
Replication and Data Placement in Distributed
Key-Value Stores

Manuel Gomes Ferreira
manuel.g.ferreira@ist.utl.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. MapReduce is a programming model widely used to process
large amounts of data. Its its known for good scalability, ease of use, and
fault-tolerance. However, it still exhibits some performance limitations
when accessing the data to be processed, being far from reaching the
performance of a well-configured parallel Database Management Systems
(DBMSs). In this report we survey the most relevant optimisations that
have been proposed for MapReduce, including indexing, data layouts,
and co-location. We propose a novel system that, combining these three
techniques, aims at boosting the execution time of MapReduce jobs by
providing more efficient access to input data. Finally, we briefly describe
how we plan to conduct the experimental evaluation of our system using
a Twitter dataset.

1 Introduction

Today, there is an increasing need to analyse very large datasets, a task that
requires specialised storage and processing infrastructures. The problems asso-
ciated with the management of very large datasets have been coined “big data”.
Big data requires the use of massively parallel software, running on hundreds of
servers, in order to produce useful results in reasonable time.

MapReduce is a programming model aimed at processing big data in a par-
allel and distributed manner. Known for its scalability, ease of use and fault-
tolerance, MapReduce has been widely used by different domain applications
such as search engines, social networks, or processing of scientific data. The
MapReduce framework shields programmers from the problems of writing a dis-
tributed program, such as managing the fault-tolerance or the explicitly pro-
gramming of the communication among processes. Users only have to define
their programs mainly by means of two simple functions called Map and Reduce.
The run-time automatically assigns Map and Reduce tasks to nodes, manages
the communication among those nodes, monitors the execution of the tasks, and
adapts to the size of the cluster, making the application easily scalable.

MapReduce is very flexible, and does not enforce any particular data model or
format. However, being completely oblivious to the data format, MapReduce is
generally forced to scan the entire input, even if only fractions of it are relevant

1



for a particular job. Due to these limitations, MapReduce is far from reach-
ing the performance of well-configured parallel Database Management Systems
(DBMSs) [20], which on the other hand, are much more difficult to tune and to
configure and requires the data to be fit into a rigid and well-define schema.

In order to improve the performance of MapReduce, several research projects
have experimented to augment the basic MapReduce with additional mecha-
nisms that can optimize data access. An example of one such mechanism is the
use of indexes, a technique that has proven to be useful in the context of DBMSs,
to reduce the scope of a search. In this report we survey the most relevant opti-
misations that have been proposed for MapReduce and suggest ways to extend
those efforts.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we provide a brief
introduction to MapReduce and in Section 4 we discuss the aspects that affect
its performance. Section 5 surveys related work on improving the performance
of Mapreduce. Section 6 describes the proposed architecture to be implemented
and Section 7 describes how we plan to evaluate our results. Finally, Section 8
presents the schedule of future work and Section 9 concludes the report.

2 Goals

This work addresses the problem of optimizing the replication and data place-
ment in distributed storage systems in order to improve the execution time of
MapReduce jobs. More precisely, we aim at:

Goals: Designing and implementing a novel system that boosts the
execution time of MapReduce jobs by providing efficient data accesses.

As it will become clear further ahead, our system will combine different
techniques that have been proposed in the literature, such as indexes, data layout
and co-location, in order to capture the best of each one.

We plan to perform an experimental evaluation in order to measure the
effectiveness of our system when performing MapReduce jobs.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the data
placement algorithms; ii) an implementation for Apache Hadoop, iii) an
extensive experimental evaluation using a workload based on a realistic
traces obtained from Twitter[2].

3 MapReduce Basics

MapReduce[6] is a framework for supporting the parallel processing of large
amounts of unstructured data. MapReduce includes both a model to structure
the computation and a runtime to parallelize the computation on a cluster of
workstations in a fault-tolerant manner.

2



The computation model supported by MapReduce is quite generic. Data
processing must be composed into two functions that are executed sequentially,
namely: a Map and a Reduce function. Basically, the Map function is responsible
for processing parts of the input and generating intermediate results which are
then collected and combined on the Reduce function to generate the final output.
This allows a broad range of computations to be modelled as MapReduce jobs,
which is one of the reasons why it is a widely used framework, applied on diverse
types of unstructured data such as documents, industry logs, and other non-
relational data. In fact, MapReduce was originally proposed by Google but has
been adopted by many different applications that have to manage large volumes
of data, such as Facebook [5] or scientific processing of the outputs produced by
particles accelerators.

A runtime supporting the MapReduce model in a cluster of workstations
automatically assigns map and reduce jobs to hosts, monitors the execution of
those tasks, and relaunches tasks if failures occur (for instance, if a host fails).
This relieves the programmer from being concerned with the control plane during
the execution of the application. The runtime can adapt the job scheduling to
the number of servers existing in the cluster, making MapReduce jobs easily
scalable.

3.1 Mappers and Reducers

A program running on MapReduce is called a job, and it is composed by a
set of tasks. Some of these tasks apply the Map function to the input (the map
tasks), while others apply the Reduce function to the intermediate results (the
reduce tasks). So, a task can be viewed as an indivisible computation run in a
node of the cluster, which operates over a portion of data. Nodes that compute
tasks in the map phase are called mappers whereas the ones performing tasks in
the reduce phase are named reducers.

When a job is submitted, the map tasks are created and each one is associ-
ated a portion of the input data. The Map function takes as input a key/value
pair and, after some computation, it generates an intermediate key/value pair.
The intermediate key/value pairs generated by these tasks are then assigned to
reducers. This means that, during the execution, the intermediate results gen-
erated by mappers must be sent to the reducers (typically, via the network),
such that a reducer will get all intermediate key/value pairs that share the same
intermediate key.

The reduce tasks are then responsible for applying the Reduce function to
the intermediate values of all keys assigned to it. This function will combine all
the intermediate values in order to generate the final result of a job.

The nodes that execute map or reduce tasks are named workers, since they
are the nodes that are responsible for doing the computational work. Each worker
may serve as mapper, reducer, or as both if it performs map and reduce tasks. In
addition to workers, there is one special node called master whose responsibility
is to perform the task scheduling, i.e. the assignment of tasks to workers, and

3



(3) Map Function(3) Map Function (3) Map Function

(6) Reduce Function(6) Reduce Function

Global File System

Global File System

Reducer BReducer A

Mapper CMapper BMapper A

Master

(2) Input Reader(2) Input Reader(2) Input Reader

(1) Task 
Assignment

(5) Sort & Group(5) Sort & Group

(4) Shuffle Phase

Fig. 1: MapReduce Steps

also to ensure the job completion (by monitoring the workers and re-assigning
tasks to nodes if needed).

3.2 MapReduce Steps

Upon job submission, the input data is automatically partitioned by the
MapReduce library into pieces, called splits. Each map task processes a single
split, thus M splits entails M map tasks.

The map phase consists in having mappers read the corresponding splits and
generate intermediate key/value pairs. Typically, the mapper uses a helper input
reader to read the raw input data. The goal of the reader is to convert the input
to a key/value pairs amenable to be processed by the Map function. This allows
the MapReduce framework to support a variety of jobs that are not tied to any
specific input format.

After the map phase, a partition function is applied over the intermediate
key space to divide it into R partitions, each one to be processed in a reduce
task (e.g., hash(key) mod R). Both R and the partitioning function can be
configured by the user.

Figure 1 illustrates the sequence of steps executed during the execution of a
a MapReduce job, which are enumerated below:

4



1. Task assignment: The input data is divided into splits and, for each split,
the master creates a map task and assigns it to a worker.

2. Input Reader: Each map task executes a function to extract the key/value
pairs from the raw data inside the splits.

3. Map function: Each key/value pair is fed into the user-defined Map func-
tion that can generate zero, one or more intermediate key/value pairs. Since
these pairs represent temporary results, the intermediate data is stored in
the local disks of the mappers.

4. Combiner phase (optional): If the user-defined Reduce function is com-
mutative and associative, and there is a significant repetition of intermediate
keys produced by each mapper, an optional user-defined Combiner function
can be applied to the outputs of the mapper[6]. The goal is to group, accord-
ing to the intermediate key, all the intermediate values that were generated
by the map tasks of each mapper. Typically, the same Reduce function code
is used for the Combiner function. If this Combiner function is applied, each
mapper outputs only one intermediate value per intermediate key.

5. Shuffle phase: The intermediate key/value pairs are assigned to reducers
by means of a partition function in a manner such that all intermediate
key/value pairs with the same intermediate key will be processed by the
same reduce task and hence by the same reducer. Since these intermediate
key/value pairs are spread arbitrarily across the cluster, the master passes to
reducers the information about the mappers’s location, so that each reducer
may be able to remotely read its input.

6. Sort & Group: When the remote reads are finished, each reducer sorts the
intermediate data in order to group all its input pairs by their intermediate
keys.

7. Reduce function: Each reducer passes the assigned intermediate keys, and
the corresponding set of intermediate values, to the user-defined Reduce
function. The output of the reducers is stored in the global file system for
durability.

During this entire sequence of steps, the master periodically pings the workers
in order to provide programmer-transparent fault-tolerance. If no response is
obtained within a given interval, the worker is considered as failed and the map
or reduce tasks running on that node are restarted. If the master fails, the whole
MapReduce computation is aborted[6].

3.3 Data Locality in MapReduce

MapReduce makes no assumptions on how the computation layer is related
with the storage layer, as they may be completely independent. However, in prac-
tice, most MapReduce implementations rely in a distributed file system (Google
File System (GFS) [12] for Google’s MapReduce [6], or Hadoop Distributed File
System (HDFS) [22] with Hadoop MapReduce [1]). Furthermore, often, the nodes
responsible for the computational work may be the same nodes that store the
input data.

5



In this common configuration, it is possible to save network bandwidth if the
master takes into account which data each node is storing when scheduling the
map tasks. First, it attempts to schedule a map task on a node that stores the
data to be processed by that map task. If this is not possible, then it will attempt
to schedule the task on the closest node (network-wise) to the one storing the
data.

3.4 A MapReduce Implementation: Hadoop

Apache Hadoop [1] is the most popular open-source implementation of the
MapReduce framework. It is written in Java and has received contributions from
large companies such as Facebook and others[5]. Similarly to Google’s MapRe-
duce, Hadoop also employs two different layers: the HDFS, a distributed storage
layer responsible for persistently storing the data among the cluster nodes; and
the Hadoop MapReduce Framework, a processing layer responsible for running
MapReduce jobs on these same nodes.

Storage Layer Hadoop DFS (HDFS) is a distributed file system designed to
store immutable files, i.e., once the data is written into the HDFS is not modi-
fiable but can be read multiple-times.

The HFDS implementation uses three different entities: one NameNode, one
SecondaryNameNode and one or more DataNodes. A NameNode is responsible
for storing the metadata of all files in the distributed file system. In order to re-
cover the metadata files in case of a NameNode failure, the SecondaryNameNode
keeps a copy of the latest checkpoint of the filesystem metadata.

Each file in HDFS is divided into several fixed-size blocks (typically config-
ured with 64MB each), such that each block is stored on any of the DataNodes.
Hadoop replicates each block (by default, it creates 3 replicas) and places them
strategically in order to improve availability: two replicas on DataNodes on the
same rack and the third one on a different rack, to prevent from loss of data,
should an entire rack fail.

It is worth noting the difference between input splits and HDFS blocks. While
an HDFS block is an indivisible part of a file that is stored in each node, an input
split is logical data that is processed by a map task. There is no requirement
for splits to be tied to blocks, and not even files. Consider the case where a file
is split by lines, such that each map task processes one line (Hadoop supports
the usage of arbitrary split functions). It may happen that a line overflows from
an HDFS block, i.e., the split boundaries do not coincide with the HDFS block
boundaries. In this case, the mapper processing that line must retrieve (possibly
from some other node) the next HDFS block to obtain the final part of the line.

Processing Layer The entities involved in the processing layer are one master,
named the JobTracker, and one or more workers, named the TaskTrackers. The
role of the JobTracker is to coordinate all the jobs running on the system and

6



to assign tasks to run on the TaskTrackers which periodically report to the
JobTracker the progress of their running tasks.

Hadoop’s default scheduler makes each job use the whole cluster and takes
the jobs’ priorities into account when scheduling them. This means that higher
priority jobs will run first. However, Hadoop also supports other schedulers,
including shared cluster schedulers that allow running jobs from multiple users
at the same time.

In terms of task scheduling, Hadoop does not build an a priori plan to
establish which tasks are going to run on which nodes; instead Hadoop decides
on which nodes to deploy each task in runtime[17]. As soon as a worker finishes
a task it is assigned the next one. This means that should a worker finish all
tasks associated with the data it stores locally, it may be fed tasks which entail
obtaining data from other workers.

There are ten different places in the query-execution pipeline of Hadoop
where User Defined Functions (UDFs) may be injected[7]. A user of the frame-
work can define how the input data is split and how a split is parsed into
key/value pairs, for example. This aspect makes Hadoop an easily customizable
MapReduce framework.

3.5 Use Cases

We now provide three different examples of applications of MapReduce, each
of which has different requirements in terms of data management.

Word Counting The word counting problem consists in counting the number
of occurrences of the different words that appear in a text file. Several real world
problems, like log analysis or text mining, can be viewed as instances of the word
counting problem.

When MapReduce is used to solve this problem, one first starts by splitting
the input text file and then assigning the resulting splits to the mappers. For
each occurrence of word, the Map function emits the intermediate key/value pair
in the form of 〈word, 1〉. At the end of this phase, each mapper outputs as many
intermediate key/value pairs as the number of occurrences of all the words it has
processed, and those pairs are then transferred from the mappers to the reducers
in the shuffle phase.

The assignment of keys to reducers is typically performed with the help of a
hash function. Each reducer will get the pairs corresponding to all words assigned
to it by the hash function. The Reduce function then groups all pairs by word,
and outputs pairs in the format 〈word, sum〉, where sum corresponds to the sum
of the values associated with word in the intermediate results.

This use case is one which perfectly fits the usage of the Combiner function.
In order to reduce the amount of data transferred in the shuffle phase, the
mappers can do part of the reduce operation: each one sums the occurrences
for each word that has identified. When using the Combiner step, the number

7



of intermediate key/value pairs output by each mapper would be equal to the
number of different words it has processed.

Overall, the MapReduce model has a good fit to the word counting problem,
since in this case both Map and Reduce functions do useful work in a balanced
manner.

Selection The selection problem consists in returning only the set of records
that meet some condition to produce the result. It is analogous to the SELECT
operation in traditional DBMSs.

The first step to process such jobs, as normally happens in MapReduce, is
to split the input dataset among the mappers that will extract the records from
splits and pass them to the Map function. Typically, in this sort of problem, the
Map function is responsible for doing the filtering, i.e. perform the test condition
on each record and passing to the reducers only those that satisfy it. The Reduce
function is then applied over the selected records.

In general, this type of problem is characterised by a longer and heavier
mapping step, given that mappers need to analyse all the input, a task that is
bounded by the I/O time required to read all the data from disk[20, 14].

Joining The problem of joining consists in creating a new dataset resultant from
combining two datasets using values common to both datasets. It is analogous
to the JOIN operation in DBMSs. HITS[16] and Page Rank[19] are examples of
applications that are required to perform joins.

The most natural way to join two datasets according to some attributes using
MapReduce is through a reduce-side join, where the actual join happens on the
reduce phase of the framework. Using this approach, the work flow of a reduce-
side join using MapReduce proceeds as follows: The two datasets are divided
into splits and assigned to the mappers. After extracted, each record is passed
to the Map function that is responsible for emitting its join attribute and the
record as a key/value pair. The records are then shuffled among the reducers
such that all the records from both datasets having the same join attribute go
to the same reducer where are grouped together and fed to the Reduce function.

Like in the selection problem, joining requires a full scan of the entire datasets
(in this case, to perform the partition, i.e. to divide them according to the join
attribute). Moreover, the shuffle phase of the job entails the transfer of a large
amount of data over the network, which represents a significant overhead and
can introduce significant delays in execution time.

4 MapReduce Performance

MapReduce may not provide the desired performance in some use cases, such
as the selection and joining scenarios presented in the previous section. This
fact has motivated several recent works, which aim at improving MapReduce
performance for different usage patterns. In this section we describe the most

8



relevant of these techniques, such as indexing, data layouts, and co-location,
which aim at improving data accesses during query processing.

4.1 Indexing

In a plain MapReduce framework, the execution of a job requires that a full
scan of the dataset is performed (i.e., by reading all the records one by one)
even if only a small subset of them is going to be selected. Furthermore, all
splits generate map tasks even if some of them do not contain relevant data and
will not create any intermediate data. Also, in the map phase, all blocks have to
be completely fetched from disk, which implies that all attributes of all records
are brought to main memory without taking into account which ones the job is
interested in. This problem can be avoided if the input data is indexed before
the mapping step takes place.

Shortly, an index is built for one attribute and consists in a list of different
values of that attribute contained in the indexed data, as well as the positions
where these values can be found in the input file. Consequently, an index can
significantly reduce the amount of data that must be read from disk, leading
to a better performance of jobs, such as the ones implementing selection, where
only a subset of the records is actually needed to produce the desired output.

Some systems create an unique index based in a single attribute[7], while
others consider multiple attributes which leads to building multiple indexes[21,
8, 18].

The following indexing techniques can be applied:

– Record-level indexing: generally, this approach requires having the index
inside each split, which is then used at query time to select the relevant
records from the split, instead of reading the entire split record by record [7].

– Split-level indexing: it has been observed that the execution time of a
query depends on the number of waves of map tasks that are executed,
which in turn depends on the number of processed splits[10]. Furthermore,
the time to process a split is dominated by the I/O time for reading its data
plus the overhead of launching the map task to process it. So, in the end,
the time taken to process a small number of records in a split can be roughly
the same as the time required to process all records of that split.
The idea of split-level indexes is to keep, for each attribute value, informa-
tion about the splits that contain at least one record with that attribute
value, such that splits with no relevant information are not processed. When
processing a query, the master uses this index in order to get the minimal
set of splits needed for that query, so map tasks are generated only for these
splits.

– Block-level indexing: In cases where splits are comprised of multiple
blocks, one can create block-level indexes. Since blocks contain multiple
records, these indexes have the potential to bring meaningful time savings,
according to the observations of Eltabakh et al. (2013). Block-level indexes
map attribute values to blocks that contain at least one record with that

9



attribute value. Through these indexes, when processing a split, the rele-
vant blocks are loaded, (possibly decompressed), and processed; whereas the
blocks known not to match the selection criteria are skipped.

4.2 Data Layout

As mentioned in Section 3.4, the storage unit of HDFS consists in a fixed-size
(typically 64MB) block of data. In fact, the way the data is organized within this
block of data can greatly affect the response times of the system. We call this
internal organization of blocks the data layout. We now introduce four different
data layouts that may be applied on MapReduce:

– Row-oriented: As Figure 2 shows, when using this layout all fields of one
record are stored sequentially in the file, and multiple records are placed
contiguously in the disk blocks. This layout provides fast data loading since,
in most cases, the data to be stored is supplied row-by-row, i.e. one en-
tire record at a time. Row-based systems are designed to efficiently process
queries where many columns of a record need to be processed at the same
time, since an entire row can be retrieved with a single access to disk. On
the other hand, it does not perform so well when supporting queries that
only need to look at a small subset of columns. Furthermore, since each row
typically contains different attribute from different domains, a row often has
high information entropy, which makes this data layout not well suited for
compression[3].

Fig. 2: Row-oriented data layout [13]
– Column-oriented: When using this layout, datasets are vertically parti-

tioned by column, each column is stored separately and accessed only when
the corresponding attribute is needed (see Figure 3). This layout is well
suited for read operations that accessed a small number of columns, since
columns that are not relevant for the intended output are not read. Further-
more, it can achieve a high compression ratio since the data domain is the
same in each column, hence each column tends to exhibit low information
entropy [3]. The better the data is compressed, the shorter the I/O time spent
in reading it from disk. In this data format, each column is stored in (one
or more) HDFS block, which means that it may be impossible to guarantee
that all columns will be stored on the same node. As a result, record recon-
struction may require network transfers to fetch the needed columns from
different storage nodes.

10



Fig. 3: Column-oriented data layout

– Column groups: This layout consists in organizing all columns of a dataset
in different groups of columns. Different column groups may have overlapping
columns (see Figure 4). The data inside each column group is not tied to any
specific data layout: it may be stored in a row or column-oriented way. An
advantage of column groups is that it can avoid the overhead of record recon-
struction if a query requires an existing combination of columns. However,
column overlapping in different column groups may lead to redundant space
utilization. Although supporting a better compression than a row-oriented
layout, the compression ratio achieved with column-groups is not as good as
with a pure column-oriented layout since there is a mix of data types.

Fig. 4: Column groups data layout [13]

11



– PAX[4]: This hybrid layout combines the advantages of both row-oriented
and column-oriented layouts as show in Figure 5. All fields of a record are
on the same block as the row-oriented layout, providing a low cost of record
reconstruction. However, within each disk page containing the block, PAX
uses mini-pages to group all values belonging to each column. This enables
to read only the mini-pages that contain the columns needed for the query
at hand.

Fig. 5: PAX data layout [13]

4.3 Co-location

The data placement policy of Hadoop was designed for applications that
access one single file[7]. Furthermore, HDFS distributes the input data among
the storage nodes in an oblivious way, i.e., it does not look to the content of the
file to decide how to store it.

However, we have seen that some jobs, such as the ones that perform joins,
may need to re-partition the datasets in the map phase, and then migrate large
quantities of data to perform the reduce step. This can be mitigated if data is
stored such that related data is kept in the same node.

Co-location is a technique that attempts to ensure that related data is stored
together on the same nodes. As a result, applications that require the combined
processing of this related data can execute without needing to migrate data dur-
ing the execution of the job. In particular, if data is co-located in an appropriate
manner, namely if records with the same keys are stored on the same node, the
mapping step may yield immediately the output of the join, avoiding the shuffle
and the reduce phases.

5 Relevant Systems

In this section, we present some of the most relevant works that use the
aforementioned techniques to improve MapReduce.

5.1 Hadoop++

Hadoop++[7] is a system designed to improve Hadoop performance. The
goal of its authors is to achieve with a performance comparable to that of a

12



parallel database management system (DBMS). The authors propose two main
techniques to improve the performance of Hadoop, named the Trojan Index and
the Trojan Join. The goal of the former is to integrate record-level indexing
capability into Hadoop, such that only the records that are relevant for a given
job are accessed (this is most suitable for selection-based jobs), whereas the goal
of the latter is to support data co-location, enabling joining-based jobs to be
performed locally.

These capabilities are added to the Hadoop framework without modifying
the base code. Hadoop++ adds new fields to the internal layout of splits and it
injects appropriate UDFs in the Hadoop execution plan. Since data is stored in
a row-fashion way, no data compression is used.

Trojan Index A Trojan Index, as shown in Figure 6, is a record-level index over
a single attribute that is injected into each split. A Trojan Index is composed
by an index data (SData T) plus additional information, such as an header (H)
containing the indexed data size, the index size, the higher and the lower indexed
attribute values, the number of records, and a footer (F) that identifies the split
boundary.

To execute a given job, the footer (F) is used to retrieve all the indexed splits
over which the map tasks are going to be created. When processing a split, the
header (H) is used to compare the lower and the higher attribute values existing
in that split with the low and the high selection keys of the job. If the two ranges
overlap i.e. if the split contains relevant records for that job, the Trojan Index
provides the offset of the first relevant record. The next records inside that split
are then sequentially read until finding one with an attribute value higher than
the high key of the job.

Fig. 6: Indexed Data Layout [7]

The creation of a Trojan Index is done at load time through a MapRe-
duce job with proper UDFs: The map phase takes one record and emits a pair
〈splitID+A, record〉 as the intermediate key-value pairs. The key is a concatena-
tion of the attribute, A, over which we are building the index, and the identifier
of the split, splitID, whereas the value record contains all the attributes of that
record. For each reducer to process roughly the same number of splits, the hash
UDF re-partitions the records among them according to the splitID. In the
reduce phase, so each reducer receives the records sorted by the attribute A,
another proper UDF is used. In order to recreate the original splits as loaded

13



into the system, a UDF aggregates the records based on the splitID. It is worth
noting that now those splits are internally sorted. Finally, each reducer applies
an index builder function over each split which builds the Trojan Index. So this
new indexed data could be used in further queries, the reducers’ output is stored
on the distributed file system.

Trojan Join A Trojan Join consists in having the data co-partitioned and
co-located in load time, i.e. the records of both relations with the same join
attributes are grouped in the same split and hence placed on the same node
allowing a join to be done in a map-phase only.

Fig. 7: Co-partitioned Data Layout [7]

The layout of Trojan Join, as shown in Figure 7, is composed by a footer (F)
which identifies the split boundary, data from the two relations T S (depicted
green and blue) and a header for each relation, (Ht) and (Hs), indicating the
size of each partition inside the split.

As a pre-processing step, Trojan Join employs a MapReduce job in a simple
manner to pre-partition and co-locate the data sets: for each data input split of
each relation, the mappers apply a partitioning function on each record based
on the join attribute. After this re-partitioning, all the records with the same
join key (co-group) are naturally in the same reducer. The reducers’ output are
new data splits containing co-groups from the two relations that share the same
join key and additional information that along with proper UDFs may perform
further join queries locally. As the Trojan Index, these new data splits are stored
on the distributed file system.

To process a join, UDFs that properly manage this new data layout are used.
Similarly to regular Hadoop, a map task is created for each split. The difference
is that the reduce phase is avoided since all the records of the two relations with
the same join key are already on the same node and so, the cross product is
processed in the map-side rather than at the reduce-side, hence eliminating the
large amount of data transferring.

Discussion The Trojan Index is an index that allows to sequentially read the
relevant records within each split. By storing data in rows, no record reconstruc-
tion is needed. With a record-level index, Trojan Index does not avoid passing
through all the splits. Also, as a row-store, all the attributes have to be read
from disk. On the other hand, Trojan Join avoids the reduce phase on join exe-
cutions since the data is already pre-partitioned. However, these improvements

14



are based on the assumption that both the schema and the MapReduce jobs may
be known in advance. Also, both solutions suffer from being static: the Trojan
Index does not take into account the current workload to somehow change the
attribute index, and with Trojan Join as new data files are ingested into the
system, data needs to be re-organized to incorporate the new records.

5.2 LIAH

LIAH (Lazy Indexing and Adaptivity in Hadoop)[21] is a system that aug-
ments Hadoop with indexing capability to improve the performance of selection
jobs. It makes use of a lazy indexing approach, to avoid incurring the overhead
of creating the index at load time. Furthermore, LIAH can adapt dynamically
to the workload, avoiding the need to know beforehand the access patterns to
the data, as opposed to systems such as Hadoop++[7].

In LIAH, the indexes are created on a record-level and different attributes
may be indexed leading to the existence of multiple indexes. LIAH takes advan-
tage of the fact that data in MapReduce is replicated, to create different indexes
for each replica of a block.

The index creation requires minimal changes in the MapReduce pipeline in
order to build indexes as byproduct of job executions, as explained below:

First, in order to adapt to the workload, LIAH interprets the attribute ac-
cessed on a selection predicate as a hint for what may be an index that would
speed up future jobs: For each block, if there is a suitable index for that attribute,
the map task is created on the node where the data block with that index re-
sides. Otherwise, a map task is scheduled on one of the nodes storing that block
without an associated index. That map task will then fetch its block from disk to
main memory, as normally, and feeds each record to the Map function. The most
important feature of LIAH is that, after an unindexed block has been processed
by the Map function, it is fed to the components that are responsible for creating
the missed index on that block. In the end, the block becomes also indexed with
no additional I/O operations. The NameNode is then informed about this newly
indexed block so that future jobs may take advantage of it.

Second, an entire dataset is not indexed in a single step. Instead, LIAH
creates the indexes in an incremental manner across multiple job executions, in
order to avoid delaying the performance of the first jobs. For this, it uses an
offer rate, ρ, meaning that it creates the index on one block out of ρ blocks in
each MapReduce job.

In what concerns the data layout in LIAH, each row is first parsed according
to the user-specified schema, followed by a conversion to PAX representation
that avoids unnecessary column reads. Even though PAX allows for a good
column-wise data compression[4], compression techniques were not addressed in
this work.

Discussion In contrast to previous works [8, 7] that build static indexes, and
require to know the profile of the MapReduce jobs in advance, LIAH can adapt

15



to changes in workloads. Also, by piggybacking indexing on the I/O operations
of map tasks, the index creation of LIAH imposes little overhead. The PAX rep-
resentation used by LIAH, allows to read only the required attributes. However,
as the indexes are within blocks, blocks always need to be read, even if they
contain no data required by the job. As opposed to previous works, LIAH re-
quires changes on Hadoop, in particular, on the processing pipeline of Hadoop.
Therefore, the code of LIAH needs to be kept up-to-date along with Hadoop.

5.3 E3

The E3 (Eagle-Eyed Elephant) framework[10] has been designed for boosting
the efficiency of selection-based jobs in a Hadoop environment. This system uses
split-level indexing techniques, whose goal is to access only the relevant data
splits for the given queries.

In order for the E3 framework to eliminate as much as possible the need
to process irrelevant splits, it builds indexes over all attributes in the dataset.
These multiple indexes are then complemented with novel techniques involving
domain segmentation, materialized views, and adaptive caching:

– Range indexing for numerical attributes: A range index consists in
multiple ranges for each numerical attribute in each data split. These ranges
are generated by a one-dimension domain segmentation technique that given
a set of values {v1,...,vn} and a maximum number of ranges, k, it returns
at most k ranges such that they are “as tightly as possible” containing
{v1,...,vn}. (see Figure 8). This index allows to eliminate splits containing
no ranges hit by any equality or range predicates.

Fig. 8: Creating range index [10]
– Inverted indexes for string attributes: An inverted index is built for

each string attribute. In this case, an inverted index consists in a mapping
between a string atom (in this work, an attribute value is called an atom)
and the splits containing an occurrence of that atom. This inverted index
is physically represented by a fixed-length bitmap with so many bits as the
number of splits in the dataset. The bitmap of the atom v has the ith bit set
to 1 if the ith data split contains v. This index is appropriated for equality
predicates over string attributes.

– Materialized views for nasty atoms: A nasty atom v is an atom that
appears only a few times in each split but does it so in all of the N splits
of a file. If inverted indexes were used, all N splits would be accessed. A
materialized view is used to overcome this issue: All records containing v are
stored in the materialized view. Then, in order to answer queries referring
v, only the M splits composing the materialized view are accessed instead
of the N splits of the original data, where M � N .

16



– Adaptive caching for nasty atom pairs: A nasty atom pair v,w consists
in a pair of atoms that individually appear in most of the splits but as a pair,
i.e. the atoms jointly, appear in very few records. To handle this, the query
workload is monitored and these pairs are cached along with the splits that
contain them. Adaptive caching differ from materialized view since it caches
atoms that individually might be spread over almost all the data splits and
hence not appear in the materialized view.

All these techniques are used at query time by an algorithm that runs inside
an UDF InputFormat and that takes as input a conjunctive predicate in the form
of P = p1 ∧ p2 ∧ p3 ∧ ... ∧ pn, applies the appropriate techniques described
above for each individual predicate, and returns a list of the minimal set of
splits that must be processed to evaluate the predicate P. Only after this, the
JobTracker creates the map tasks on the splits selected by the algorithm.

In order to build the indexes and the materialized view, the E3 framework
requires two passes over the data: First, a map-reduce job is performed to build
the inverted indexes and to identify the subset of nasty atoms to be included in
the materialized view according to a greedy algorithm. Second, the materialized
views is built in a map-only job containing every record with at least one of the
selected nasty atoms.

The design of E3 is not tied to any specific data layout: it uses Jaql for
translating the storage format into JSON views of the data what allows it to
operate over a vast storage formats. This JSON views consist on arrays of records
that are collections of attributes.

Discussion E3 takes into account all attributes of a dataset to build effective
indexes and to prevent the processing of irrelevant splits, thus avoiding unnec-
essary I/O and the cost of launching unnecessary map tasks. In addition, no
record reconstruction is need since records are kept entirely which on the other
hand implies that all the attributes have to be read from disk. Furthermore, it
does not require any prior knowledge about the query workload. However, this
is achieved at the expenses of a relatively costly pre-processing phase, with two
passes over the entire dataset. In addition, storing the materialized view, the
inverted index, and the range indexes, may lead to a significant storage over-
head. Through a UDF that extracts the needed splits and map-reduce jobs to
construct the various indexes and the materialized view, we may conclude that
E3 was implemented without changing the core of the Hadoop.

5.4 Full-Text Indexing

Lin et al.[18] propose an index aimed at optimizing selection-based jobs on
text fields to access only the blocks containing text that match a certain query
pattern. This work shows how such index can interact with block compression
in order to improve the I/O costs.

This index consists in a single full-text inverted index that works on block-
level: given a piece of text the job is interested in, it returns the data blocks

17



containing records where that piece of text occurs. However, in order to obtain
compact indexes, the text field in each record is first pre-processed to retain
only one occurrence of each term. Consequently, this index can only be used to
perform coarse-grained boolean queries.

It is worth noting how the data layout is addressed before we get into how the
index works, since the latter depends on the former. The records are serialized
by either Protocol Buffers or Thrift serialization frameworks. Data blocks com-
posed by the encoded records in a row-oriented way are compressed using LZO
compression. Files in LZO compression format are divided into smaller blocks
(typically 256KB) that are automatically handled by an appropriate UDF (In-
putFormat, more exactly) to be normally processed by map tasks of Hadoop.
Consequently, a split will comprise multiple LZO-compressed blocks.

The inverted index is used, when processing a split, to retrieve the blocks
matching the selection criteria. At the end, only the relevant blocks within it
are read from disk, decompressed and scanned. To complete the selection, in
each relevant block, the encoded records are extracted, decoded and the same
selection criteria is applied on each one.

The index creation procedure must be explicitly set up by an administrator
who defines which serialization framework to use, how the encoded fields are
extracted, among other directives.

Discussion This work addresses an inverted full-index that allows to avoid
unnecessary disk I/O readings for blocks containing no interested data for a
query at hand. Specifically, the overhead of extract, decode and scan the records
inside an irrelevant block is intrinsically avoided as well. Unfortunately, the index
creation is not a transparent process as data is ingested. Instead, it must be
explicitly set up by an administrator.

In the Hadoop framework, each mapper unions all the blocks that comprises
its split and extracts the records from it. However, in this implementation, it
was necessary to modify the processing pipeline of Hadoop in order to a mapper
skips ahead the irrelevant blocks when processing a split.

5.5 Trojan Data Layouts

The work of Jindal et al. (2011) proposes the usage of a new data layout
for improving selection-based jobs. This layout consists in organizing the data
inside each HDFS block in column groups, allowing to access only the relevant
columns to answer a query at hand. This data layout, named Trojan Layout,
is motivated by the observation that MapReduce wastes a significant amount
of time reading unnecessary column data, due to the records being stored in a
row-oriented way.

Externally, Trojan Layout follows the PAX philosophy in the sense that it
keeps the same data in each HDFS block as the row-oriented layout. However, it
exploits the fact that each block in HDFS is typically replicated three times for
fault-tolerance proposes: each replica is internally organized in different column

18



groups, each one aimed to improve the performance of a different type of queries.
As we will see later, this system was designed be aware of the schema and queries
access patterns. Despite data being stored in a column-fashion way, enabling to
achieve a good compression ratio, compression techniques were not addressed by
the authors.

Fig. 9: Per-replica Trojan Layout [15]

As Figure 9 depicts, the Trojan Layout can be divided in two main compo-
nents: an header and a set of column groups. The header contains the number
of attributes stored in a data block and a several attribute pointers, each one
pointing to the column group that contains that attribute. Each column group
is internally organized in a row-oriented way.

At query time, the attributes needed to be read are identified. Then, the best
Trojan Layout is picked according to those attributes. Finally, the map tasks are
scheduled to the nodes containing the data block replicas containing the selected
Trojan Layout. At the end, through a properly designed UDF, only the relevant
column group is brought to main memory.

A B C D E F G H

Q1 1 0 1 0 1 1 1 1
Q2 1 1 1 1 1 1 1 0
Q3 1 0 1 0 1 1 1 1
Q3 0 0 0 0 1 0 1 0

Table 1: Example of access pattern. A given cell has a value 1 if a query accesses
that attribute, otherwise it has value 0

The creation of this layout requires some pre-processing in order to identify
the best query groups and reformat the data blocks to fit those query groups.
Users have first to provide the query workload, the schema of their datasets, and
the replication factor to a design wizard called Trojan Layout Wizard (TLW).
Then, TLW groups the queries based on a query grouping algorithm that takes
into account their access pattern. Finally, the column groups are created in order
to speed up the generated query groups. For instance, in Table 1, attributes A,

19



C, E, F, G and H, are co-accessed in queries Q1 and Q3. Thus, these attributes
are grouped to speed up queries Q1 and Q3 as Figure 9 shows.

Discussion In this work, data is organized according to the incoming work-
load. Therefore, for a given query, the most suitable column group is chosen,
avoiding to read unnecessary column data. This is achieved without changing
the Hadoop processing pipeline but requires a Trojan Layout aware HDFS. On
the other hand, record reconstruction of conditional queries may not exhibit
good performance: if a query needs to access a column group only when a given
record meets some condition, that column group has to be brought from disk
and reading its data value by value until reaching the correspondent values of the
record that satisfied the condition. This approach does not provide any mech-
anism to avoid passing through irrelevant HDFS blocks which would speed up
the execution time of selective jobs. The major disadvantage of this system is
that it assumes that the query workload can be known in advance and remains
immutable along time leading to static column groups, an assumption that may
prove too strong for some use cases.

5.6 RCFile

The RCFile (Record Columnar File)[13] is a system that introduces a novel
data placement structure implemented on top of HDFS designed to improve
selection-based jobs. The data layout introduced in RCFile follows the logic of
the PAX format to improve the performance of access to compressed data by
allowing to access only the necessary columns for a given query.

The data layout in RCFile follows the PAX idea of “first horizontally-partition,
then vertically-partition”, combining the advantages of both row-store and column-
store: As a row-store, it guarantees that data of the same row is located in the
same node, requiring a low cost of record reconstruction; As a column-store, it
allows to apply column-wise data compression and avoid unnecessary columns
reads.

Fig. 10: Data Layout of RCFile [13]

20



As depicted in Figure 10, a HDFS block is first partitioned into row groups.
Each row group contains a sync marker, a metadata header and table data
organized in columns. The sync marker is used to separate continuous row groups
whereas the metadata header stores information about that row group such as
how many records are in that row group and how many bytes are in each column.
The data layout of the table data in each row group is stored in a column-oriented
way: All the values of the same column are stored contiguously. Such columns
are independently compressed, achieving a good compression ratio.

Data reads for answering a query at hand proceeds as follows: a map task
that is assigned a given HDFS block sequentially reads each row group inside it.
To process a row group, through its header, only the columns that are going to
be useful are loaded and decompressed.

To convert the raw data into this data format when loading a dataset, the
only operation RCFile has to perform is re-organize the data inside each row-
group.

Discussion RCFile proposes a new data placement structure that exploits
column-wise data compression and skips unnecessary column reads and also
avoids the network costs of record reconstruction as a row-store. RCFile is im-
plemented through UDFs requiring no changes on the processing pipeline of
Hadoop. Although a good record reconstruction cost is achieved by avoiding
to do it through the network, in RCFile, as Trojan Data Layouts, whenever a
record reconstruction is needed, it has to fetch the required columns and going
through all their data until the values of the record that triggered the recon-
struction have been read. Also, even the HDFS blocks containing no useful data
have to be scanned. Its largest disadvantage is that since extra metadata such
as the header and sync marker need to be rewritten for each row-group, it leads
to additional space overhead.

5.7 CIF Storage Format

CIF[11] is a column-oriented storage format for HDFS that supports co-
location through a customized placement policy, data compression, and opti-
mized readings. By gathering this multiple components, CIF provides efficient
access to the relevant column data, improving the Hadoop responsiveness when
executing selection-based jobs.

The idea of CIF is that a dataset is first horizontally partitioned into splits,
as shown in Figure 11, and each data split is stored in a separate sub-directory.
Each column of a given split is individually stored as a single file within the
sub-directory associated to that split. On each sub-directory there is also an
additional file describing this schema. A new HDFS block placement policy were
implemented to guarantee that column files associated to the same split are
co-located on the same node to avoid a high record reconstruction cost (see
Figure 12).

To process a split when a job is submitted, only the column files associated
to that split that are needed to produce the result are scanned and the records

21



Fig. 11: Data Layout of CIF [11] Fig. 12: Co-location with CIF [11]

Fig. 13: Skip list [11]

are reconstructed only with those attributes. When scanning a column file, it
uses a lazy record reconstruction technique that applies both a skip list and a
lazy decompression scheme. The skip list resides within each column file and
enables to skip a set of column values that are known not be relevant. Consider,
for example, a query that returns the Metadata values of the records whose
Url satisfy some given pattern. All the Url values are read one by one and,
whenever a given Url value matches the pattern, the skip list enables to jump to
the Metadata value that corresponds to the same record and that belongs to the
file corresponding to Metadata column. As a column file may occupy more than
one HDFS block, the lazy decompression scheme decompresses a HDFS block
only when it is actually going to be read.

When loading data, the application has to pay the price of organizing it in
the column-oriented fashion as previously described.

Discussion CIF introduces a new column-oriented storage format for Hadoop
that reads only the columns whose attributes are referred in a job configura-
tion. Moreover, it combines a lazy record construction that allows to eliminate
disk I/O and mechanisms to co-locate column data that enables reconstructing
records without network transfers. Even tough not being as good as a row-store,
CIF employs a skip list to efficiently skip irrelevant column values when recon-
struction records which implies accessing to different files. In addition, when
reading a column, there is no way of avoiding to pass through the irrelevant
HDFS blocks that comprise that column. These techniques have been added
without modifications to the core of the Hadoop.

5.8 CoHadoop

CoHadoop[9] is an extension of Hadoop that employs a co-location mecha-
nism allowing applications to control where their data is stored. This enables to

22



Fig. 14: Example of co-location with CoHadoop [9]

co-locate related data on the same set of nodes improving the performance of
joining-based jobs since remote I/O accesses are avoided.

CoHadoop operates over raw-data and achieves co-location by extension
HDFS with a new file-level property called locator that are set with a value
in the files that are intended to be co-located. Data placement is modified so the
files sharing the same locator value are placed on the same set of nodes. Files
with no locator are placed using Hadoop’s default strategy. In the NameNode
of HDFS there is a locator table that does the mapping of locators to the list
of files that share this locator (see Figure 14). Upon arrival of a new file with a
locator value, this table is used to place the new file on nodes that store files
related to the new one.

In order to running a map-only join, a pre-processing MapReduce job to
partition the data is required: The map phase is responsible for partition each
dataset according to the join attribute. In the reduce phase, one locator value is
assigned to each join attribute range. This ensures that all the records containing
the same join attribute are assigned to the same locator value when written to
HDFS. When additional data is ingested, this mechanism is run using the same
join attribute along with the locator table.

A join query can then be executed locally and is performed using a hash-
based map-side join algorithm: Each input split consists of all partitions within
the same key range of each dataset. CoHadoop uses an UDF called Sequential-

InputFormat in order to first read all the records from one partition followed
by all the records of the other partition. The reading of the first partition will
built an hash table using the joining attribute values of the records within that
partition. Then, it probes this hash table using the joining attribute values from
the other dataset to produce the join output.

Discussion CoHadoop decouples partitioning and co-location so that different
applications can use different methods to define related files. This enables Co-
Hadoop to co-locate related files defined by other means than partitioning, such
as column files in a columnar storage format. For this, CoHadoop requires ap-
plications to give hints about the relation between data, which in the case of the
joining, was the partitioning function the responsible for creating the relation

23



between records. As previously stated, CoHadoop requires to change the HDFS
and the data placement policy.

5.9 Comparative Analysis

Most of the related work is aimed at avoiding the need to perform a full scan
of the input data in the cases where only a fraction of the input is relevant for
the desired output. The main approach that has been pursued to achieve this
goal consists in building indexes that allow to identify where the needed input
is located.

Indexing does not change the data layout. Therefore, even if it allows to
retrieve only the records with relevant input, it still requires the application to
read undesired columns in the target records. By changing the data layout and
storing the input “by-column”, it becomes possible to read only the columns that
are relevant for the computation. Furthermore, since data in a column belongs
to the same domain, this layout has the potential for offering better compression
efficiency.

An interesting approach that, to the best of our knowledge, has not been
explored would be to combine indexes with a column-oriented data layout: in-
dexes do the filtering on the data to be scanned and a column-wise layout allows
to achieve good data compression and to read only the needed column data,
reducing even more the I/O costs.

Data co-location has also proved to be an useful technique, not only to ef-
ficiently support joins but also to optimize the storage of data using a column-
oriented layout (by storing columns of the same set of records on the same
nodes).

One important aspect of most of the systems we have surveyed is that they
require prior knowledge of the schema definition and of the query workload.
Without a predefined schema, the indexing, data layout, and co-location opti-
mization mechanisms cannot be applied. CoHadoop does not require the schema
explicitly to optimize the co-location but requires user to tag data with domain-
specific information.

In addition, with the exception of LIAH (which works online and incremen-
tally), these optimization techniques require the execution of a pre-processing
phase, where indexes are built, the data layout is changed, or the data is moved
to ensure proper co-location. In Hadoop++, for instance, the input data is first
transferred through the network and rewritten again into the HDFS which leads
to a significant loading cost. Still, according to [20], most applications are willing
to pay a one-time loading cost to reorganize the data if the dataset are going to
be analysed multiple times. It is also worth noting that the adaptive approach
of LIAH could be integrated into other approaches such Trojan Data Layouts,
to interpret the access patterns and adapt the existing column groups to better
serve the workload of future and similar queries.

Despite of Hadoop having a strict processing pipeline with a structure hard
to modify, UDFs allows to inject arbitrary code into this framework turning it
into a more flexible distributed runtime. In fact, these UDFs may suffice for

24



T
a
b

le
2
:

S
y
st

em
s

H
a
d
o
o
p
+
+

[7
]

L
IA

H
[2
1
]

E
3
[1
0
]

F
u
ll
-T

e
x
t

In
d
e
x
in
g
[1
8
]

T
ro

ja
n

D
a
ta

L
a
y
o
u
ts

[1
5
]

R
C
F
il
e
[1
3
]

C
IF

[1
1
]

C
o
H
a
d
o
o
p

[9
]

T
ro

ja
n

In
d
e
x

T
ro

ja
n

J
o
in

A
p
p
ro

a
ch

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

re
co

rd
s

P
ro

ce
ss

jo
in

o
p

er
a
ti

o
n
s

lo
ca

ll
y

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

re
co

rd
s

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

sp
li
ts

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

b
lo

ck
s

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

co
lu

m
n
s

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

co
lu

m
n
s

A
cc

es
s

o
n
ly

th
e

re
le

va
n
t

co
lu

m
n
s

S
to

re
re

la
te

d
d
a
ta

o
n

th
e

sa
m

e
n
o
d
e

U
se

C
a
se

s
S
el

ec
ti

o
n

J
o
in

in
g

S
el

ec
ti

o
n

S
el

ec
ti

o
n

S
el

ec
ti

o
n

S
el

ec
ti

o
n

S
el

ec
ti

o
n

S
el

ec
ti

o
n

J
o
in

in
g

T
e
ch

n
iq
u
e
s

In
d
e
x
in
g

Y
e
s/

N
o

Y
es

N
o

Y
es

Y
es

Y
es

N
o

N
o

N
o

N
o

In
d
e
x
-l
e
v
e
l

R
ec

o
rd

-
R

ec
o
rd

S
p
li
t

B
lo

ck
-

-
-

-
M

u
lt
ip
le
/
S
in
g
le

S
in

g
le

-
M

u
lt

ip
le

M
u
lt

ip
le

S
in

g
le

-
-

-
-

D
a
ta

L
a
y
o
u
t

D
a
ta

O
rg

a
n
iz
a
ti
o
n

R
ow

R
ow

P
A

X
R

ow
R

ow
C

o
lu

m
n

g
ro

u
p
s

P
A

X
C

o
lu

m
n

R
aw

d
a
ta

D
a
ta

C
o
m
p
re

ss
io
n

N
o

N
o

N
o

N
o

Y
es

N
o

Y
es

Y
es

N
o

C
o
-l
o
c
a
ti
o
n

-
B

a
se

d
o
n

jo
in

a
tt

ri
b
u
te

-
-

-
-

-
B

a
se

d
o
n

sp
li
t-

d
ir

ec
to

ry
B

a
se

d
o
n

lo
ca

to
r

p
ro

p
er

ty

O
v
e
ra

ll

C
h
a
n
g
e
s
H
a
d
o
o
p

N
o

N
o

Y
es

N
o

Y
es

Y
es

N
o

N
o

Y
es

P
re

v
io
u
s
K
n
o
w
le
d
g
e

S
ch

em
a

a
n
d

W
o
rk

lo
a
d

S
ch

em
a

a
n
d

W
o
rk

lo
a
d

S
ch

em
a

S
ch

em
a

S
ch

em
a

S
ch

em
a

a
n
d

w
o
rk

lo
a
d

S
ch

em
a

S
ch

em
a

H
in

ts
a
b

o
u
t

re
la

te
d

fi
le

s

P
re

-P
ro

c
e
ss
in
g

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

S
ta

ti
c
/
O
n
li
n
e

S
ta

ti
c

S
ta

ti
c

O
n
li
n
e

O
n
li
n
e

(c
a
ch

e)
N

/
A

S
ta

ti
c

N
/
A

N
/
A

O
n
li
n
e

R
e
c
o
rd

R
e
c
o
n
st
ru

c
ti
o
n

-
-

W
it

h
in

H
D

F
S

b
lo

ck
-

N
/
A

W
it

h
in

H
D

F
S

b
lo

ck
W

it
h
in

H
D

F
S

b
lo

ck

F
ro

m
d
iff

er
en

t
fi
le

s
b
u
t

w
it

h
a

sk
ip

li
st

-

O
v
e
rh

e
a
d
s

R
ea

d
s

ir
re

le
va

n
t

sp
li
ts

a
n
d

a
tt

ri
b
u
te

s
-

R
ea

d
s

ir
re

le
va

n
t

H
D

F
S

b
lo

ck
s

S
to

ra
g
e;

R
ea

d
s

ir
re

le
va

n
t

a
tt

ri
b
u
te

s

E
x
te

n
si

v
e

m
a
n
u
a
l

co
n
fi
g
u
ra

ti
o
n

R
ea

d
s

ir
re

le
va

n
t

H
D

F
S

b
lo

ck
s

S
to

ra
g
e;

R
ea

d
s

ir
re

le
va

n
t

H
D

F
S

b
lo

ck
s

R
ea

d
s

ir
re

le
va

n
t

H
D

F
S

b
lo

ck
s

-

25



some systems we presented such Hadoop++ or CIF, but not for others that
needed to tune other aspects of Hadoop. In the case of LIAH, the changes on
the framework were needed to index the data online according to the current
workload and without any extra I/O operation. CoHadoop and the Trojan Data
Layouts on the other hand had to add extra metadata information to the HDFS.

6 Proposed Approach

Known for its simplicity and ease deployment, the MapReduce framework ex-
hibits some limitations that preclude it from reaching the performance of parallel
DBMS. Parallel DBMS’s are designed for highly structured relational databases
which enables to have indexes optimized for accessing the data. MapReduce on
the other hand has the flexibility of processing either unstructured or relational
data, making this framework widely adopted for many sorts of applications. This
flexibility however comes at the cost of performance.

The efficiency of the input data processing phase has been addressed by many
research efforts by means of indexing, data layout, or co-location approaches. The
first two techniques aim at reducing disk I/O costs whereas the latter aims at
reducing the network usage.

In this project, we aim at building a system using Hadoop to integrate the
three techniques enumerated above, to combine their advantages:

– Firstly, we propose to store the input in a column-wise fashion: dividing it
into row groups, each one then vertically partitioned into either individually
or groups of columns that are stored in separate HDFS blocks. By storing
the data in a column-wise fashion we expect to achieve good compression
rates and allow read operations to be performed exclusively over the column
blocks corresponding to the requested attribute, resulting in reduced I/O
costs when loading data from disk.

– Secondly, inspired by the CIF approach, we plan to co-locate the column
blocks belonging to the same row group on the same set of nodes, ensuring
a low cost of record reconstruction.

– Finally, we will build inverted indexes that will enable to select all column
blocks that have, at least, one attribute value that satisfies the job predicate.

It is worth noting the difference between this architecture and the ones from
previously presented systems that also resort to indexing: instead of indexing
entire records, we aim at indexing columnar data. In order to speed up all the
selective queries no matter which attribute is referred, we intend to keep as many
inverted indexes as attributes. The resulting system is expected to perform well
mainly for selection-based jobs. However, queries that apply a filtering following
by a join may also benefit from our architecture.

We expect to preserve the fault tolerant property of MapReduce, since data
will still be stored in data blocks, we only modify MapReduce to store column
data instead of row data.

26



The challenges of our proposal are mainly associated with the size of the row
groups and the indexes: as referred in [11, 13], tuning a row group size becomes
critical. A large row group size can have better compression efficiency but lower
read performance. Concerning the indexes, we think it would be advantageous to
have indexes that made possible to decompress only the relevant part of a data
block. For this, each entry of an index would have to keep the attribute value,
the data block and an offset for that value on the associated block. To avoid a
significant storage overhead due to this additional information, we could consider
to index only a subset of the blocks (for instance, the most accessed ones).
Another relevant aspect is that, similarly to CIF, we have to implement a new
block-placement policy for HDFS in order to co-locate associated column data
blocks. However, this does not require any modification to Hadoop, since from
version 0.21.0 the Hadoop system allows changing its placement policy without
modifying Hadoop or HDFS [11]. Regarding the creation of indexes, we can
resort to mechanisms similar to those of Hadoop++[7] (but for columnar data
instead of row), to implement indexes without modifying the core of Hadoop.
Taking this into account, we expect to build our described architecture keeping
the HDFS and the Hadoop processing framework unchanged.

7 Evaluation

We intend to evaluate the performance of our prototype and compare it
against Hadoop and a simpler version of our system that corresponds to a pro-
totype of CIF. Our main goal is to show that we can speed up analytical MapRe-
duce jobs having selection predicates.

The experiments will be carried out on a cluster with 10 nodes. The nodes
are equipped with an Intel Xeon CPU with 8 cores, 40GB main memory, and
1TB disks. The operating system is Ubuntu Linux. In our experiments we will
use the Hadoop (2.2.0).

The dataset consists of 325 million entries (tweets). Each tweet has multiple
attributes such as its ID, its creation date, the text itself, information about its
owner, a list of Url’s and users that were mentioned on it, the location it was
sent, among others.

In terms of query set, we identify two types of selective predicates that allow
us to adequately compare our system, Hadoop and CIF: 1) queries scanning
all the tweets of the dataset (example: return the owners and the dates from
all tweets) and 2) queries requiring only the tweets with attributes that fulfil a
specified criterion (example: return the owners and dates from tweets originated
at New York).

To measure the effectiveness of our proposal, we propose the following eval-
uation metrics:

– The time spent in the map phase for being the moment when data is actually
scanned. CIF reaches a performance of 60x that of Hadoop when scanning
one single attribute from all the records of the dataset. We expect a similar

27



performance from our system when executing this type of jobs. However,
in the second type of selective predicates identified above, CIF requires to
fully read all blocks storing data from the columns being tested. With our
architecture, the indexing capability allows to skip those blocks with no data
of interest, avoiding to fetch, uncompress, and fully read them. In such cases,
we expect to outperform CIF.

– The time spending in uploading the input data, i.e. how much time is spent
organizing the dataset into column data blocks, co-locating them and cre-
ating the indexes. Due to the costs of reorganizing data, we expect that
our system will perform worse than Hadoop, but a similar time as CIF in
this stage. However, since our system requires a phase of index creation, we
expect a higher overhead in the total data ingestion time.

– The storage overhead caused by indexes and additional information that may
be required. We expect to not have a considerable storage overhead when
compared with uncompressed Hadoop, since the compression of column-
oriented data may balance the additional data that is require to implement
our architecture.

8 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29, 2014: Detailed design and implementation of the
proposed architecture, including preliminary tests.

– March 30 - May 3, 2014: Perform the complete experimental evaluation of
the results.

– May 4 - May 23, 2014: Write a paper describing the project.
– May 24 - June 15, 2014: Finish the writing of the dissertation.
– June 15, 2014: Deliver the MSc dissertation.

9 Conclusions

Due to the increasing importance of being able to process big data, MapRe-
duce has become widely adopted, mostly due to its scalability and ease of use.
In this work we surveyed systems aimed at overcoming limitations of the basic
MapReduce model in what regards the access to data. Examples of techniques
that have been incorporated in MapReduce include implementing indexes, opti-
mizing the data layout, or co-locating related data on the same location.

Our goal is to further enhance the performance of MapReduce when executing
selective-based jobs by creating a system that combines and tunes the strengths
of indexes, data layouts, and co-location minimizing the cost of data accesses.

We have drafted an architecture of the proposed solution and identified the
metrics that will be used to evaluate it. More details related with the specifica-
tion, implementation, and experimental evaluation are left for future work whose
schedule has also been presented.

28



Acknowledgements We are grateful to João Paiva for the fruitful discussions
and comments during the preparation of this report. This work was partially
supported by project PEPITA PTDC/EEI-SCR/2776/2012.

29



Bibliography

[1] http://hadoop.apache.org.

[2] https://twitter.com.

[3] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-
stores vs. row-stores: How different are they really? In Proceedings
of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’08, pages 967–980, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376712. URL
http://doi.acm.org/10.1145/1376616.1376712.

[4] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis.
Weaving relations for cache performance. In Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, VLDB ’01, pages 169–180,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1-55860-804-4. URL http://dl.acm.org/citation.cfm?id=645927.672367.

[5] Amitanand S. Aiyer, Mikhail Bautin, Guoqiang Jerry Chen, Pritam
Damania, Prakash Khemani, Kannan Muthukkaruppan, Karthik Ran-
ganathan, Nicolas Spiegelberg, Liyin Tang, and Madhuwanti Vaidya.
Storage infrastructure behind facebook messages: Using hbase at scale.
IEEE Data Eng. Bull., 35(2):4–13, 2012. URL http://dblp.uni-
trier.de/db/journals/debu/debu35.html.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1251254.1251264.

[7] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kar-
gin, Vinay Setty, and Jörg Schad. Hadoop++: making a yellow ele-
phant run like a cheetah (without it even noticing). Proc. VLDB
Endow., 3(1-2):515–529, September 2010. ISSN 2150-8097. URL
http://dl.acm.org/citation.cfm?id=1920841.1920908.

[8] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, and Jörg Schad. Only aggressive elephants are fast elephants.
CoRR, abs/1208.0287, 2012.

[9] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer
Gemulla, Aljoscha Krettek, and John McPherson. Cohadoop:
Flexible data placement and its exploitation in hadoop. Proc.
VLDB Endow., 4(9):575–585, June 2011. ISSN 2150-8097. URL
http://dl.acm.org/citation.cfm?id=2002938.2002943.

[10] Mohamed Y. Eltabakh, Fatma Özcan, Yannis Sismanis, Peter J. Haas,
Hamid Pirahesh, and Jan Vondrak. Eagle-eyed elephant: Split-oriented
indexing in hadoop. In Proceedings of the 16th International Conference on
Extending Database Technology, EDBT ’13, pages 89–100, New York, NY,



USA, 2013. ACM. ISBN 978-1-4503-1597-5. doi: 10.1145/2452376.2452388.
URL http://doi.acm.org/10.1145/2452376.2452388.

[11] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep
Tata. Column-oriented storage techniques for mapreduce. Proc.
VLDB Endow., 4(7):419–429, April 2011. ISSN 2150-8097. URL
http://dl.acm.org/citation.cfm?id=1988776.1988778.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. SIGOPS Oper. Syst. Rev., 37(5):29–43, Octo-
ber 2003. ISSN 0163-5980. doi: 10.1145/1165389.945450. URL
http://doi.acm.org/10.1145/1165389.945450.

[13] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong
Zhang, and Zhiwei Xu. Rcfile: A fast and space-efficient data placement
structure in mapreduce-based warehouse systems. In Proceedings of the
2011 IEEE 27th International Conference on Data Engineering, ICDE
’11, pages 1199–1208, Washington, DC, USA, 2011. IEEE Computer So-
ciety. ISBN 978-1-4244-8959-6. doi: 10.1109/ICDE.2011.5767933. URL
http://dx.doi.org/10.1109/ICDE.2011.5767933.

[14] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The per-
formance of mapreduce: An in-depth study. Proc. VLDB En-
dow., 3(1-2):472–483, September 2010. ISSN 2150-8097. URL
http://dl.acm.org/citation.cfm?id=1920841.1920903.

[15] Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, and Jens Dittrich. Tro-
jan data layouts: Right shoes for a running elephant. In Pro-
ceedings of the 2Nd ACM Symposium on Cloud Computing,
SOCC ’11, pages 21:1–21:14, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0976-9. doi: 10.1145/2038916.2038937. URL
http://doi.acm.org/10.1145/2038916.2038937.

[16] Jon M. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. J. ACM, 46(5):604–632, September 1999. ISSN 0004-5411. doi:
10.1145/324133.324140. URL http://doi.acm.org/10.1145/324133.324140.

[17] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn
Chung, and Bongki Moon. Parallel data processing with
mapreduce: a survey. SIGMOD Rec., 40(4):11–20, January
2012. ISSN 0163-5808. doi: 10.1145/2094114.2094118. URL
http://doi.acm.org/10.1145/2094114.2094118.

[18] Jimmy Lin, Dmitriy Ryaboy, and Kevin Weil. Full-text indexing for op-
timizing selection operations in large-scale data analytics. In Proceed-
ings of the Second International Workshop on MapReduce and Its Ap-
plications, MapReduce ’11, pages 59–66, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0700-0. doi: 10.1145/1996092.1996105. URL
http://doi.acm.org/10.1145/1996092.1996105.

[19] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, November 1999. URL
http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-
0120.

31



[20] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. A compari-
son of approaches to large-scale data analysis. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’09, pages 165–178, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-551-2. doi: 10.1145/1559845.1559865. URL
http://doi.acm.org/10.1145/1559845.1559865.

[21] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dittrich.
Towards zero-overhead adaptive indexing in hadoop. CoRR, abs/1212.3480,
2012.

[22] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Proceedings of the 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST),
MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer So-
ciety. ISBN 978-1-4244-7152-2. doi: 10.1109/MSST.2010.5496972. URL
http://dx.doi.org/10.1109/MSST.2010.5496972.

32


