meaning that the system can provide both strong and weak consistency; and topology in-
dependence, meaning that any replica can exchange updates with any other replica. They
propose an architecture that supports the PRACTI properties. As other solutions [65, 102]
supporting several consistency levels, their proposed architecture remains causally consis-
tent at all time. The PRACTI solution is based on Bayou, and therefore, has the same
characteristics: single-machine replicas, log-based pair-wise replica synchronization, up-
dates tagged with a scalar, vector clocks maintained at each replica in order to reduce the
amount of data exchange when synchronizing. The PRACTI architecture supports partial
replication but not genuine partial replication, as a replica may still need to observe update
operations on data items that are not replicated locally. They propose two optimizations to
reduce the impact of this problem: separation of data and metadata, and imprecise inval-
idations. By separating data and metadata, replicas do not have to receive the payload of
operations that are not replicated locally, considerably reducing the amount of data handled
by the system when partially replicated. The data is sent through a channel that requires
no ordering guarantees. The metadata, namely invalidations, is sent through the causally
consistent channel. An update is visible to clients when both the data and the metadata have
been received. On the other hand, imprecise invalidations are metadata messages that com-
press the metadata information regarding multiple operations, further reducing the amount
of communication among replicas.

ChainReaction [9] is a causally consistent geo-replicated key-value store. It supports intra-
and inter-datacenter replication. Intra-datacenter replication is supported by a variant of
chain replication [100] that ensures causal consistency. This variant relaxes the consistency
guarantees provided by the original chain replication scheme to enhance performance. To

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 63

ensure causal consistency across datacenters, ChainReaction relies on a sequencer per data-
center. It compresses causal dependencies in a vector with and entry per datacenter. Up-
dates are tagged with this vector. A receiver datacenter only makes remote updates visible
to local clients when its causal dependencies (encoded in the vector) are already visible
locally. ChainReaction assumes full replication. It assumes an all-to-all dissemination
schema. It introduces intra-datacenter false dependencies.

SwiftCloud [103] is a causally consistent geo-replicated key-value store. It offers single
and multi-object operations. A multi-object operation contains both read and write opera-
tions, it is executed in a causally-consistent snapshot of the database, and ensures atomicity
(either all the updates belonging to the same multi-object operation are visible or none).
We refer to this set of guarantees as transactional causal consistency (TCC). It assumes
full replication among datacenters. Additionally, it allows clients to partially replicate the
application state. The idea behind SwiftCloud is to significantly reduce latency by allowing
clients to read and write from their local replicas (or caches) and only propagate to the local
datacenter asynchronously. This is achieved efficiently by relying on high level data types
with rich confluent semantics [36, 90]. The metadata is compressed into a vector clock
with an entry per datacenter. Each datacenter integrates a sequencer in order to serialize
local updates. As with other solutions that rely on a vector clock with an entry per data-
center, SwiftCloud introduces intra-datacenter false dependencies. It assumes an all-to-all
dissemination scheme.

M. Shen et al. [61] propose algorithms to achieve causal consistency in both partial and
full replication settings. They detail three algorithms: Full-Track, Opt-Track, and Opt-
Track-CPR. All algorithms assume an all-to-all dissemination scheme.

The two former algorithms ensure causal consistency under partial replication by rely-
ing on a matrix clock of size n×n, where n is the number of sites (equivalent to datacenters
in our nomenclature). They assume single-machine sites. In such a setting, their algorithm
will not add any false dependency. Nevertheless, adapting their algorithms to multi-server
datacenters would require serializing all updates happening at each datacenter, adding thus
false dependencies among updates local to the same datacenter. Opt-Track further opti-
mizes the Full-Track algorithm by reducing the amortized complexity of both message size
and space by exploiting the transitivity rule of causal consistency. Nevertheless, the mes-
sage size upper bound complexity remains O(n2) in both, which may substantially impact
the algorithms performance.

Finally, the Opt-Track-CPR algorithm ensures causal consistency under full replication.
It relies on a vector with an entry per replica. As with previous algorithms, when assuming
single-machine replicas, the algorithm does not add any false dependency. Nevertheless,
adapting it to multi-server datacenters would require serializing all updates happening at
each datacenter, adding thus false dependencies among updates local to the same data-
center.

64 CHAPTER 5. RELATED WORK

5.2.2 Solutions based on explicit check messages

This type of solutions ensure causal consistency by having datacenters explicitly checking
the dependencies of each remote update before applying it locally. It works as follows.
Clients keep track of causal dependencies, in a data structure commonly called causal con-
text. When a client issues an update request, the list of dependencies is attached to the
request. In turn, the local datacenter propagates the update, together with its dependencies,
to remote datacenters. On arrival, the receiver datacenter issues a set of messages to explic-
itly check whether the update’s dependencies are already installed locally. How many of
these check messages are sent per request depends on how causal dependencies are repre-
sented and how the datacenters are sharded. For instance, if one tracks causal dependencies
at the granularity of data items, and the application state is sharded at each datacenter in
multiple partitions, there will be a maximum of one check message per partition if the
request depends on operations that updated at least one data item on each partition.

These type of solutions do not require a centralized component to order events, such a
sequencer, eliminating a potential bottleneck. Furthermore, unlike sequencer-based solu-
tions, in which there is a single stateful receiver per datacenter, solutions based on explicit
check messages can deploy a set of stateless receivers at each datacenter. This fact allows
them to eliminate another potential performance bottleneck, as the receiver in sequencer-
based solutions solely coordinates the local application of remote updates checking depen-
dencies and delaying the visibility of unordered updates.

We now describe each of the systems individually, highlighting the particularities of
each of them.

COPS [71] is a causally consistent geo-replicated key-value store. Its design assumes that
each datacenter replicates the full application state. This fact is fundamental for the prac-
ticability of their solution. COPS opts for a fine-grained dependency tracking approach. It
tracks dependencies at the granularity of data items. Thus, in the worst case, if a client’s
update request depends on every other data item, the metadata attached to the request is a
vector with an entry per data item in the database. Nevertheless, in practice, an update re-
quest rarely piggybacks the full vector. A client only includes as an update’s dependencies
its previous update, and all updates observed (by reading from the database) in between
its previous update and current one. Due to the transitivity rule of the happened-before
relation, a client can clean their dependency context after issuing an update. COPS’ design
assumes an all-to-all dissemination schema. Despite using a large amount of metadata,
COPS still adds false dependencies among concurrent updates over the same key (local to
different replicas), as these are all serialized. The authors propose a protocol to enforce
causally consistent read-only transactions: a multi-key read operation that reads from a
causally consistent snapshot of the database.

Eiger [72] is a geo-replicated store built on top of Cassandra [66]. As in COPS, causal de-
pendencies are tracked at the granularity of data items and clients’ causal context is cleaned
after update operations. Eiger offers stronger semantics than COPS by supporting atomic
write-only transactions: multi-key write operations that create the illusion that all writes

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 65

belonging to the same transaction are applied atomically. Furthermore, it improves COPS
read-only transactional protocol efficiency. Instead of requiring the explicit dependencies
of each version being read to compute the snapshot from which a read-only transaction
reads, Eiger’s transactional protocol solely relies on lightweight logical clocks. This comes
with the cost of sometimes requiring a third read round. COPS, in constrast, only requires
one round in the normal case and a maximum of two read rounds per read transaction.

The bolt-on [18] architecture separates consistency concerns from liveness, replication and
durability concerns. The architecture includes a shim layer, placed between an eventually
consistent storage system and clients. This layer upgrades an eventually consistent stor-
age system to convergent causal consistency. Clients interact directly with the shim layer,
which contains a local store. Reads are served from the shim layer’s local store, which is
guaranteed to always be causally consistent with clients’ causal history. Updates are stored
in the layer’s local store and eventually propagated to the eventually consistent storage sys-
tem. The shim layer periodically pulls new versions from the underlying storage system
in order to update its local store and thus make other clients’ updates visible to its local
clients.

Authors opt for a fine-grained dependency tracking approach, similar to the one of
COPS and Eiger. Thus, the size of the metadata associated to each update is proportional
to a client’s causal history; being proportional, in the worst case, to the total number of data
items in the store. It only adds false dependencies among concurrent updates on the same
data items. Its design assumes that each datacenter replicates the full application state.

Karma [75] is a distributed key-value store designed for partial replication. The goal of
Karma is to enforce causal consistency while minimizing the amount of remote accesses
(unavoidable under partial replication) by leveraging cache techniques. Its design assumes
an all-to-all dissemination scheme. Karma assumes that each datacenter can replicate only
part of the application state. Nevertheless, it assumes that given a deployment of a set of
datacenters, one can cluster them into a set of groups, namely rings, each replicating the
full application state. This limits the generality of their model.

Karma ops for a fine-grained dependency tracking approach, similar to the one of
COPS. Thus, it tracks dependencies at the granularity of data items, adding false depen-
dencies among concurrent updates on the same data item originating at different replicas.
Unlike COPS, Karma keeps track of updates that have been stored in all replicas (globally
stable) and avoid adding them as causal dependencies of other updates, as it is guaranteed
that the latter update will be installed at any datacenter after any update that was globally
stable when this was issued.

We consider that Karma does not implement genuine partial replication, as the partial
replication model supported is not flexible enough. Karma is designed assuming that one
can cluster datacenters in a way that each group replicates the full application state, in which
case Karma ensures genuineness. Nevertheless, Karma will not work as it is if one cannot
ensure this invariant. The modifications required to make Karma work under this—more
general—setting would cause Karma to become non-genuine or require a larger amount of
causal metadata per update (carrying more dependencies).

66 CHAPTER 5. RELATED WORK

Orbe [47] is a distributed key-value store. Its design assumes that each datacenter repli-
cates the full application state. This fact, as in COPS and Eiger, is fundamental for the
practicability of their solution. Orbe represents causal dependencies in a matrix, with an
entry per partition per datacenter. Thus, all operations, local to a partition, are serialized,
which has a negative impact on remote update visibility when compared to systems such
as COPS that opt for a more fine-grained representation of dependencies. Nevertheless, if
an update depends on two other updates over different keys, stored by the same partition,
it will carry only one dependency (the one ordered after in the serialization) rather than
two, as in COPS. This has a positive impact on throughput. Orbe assumes and all-to-all
dissemination scheme. Due to its metadata compression, it adds false dependencies among
operations local to the same partition. Orbe also offers read-only transactions. Their im-
plementation is based on loosely-synchronized physical clocks which make their protocol
resilient to skewed workloads. Nevertheless, the efficiency, but not the correctness, of their
protocol is affected by clock drifts.

5.2.3 Solutions that rely on background stabilization

These solutions ensure causal consistency by relying on a background stabilization mech-
anism. This mechanism permits full decentralization. It works as follows. Partitions com-
posing each datacenter accept requests from local clients and handle them without any
coordination. Each update operation is tagged with a piece of metadata, generated locally,
that captures the update’s causal dependencies. This is asynchronously replicated to sibling
partitions: equivalent partitions belonging to remote datacenters. Thus, these solutions as-
sume that datacenters are logically, equally partitioned. Upon receiving a remote update, a
partition stores it in its local multiversion storage, but it does not necessarily make it visible
immediately.

Periodically, a stabilization mechanism that coordinates all partitions runs in the back-
ground. The goal is to ensure that if a partition makes a remote update visible (local updates
are always immediately visible to other local clients), it is certain that its causal dependen-
cies are also visible in the local datacenter. Thus, a client can safely—without violating
causality—read from multiple partitions of the same datacenter with no consistency check.
The procedure comprises the following steps. Each partition keeps track of the updates run
locally and at sibling partitions. Periodically, each partition gathers this information from
every other partition of the same datacenter and computes the current stable consistent
snapshot. A snapshot is stable if it is known that any operation belonging to it has already
been received and it is visible in the local datacenter. For this, the metadata attached to
each update must be comparable to how snapshots are identified. Normally, this is simply
a scalar or a vector with an entry per datacenter.

Interestingly, solutions based on stabilization mechanisms have the advantage of en-
abling fully decentralized implementations: partitions coordinate with sibling partitions
without the need of having a centralized ordering service or a local receiver at each data-
center. Nevertheless, background stabilization mechanisms augment the consequences of
the tradeoff between throughput and remote visibility latency. First, in order to make

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 67

 0

 30

 60

 90

 120

 150

0 10 20 50 100

R
em

ot
e

vi
si

bi
lit

y
 la

te
nc

y
(m

s)
GentleRain Cure

-50

-40

-30

-20

-10

 0

0 1020 50 100

Th
ro

ug
hp

ut
 p

en
al

ty
 (%

)

Clock computation interval (ms)

Figure 5.1 – Remote update visibility (left) and throughput penalty (right) exhibited by
GentleRain and Cure when varying the time interval between stabilization runs.

remote updates visible, datacenters have to run the stabilization mechanism periodically.
Thus, the time interval between runs is an extra delay added to the remote visibility la-
tency, which is determined by the metadata used to represent causal dependencies. Second,
the overheads associated to the amount of metadata used have a more significant impact
than in other type of solutions. This is caused by the fact that these solutions require keep-
ing multiple versions of each data item, and therefore they require consistency checks when
reading from the store in order to find the “safe” version (consistent with causality) to be
returned. Furthermore, every run of the background stabilization mechanism requires each
partition not only to receive messages from every other partition of the same datacenter,
but also to compute the stable time. This computation has a penalization on throughput
determined by the periodicity in which the stabilization runs and the size of the metadata.

To illustrate this, Figure 5.1 plots the remote visibility latency (left plot) and the through-
put penalty (right plot) of GentleRain [49] and Cure [7] when varying the time interval be-
tween stabilization runs from 1ms to 100ms. The throughput penalty is normalized against
a geo-replicated system that does not add any overhead due to consistency management. In
this simple experiment, we have deployed both solutions spanning three datacenters. The
round-trip-times across datacenters are 80ms between datacenter 1 (dc1) and both dc2 and
dc3; and 160ms between dc2 and dc3. Latency values refer to the (90th percentile) delays
incurred by each system at dc2 for updates originating at dc1. For each experiment, we
deploy as many clients as possible without saturating the system.

As expected Cure, which uses a vector clock with an entry per datacenter to represent
causal dependencies, exhibits worse throughput and better remote visibility latency than
GentleRain, which relies on a single scalar. More interestingly, the experiment demon-
strates the impact that the time interval between stabilization computations have in the
system. To avoid impairing throughput, solutions are forced to pick time intervals large
enough such that the impact in throughput is diminished. This is paramount for solutions

68 CHAPTER 5. RELATED WORK

relying on a vector, such as Cure, as when using very short time intervals the penalization
is very significant: of more than 31% when using a time interval of 3ms. Results sug-
gest that the throughput overhead is amortized when using time intervals of about 20ms.
Unfortunately, this adds a significant delay to remote visibility latency.

We now describe each of the systems individually, highlighting the particularities of
each of them.

GentleRain [49] is a distributed key-value store. Its design assumes that each datacenter
replicates the full application state and that this state its equally partitioned at each of them.
It assumes an all-to-all communication scheme. GentleRain design goal is to optimize
throughput. Thus, it compresses metadata to a single scalar. Unfortunately, this fact has
a negative impact on the remote update visibility latency. When using a singe scalar to
represent causal dependencies, one is serializing all updates happening in the system (at
all datacenters). Thus, GentleRain adds false dependencies not only among updates lo-
cal to the same datacenter but also across datacenters. Indeed, because of the aggressive
metadata compression, the lower-bound remote visibility latency is the latency between the
destination datacenter and the datacenter that is the farthest from it, despite the originating
datacenter. GentleRain also integrates two read-only transaction primitives: snapshot reads
and causally consistent snapshot reads. The former allows clients to read from a consistent
snapshot, but it does not guarantee that this is consistent with the client’s causal history.
Thus, versions that have been previously seen by the client may be excluded from the
snapshot, violating causality. The latter guarantees that the snapshot is consistent with the
client’s causal history. Snapshot reads’ protocol is wait-free and single round. Neverthe-
less, the casually consistent snapshot reads’ protocol may block. If the expecting blocking
period is longer than a threshold, GentleRain leverages Eiger’s read protocol, which com-
pletes in a maximum of three rounds. GentleRain relies on loosely synchronized physical
clocks.

Okapi [45] is a distributed key-value store. Its design assumes that each datacenter repli-
cates the full application state and that this state its equally partitioned at each of them.
It assumes an all-to-all communication scheme. It offers read-only transactions that read
from a causally consistent snapshot.

Okapi’s stabilization mechanism is slightly different to GentleRain’s. At its core, it
works similarly. Nevertheless, the condition to make a remote update visible at a data-
center to local clients is different. Unlike previous solutions that make updates visible as
soon as their causal dependencies are known to be visible in the local datacenter, Okapi only
makes a remote update visible when it is known to have been replicated in the whole system
(all datacenters). The goal is to enhance the availability of the system. Upon a datacenter
failure, progress is compromised, as the stable time does not advanced due to the failing
datacenter. However, unlike previous solution, in Okapi, healthy datacenters may imple-
ment a recovery protocol such that the failing datacenter is removed from the system. This
is possible because they could have only established dependencies on remote updates orig-
inating at failing datacenter that all have received. To orchestrate such a recovery protocol
in other solutions would not be trivial, requiring datacenters to propagate remote updates

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 69

(originated in the failing datacenter) to other healthy datacenters. Unfortunately, enhanc-
ing availability comes with the cost of serving a higher remote update visibility latency, as
remote updates have to be acknowledged by every datacenter to become visible.

Okapi uses a vector clock with an entry per datacenter to represent causal dependen-
cies. This, in combination with the usage of hybrid clocks [64], permits Okapi to serve
read-only transactions efficiently (never blocking) at the cost of delaying the visibility of
updates at remote datacenters. Nevertheless, they reduce the computational and storage
overhead associated to the metadata size by tagging remote updates with a single scalar.
As a consequence, similar to GentleRain, the lower-bound update visibility latency is the
latency between the destination datacenter and the datacenter that is the farthest from it,
despite the originating datacenter.

Cure [7] is a distributed key-value store. Its design assumes that each datacenter repli-
cates the full application state and that this state its equally partitioned at each of them. It
assumes an all-to-all communication scheme. Cure guarantees transactional causal consis-
tency (TCC), the strongest semantics an always-available distributed system can guarantee.
It offers interactive transactions that read from a causally consistent snapshot and that re-
spect atomicity: all updates belonging to a transaction are made visible simultaneously,
or none does. Cure integrates CRDTs: high-level datatypes with rich confluent seman-
tics, which guarantee convergence. Their protocols rely on loosely synchronized physical
clocks. Cure uses a vector with an entry per datacenter to represent causal dependencies.
Thus, it capable of exhibiting a lower remote visibility latency at the cost of damaging
throughput due to the extra storage and computational overhead. Unlike GentleRain, the
lower-bound update visibility latency is the latency between the destination and originating
datacenters. Nevertheless, Cure still adds false dependencies among updates originating in
the same datacenter, as these are serialized.

5.2.4 Solutions based on lazy resolution

Solutions belonging to the above categories ensure that datacenters only make remote op-
erations visible to local clients when its causal dependencies are known to be already in-
stalled locally. Differently, solutions based on lazy resolution allows datacenters to make
remote updates visible to local clients even before its causal dependencies are visible lo-
cally. Causality is then enforced when a client reads by only returning versions that are
causally consistent with client’s causal history (what the client has already observed). For
this, updates still have to be tagged with some piece of metadata representing update’s
causal dependencies and clients have to keep track of the updates already observed (causal
history). Differently to other solutions [71, 72, 49], clients tag read requests with their
causal history. Thus, a server receiving a read request can determine, by comparing the
metadata of the locally stored versions with client’s causal history, which version should be
returned. A server always returns the most up-to-date, or freshest, version that is consistent
with client’s causal history.

These solutions have three main advantages when compared to previous approaches:
(i) do not require expensive mechanisms, such as background stabilization mechanisms or

70 CHAPTER 5. RELATED WORK

explicit dependency checking messages, to ensure causal consistency, (ii) are resilient to
slowdown cascades [6]: when a straggling server affects other healthy servers, and (iii)
can potentially reduce remote visibility latency, as operations can be observed by clients
even when its dependencies are not installed. Nevertheless, this is a double-edged sword.
First, clients may block indefinitely after reading an update whose dependencies have not
arrived yet, compromising availability. Imagine the following scenario in which a client
reads operation b that depends on another operation a. When the client observed b, a
had still not been installed, but it can be read as it does not conflict with client’s causal
history. Then, the client reads the data item that a updates. In this case, since the client
has already read b, the system should return a or a newer update on that data item. The
client could be indefinitely blocked waiting for a to arrive. These solutions therefore trade
availability (probably the most important requirement of cloud services and the main reason
to adopt weaker consistency models) to improve other performance metrics. Second, it adds
computation overhead on read operations that otherwise are fairly light (as consistency is
enforced when installing remote updates). On each read operation, consistency needs to
be checked to ensure that causality is not being violated. Given that cloud services are
characterized by read dominant workloads, this overhead may be quite significant.

We now describe each of the systems individually, highlighting the particularities of
each of them.

Occult [76] is a distributed key-value store that implements a weaker variant of PSI [92],
a relaxation of snapshot isolation [25] specifically crafted for geo-replicated system that
allows for asynchronous replication and different ordering of updates across datacenters.
Occult leverages a master-slave scheme to make the enforcement of consistency more effi-
cient. Its design assumes that each datacenter replicates the full application state and that
this state its equally, logically partitioned at each of them.

Their basic implementation uses a vector clock with an entry per partition to represent
causal dependencies. Since they assume a master-slave scheme, only the master accept
writes. Therefore, one entry in the vector per partition, despite the number of replicas per
partition is enough to capture causality. We refer to this variant as simply Occult. This
variant still introduces false dependencies among updates local to the same partition.

In order to reduce the metadata size—note that the number of partitions can be very
large—they propose three variants. Occultopt1 bounds to n the total size of the vector by
merging entries that are congruent modulo n: one entry in the vector correlates to multiple
partitions. Thus, when a client’s update depends on two updates, local to two different par-
titions that share an entry in the vector, this has to use the largest number as dependency,
adding a significant amount of false dependencies. Occultopt2 addresses this problem by,
instead of mapping each entry in the bounded vector to roughly the same amount of par-
titions, letting clients to assign n − 1 entries in the dependency vector to the most recent
dependencies (largest scalars) and compress the rest in a single entry. The intuition is that
larger timestamps are more likely to create false dependencies. They propose a final vari-
ant Occultopt3. This variant aims at further reducing the amount of false dependencies by
increasing the metadata size. Authors noticed that the skew between datacenters’ clocks

5.2. CAUSALLY CONSISTENT REPLICATED SYSTEMS 71

and the time that it takes for updates to be replicated exacerbates the impact false depen-
dencies. Assume a client is attached to a datacenter that is the master of a partition pa and
slave of a second partition pb. The client first updates pa and immediately after tries to
read from pb. If both partitions are represented by the same entry in the dependency vector,
the client will be block until an update, coming from the datacenter that is master of pb,
is replicated in client’s datacenter with an associated timestamp at least equal to the one
returned when pa was updated. Authors solve this problem by keeping distinct timestamps
for each datacenter.

POCC [93, 94] is a distributed key-value store. Its design assumes that each datacenter
replicates the full application state and that this state its equally partitioned at each of them.
It assumes an all-to-all communication scheme. It offers read-only transactions that read
from a causally consistent snapshot. POCC relies on a vector with an entry per datacenter to
represent causal dependencies. Therefore, it introduces false dependencies among updates
local to the same datacenter.

5.2.5 Other solutions

Finally, we describe two systems that do not perfectly fit in any of the previous categories,
but are related to our work.

Kronos [51] is a generic service that allows to precisely track any partial order, avoiding
false dependencies. Kronos flexibility comes at the cost of a centralized implementation
that, in geo-replicated settings, forces clients to pay the cost of a potentially large roundtrip
to use the service.

EunomiaKV [59] is a causally consistent distributed key-value store. Its design assumes
that each datacenter replicates the full application state. It assumes an all-to-all communi-
cation scheme.

EunomiaKV introduces a novel service, namely Eunomia. Each datacenter integrates
an instance of this fault-tolerant service. Similarly to solutions based on stabilization, the
Eunomia service lets local client operations to execute without synchronous coordination,
an essential characteristic to avoid limiting concurrency and increasing the latency of opera-
tions. Then, in the background, Eunomia establishes a serialization of all updates occurring
in the local datacenter in an order consistent with causality, based on timestamps generated
locally by the individual servers that compose the datacenter. As this serialization is be-
ing generated, Eunomia notifies other datacenters of this order. Based on this information
and in the metadata attached to each update, remote datacenters can safely make remote
updates visible locally in causal order. EunomiaKV relies on a vector with an entry per
datacenter to represent causal dependencies. Therefore, it introduces false dependencies
among concurrent updates local to the same datacenter.

72 CHAPTER 5. RELATED WORK

5.3 Summary and comparison
In this final section of the chapter, we first summarize the characteristics of previous so-
lutions and briefly compare the existing techniques. Then, we take a closer look to the
correlation between metadata size and false dependencies. Finally, we compare them to
SATURN.

5.3.1 Summary of existing systems

Table 5.1 summarizes the described systems to simplify its comparison. We characterized
them based on our taxonomy: the key technique behind their implementation of causal
consistency, the amount of metadata used to represent causal dependencies, the amount of
false dependencies introduced due to metadata compression, and whether partial replication
is supported or not.

The fact that sequencer-based approaches [98, 81, 102, 43, 26, 65, 9, 103, 61] rely on a
sequencer per datacenter, simplifies the implementation of causal consistency. Sequencers
allow to aggregate metadata effortlessly, which is key to avoid metadata explosion. Unfor-
tunately, this comes with the cost of limiting intra-datacenter parallelism. The sequencer
has to be contacted before requests are processed (on the client’s critical operational path),
limiting datacenter capacity to the number of requests the sequencer is capable of pro-
cessing per unit of time. Note that in Table 5.1, both ISIS [26] and SwiftCloud [103] are
classified as if they do not support partial replication. ISIS can actually support it by ex-
tending its metadata to multiple vector[dcs] (one per communication group; a maximum of
2dcs − 1). SwiftCloud in contrast supports partial replication at the client-side, a challenge
we have not addressed.

Other approaches avoid sequencers while tracking dependencies more precisely [71,
72, 18, 75, 47]. Unfortunately, these systems may generate a very large amount of metadata,
incurring a significant overhead due to its management costs [49, 16].

As a reaction to the limitations of previous approaches, community has envisioned
solutions based on background stabilization mechanisms [49, 45, 7]. This stabilization
mechanism runs periodically, coordinating all partitions belonging to the same datacenter,
in order to orchestrate when remote updates can safely become visible. From our perspec-
tive, this type of solutions are the most scalable and performant solutions of the literature.
Unfortunately, as demonstrated in this thesis, minimizing the amount of metadata used to
represent causal dependencies is more critical than in other type of solutions. This is due
to the associated costs of the background stabilization mechanism.

On the other hand, solutions based on lazy resolution [76, 93, 94] have the potential of
improving performance by (i) letting remote updates to be installed at remote datacenters
without any consistency check, and making these visible to clients before it is safe (before
the causal dependencies of updates are known to be visible locally). Nevertheless, these
benefits come with the cost of sacrificing availability, a high cost in our opinion given the
cloud services’ requirements.

Finally, as mentioned before, Kronos [51] and EunomiaKV [59] do not fit into any of

5.3. SUMMARY AND COMPARISON 73

the categories. Kronos is an interesting solution that can cope with composed services—
services composed by multiple distributed systems—but it incurs a high cost due to fact of
being centralized. EunomiaKV falls between the sequencer-based and the background sta-
bilization techniques. It relies on a per-datacenter service, called Eunomia (also integrated
in our prototype), whose goal is to totally order local updates in an order consistent with
causality (same goal than sequencers). Nevertheless, Eunomia operates out of the client’s
operational critical path. This is achieved by relying on a local stabilization mechanism
that shares some similarities with the stabilization mechanisms of GentleRain [49], Cure
[7] and Okapi [45]. This is an interesting design that permits EunomiaKV to incur a small
throughput penalty, similar to GentleRain’s, while tracking causal dependencies more pre-
cisely (using more metadata), and thus reduce the amount of false dependencies (lowering
remote visibility latency). Unfortunately, a priori, EunomiaKV is a less scalable solution
than approaches that rely on background stabilization mechanisms. The latter do not ex-
hibit any potential performance bottleneck, while EunomiaKV employs a single receiver
per datacenter.

5.3.2 Correlation between metadata size and false dependencies

To better understand the relation between the metadata size and the amount of false de-
pendencies introduced by each of the systems, Figure 5.2 shows the graphic distribution
of existing systems (including SATURN) based on these two characteristics. Note that the
solutions placed in the same box use the same amount of metadata and introduce the same
amount of false dependencies. This does not imply that in practice these solutions will
exhibit the same throughput and remote visibility latencies, as performance is also deter-
mined by many other characteristics of their design such as the key technique used to ensure
causality.

As expected, there is a direct correlation between the metadata size and the amount of
false dependencies, which is why most of the solutions stand in the diagonal (colored cells).
This is due to the fact that, in all existing solutions, the order in which each datacenter ap-
plies remote updates locally must be inferred exclusively from the metadata (unlike in SAT-
URN, where metadata is served in the correct order). Thus, on the one hand, when metadata
is aggregated, such as in [49, 98, 43], false dependencies induce poor remote visibilities
compared to systems tracking causality more precisely [7, 71, 72, 47, 26, 65]. On the other
hand, when metadata is not aggregated, the associated computation and storage overhead
has an impact in throughput.

In Figure 5.2, we have colored in green (lightly colored) and red (darkly colored) the
different sizes of metadata and types of false dependencies. We consider that metadata sizes
of a single scalar or proportional to the number of datacenters are practical. The former is
obviously practical as it is the minimum possible size and has the advantage of being con-
stant (independently of the system’s scale). The latter is still reasonably practical as one
can except between 10 and 20 datacenters at most. Nevertheless, we consider solutions
that require more metadata unpractical, as in the best case the metadata size will be pro-
portional to the number of partitions, which is expected to be quite large: from hundreds to

74 CHAPTER 5. RELATED WORK

Fa
lse

 d
ep

en
de

nc
ie

s

Metadata size

No
Lo

w
M

ed
iu

m
Hi

gh

O(1) O(M) O(N) O(M x N) O(K) O()causal
graph

Saturn

Bayou GentleRain
TACT PRACTI

Okapi

COPS
Eiger Bolt-on

Karma

Kronos

Orbe
Occult

SwiftCloud

Lazy Rep.
ISIS

Cure

EunomiaKV
POCC Opt-Track-CPR

ChainReaction

Figure 5.2 – Graphic distribution of existing causally consistent systems based on the
metadata size used to capture causal dependencies and the amount of false dependencies
that each solution generates. Colored cells represent the diagonal. M, N, and K refers to

the number of datacenters, partitions and keys respectively

thousands of partitions. Regarding the types of false dependencies, we have only colored
in red the highest level. This is the level including solutions that exhibit inter-datacenter
false dependencies, the most damaging ones (§5.1).

Note that we have left the Full-Track and Opt-Track solutions [61] out of the graph.
This is because these are designed to support genuine partial replication, which forced
them to use a large amount of metadata. Concretely, they use M times (the total number of
datacenters) more metadata than its counterpart Opt-Track-CPR, which is crafted for full
replication and generates the same amount of false dependencies. This fact would placed
these solutions above the diagonal in the graph.

5.3.3 A comparison with Saturn
As Chapter §4 demonstrates, SATURN operates on a sweet-spot among these approaches.
Note that SATURN is the only solution in Figure 5.2 that is below the diagonal.

1. SATURN keeps the size of metadata small and constant, independently of the system’s
scale (number of datacenters, partitions, etc). Specifically, causal dependencies are
tracked with a single scalar. This fact is key to optimize throughput by incurring a
negligible computational and storage overhead.

5.3. SUMMARY AND COMPARISON 75

2. Furthermore, SATURN mitigates the impact of false dependencies by using a novel
metadata dissemination technique: a set of metadata brokers organized in a tree
topology. Concretely, SATURN mitigates the impact of the most damaging type of
false dependencies, namely the inter-datacenter, as explained in §5.1. This allows
SATURN to achieve significantly lower visibility latencies than other solutions that,
like it, rely on a single scalar [49].

3. Finally, SATURN is optimized for partial replication. It enables genuine partial repli-
cation, requiring datacenters to only manage the data and metadata of the items repli-
cated locally. Previous solutions either do not ensure genuineness [43, 75, 51], nega-
tively impacting remote visibility latency in partially replicated settings (see §4.4.2);
or are genuine [61] at the cost of increasing significantly the amount of metadata
used and consequently penalizing throughput. SATURN is able to achieve genuine-
ness using only one scalar to represent causal dependencies. This is enabled by the
tree-based dissemination technique.

76 CHAPTER 5. RELATED WORK

Key Metadata False Partial Dissem.
Technique Size DependenciesReplication Scheme

scalar
Bayou [98, 81] sequencer O(1) I+P+DC+G no pair-wise

scalar
TACT [102] sequencer O(1) I+P+DC+G no pair-wise

scalar
PRACTI [43] sequencer O(1) I+P+DC+G non-gen. pair-wise

vector[dcs]
ISIS [26] sequencer O(M) P+DC no all-to-all

vector[dcs]
Lazy Repl. [65] sequencer O(M) P+DC no all-to-all

vector[dcs]
ChainReaction [9] sequencer O(M) P+DC no all-to-all

vector[dcs]
SwiftCloud [103] sequencer O(M) P+DC no all-to-all

vector[dcs]
Opt-Track-CPR [61] sequencer O(M) P+DC no all-to-all
Full-Track [61] matrix[dcs][dcs]
Opt-Track [61] sequencer O(M ×M) P+DC genuine all-to-all

vector[keys]
COPS [71] explicit check O(K) I no all-to-all

vector[keys]
Eiger [72] explicit check O(K) I no all-to-all

vector[keys]
Bolt-on [18] explicit check O(K) I no all-to-all

vector[keys]
Karma [75] explicit check O(K) I non-gen. all-to-all

matrix[dcs][part.]
Orbe [47] explicit check O(M ×N) P no all-to-all

scalar
GentleRain [49] stabilization O(1) I+P+DC+G no all-to-all

scalar
Okapi [45] stabilization O(1) I+P+DC+G no all-to-all

vector[dcs]
Cure [7] stabilization O(M) P+DC no all-to-all

vector[dcs]
POCC [93, 94] lazy resolution O(M) P+DC no all-to-all

vector[part.]
Occult [76] lazy resolution O(N) I+P no master-slave

all
Kronos [51] - O(graph) none non-gen. all-to-all

vector[dcs]
EunomiaKV [59] - O(M) P+DC no all-to-all

scalar
Saturn - O(1) P+DC genuine tree-based

Table 5.1 – Summary of causally consistent systems. The metadata sizes are computed
based on the worst case scenario. M, N, and K refers to the number of datacenters,

partitions and keys respectively. I, P, DC and G refers to data-item, partition,
intra-datacenter and inter-datacenter false dependencies respectively. These types of false

dependencies are described in detail in §5.1.

Chapter 6

Conclusion

In this chapter, we conclude this dissertation by first highlighting the key lessons learnt
while designing and implementing SATURN. Second, we list the limitations of our ap-
proach. Third, we discuss few directions we explored during the development of this dis-
sertation, in addition to the work described in this document, that had a positive impact on
this thesis. Then, we discuss opportunities for future work. Finally, we conclude with a
summary of the results obtained during the development of this thesis.

6.1 Aspects to consider when building causally consistent
geo-replicated storage systems

During the development of SATURN, we realized a set of aspects that we consider key for
someone designing causally consistent geo-replicated storage systems. In this section, we
outline four:

Topology-based dissemination. Having a tree to propagate the metadata is key in SAT-
URN’s design. As described in this dissertation, a dissemination tree can be used to trivially
enforce causal consistency. This enables SATURN to keep the size of the metadata small
and constant, despite the number of clients, servers, partitions and replicas; while optimiz-
ing the remote visibility latency and supporting genuine partial replication. Interestingly,
most of previous solutions rely on pure peer-to-peer metadata dissemination scheme (all-
to-all scheme in our nomenclature) that forces them to exclusively rely on the metadata
attached to each update to determine the order in which each datacenter must install re-
mote updates. As widely discussed in this dissertation, this forces solutions to choose
between compressing metadata, such that the remote visibility latency increases and less
scalable partial replication models are allowed; or to keep the size of metadata large such
that throughput is significantly penalized. We strongly believe that relying on topology-
based dissemination schemes (not only in a tree) has a lot of potential and it is a scheme to
consider by future system designers.

Separation of concerns. Our approach opts for decoupling the dissemination of data and

77

78 CHAPTER 6. CONCLUSION

metadata, which fundamentally decouples consistency concerns from most of the respon-
sibilities of the underlying storage system, such as replication and durability. We advocate
this decoupling in future designs, which brings few advantages when compared to a fully
coupled approach. First, it enhances composability. Thus, one could with hopefully little
effort use the consistency component in different datastores and viceversa [18]. Second,
decoupling can potentially help devising a solution to ensure causal consistency in com-
posed services. Most of the solutions are designed to work under the assumption that there
is a unique distributed system. The reality is that many of the modern cloud services are
compose by multiple distributed systems. Third, under partial replication (specially if gen-
uineness is not supported), it is fundamental to avoid sending the payload of updates to
datacenters that do not replicate the data item being updated. We are not the first to advo-
cate this separation of concerns [51, 18, 43].

Minimum metadata. According to Facebook, the reason causal consistency has not been
adopted in production yet, despite having acknowledged its benefits, is because design-
ers are concerned to damage the performance of their system [6]. When experimenting
with SATURN and several alternatives in its design, we have noticed that one of the major
factors that negatively impact the system’s throughput is the size of the metadata used to
track causal dependencies. We noticed that as soon as the number of datacenters increases
slightly, solutions whose metadata is proportional to the number of datacenters signifi-
cantly damages throughput; e.g., in a deployment with 7 datacenters, Cure [7], which uses
a vector with an entry per datacenter, penalizes the system’s throughput up to 12.5% when
compared to its counterpart GentleRain that uses a single scalar. Thus, among other design
choices, we advocate a solution should prioritize the use of a minimum amount of metadata
to capture causal dependencies.

Coordination out of clients’ critical path. SATURN integrates Eunomia, a service in-
side each datacenter responsible for serializing all local updates in an order consistent with
causality and push them to SATURN. The design of Eunomia is motivated by the observa-
tion that taking the coordination between the datacenter servers and the Eunomia service
out of client’s critical operational path can potentially bring significant performance gains.
The Eunomia’s original paper [59] empirically demonstrates the benefits of it by compar-
ing it to a traditional sequencer: Eunomia can handle up to 7.7× more operations than a
sequencer. We believe that this is a key design pattern that designers should embrace when
possible. When removing coordination from the clients’ critical path one is not only taking
the contention of the service—or the damage a straggling server may cause—out of client’s
observable latency, but it is also enabling techniques, such as batching, which are key to
enhance performance in real systems.

6.2 Limitations of our approach
We strongly believe that the techniques and solutions described in this dissertation are
of relevance. Nevertheless, we identify several limitations, derived from positioning our
selves into one extreme of a given tradeoff. In this section, we outline three:

6.2. LIMITATIONS OF OUR APPROACH 79

Large number of datacenters, or replicas. SATURN is designed to work very efficiently
under the assumption that the system is deployed over a relatively small set of datacenters.
Nevertheless, without farther experimentation, we are not sure how SATURN will behave
when deployed over a larger amount; e.g., tens of datacenters. Following, we identify
the strong and weak points of our techniques regarding to scaling up in the number of
datacenters.

On the one hand, SATURN’s metadata is small and constant, independently of the sys-
tem’s scale. This means that throughput is likely to remain high, despite an increase in the
number of datacenters, as the overhead associated with the processing of metadata is the
most significant factor affecting throughput. Other solutions, whose metadata is propor-
tional to the number of servers or datacenters, will have more problems scaling up.

On other hand, we suspect that SATURN will deviate more from the optimal remote
visibility latency (the one exhibited by an eventually consistent system) as the number
of datacenters increases. Two aspects motivate this observation. First, our configuration
generator will have to employ a more restrictive threshold to find a good-enough config-
uration in a reasonable amount of time. This will lead to a suboptimal configuration that
it is possibly less optimal than a configuration generated using a less restrictive threshold
or no threshold at all. Second, given the constraint of having a tree topology, even when
using the optimal configuration, it is not always possible to optimize all metadata paths
(the path between two datacenters when traversing the tree). Specially problematic are
those connecting the two extremes of the tree, as a label generated in one extreme has to
traverse the whole tree to reach the other extreme (see Figures 4.8 and 4.9b). Intuitively,
the more datacenters, the more suboptimal metadata paths with a major deviation from the
optimal, which will have an impact on the average remote visibility latency. I would be
interesting exploring alternative topologies, e.g.; graphs with cycles or overlapping trees,
such that faster paths between pairs of datacenters are established. This nonetheless would
require maintaining extra metadata in the serializers (nodes of the topology), causing an
extra storage and processing overhead that has to be measured to consider the validity of
such approaches.

Remote metadata receivers. Each datacenter receives labels, coming from SATURN,
through a single remote metadata receiver. This component is responsible for taking these
labels and propagating them to the responsible partition in the local datacenter, ensuring
that these are delivered at the partitions in the order that were received at the receiver. This
is a quite lightweight procedure, as, unlike most of previous solutions [103, 71, 72], the
receiver does not need to do any consistency check. Nevertheless, this receiver is still a
potential bottleneck of our design that other solutions, such as those based on background
stabilization [49, 7, 45], do not exhibit. It would be interesting to explore techniques to
efficiently distribute remote metadata receivers.

Robustness of the serializers tree. In SATURN, the tree is made resilient by replicating
(leveraging chain-replication [100]) each tree node. If failures still cause a disconnection
in the tree, SATURN falls back into making remote updates visible in label (timestamp)
order, which requires a background stabilization mechanism that adds coordination among

80 CHAPTER 6. CONCLUSION

partitions. While the tree is being repaired, SATURN exhibits significantly higher visibility
latencies and lower throughput (due to the costs associated with the stabilization mecha-
nism). It would be interesting to find ways to strengthen the service to reduce the likelihood
of being forced to fall back to label order. Similarly to the problem of having long paths
when using SATURN in a deployment with a large number of datacenters, the usage of al-
ternative (and more resilient) topologies such as graphs with cycles or overlapping trees
could also help to overcome this issue.

Local-area networks. We have experimentally demonstrated that relying on a tree topol-
ogy to disseminate metadata between datacenters (in a wide-area network) is an efficient
technique to mitigate the impact of inter-datacenter false dependencies, the most damag-
ing ones (§5.1). Nevertheless, it is not clear whether this technique would be efficient in
other settings, such as local-area networks. Local-area networks e.g., a datacenter network,
exhibit latencies of a few millisecond, and a uniform distribution of these among parties.
In contrast, in geo-replicated settings, latencies can be of hundreds of milliseconds, having
significant differences in the latency exhibited by pairs of datacenters, e.g., two datacenters
co-located in the same country and two datacenters, each located in a different continent.
The fact that latencies are of at least an order of magnitude lower in local-area networks
would make the overheads introduced by our techniques more significant. Moreover, the
fact that there are not very significant differences in latencies, makes the tree topology inef-
ficient: for the distant parties (those connected by longer tree-paths), the label propagation
time could be several times the data propagation time.

6.3 Other explored directions and collaborations

During the development of this dissertation, we explored other directions, mostly through
collaborations, that helped us to gain insights on the design of distributed systems in general
and on the challenges of enforcing consistency in geo-replicated systems in particular.

Of special relevance for this thesis is Cure [7]. As greatly discussed in this document,
since it is one of state-of-the-art solutions we compared to, Cure is a causally consistent
geo-replicated storage system that tracks causal dependencies by means of a vector clock
with an entry per datacenter. Designing it, we realized of the practical relevance of the
tradeoff between throughput and remote visibility latency. We noticed that when relying
on background stabilization mechanisms as the key technique to implement causal consis-
tency, the impact of this tradeoff is quite significant on throughput. This fact motivated
us to investigate strategies to reduce this impact without hampering the remote visibility
latency.

Other projects [33, 31, 42, 21] gave us a broader understanding of consistency, not only
causal consistency, that helped us to better understand the tradeoffs involved in ensuring
consistency in replicated systems:

• In [33], we propose a set of high-level datatypes with rich confluent semantics that
can be partially replicated (partitionable CRDTs [36, 90]). We built a prototype

6.4. FUTURE WORK 81

integrating this into SwiftCloud [103], a causally consistent geo-replicated storage
system. This work helped us to better understand the challenges of adopting partial
replication under causal consistency.

• In [31], we propose a new type of hybrid clock [64] designed to be exploited by
distributed transactional protocols. This work helped us to better understand the
tradeoffs of using different types of clocks (physical, logical or hybrid) to ensure
consistency in distributed systems.

• In [42], we explore techniques to automatically and dynamically reconfigure quorum-
based replication systems. Our approach uses a combination of complementary tech-
niques, including top-k analysis to prioritise quorum adaptation, machine learning to
determine the best quorum configuration, and a non-blocking quorum reconfigura-
tion protocol that preserves consistency during reconfiguration. This work helped us
to devise the on-line reconfiguration protocols integrated in SATURN and presented
in this dissertation.

• In [21], we study how different state dissemination techniques, such as state trans-
fer or operation transfer, have an impact in throughput, network traffic and remote
visibility latency in causally consistent systems. We built a system, namely Bendy,
that automatically adapts between these techniques based on the application needs
and the observed system configuration, such that the best approach is used at each
point in time. Specifically, this work helped us to better understand how increases in
remote visibility latency have an impact in other performance aspects of the system.

6.4 Future work
We see several interesting directions for future work. All this promising directions have as
starting point the lessons learnt when designing and developing SATURN.

6.4.1 Supporting stronger semantics
Our plan is to investigate how to add stronger semantics to SATURN. Specifically, we are
interesting in designing protocols to support transactional causal consistency [7] (TCC),
the strongest possible semantics that an always-available distributed system can provide.

A TCC system offers a transactional interface, in which developers can modelled their
applications by defining a set of multi-key operations. Each of these multi-key operations,
or transactions, combines read and write operations. A TCC system guarantees that:

1. Transactions read from a causally consistent snapshot. A snapshot S is causally con-
sistent iff for any two object versions xi, yj ∈ S where x, y are the object identifiers
and i, j are the versions, @xk such that xk causally precedes yj and causally follows
xi (denoted as xi xk yj). In other words, transactions read from a snapshot of
the database system that includes the effects of all transactions that causally precede
it. This guarantee simplifies the development of applications. For instance, in the

82 CHAPTER 6. CONCLUSION

context of social networks, imagine that Alice—a user—has a photo album which is
public to everyone. Let us assume that the permissions are stored under a different
key that the album and its photos. She decides to change the visibility of the album to
friends-only, and only then to add new (private) photos. A system that does not sup-
port causally consistent snapshot reads may return (after two sequential single-key
reads) the new (private) photos to a user Bob that it is no friend of Alice by allowing
reading the old permissions and the new state of the album. Under TCC, this is not
possible if both keys are read in the same transaction. Thus, Bob would either read
the old permissions and the public photos, or the new permission, being unable to
have access to Alice’s album.

2. All updates composing a transaction occur and are made visible simultaneously, en-
suring read atomicity [17]. This property is instrumental for ensuring state transitions
consistently with respect to certain invariants such as foreign key constrains to repre-
sent relationships between data records, secondary indexing to optimize location of
partitioned data by attributes, and the maintenance of materialized views.

We plan to integrate these guarantees to SATURN. The goal is to design transactional
protocols that add negligible performance overhead. A specially important requirement is
that read-only transactions are latency-optimal [73], given the tight latency requirements of
cloud services—in which a single read request may fork into thousand of sub-requests [6];
and the negative impact in user engagement and revenue that slight increases in latency
carries [46, 89].

6.4.2 Moving towards edge computing
Our plan is to investigate the design of replication protocols to ensure causal consistency
on edge networks. The goal is to help developers to program the edge.

Edge computing [83, 79, 27] is a promising computing paradigm which aims at (i)
reducing end-user latency, (ii) enhancing scalability, and (iii) enable applications that are
latency-sensitive and resource-eiger, such as augmented reality applications [84, 95], by
performing data processing at nodes situated at the logical extreme of a network (closer to
end-users). An edge network therefore is composed by a set of heterogeneous computing
nodes; e.g., points-of-presence, mobile devices, datacenters, and more.

Unlike cloud networks where nodes are resourceful, almost never-failing datacenters,
ensuring consistency on edge networks is more challenging: one can expect a large number
of nodes, some of which may be severely resource-constrained; nodes may join and leave
constant and unexpectedly (high churn); and privacy, security and data integrity issues are
a major concern.

To address this challenge we plan to leverage our experience based on building SAT-
URN, which has the following properties that are useful in this context:

• Saturn keeps the metadata size small a constant independently of the system’s scale
to optimize throughput while simultaneously optimizing remote visibility latencies

6.4. FUTURE WORK 83

by using a tree-based dissemination technique. This is paramount on edge networks
as the number of nodes is expected to be large and therefore the metadata size cannot
be proportional to the number of nodes.

• Saturn implements genuine partial replication, the most scalable form of partial repli-
cation. Adopting partial replication is inevitable in edge computing, given that some
edge nodes are typically resource-constrained.

Nevertheless, SATURN’s design choices aimed at a smaller set of stable datacenters,
and need to be revised to operate in edge networks. We outline a few problems:

• First, the tree-based dissemination is key in SATURN to ensure genuineness and to
optimize remote visibility latency while keeping the metadata small and constant.
Nevertheless, SATURN’s mechanism for building the tree, as discussed in the pre-
vious section, has been designed for a handful set of datacenters and will not scale
well. We need to envision new ways of building the tree, even if this means finding
a suboptimal tree.

• Second, the on-line reconfiguration in SATURN implies rebuilding the whole tree,
disrupting end-users, under the assumption that reconfiguration happens very rarely.
We need mechanisms to add and remove nodes disrupting the minimum possible the
rest of the system; e.g., by applying local changes to the tree, involving a minimum
number of nodes. This is paramount when placing replicas in client devices (mobile
phones), as one can expect a high churn.

• Third, we need to strengthen SATURN’s fault tolerant mechanisms. In SATURN, the
tree is made resilient by replicating (leveraging chain-replication [100]) each tree
node. We plan to explore alternative (and more resilient) topologies such a graph
with cycles or overlapping trees. This nonetheless would require maintaining ex-
tra metadata in the nodes of the topology, causing an extra storage and processing
overhead.

• Fourth, in a deployment in which user devices—e.g., mobile phones—are part of the
edge network, we need to find solutions to guarantee security, privacy and integrity.

• Fifth, nodes may leave unexpectedly (specially when considering user devices as
edge components), and with them, updates that have not yet been propagated to other
nodes. Thus, we will need to ensure that an update has been replicated in multiple
nodes (or at least in some “stable” node) before letting other clients depend on it.
Otherwise, clients may be blocked forever or have to restart their session.

We plan to first address a simpler problem in which we assume that edge devices are
points-of-presence controlled by the services’ providers with similar guarantees than data-
centers but less resources. This simplifies the problem by making the third, fourth and fifth
points less critical and less challenging. The plan is to eventually devise a solution that also

84 CHAPTER 6. CONCLUSION

considers end-user devices; e.g., smartphones or tablets, as edge devices. This is a more
challenging setting, as the total number of nodes will increase significantly, as well as the
churn rate (the rate in which nodes join and leave) and the security, privacy and integrity
concerns.

6.4.3 Coping with composed services
Modern cloud services are increasingly built on top of multiple subsystems: storage sys-
tems, monitoring systems, processing systems; in an effort to make cloud services modular,
and therefore easier to maintain and optimize. Interestingly, even if each of the subsystems
ensures causal consistency, or stronger consistency criteria such as linearizability, consis-
tency violations may still occur [104]. Thus, current solutions, which are designed assum-
ing a single replicated system (usually a geo-replicated storage system)1, must be revisited.

Our plan is to investigate how the ideas behind SATURN can be useful to address the
problem of ensuring causal consistency for composed services. We believe SATURN is a
good starting point: (i) it decouples the management of consistency from other concerns
(by decoupling metadata from data dissemination), a key characteristic that a solution for
composed services should have; (ii) it efficiently supports partial replication, key in com-
posed services as not all subsystems will necessarily interact with all other subsystems.
Nevertheless, we identify new challenges unaddressed in this thesis.

First, in our work, we assume that the replication groups of each key are known by the
metadata service in order to ensure genuineness. Even when this is not ensured, our solution
ensures progress (but not genuineness) under the assumption that a receiver datacenter can
discard labels corresponding to data items that are not replicated locally. These assumptions
are too strong for composed services. In these settings, one may not know a priori which
subsystems an event may reach. Note that if a subsystem replica receives a label, whose
corresponding payload is not meant to be received, this is blocked forever (being unable to
install remote operations), unless the label is ignored.

Second, events originating at a source subsystem replica may fork and mutate through-
out the way before reaching one of its final destinations. For instance, a user of a social
network Alice that writes a private message to a second user Bob. This event needs to (i)
be stored in the local replica of the geo-replicated storage system; (ii) be replicated to pos-
sibly a subset of the storage system replicas; and (iii) mutate into a notification event that
is handled by the notification service replica in charge of notifying Bob. We believe this
type of scenarios bring challenges in the consistency management—e.g., identification and
timestamping of events—unsolved by our work.

6.5 Final remarks
In this thesis, we have investigated the tradeoff inherent to causally consistent replicated
data services between throughput and remote visibility latency derived from the granularity

1Except Kronos [51] that, as SATURN, decouples the metadata from the data management. Nevertheless,
Kronos, unless SATURN, is centralized, imposing high latencies in geo-replicated settings.

6.5. FINAL REMARKS 85

in which causal dependencies are tracked. We have studied its impact not only under full
replication, which assumes that the application state is fully replicated at all datacenters,
but also under partial replication, a more challenging setting that it is gaining prominence.

We have proposed a set of techniques and mechanisms that combined enable data ser-
vices to upgrade their consistency guarantees to causal consistency. The key proposed
technique of this thesis is a novel metadata dissemination service. This service leverages
a set of metadata brokers, geographically distributed and organized in a tree topology to
disseminate causal metadata among datacenters. This permits solutions to ensure genuine
partial replication; and to optimize remote visibility latency while using small and constant
pieces of metadata—independently of the system’s scale—imperative to avoid impairing
throughput. Furthermore, we advocate decoupling metadata dissemination from the data
dissemination, which is key to enhance composability and to make metadata brokers as
light as possible. Finally, the metadata dissemination service requires to be notified by
each datacenter of a total order, consistent with causality, of the updates issued locally. In
this thesis, we have studied the integration into our architecture of metadata serialization
services able to achieve this goal very efficiently by operating out of clients’ critical op-
erational path. Concretely, we have demonstrated how to integrate an existing metadata
serialization service, namely Eunomia, with the metadata dissemination service and the
rest of the intra-datacenter components.

We have presented our prototype, namely SATURN, a distributed metadata service that
integrates all the mentioned techniques. Among many experiments evaluating each of the
techniques individually, we have shown that SATURN, when attached to a data service,
exhibits a throughput comparable (only 2% overhead on average) to systems providing
almost no consistency guarantees. At the same time, SATURN mitigates the impact of
false dependencies—unavoidably introduced when compressing metadata—by relying on
a metadata dissemination service that can be configured to match optimal remote visibility
latencies. These results confirm that the techniques proposed are effective.

Bibliography

[1] Facebook’s top open data problems. https://research.fb.com/facebook-s-top-open-
data-problems/. Accessed: 2018-03-07.

[2] Google Cloud Platform.
https://cloud.google.com/.

[3] Riak KV.
https://github.com/basho/riak_kv.

[4] M. Adelson-Velskii and E. Landis. An algorithm for the organization of information.
Technical report, DTIC Document, 1963.

[5] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: definitions,
implementation, and programming. Distributed Computing, 9(1):37–49, 1995.

[6] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veeraraghavan. Challenges to
adopting stronger consistency at scale. In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems, HotOS’15, pages 13–19, Kartause Ittin-
gen, Switzerland, 2015.

[7] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,
and M. Shapiro. Cure: Strong semantics meets high availability and low latency.
In Proceeding of the IEEE 36th International Conference on Distributed Computing
Systems, ICDCS’16, pages 405–414, Nara, Japan, 2016.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center net-
work architecture. In Proceedings of the ACM SIGCOMM Conference on Data
Communication, SIGCOMM ’08, pages 63–74, Seattle, WA, USA, 2008.

[9] S. Almeida, J. a. Leitão, and L. Rodrigues. ChainReaction: A causal+ consistent
datastore based on chain replication. In Proceedings of the 8th ACM European Con-
ference on Computer Systems, EuroSys ’13, pages 85–98, Prague, Czech Republic,
2013.

[10] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasude-
van. Fawn: A fast array of wimpy nodes. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09, pages 1–14, Big Sky,
Montana, USA, 2009.

87

https://cloud.google.com/
https://github.com/basho/riak_kv

88 BIBLIOGRAPHY

[11] Application and environment requirements. Deliverable: Natural language require-
ments. SyncFree Project, April 2015.

[12] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench: A
database benchmark based on the facebook social graph. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD ’13, pages
1185–1196, New York, New York, USA, 2013.

[13] H. Attiya, F. Ellen, and A. Morrison. Limitations of highly-available eventually-
consistent data stores. In Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing, PODC ’15, pages 385–394, Donostia-San Sebastián, Spain,
2015.

[14] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly
available transactions: Virtues and limitations. Proc. VLDB Endow., 7(3):181–192,
Nov. 2013.

[15] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Feral
concurrency control: An empirical investigation of modern application integrity.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 1327–1342, Melbourne, Victoria, Australia, 2015.

[16] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. The potential dan-
gers of causal consistency and an explicit solution. In Proceedings of the 3rd ACM
Symposium on Cloud Computing, SoCC ’12, pages 22:1–22:7, San Jose, California,
2012.

[17] P. Bailis, A. Fekete, J. M. Hellerstein, A. Ghodsi, and I. Stoica. Scalable atomic vis-
ibility with ramp transactions. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’14, pages 27–38, Snowbird,
Utah, USA, 2014.

[18] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal consistency.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 761–772, New York, New York, USA, 2013.

[19] P. Bailis and K. Kingsbury. The network is reliable. Commun. ACM, 57(9):48–55,
Sept. 2014.

[20] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and
M. Shapiro. Putting consistency back into eventual consistency. In Proceedings of
the 10th European Conference on Computer Systems, EuroSys ’15, pages 6:1–6:16,
Bordeaux, France, 2015.

[21] C. Bartolomeu, M. Bravo, and L. Rodrigues. Dynamic adaptation of geo-replicated
crdts. In Proceedings of the 31st Annual ACM Symposium on Applied Computing,
SAC ’16, pages 514–521, Pisa, Italy, 2016.

BIBLIOGRAPHY 89

[22] Basho. Basho Bench.
http://github.com/basho/basho_bench.

[23] Basho. Riak core.
http://github.com/basho/riak_core.

[24] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user behavior
in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement Conference, IMC ’09, pages 49–62, Chicago, Illinois, USA,
2009.

[25] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique
of ansi sql isolation levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’95, pages 1–10, San Jose, Califor-
nia, USA, 1995.

[26] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3), Aug. 1991.

[27] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the
internet of things. In Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, pages 13–16, Helsinki, Finland, 2012.

[28] M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. Rodrigues. On the use of clocks
to enforce consistency in the cloud. IEEE Data Engineering Bulleting, 38(1):18–31,
2015.

[29] M. Bravo, L. Rodrigues, and P. Van Roy. Towards a scalable, distributed metadata
service for causal consistency under partial geo-replication. In Proceedings of the
Doctoral Symposium of the 16th International Middleware Conference, Middleware
Doct Symposium ’15, pages 5:1–5:4, Vancouver, BC, Canada, 2015.

[30] M. Bravo, L. Rodrigues, and P. Van Roy. Saturn: A distributed metadata service for
causal consistency. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 111–126, Belgrade, Serbia, 2017.

[31] M. Bravo, P. Romano, L. Rodrigues, and P. Van Roy. Reducing the vulnerability
window in distributed transactional protocols. In Proceedings of the First Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC ’15, pages
10:1–10:4, Bordeaux, France, 2015.

[32] E. A. Brewer. Towards robust distributed systems. In Keynote at the ACM Sympo-
sium on Principles of Distributed Computing, PODC, 2000.

[33] I. Briquemont, M. Bravo, Z. Li, and P. Van Roy. Conflict-free partially replicated
data types. In Proceedings of the 7th International Conference on Cloud Computing
Technology and Science, CloudCom ’15, pages 282–289, Vancouver, BC, Canada,
2015.

http://github.com/basho/basho_bench
http://github.com/basho/riak_core

90 BIBLIOGRAPHY

[34] A. Brodersen, S. Scellato, and M. Wattenhofer. Youtube around the world: Geo-
graphic popularity of videos. In Proceedings of the 21st International Conference
on World Wide Web, WWW ’12, pages 241–250, Lyon, France, 2012.

[35] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal
consistency. In 12th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, 2004. Proceedings., pages 152–158, 2004.

[36] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data types: Speci-
fication, verification, optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, pages 271–284,
San Diego, California, USA, 2014.

[37] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the
3rd Symposium on Operating Systems Design and Implementation, OSDI ’99, pages
173–186, New Orleans, Louisiana, USA, 1999.

[38] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685–722, July 1996.

[39] B. Charron-Bost. Concerning the size of logical clocks in distributed systems. In-
formation Processing Letters, 39(1):11–16, July 1991.

[40] D. R. Cheriton and D. Skeen. Understanding the limitations of causally and totally
ordered communication. In Proceedings of the 14th ACM Symposium on Operating
Systems Principles, SOSP ’93, pages 44–57, Asheville, North Carolina, USA, 1993.

[41] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 251–264, Hollywood, CA,
USA, 2012.

[42] M. Couceiro, G. Chandrasekara, M. Bravo, M. Hiltunen, P. Romano, and L. Ro-
drigues. Q-opt: Self-tuning quorum system for strongly consistent software defined
storage. In Proceedings of the 16th Annual Middleware Conference, Middleware
’15, pages 88–99, Vancouver, BC, Canada, 2015.

[43] M. Dahlin, L. Gao, A. Nayate, A. Venkataramana, P. Yalagandula, and J. Zheng.
Practi replication. In Proceedings of the 3rd USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’06, 2006.

[44] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In Proceedings of Twenty-first ACM SIGOPS Symposium on

BIBLIOGRAPHY 91

Operating Systems Principles, SOSP ’07, pages 205–220, Stevenson, Washington,
USA, 2007.

[45] D. Didona, K. Spirovska, and W. Zwaenepoel. Okapi: Causally consis-
tent geo-replication made faster, cheaper and more available. Arxiv preprint
arXiv:1702.04263, Feb. 2017.

[46] P. Dixon. Shopzilla site redesign: We get what we measure. In Velocity Conference
Talk, 2009.

[47] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal consistency
using dependency matrices and physical clocks. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 11:1–11:14, Santa Clara, Cali-
fornia, 2013.

[48] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-si: Snapshot isolation for partitioned
data stores using loosely synchronized clocks. In Proceedings of the 32nd IEEE
Symposium on Reliable Distributed Systems, Braga, Portugal, 2013.

[49] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gentlerain: Cheap and scalable
causal consistency with physical clocks. In Proceedings of the 5th ACM Symposium
on Cloud Computing, SOCC ’14, pages 4:1–4:13, Seattle, WA, USA, 2014.

[50] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone. Clock-RSM: Low-
latency inter-datacenter state machine replication using loosely synchronized physi-
cal clocks. In Proceedings of the 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, Atlanta, Georgia USA, 2014.

[51] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer. Kronos: The design and implemen-
tation of an event ordering service. In Proceedings of the 9th European Conference
on Computer Systems, EuroSys ’14, pages 3:1–3:14, Amsterdam, The Netherlands,
2014.

[52] D. K. Gifford. Information Storage in a Decentralized Computer System. PhD thesis,
Stanford, CA, USA, 1981. AAI8124072.

[53] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[54] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data centers:
Measurement, analysis, and implications. In Proceedings of the ACM SIGCOMM
2011 Conference, SIGCOMM ’11, pages 350–361, Toronto, Ontario, Canada, 2011.

[55] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. Vl2: A scalable and flexible data center network. In Pro-
ceedings of the ACM SIGCOMM Conference on Data Communication, SIGCOMM
’09, pages 51–62, Barcelona, Spain, 2009.

92 BIBLIOGRAPHY

[56] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. Trade-offs in replicated systems.
IEEE Data Engineering Bulletin, 39:14–26, 2016.

[57] R. Guerraoui and A. Schiper. Genuine atomic multicast in asynchronous distributed
systems. Theoretical Computer Science, 254(1):297–316, 2001.

[58] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Pro-
ceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science,
pages 8–21, Ann Arbor, Michigan, USA, 1978.

[59] C. Gunawardhana, M. Bravo, and L. Rodrigues. Unobtrusive deferred update sta-
bilization for efficient geo-replication. In Proceedings of the 2017 USENIX Con-
ference on Usenix Annual Technical Conference, USENIX ATC ’17, pages 83–95,
Santa Clara, CA, USA, 2017.

[60] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[61] T.-Y. Hsu, A. Kshemkalyani, and M. Shen. Causal consistency algorithms for par-
tially replicated and fully replicated systems. Future Generation Computer Systems,
2017.

[62] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience
with a globally-deployed software defined wan. In Proceedings of the ACM SIG-
COMM Conference, SIGCOMM ’13, pages 3–14, Hong Kong, China, 2013.

[63] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972.

[64] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone. Logical phys-
ical clocks. In Proceedings of the 18th Internaltional Conference on Principles of
Distributed Systems, OPODIS ’14, 2014.

[65] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using
lazy replication. ACM Trans. Comput. Syst., 10(4):360–391, Nov. 1992.

[66] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[67] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21(7), July 1978.

[68] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
May 1998.

BIBLIOGRAPHY 93

[69] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. Making
geo-replicated systems fast as possible, consistent when necessary. In Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’12, pages 265–278, 2012.

[70] G. Linden. Make data useful.
http://www.gduchamp.com/media/StanfordDataMining.
2006-11-28.pdf.

[71] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for even-
tual: Scalable causal consistency for wide-area storage with cops. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, pages
401–416, Cascais, Portugal, 2011.

[72] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger semantics
for low-latency geo-replicated storage. In Proceedings of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI ’13, pages 313–328,
2013.

[73] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The snow theorem and latency-
optimal read-only transactions. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’16, pages 135–150, Savan-
nah, GA, USA, 2016.

[74] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, and convergence.
Technical Report TR-11-21, University of Texas at Austin, Austin, Texas, 2011.

[75] T. Mahmood, S. Puzhavakath Narayanan, S. Rao, T. Vijaykumar, and M. Thot-
tethodi. Achieving causal consistency under partial replication for geo-distributed
cloud storage. Technical report, Department of Electrical and Computer Engineering
Technical Reports, 2016.

[76] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd. I can’t
believe it’s not causal! In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’17, 2017.

[77] NTP. The network time protocol.
http://www.ntp.org.

[78] B. M. Oki and B. H. Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the Seventh An-
nual ACM Symposium on Principles of Distributed Computing, PODC ’88, pages
8–17, Toronto, Ontario, Canada, 1988.

[79] M. Patel, Y. Hu, P. Heédeé, J. Joubert, C. Thornton, B. Naughton, J. Ramos, C. Chan,
V. Young, S. Tan, D. Lynch, N. Sprecher, T. Musiol, C. Manzanares, U. Rauschen-
bach, S. Abeta, L. Chen, K. Shimizu, A. Neal, P. Cosimini, A. Pollard, and G. Klas.

http://www.gduchamp.com/media/StanfordDataMining.2006-11-28.pdf
http://www.gduchamp.com/media/StanfordDataMining.2006-11-28.pdf
http://www.ntp.org

94 BIBLIOGRAPHY

Mobile-edge computing - introductory technical white paper. Technical report, Eu-
ropean Telecommunications Standards Institute (ETSI), Sept. 2014.

[80] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. When scalability
meets consistency: Genuine multiversion update-serializable partial data replication.
In Proceedings of the 2012 IEEE 32Nd International Conference on Distributed
Computing Systems, ICDCS ’12, pages 455–465, Atlanta, GA, USA, 2012.

[81] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible
update propagation for weakly consistent replication. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, SOSP ’97, pages 288–301, Saint
Malo, France, 1997.

[82] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and P. Ro-
driguez. The little engine(s) that could: Scaling online social networks. In Pro-
ceedings of the ACM SIGCOMM Conference, SIGCOMM ’10, pages 375–386, New
Delhi, India, 2010.

[83] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing, 8(4):14–23, Oct. 2009.

[84] M. Satyanarayanan, P. B. Gibbons, L. Mummert, P. Pillai, P. Simoens, and R. Suk-
thankar. Cloudlet-based just-in-time indexing of IoT video. In Proceedings of the
2nd Global Internet of Things Summit (GIoTS), GIoTS ’17, pages 1–8, Geneva,
Switzerland, June 2017.

[85] N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine partial replication in wide
area networks. In Proceedings of the 2010 IEEE 29th International Symposium on
Reliable Distributed Systems, SRDS ’10, pages 214–224, New Delhi, Punjab, India,
2010.

[86] F. B. Schneider. Byzantine generals in action: Implementing fail-stop processors.
ACM Trans. Comput. Syst., 2(2):145–154, May 1984.

[87] F. B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[88] E. Schurman and J. Brutlag. The user and business impact of server delays, addi-
tional bytes, and http chunking in web search. In Velocity Web Performance and
Operations Conference, 2009.

[89] E. Schurman and J. Brutlag. The user and business impact of server delays, addi-
tional bytes, and HTTP chunking in web search. In Velocity Web Performance and
Operations Conference, San Jose, CA, USA, 2009.

[90] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data
types. In Proceedings of the 13th International Conference on Stabilization, Safety,

BIBLIOGRAPHY 95

and Security of Distributed Systems, SSS’11, pages 386–400, Grenoble, France,
2011.

[91] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea,
K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and
H. Apte. F1: A distributed sql database that scales. Proc. VLDB Endow., 6(11):1068–
1079, Aug. 2013.

[92] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-
replicated systems. In Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 385–400, Cascais, Portugal, 2011.

[93] K. Spirovska, D. Didona, and W. Zwaenepoel. Optimistic causal consistency for
geo-replicated key-value stores. In Proceeding of the IEEE 37th International Con-
ference on Distributed Computing Systems, ICDCS’17, pages 2626–2629, Atlanta,
GA, USA, 2017.

[94] K. Spirovska, D. Didona, and W. Zwaenepoel. Optimistic Causal Con-
sistency for Geo-Replicated Key-Value Stores. Technical report, EPFL,
oai:infoscience.epfl.ch:225991, 2017.

[95] C. Streiffer, A. Srivastava, V. Orlikowski, Y. Velasco, V. Martin, N. Raval,
A. Machanavajjhala, and L. P. Cox. ePrivateeye: To the edge and beyond! In
Proceedings of the Second ACM/IEEE Symposium on Edge Computing, SEC ’17,
pages 18:1–18:13, San Jose, California, 2017.

[96] O. Team. Oscar: Scala in or.
https://bitbucket.org/oscarlib/oscar.

[97] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.
Welch. Session guarantees for weakly consistent replicated data. In Proceedings
of 3rd International Conference on Parallel and Distributed Information Systems,
PDIS ’94, pages 140–149, Sep 1994.

[98] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated storage
system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 172–182, Copper Mountain, Colorado, USA, 1995.

[99] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California fault lines:
Understanding the causes and impact of network failures. In Proceedings of the
ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 315–326, New Delhi,
India, 2010.

[100] R. Van Renesse and F. B. Schneider. Chain replication for supporting high through-
put and availability. In Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’04, 2004.

https://bitbucket.org/oscarlib/oscar

96 BIBLIOGRAPHY

[101] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user
interaction in facebook. In Proceedings of the 2nd ACM Workshop on Online Social
Networks, WOSN ’09, pages 37–42, Barcelona, Spain, 2009.

[102] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for
replicated services. In Proceedings of the 4th Conference on Symposium on Operat-
ing System Design & Implementation - Volume 4, OSDI’00, San Diego, California,
2000.

[103] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro. Write
fast, read in the past: Causal consistency for client-side applications. In Proceedings
of the 16th Annual Middleware Conference, Middleware ’15, pages 75–87, Vancou-
ver, BC, Canada, 2015.

[104] I. Zhang, N. Lebeck, P. Fonseca, B. Holt, R. Cheng, A. Norberg, A. Krishnamurthy,
and H. M. Levy. Diamond: Automating data management and storage for wide-area,
reactive applications. In Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’16, pages 723–738, Savannah, GA,
USA, 2016.

	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Motivation
	Thesis contributions
	Summary of contributions
	Summary of results
	Publications

	Outline

	Causal consistency: model & challenges
	Causal consistency
	Why causal consistency
	Definition
	Causality in practice

	Throughput at odds with remote visibility latency
	Is partial replication easy to adopt?
	A case for partial replication
	Efficient causal consistency in conflict with partial replication
	Genuine partial replication

	The design of Saturn
	Design
	Overview
	Labels: structure and properties

	Label propagation
	Rationale
	Selecting the best serializations
	Architecture of the metadata dissemination service

	The configuration problem: finding the topology
	The configuration service
	Modelling the problem
	Configuration generator

	Datacenter operation: unobtrusive ordering
	Client interaction
	Integration of the Eunomia service
	Handling remote operations
	Client migration support

	Fault-tolerance
	Replicating Eunomia
	Failures in label propagation

	Adaptability
	Assisted (fast) reconfiguration
	Unassisted (slower) reconfiguration

	Evaluation
	Goals
	Implementation
	Setup
	Evaluating the internals of Saturn
	The architecture of Saturn matters
	The importance of genuine partial replication
	Impact of latency variability on Saturn

	Saturn vs. the state-of-the-art
	GentleRain and Cure
	Throughput experiments
	Visibility latency experiments
	Facebook benchmark

	Related work
	A taxonomy for causally consistent systems
	Causally consistent replicated systems
	Sequencer-based solutions
	Solutions based on explicit check messages
	Solutions that rely on background stabilization
	Solutions based on lazy resolution
	Other solutions

	Summary and comparison
	Summary of existing systems
	Correlation between metadata size and false dependencies
	A comparison with Saturn

	Conclusion
	Aspects to consider when building causally consistent geo-replicated storage systems
	Limitations of our approach
	Other explored directions and collaborations
	Future work
	Supporting stronger semantics
	Moving towards edge computing
	Coping with composed services

	Final remarks

	Bibliography

