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Abstract—The work described in this thesis proposes and
evaluates ShortMap, a system that relies on a combination of
techniques aimed at efficiently supporting selective MapReduce
jobs that are only concerned with a subset of the entire
dataset. We combine the use of an appropriate data layout
with data indexing tools to improve the data access speed and
significantly shorten the Map phase of the jobs. An extensive
experimental evaluation of ShortMap shows that, by avoiding
reading irrelevant blocks, it can provide speedups up to 80
times when compared to the basic Hadoop implementation.
Further, our system also outperforms other MapReduce im-
plementations that use variants of the techniques we have
embedded in ShortMap. ShortMap is open source and available
for download.

Today, there is an increasing need to analyse very large
datasets, a task that requires specialised storage and pro-
cessing infrastructures. The problems associated with the
management of such very large datasets have been coined
“big data”. Big data requires the use of massively parallel
software, running on hundreds of servers, in order to produce
useful results in reasonable time.

The MapReduce paradigm[1], and its associated mid-
dleware, have become a fundamental tool to parallelize
complex computations over large amounts of data. In this
context, MapReduce implementations, such as Hadoop[2]
have become “de facto” standard middleware frameworks
that strongly simplify big data processing.

Originally, MapReduce was designed for jobs such as
web indexing, that need to process the entire dataset [3].
However, as the range of applications of MapReduce grows,
it is frequently used to execute queries that are only con-
cerned with a small fraction of the entire dataset [4], [5].
For instance, communications service providers maintain
datasets about their customers that they can use as an
additional source of revenue by selling analysis of data to
third parties for market research[6].

Unfortunately, current MapReduce implementations are
not well tailored to support this type of operation. According
to the MapReduce model, it is the role of the Map task to
select the appropriate entries of the dataset, that are relevant
to the computation being performed, and pass those entries
to reducers. To perform this selection, the Map task may be
forced to read the entire dataset, even if only a small fraction
is relevant for the query being performed. This can consume
a significant fraction of the entire MapReduce job. Figure 1
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Figure 1. Cost of reading data, relative to the duration of Map tasks,
depending on job type and query selectivity. The “broadest” query filters
records by the most common value in the dataset, while the “narrowest”
query filters by the most uncommon one.

illustrates the cost of reading the input data, in comparison
with the cost of the complete Map phase, for two types
of jobs and two types of selective queries when using the
default Hadoop implementation over a real Twitter dataset.
The “wordcount” job is a common example of a Hadoop
workload, and consists of counting the frequency of words
in the text; the “sentiment” job consists of calculating the
sentiment of twitter users, a realistic workload which mimics
the big data processing required to extract scientific results
from Twitter datasets[7], [8], [9], [10]. As it can be seen,
when querying for all but the most common item, the Map
phase can take from 60% to 99% of the total querying time.
In fact, previous research has already identified several map-
heavy workloads which justify Map task optimization as an
interesting research area [4], [11], [5], [12], [13], [14], [15].

A common characteristic of many big data datasets, that
motivates our work, is that the distribution of the frequen-
cies of values for any attribute typically follows a highly
skewed distribution such as a Zipfian distribution [16]. This
is illustrated in Figure 2, that presents the distribution of
frequencies of the “user location” attribute in a sample of
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Figure 2. Distribution of the “user location” values in a realistic Twitter
dataset.

the real Twitter dataset used to evaluate ShortMap. This kind
of distributions is particularly amenable for being indexed
since, even though a small percentage of the values are very
frequent in the dataset, most are uncommon. This suggest
that, with the appropriate use of indexing mechanisms, high
gains may be achieved by avoiding reading all data when
using selection queries by all but the most common values.

In this paper we show how the time of the Map phase
can be substantially reduced. Specifically, we propose and
evaluate ShortMap, a system that relies on a combination of
techniques aimed at efficiently supporting selective MapRe-
duce queries that are only concerned with a subset of the
entire dataset. We combine the use of an appropriate data-
layout with the use of data indexing tools to significantly
shorten the Map phase of the jobs. An extensive experimen-
tal evaluation of ShortMap shows that, by avoiding reading
irrelevant data, it can provide speedups up to 80 times when
compared to the basic Hadoop implementation. Further, our
system also outperforms other MapReduce implementations
that use variants of the techniques we have embedded in
ShortMap.

The rest of the paper is structured as follows. For self-
containment, Section I provides a short introduction to Map-
Reduce and associated middleware. Sections II and III de-
scribe the architecture and the algorithms used by ShortMap,
while Section IV captures some relevant implementation de-
tails. Section V provides a extensive experimental evaluation
ShortMap. A comparison of ShortMap with related work is
given in Section VI and Section VII concludes the paper.

I. MAPREDUCE BACKGROUND

A program running on MapReduce is called a job, and it
is composed by a set of tasks. Some of these tasks apply
the Map function to the input (the Map tasks), while others
apply the Reduce function to the intermediate results (the
Reduce tasks). Any node in the system may act as a mapper,
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Figure 3. MapReduce Steps.

a reducer or both, and the whole process is orchestrated by
a (logically) centralised master.

Upon job submission, the input data is automatically par-
titioned into pieces, called splits. Each Map task processes a
single split applying the Map function to the data contained
in it. An input reader converts the data into a stream of
key/value pairs which correspond to records to be processed
by the Map function. The Map function then takes as input
a key/value pair and, after some computation, generates an
intermediate key/value pair, which is then assigned to the
reducer nodes.

Each reducer will get all intermediate key/value pairs
that share the same intermediate key and apply the Reduce
function to the intermediate values of all keys assigned to
it. This function will combine all the intermediate values in
order to generate the final result of a job.

Figure 3 illustrates the sequence of steps executed during
the execution of a MapReduce job, which are enumerated
below:

1) Task assignment: The input data is divided into splits
and, for each one, the master creates a Map task and
assigns it to a worker.

2) Input Reader: A Map task starts with a function to
extract the key/value pairs from the raw data inside
the split.

3) Map function: Each key/value pair is fed into the
user-defined Map function that can generate zero, one
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or more intermediate key/value pairs. Since these pairs
represent temporary results, the intermediate data is
stored in the local disks of the mappers.

4) Shuffle phase: The intermediate key/value pairs are
assigned to reducers by means of a partition function
in a manner such that all intermediate key/value pairs
with the same intermediate key will be processed by
the same Reduce task and hence by the same reducer.
Since these intermediate key/value pairs are spread
arbitrarily across the processing nodes, the master
passes to reducers the information about the mappers’s
location, so that each reducer may be able to remotely
read its input.

5) Sort & Group: When the remote reads are finished,
each reducer sorts the intermediate data in order to
group all its input pairs by their intermediate keys.

6) Reduce function: In the Reduce tasks, each reducer
passes an intermediate key and the corresponding
set of intermediate values to the user-defined Reduce
function. The output of the reducers is stored in the
global file system for reliability.

Apache Hadoop [2] is the most popular open-source im-
plementation of the MapReduce framework. Similarly to
Google’s MapReduce, Hadoop also employs two different
layers: the HDFS, a distributed storage layer responsible
for persistently storing the data among the nodes; and the
Hadoop MapReduce Framework, a processing layer respon-
sible for running MapReduce jobs.

• Storage Layer: Hadoop DFS (HDFS) is a distributed
file system that uses three different entities: one Na-
meNode, one SecondaryNameNode and one or more
DataNodes. The NameNode is responsible for storing
the metadata of all files in the distributed file system.
In order to recover the metadata files in case of a
NameNode failure, the SecondaryNameNode keeps a
copy of the latest checkpoint of the filesystem metadata.
Each file in HDFS is divided into several fixed-size
blocks (typically configured with 64MB each), such
that each block is stored on any of the DataNodes. In
order to improve availability, Hadoop replicates each
block by a default, but configurable, factor of 3.

• Processing Layer: The entities involved in the pro-
cessing layer are one master, named the JobTracker,
and one or more workers, named the TaskTrackers.
The role of the JobTracker is to coordinate all the
jobs running on the system and to assign tasks to run
on the TaskTrackers which periodically report to the
JobTracker the progress of their running tasks. Hadoop
uses the following task scheduling method: Workers are
initially assigned with tasks that can be executed with
local data. However, should a worker finish all tasks
associated with the data it stores locally, it may be fed
tasks which entail obtaining data from other nodes.

II. MAIN SHORTMAP MECHANISMS

We now present ShortMap, a system that embodies a
complementary and coherent set of techniques that are aimed

at improving the Map phase of jobs that only manipulate a
fraction of the dataset. ShortMap combines the following
mechanisms:

• Data-layout: ShortMap organizes the dataset in a way
that promotes locality. We achieve this by storing table
contents by columns instead of by rows.

• Data Grouping: ShortMap groups similar data at each
node, to improve the effectiveness of the indexing
mechanism without compromising load-balancing.

• Indexing: ShortMap creates local indexes, from the data
that is stored at each node. Indexes are created and
maintained for the most relevant attributes.

We discuss the rationale, and the details, of each of these
mechanisms in the following subsections.

A. Data-layout

In a MapReduce system, the input data can be modelled
as a set of tables, where each table is composed of multiple
columns, or attributes. One of these attributes, typically the
first, is named the key and identifies each record, or row, of
the table. Tables are typically very large and must be stored
in multiple data blocks. There are mainly two approaches to
map the table content into blocks: row-oriented or column-
oriented.

In the row-oriented data layout all attributes of one record
are stored sequentially, and multiple records are placed
contiguously into disk. Row-based systems are designed to
efficiently process queries where many attributes of a record
need to be processed at the same time, since an entire record
can be retrieved with a single access to disk.

On the other hand, it has been shown[17], that a column-
oriented layout is particularly well suited for selection-based
jobs that access a small number of columns, since columns
that are not relevant for the intended output are not loaded
from disk and filtered through by the job, reducing the
execution time of a MapReduce job.

Unfortunately, since each column in a dataset may rep-
resent data with different lengths, a naive partition of the
dataset in columns may cause column blocks to become un-
aligned, complicating the process of building whole records
from partitioned datasets. In ShortMap, we avoid this draw-
back by first partitioning the dataset horizontally, by creating
row groups, and only then each row group is vertically
partitioned by columns, each one being stored in a different
file (Figure 4). In this way an attribute file is only read when
a given query refers to the corresponding attribute, skipping
data belonging to the other attributes that are irrelevant for
the query. Since by default HDFS places blocks in a random
way across all data nodes, ShortMap also includes a row-
group aware Block Placement Policy, to make sure that
blocks corresponding to the same row group are placed in
the same node. This allows our system to use a columnar
layout without having to fetch data from other nodes when a
full record is required by the job and must be reconstructed
from several columns.
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Figure 4. Row groups in ShortMap.

B. Grouping

The grouping component of ShortMap is responsible for
rewriting the input data into a format which favours the
usage of column-oriented indexes. In fact, columnar indexes
may be quite ineffective without the use of some kind of
grouping: On very large datasets, the frequency of most
values is significantly larger than the number of row groups
the data is partitioned into, which causes any value to be an
index “hit” for most row groups.

To make sure that any value in the dataset will be present
in the smallest number of blocks as possible, ShortMap
reads the whole dataset, identifies records which share the
same value for the indexed attributes, and outputs them in
a new order such that records with the same value will be
contiguous in the dataset. This re-ordering is done locally,
for each node in the system. The use of local grouping
has two significant advantages with regard to an alternative
global sorting: not only it makes grouping inexpensive, but
also preserves the good load balancing achieved by HDFS’s
initial distribution of data.

C. Indexing

ShortMap uses indexing to avoid loading the whole
dataset into main memory during the Map phase. This is
accomplished by using the index as an indicator if a given
block is relevant for the job being processed.

ShortMap indexes are fully decentralised in the sense
that each node builds its own index based on the data
it stores. This design decision simplifies the creation of
indexes, and makes for quick local index lookups. In terms
of structure, the indexes are actually inverted indexes, where
each entry maps an attribute value to its location in the
dataset. In fact, there are two possible representations for
this pair, each with different tradeoffs. The first is to map
the attribute value to a row group identifier. This identifier
represents the first row group where the value occurs. Since
data in each node in ShortMap is grouped by attribute
value, the system is guaranteed to scan through all records

which have a given attribute if it starts scanning at the
row group pointed by the index and stops as it reaches a
different value. The second possible representation is to use
a pair of 〈 RowGroupID, [column1-offset, column2-offset,
. . . , columnN-offset] 〉 attribute value. The first element of
the pair points to the first row group which contains the
attribute value. The second element is a list with length
equal to the number of columns in the dataset, such that
each entry corresponds the first offset containing the value
within the block of the corresponding column. Even though
the second representation has the potential to create larger
indexes (since it must contain an entry for each column
in the dataset), it also has the potential to achieve better
performance as it allows ShortMap to directly retrieve a
record from a specific offset in a block (without having to
filter through all records which may appear before the target
in the block).

In order to save memory during query time, the indexes
are stored on persistent storage along with the data. The
indexes are stored partitioned, such that a small set of pairs
is kept on each file. Thus, when a task is scheduled at a
node, only the index pairs corresponding to the attribute
value queried for by the Map task are brought to memory
from disk, to determine if the blocks associated with the split
of the Map task should be read. In order to achieve efficient
index querying, ShortMap keeps an in-memory cache of
the most recent attribute values queried for using a least
recently used policy. This design simplifies the management
of indexes, since it allows a node to keep the index pairs in
memory during the whole job, without requiring information
on job completion (which in MapReduce is only available
at the master, the JobTracker).

III. OTHER SHORTMAP ASPECTS

In the previous section we have described the main
mechanism that we have incorporated in ShortMap. In this
section we discuss additional issues, such as the use of
replication, the storage of indexes, the validation of blocks
before transfer, and the pre-processing step required by
ShortMap.

A. Replication
Hadoop supports replication, allowing each block to be

replicated in (a configurable number of) R nodes, such
that when a node fails the data may be recovered from
other nodes in the system. This mechanism is also leveraged
when scheduling tasks, since when choosing a node where
to spawn a task, the scheduler gives priorities to nodes
which already store the data. ShortMap also allows each
block to be replicated in R different nodes with similar
advantages. However, since each node groups the data it
stores, replication in ShortMap must be made on a per-node
basis instead on a per-block basis. Furthermore, similarly
to other state of the art systems [5], [12], ShortMap also
allows each replica to group the data according to a different
attribute, in order to allow for optimised queries for more
than one attribute.
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B. Index Storage
As mentioned previously, ShortMap’s indexes are stored

on disk and loaded as needed during querying. In order to
be able to load portions of the index, index pairs are saved
into different files (which act as buckets) depending on a
fixed portion the hash value of the key (i.e. the value of the
attribute).

C. Block Transfer Pre-Validation
Regarding index usage, notice that ShortMap does not

make use of a centralised index but MapReduce’s model
supports nodes retrieving data blocks from other nodes in the
system. In particular, when a node has finished processing
all tasks related with its data, the JobTracker will assign it
tasks related with data of nodes which have fallen behind
in processing. When processing selective queries, this may
cause a block with no relevant information to the worker to
be transferred over the network. This is inefficient, specially
because we have found the network to be one of the key
bottlenecks in the execution of a MapReduce job (this
observation concurs with other research in the area [11]).

To avoid this problem, in our implementation we modified
Hadoop such that the node that hosts the data makes a local
check, by loading the corresponding indexes to determine
if the block is relevant or not, before transferring the block
(avoiding the transference if it includes no relevant content
to the requesting worker). The results presented later in the
paper use a version of Hadoop with this optimisation. Note,
however, that ShortMap is not tied to this implementation
decision.

D. Pre-Processing
ShortMap requires the execution of a data pre-processing

stage to build the indexes and re-format data blocks by split-
ting the rows into columns and grouping similar data. Since
this pre-processing stage does not involve any exchange of
information among nodes, it can be performed efficiently,
and can actually leverage on MapReduce itself.

In more detail, after the data is loaded to HDFS, we run
a pre-processing MapReduce job configured such that each
node in the system acts as a mapper as well as reducer. The
job goes through all lines in all input files (i.e. all records
stored by the node), and in the Map phase outputs a pair
< (ID, value),List < field >> associating the record itself,
formatted as a list of values for fields, with an intermediate
key. The intermediate key makes sure that the record will be
processed by the reducer co-located with the mapper, since it
contains the identifier of the node storing the data; in order
to allow the reducer to perform the grouping, the Reduce
key also contains the value of the record for the attribute
for which the data will be grouped. Since the attribute to
be used for data grouping must be defined at the stage of
pre-processing, the user is responsible for selecting which
attribute is most relevant for indexing. In our prototype,
this attribute is included in a configuration file, but in a
working system it should be included as a parameter of the
copyFromLocal command of HDFS.

At the Reduce phase, each reducer receives several sets
of records, grouped by attribute value. Thus, the reducer’s
task is to output each field of the record to a different HDFS
block. Notice that since each column contains different types
of data, each output block may grow at a different rate. To
guarantee that all blocks will fit in an HDFS block and that
the several blocks corresponding to a row group are aligned
with each other, as soon as any column’s content reaches
the size of an HDFS block, a new row group is created.
This mechanism follows a design similar to other state
of the art column-oriented storage systems [17], [18], [19].
Throughout this process, ShortMap captures the starting
positions of each different value, such that it can populate
the block index.

IV. SHORTMAP IMPLEMENTATION

ShortMap has been implemented as a set of extensions
to the Hadoop framework and the prototype is available for
download1.

ShortMap extensions consist of roughly 6600 lines of
code. In this section, we go through the most important
tweaks done on Hadoop to support ShortMap functionality.

Regarding the loading of data into HDFS, we need to en-
sure that files belonging to the same row group were placed
on the same node, in order to allow for local record recon-
struction in cases where more than one attribute is queried.
Since by default, HDFS places blocks in a random way
across all data nodes, ShortMap includes a Row-Group
Aware Block Placement Policy to make sure that
blocks corresponding to the same row group are placed in
the same node. No modifications on the core of Hadoop
were needed to implement this feature, since custom Block
Placement Policies are easily pluggable.

Before processing starts, the input data is divided into
splits upon job submission, according to the InputFormat
associated with the job being performed. The generated
splits are then processed by the Map tasks. Since Short-
Map is based on file manipulation, the most appropriate
InputFormat is the FileInputFormat of Hadoop,
that is the base class for all file-based InputFormats.
However, the FileInputFormat goes through all the
input files and creates one split per HDFS block. For
ShortMap, we defined anInputFormat that is row-group
aware, in order to create only one split per row-group instead
of one per HDFS block.

In addition, the FileInputFormat also instantiates the
RecordReader, which is responsible for generating the
key/value pairs from the raw input split data and for sending
them, one by one, to the Map function. For ShortMap,
we implemented a RecordReader with two particular
capabilities. Firstly, it performs a local index lookup to check
if any row-groups assigned to the split contain a relevant
entry. In the positive case, the RecordReader obtains the
offset of the first row to start reading from that point until

1The prototype can be downloaded from:https://github.com/shortmap/
shortmap
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reaching either the end of the row-group or an entry that
no longer satisfies the query. Since we allow for nodes to
avoid transferring non-relevant blocks when other nodes are
processing the data they store, we have also added a new
routine that is called by the processing node so the owner of
a given row-group performs the index lookup and sends it the
relevant portion of the index the row group is relevant; or a
negative answer otherwise. Secondly, the RecordReader
extracts from the job configuration the attributes referred
by the query and passes the values corresponding to those
attributes to the Map function.

It is interesting to note that, although these changes
can achieve significant improvements of the MapReduce
performance (over the standard Hadoop implementation),
the majority of them require no modifications on the core
of Hadoop but, instead, can be implemented using the
extensibility-hooks provided by Hadoop.

V. EVALUATION

In this section, we show how each part of ShortMap
contributes to its overall result by comparing with other state
of the art solutions. Finally, we present results for how our
system compares with an unmodified Hadoop version.

All experiments have been performed using a cluster of
20 virtual machines (deployed on 10 physical machines)
running Xen, equipped with two 2.13 GHz Quad-Core
Intel(R) Xeon(R) E5506 processors and 40 GB of RAM,
running Ubuntu Linux 2.6.32-33-server and interconnected
via a private Gigabit Ethernet.

For all experiments presented in the current section, we
used a sample of the Twitter dataset[20], collected between
May and September 2012. This dataset is comprised of
325,333,833 tweets, that correspond to 988GB of raw data,
which when compressed with gzip, have a total of 161GB.
The tweets are stored in JSON format, each containing 23
attributes (such as an identifier, creation date, hashtags, the
text message itself, as well as an embedded JSON object
with 38 more attributes about the owner of the tweet such as
her language, location, identifier, etc). Due to non-disclosure
restrictions imposed by Twitter, we are unable to make the
dataset public, but a similar dataset can be obtained by
querying the Twitter’s API.

All values presented are the average of at least 3 execu-
tions, and for our configuration, an unmodified version of
Hadoop takes between 1 and 3 hours to process a query.

Our workloads capture scenarios where a provider might
offer its infra-structure for their clients to perform data
analysis based on a portion of the dataset, such as the
demographic they are interested on, a specific location,
language or associated hashtag. We use two different types
of selective MapReduce jobs; Each type of workload allows
to analyse different aspects of the system, according to the
amount of processing required by the corresponding Map
function. The first workload consists in applying a selective
query to the dataset, to retrieve only tweets using a specific
language, and then apply a simple word count. This analysis
works as a baseline for comparison with a second, more
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Figure 5. Cost of reading data, relative to the duration of Map tasks,
depending on job type and query selectivity.

complex and realistic analysis, which consists on calculating
the sentiment of users from the corresponding tweets’ text.
This job mimics the big data processing required to extract
scientific results from Twitter datasets [7], [8], [9], [10], and
it has significantly higher CPU processing requirements than
the wordcount job.

To better illustrate the difference between both types of
jobs, Figure 5 shows the percentage of the Map phase
time that ShortMap spends reading records from disk, when
executing the sentiment analysis and the word-counting
job. These values, similarly to others in this section, are
presented as a function of the selectivity of the query, i.e.,
to what percentage of the dataset does the value queried
by correspond. Since the word-counting job needs less data
processing on the Map function, it spends a larger fraction
(at least 73%) of the Map phase time reading the necessary
records. Lighter jobs are therefore often bounded by the
time required to scan the input data. Conversely, sentiment
analysis requires more processing on the Map function. This
is particularly prominent when processing the text of the
users whose language is the most common in the dataset.
In this case, since there is a large number of text messages
to process, most of the Map phase time is spent processing
records and not reading them from disk.

A. ShortMap against Indexed Row-Oriented Stores
One of the main concerns of ShortMap is Data-Layout. To

achieve better efficiency when reading data, we use columnar
storage. In order to evaluate the effect of this design decision,
in this section we compare ShortMap with systems which
make use of row-oriented layout for the storage and perform
lookups using indexes.

A prominent and comparable solution to our system
is Hadoop++,[4]. Hadoop++ not only uses a row-oriented
layout, but also creates indexes for the items contained
in each block. Unlike our solution, Hadoop++ sorts each
block by itself, and creates a block-local index, which is
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Figure 6. Entries read by Hadoop, Hadoop++ and ShortMap.

appended to the block. In Hadoop++, this index is loaded
at query time, and used as a hint to know which parts of
the block should be read to answer the query at hand. Since
the code for Hadoop++ is not publicly available, we have
also implemented a prototype of this system following the
specification provided in [4].

To better illustrate the design differences among Short-
Map, Hadoop++, and Hadoop, Figures 6 and 7 show
the number of bytes and entries read by each solution.
Hadoop++ reads much less data and entries than Hadoop,
and about the same number of entries as ShortMap (since
its indexes allow it to bypass non-relevant blocks). Similarly
to ShortMap, the number of bytes read is dependent on
how common the value queried for is. In terms of read
data, the main difference between both systems is that since
Hadoop++ uses row storage, it must read all columns of
records, whereas ShortMap needs only to read the blocks
corresponding to the relevant columns.

Figure 8 shows how these decisions reflect in terms of
performance of the system. This figure presents the speedup
of ShortMap over Hadoop++ while querying for different
values. As expected from the analysis of read data, for
all executions, ShortMap exhibits speedups over Hadoop++.
The performance of both systems tends to be similar when
querying for more common items and performing a complex
computation (i.e. sentiment analysis). On the other hand,
for the more selective jobs ShortMap shows up to 5 times
speedups, due to reading less data as was shown previously.

Interestingly, when for the wordcount job, an unexpected
effect comes into play and ShortMap’s speedup actually in-
creases as we look at less selective queries. This result is due
to the fact that Hadoop++, for the most common attributes,
needs to read all the blocks from the dataset. In fact, even
not all the records from the blocks are relevant for this query
(only 50% of the records are relevant), all the blocks contain
relevant records since they are uniformly distributed among
blocks. This way, for less selective queries, the performance
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Figure 7. Bytes read by Hadoop, Hadoop++ and ShortMap.
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Figure 8. Speedup of ShortMap over the Hadoop++, when running the
sentiment analysis and the word counting job.

of Hadoop++ reaches the one of Hadoop, while ShortMap
still avoids to read the remainder columns. Overall, for the
results presented, ShortMap achieves an average speedup of
4.4 over Hadoop++ for the word-count job, and of 2.4 for
the sentiment analysis.

B. ShortMap against Indexed Column-Oriented Stores.
Several state of the art systems opt by using column

layouts along with per-block indexes [12], [5]. In this sec-
tion, we study how our system compares with a variant of
our implementation of Hadoop++ which instead of storing
data per rows, stores it in columnar row groups (similarly
to ShortMap), and indexes each row group individually
(unlike ShortMap, which groups data and indexes data on
a per-node basis). Since the code for neither LIAH [12] nor
HAIL [5] is not publicly available, this prototype represents
a simplified version of such systems. The main goal of the
study presented in this section is to evaluate the effect of
the grouping and per-node index component of ShortMap.

Figure ?? presents the speedup of ShortMap over an
indexed column-oriented store. As was observed before,
since the less selective queries of the sentiment analysis
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Figure 9. Comparison between the bytes read by Hadoop and ShortMap.
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Figure 10. Comparison between the number of records read by Hadoop
and ShortMap.

job are heavily CPU-bound, ShortMap does not present a
significant advantage over other solutions. Still, for this job
ShortMap can reach up to 50% better performance, and
achieves an average of 25% speedup. Two facts contribute
to these results. Firstly, using per-block indexes requires the
system to load several indexes from disk while processing
the job, in contrast with ShortMap which only loads a partial
index on the first task associated with the job. Secondly,
and more importantly, since the data is not grouped, several
blocks may be a match for the query value, which requires
the system to open several blocks, to seek to the offset of
the value, whereas ShortMap most likely will only load a
single block.

For the wordcount job, the costs of not using grouping
become more pronounced. Unlike the results achieved for
the sentiment analysis, the speedup of ShortMap over an
indexed column-oriented store actually increase when the
selectivity of the query decreases. These results are strongly
tied with how many blocks are matched by the query. For
ShortMap, the number of blocks matched is proportional
with the selectivity of the query. However, on a system that
does not rely on grouping, the number of blocks matched
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Figure 11. Speedup of ShortMap over the unmodified Hadoop, when
running the sentiment analysis and the word-count job.

grows superlinearly with the selectivity of the query since
the records containing the matched value are distributed ran-
domly across all blocks. This effect is particularly notorious
towards the less selective queries, since the number of blocks
matched by the query on ShortMap remains very small
whereas for the system using per-block indexes all blocks are
a match for the queries. This also explains why towards the
most common attributes the speedup of ShortMap drops to
values close to 1: for this situation, in both systems, a large
number of blocks is matched and the cost of reading the data
shadows that of seeking inside the blocks. Furthermore, also
notice that for the rarest item, the speedup of ShortMap is
also more reduced than for the following queries: this is due
to this value being present only on a single block for both
systems, yielding a similar performance (with a slight edge
to ShortMap due to reading only a single index).

C. ShortMap against Hadoop
In this section, we evaluate the overall performance of

ShortMap, by comparing executions of our prototype of
ShortMap with the unmodified version of Hadoop. We
compare both solutions in terms of the amount of data read
from disk, as well as the performance for the two query
types for different frequencies of values in the dataset.

Unlike Hadoop, ShortMap does not require a full scan
over the entire dataset when performing a selective query.
As shown in Figure 9, this results in ShortMap reading
significantly less data than Hadoop. Furthermore, ShortMap
is required to filter through less entries, which cuts the
CPU cost as well, as shown in Figure 10. Notice that even
when querying for the most common attribute value, which
corresponds to approximately half of the dataset, ShortMap
still reads much less data than Hadoop, since it only reads the
columns relevant for the query at hand. The impact of this
improvement is more notorious in jobs with larger fractions
of time spent reading the records, since this is the part of
the Map phase time that is shortened.

Figure 11 depicts the speedup of ShortMap over Hadoop,
depending on the frequency for which the queried value
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can be found in the dataset. The consequences of ShortMap
reading considerably less data than Hadoop can clearly be
observed in these results, since ShortMap achieves up to
almost two orders of magnitude faster queries. As expected
from the analysis of read data, the advantages of ShortMap
are less significant when querying for more common values,
since the gap between the data read by ShortMap and
Hadoop closes.

Still, even when querying for the most common attribute,
for the word-count job ShortMap reaches a 14.2 times
speedup while reading 460 times less data, 1.79 times less
entries, and processing the same number of entries. In this
scenario, given that many entries need to be processed,
the processing costs, albeit small, limit the speedup of
ShortMap. This fact is particularly evident when looking at
the sentiment analysis: ShortMap is only 1.2 times faster
than Hadoop for the most common value since in that
situation the performance of the system is mostly limited
by the processing cost. Furthermore, notice that due to the
higher CPU cost associated with sentiment analysis, the
speedup of ShortMap also drops earlier (i.e. for values less
common) than for the word-count job. These results lead
to the conclusion that even though ShortMap is particularly
well suited for selection jobs using uncommon values, the
usage of a columnar layout allows it to achieve good
speedups even when selecting by the most common values
in the dataset.

VI. RELATED WORK

Similarly to ShortMap, several state of the art systems take
advantage of different data layouts to bring the performance
of Hadoop close to that of parallel database management
systems (DBMS). The three main approaches in the liter-
ature to handling Data-layout are row-oriented layouts [4],
[21], [22], column-oriented layouts [18], [17] and PAX
format [12], [19]. Since our system is designed to handle
queries for parts of the data, row-oriented layouts are not
well suited for storing data since they have a higher overhead
when retrieving partial records (as shown in Section V-A).
Column-oriented layouts, similarly to PAX, support partial
reads of the dataset. The main difference between these two
layouts is that while column-oriented layouts write each
column of a row group in a different file, PAX writes all
columns in a single file and includes a metadata header to
allow clients to seek directly to specific columns. ShortMap
makes use of columnar layout, mainly because the system
is designed to store large compressed data, and placing all
columns in a single file increases information entropy, thus
reducing compression ratios. Should this not be the case,
modifying ShortMap to use PAX instead would involve little
more than a trivial change to the indexes, to use several
offsets within a single block instead of one offset per column
block.

Indexing is a technique commonly used in DBMSs, which
was introduced in MapReduce as a mechanism to allow skip-
ping records when reading input during selection queries.
Hadoop++ [4] proposes a Trojan Index, which is created on a

per-block basis and appended to the block. This index allows
MapReduce to read the index before loading the block from
disk, thus reducing the number of records retrieved from
disk when compared with Hadoop. More recent works such
as HAIL [5] and LIAH [12] improve over this mechanism
by re-formatting each block in a PAX layout, and creating
the indexes in an on-demand way by tracking the queries
performed in the system. Unlike our work, these systems
create a per-block index, which as was shown in Section ??
leads to different tradeoffs in terms of index size, but also
limits the performance of the system since it requires loading
an index per block (as shown in Section V-B). Similarly
to our system, the work by Lin et al. [22] uses inverted
indexes to map attribute values to blocks in the dataset.
This approach has the potential to avoid reading blocks
of the dataset when performing selection queries. However,
as we argue in Sections II-B and V-B, indexing tends to
be an ineffective technique when not combined with block
rewriting using grouping to avoid a large part of the blocks
being a match for the query.

VII. CONCLUSIONS

In this paper we have described the design, implemen-
tation, and experimental evaluation of ShortMap, a system
that significantly improves the performance of MapReduce
jobs that are concerned with just a subset of the entire
dataset. Our experimental results, obtained with a sample
of a real dataset, show that ShortMap can provide speedups
up to 80 times the default Hadoop implementation. Nat-
urally, better results are obtained for queries that target
uncommon values, but our results show that ShortMap
does not incur performance degradation even when querying
for the common attributes; actually, it still provides some
(although arguably small) benefits in the less favourable
cases. We have also extensively compared ShortMap against
other state of the art MapReduce implementations that have
materialised techniques similar to ours, although in different
forms. Our results show that ShortMap also outperforms
those competing solutions. ShortMap has been implemented
as open source and has been made available for others
to experiment and to improve upon. As future work we
would like to leverage on the insights on frequencies of
attribute values available in the indexes to build a better
load balancing for ShortMap. We believe this frequency
information could be leveraged to increase the size of the
splits used by Hadoop for queries with high selectivity, thus
reducing the management costs involved in creating Map
tasks.
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