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Abstract. Software Transactional Memory (STM) systems have emerged
as a powerful paradigm to develop concurrent applications. Implement-
ing distributed and replicated versions of this paradigm is important
for scalability and fault-tolerance reasons. In such implementations, the
STM is replicated in multiple nodes, which have to coordinate to ensure
the consistency of the cached data. This work studies techniques that
allow to maintain the coherence of the STM replicated data, identifies
some limitations in the existing techniques, proposes some alternatives
that may help to mitigate these limitations, and discusses how these
alternatives can be implemented and evaluated.

1 Introduction

Software Transactional Memory (STM) systems have emerged as a powerful
paradigm to develop concurrent applications [1,2,3]. When using STMs, the pro-
grammer is not required to deal explicitly with concurrency control mechanisms.
Instead, the programmer has only to identify the sequence of instructions, or
transactions, that need to access and modify concurrent objects atomically. As
a result, the reliability of the code increases and the software development time
is shortened.

For scalability and fault-tolerance reasons, it is relevant to build distributed
and replicated implementations of this paradigm. In such implementations, the
STM is replicated in multiple nodes, which have to coordinate to ensure the con-
sistency of the cached data. One example of this type of system is the FenixEDU
system [4], a web application in which the transactional semantics of an opera-
tion are supported by a STM running at each application server.

This work is performed in the context of the Pastramy1 project (Persistent
and highly Available Software TRAnsactional MemorY). One of the goals of this
project is to build a more scalable and fault-tolerant version of the FenixEDU sys-
tem. In this system, servers run a STM and use a logically centralized database
to store the data and also as a synchronization mechanism to maintain their
cache consistent. In the current architecture of the FenixEDU system, every
1 http://pastramy.gsd.inesc-id.pt



time a transaction is started, the application server has to access the database
to check if its cache is still up-to-date. Since caches only need to be updated
when a remote transaction is committed, unnecessary accesses could be avoided
by having the application servers exchange messages when a write transaction
commits.

This work studies techniques that allow to maintain the coherence of the
replicated STM data, identifies some limitations in the existing techniques, pro-
poses some alternatives that may help in avoiding these limitations, and discusses
how these alternatives can be implemented and evaluated.

The rest of this report is organized as follows. Section 2 motivates and de-
scribes the goals of this work. Section 3 provides an introduction to the different
technical areas related to it. Section 4 drafts the architecture of the solution to
be implemented as future work and Section 5 describes how this solution will
be evaluated. The scheduling of future work is presented in Section 6. Finally,
Section 7 concludes this report by summarizing its main points.

2 Goals

This work aims at contributing to the implementation of efficient distributed
and replicated software transactional memory systems. More precisely:

Goals: This works aims at analyzing, designing, and evaluating tech-
niques to maintain the coherence of the replicated STM data.

The work started with a survey of related work (to be presented in Section 3).
From this survey it becomes clear that one of the most promising techniques is
based on the use of total order broadcast primitives [5] to disseminate control
data and serialize conflicting transactions. Typically, the information exchanged
in the payload of the total order broadcast includes the read and write sets of
the transactions, i.e., the set of data items that have been read and written by
the transaction during its execution at one replica.

Table 1 shows the size of read and write sets of transactions in the FenixEDU
system collected over a period of two weeks [4]. From this data it is clear that read
sets can be extremely large. Thus, the large size of read sets can be identified as
one possible obstacle to the implementation of efficient replicated STM systems.

Table 1. Average and maximum read set and write set sizes for each kind of transaction
in the FenixEDUv2 system. [4]

Read/Write set size
Average Maximum

Read set of read-only transactions 5,844 63,746,562
Read set of write transactions 47,226 2,292,625
Write set of write transactions 35 32,340

2



To mitigate the problem above, this report proposes the use of Bloom fil-
ters [6] as a space-efficient technique to disseminate read sets. Different replica
consistency algorithms, with and without the use of Bloom filters, will be im-
plemented and their performance analyzed. So, the objective is to achieve the
following results:

Expected results: This work will: i) implement a set of consistency al-
gorithms for replicated STMs; ii) provide an experimental comparative
evaluation of these algorithms and; iii) provide a quantified assessment
of the advantages and disadvantages to use Bloom filters as a way to
represent read sets in this class of applications.

3 Related Work

Understanding the problems this project poses implies knowing the fundamentals
of different areas in distributed systems.

This section starts by addressing Software Transactional Memory (STM)
systems (Subsection 3.1), which are the basis for building a distributed STM
(DSTM) system. To understand how STM can be distributed, this report briefly
surveys Distributed Shared Memory systems (Subsection 3.2) and then describes
a DSTM system inspired by those algorithms (Subsection 3.3). Then, with the
aim of replicating the STM we start by introducing some relevant communi-
cation and coordination abstractions, namely group communication primitives
(Subsection 3.4). Those primitives offering total order can be used for commu-
nication between sites, ensuring consistency and serializability. Since databases
and STM systems share the same key abstraction of atomic transaction, some
mechanisms used in database replication (Subsection 3.5) may be applied in a
replicated STM. Furthermore, replicated databases also share some goals with
Distributed Memory Systems (and consequently with DSTM systems). Finally,
Bloom filters (Subsection 3.6) are introduced as a mechanism that may be used
to reduce the size of the messages exchanged among sites.

3.1 Software Transactional Memory Systems

Transactional Memory A concurrent program is one that uses multiple threads
of control (named threads or processes) that execute concurrently and access
shared objects. These objects are called concurrent objects [7]. To ensure the
consistency of concurrent objects, the access to their internal data needs to be
controlled by some form of concurrency control. Classical concurrency control
relies on low-level mechanisms such as locks. Unfortunately, ensuring the cor-
rectness of a lock-based program is very difficult, as a single misplaced or missing
lock may easily compromise the consistency of data.

Even if locks are correctly placed, lock-based synchronization still has several
important drawbacks: it is prone to deadlocks and to priority inversion (when
a high priority thread is blocked by lower priority threads), it is vulnerable to
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thread failure (a thread may fail without ever relinquish acquired locks), poor
performance in face of preemption and page faults (a thread may be prevented
from executing while still holding locks) or lock convoying (a livelock phenomena
that may occur where there is high contend for some shared resource).

Transactional memory [8] is an abstraction that addresses the problems above
by preventing the programmer from dealing explicitly with concurrency control
mechanisms. Instead, the programmer has only to identify the sequence of in-
structions, or transactions, that need to access and modify concurrent objects
atomically. Transactional memory can be defined as a generic non-blocking syn-
chronization construct that allows correct sequential objects to be converted
automatically into correct concurrent objects [7].

Transactional memory borrows the notions of atomicity, consistency and iso-
lation from database transactions. The abstraction relies on an underlying run-
time system that is able to enforce some target consistency criteria for the con-
current execution (such as serializability [9]). If the consistency criteria is met,
the transaction is committed, otherwise its execution is aborted and the trans-
action is restarted. The ability to abort transactions eliminates the complexity
and potential deadlocks of fine-grain locking protocols. The ability to execute
non-conflicting transactions simultaneously may lead to high performance.

Hardware vs Software Transactional Memory The transactional memory
abstraction can be implemented with hardware support or entirely on software.
An hardware implementation of transactional memory was proposed in [8]. It is
based on extensions to multiprocessor cache coherence protocols and provides
support for a flexible transactional language for writing synchronization opera-
tions, which can be written as a transaction. However, this solution is blocking,
i.e., uses mutually exclusive critical sections to serialize access to concurrent
objects. Recently, a significant effort has been put in developing a software ver-
sion of the abstraction. Examples include [1,2,3]. Most of these implementations
use non-blocking synchronization algorithms, which allow asynchronous and con-
current access to concurrent objects while guaranteeing consistent updates using
atomic operations. Software Transactional Memory [10] (STM) is an example of
such algorithms.

This solution provides a non-blocking implementation of static transactions,
a special form of transactions in which the concurrent objects accessed by a
transaction are known in advance. The system works as follows: a transaction
updates a concurrent object only after a system wide declaration of its update
intention, so that other transactions are aware that a particular concurrent ob-
ject is going to be updated. The declaring transaction is called the owner of the
object and it needs exclusive ownership in order to ensure atomic updates. One of
the most significant limitations of this solution is that the system needs to have a
previous knowledge of all the objects the transaction is going to access to guar-
antee ordered access. Consequently, it cannot access other concurrent objects
during its execution rather than those predetermined. Recent work [1,2,3] has
focused on providing software transactional memory algorithms for concurrent
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objects dynamically, since many applications allocate and use data structures
dynamically.

Versioned Software Transactional Memory Software transactional mem-
ory (STM) systems perform better when the number of transaction restarts is
low compared to the overall number of transactions. This means that the number
of conflicts should be minimized.

Versioned Software Transactional Memory [11] is a STM designed with the
aim of minimizing the number of aborts. For that purpose, the system maintains
data encapsulated in versioned boxes, which are boxes that may hold multiple
versions of their contents. The use of per-transaction boxes, holding values that
are private to each transaction, ensures that read-only transactions never conflict
with other transactions. Furthermore, conflicts are avoided by delaying compu-
tations until commit time. Conflicts that cannot be avoided, may be resolved
by re-executing the conflicting part of the transaction. The per-transaction box
mechanism is implemented as a Java library (JVSTM2) and is currently being
used in the FenixEDU project [4] to reduce the conflicts on the collections used
to implement the domain relationships.

3.2 Distributed Shared Memory

Distributed Shared Memory (DSM) systems aim at combining the advantages of
two architectures: shared memory systems (all processors have equal access to a
single global physical memory) and distributed memory systems (multiple pro-
cessing nodes that communicate by means of message passing). A DSM system
implements a shared memory abstraction on top of message passing distributed
memory systems. It inherits the ease of programming and portability from the
shared memory programming paradigm and the cost-effectiveness and scalability
from distributed memory systems [12].

Data Sharing Data sharing can be provided at different levels and with dif-
ferent granularities. The most common approaches consist of supporting the
sharing of a paged virtual address space (in which case the granularity is the
hardware page size) or supporting the sharing of just specific variables of a par-
allel program (where the granularity can have a finer grain).

A classical example of the first approach is described in [13]. In this sys-
tem, processes share a unique paged virtual address space, divided into a set
of fixed-size blocks (pages). Virtual to physical address translation is done by
means of the standard memory management unit, which detects when a page
is not loaded in memory and triggers a page fault exception. This exception
results in the transference of the page to the machine where it occurred. A more
recent description of this type of system can be found in [14]. Since whole pages
are transfered, performance degrades due to the false sharing problem. False
2 http://web.ist.utl.pt/~joao.cachopo/jvstm
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sharing [15] happens when the shared data size is less than the page size and
an apparent but not real conflict occurs between two copies of a page. In other
words, false sharing occurs when two or more processes modify non-overlapping
parts of the same page.

The second approach solves the false sharing problem by sharing only the
variables that need to be used by more than one process. Midway [16] imple-
ments this solution. At the programming language level, all shared data must be
declared and explicitly associated with at least one synchronization object, also
declared as an instance of Midway’s data types, which include locks and barriers.
The control of versions of synchronization objects is done using the associated
timestamps, which are reset when data is modified [12].

Memory Consistency It is possible to build a DSM system were a single copy
of the data exists. When a node p needs to access a page that is the memory of
node q, the page c is transfered from q to p and subsequently invalidated at q.
Unfortunately, this approach is extremely inefficient, particularly in applications
that have a majority of read operations. If p needs the page just for reading, it
is generally preferable to keep a copy of the page at q and p so that multiple
read operations can execute in parallel with no synchronization over the wire.

When data is not replicated, keeping it consistent is very straightforward,
because accesses are sequenced according to the order in which they occur at
the site where the data is held. Unfortunately this is no longer true when multiple
copies exist, as the replica owners need to coordinate to ensure that all replicas
are mutually consistent.

The behaviour of a (replicated) distributed shared memory system is defined
by a consistency model. The stronger and most intuitive memory consistency
model is the atomic model, which captures the behavior of a single copy (non-
replicated) memory. In this model, the value returned by a read operation is
always the same value written by the most recent write operation in the same
address. A slightly weaker model is the sequential consistency [17,18], which
ensures that all accesses to shared data are seen in the same order by every
process, no matter where the data is located. In this model, the programmer
uses the DSM as a shared multiprocessor. It is primarily used in page-based
implementations [13].

Unfortunately, the overhead of enforcing the previous memory consistency
models is non-negligible [12,19]. Therefore, there was a significant amount of re-
search in the quest of meaningful weaker memory consistency models that could
be implemented in a more cost-effective manner (by requiring less synchroniza-
tion and less data movements). Examples of such coherence semantics include
weak, relaxed and entry consistency [18]. Unfortunately, all these model require
the programmer to be aware of the weak consistency of memory and obey to
strict programming constraints, such as accessing shared variables within moni-
tors.
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Data Location A key aspect in the design of a DSM system is how to locate
the different replicas of a data item. Two main approaches can be used for this
purpose: broadcast-based and directory-based algorithms [13].

In the broadcast-based algorithms, when a copy of a shared data item must
be located, a query message is broadcast in the network. This means that no
information about the current location of shared data replicas needs to be kept.
Each site manages precisely only those pages that it owns and when a page fault
occurs, it sends a broadcast into the network to find the page’s true owner. In
spite of its simplicity, the performance of this approach can be poor since all
sites have to process every broadcast message.

In the directory-based approach, information about the current location of
shared data is kept in a global directory. For each data item there is a site,
also referred to as the manager, that maintains the list of machines that own
a copy of the page. Three types of directory organizations have been proposed
for a page-based DSM system: central manager, fixed distributed manager and
dynamic distributed manager.

In the central manager scheme, all pages have the same manager, which
maintains the global directory. Whenever there is a page fault, the site where
it occurred relies on the central manager to locate its owner. Therefore, as the
number of sites and page faults increases, the central manager may become a
bottleneck in the system. In order to avoid this situation, the managerial task
may be distributed among individual sites. In the fixed distributed manager algo-
rithm, the global directory is distributed over a set of sites and the association
between a page and its manager is fixed. Even though performance improves
when compared to the centralized manager algorithm, it is difficult to find a
fixed distribution function that fits the majority of applications. Finally, in the
dynamic distributed manager algorithm, a manager site is dynamically associ-
ated with a page. The global directory entry related to a given page is stored
in a single site, the page owner, and it may change during the execution of the
application. In this case, the performance does not degrade as more sites are
added to the system, but rather as more sites contend for the same page.

3.3 Distributed Software Transactional Memory

One way to build a distributed software transaction memory is to use techniques
inspired by distributed shared memory systems. An example of one of such sys-
tems is DiSTM [20], a STM framework for clusters. The architecture used in
this implementation relies on a central master, in charge of coordinating the
execution of the cluster. DiSTM has two core components: a transactional exe-
cution engine, DSTM2 [21], and a remote communication system, based on the
ProActive framework [22].

In DSTM2, all transactions are executed speculatively. When a transaction
updates an object, instead of directly modifying the actual object, uses a cloned
version of it, which is kept private until the transaction commits. Before a trans-
action commits, a validation phase is executed in order to detect and resolve
conflicts. The transaction’s read and write sets, containing the identifiers of the
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objects read/written during its execution, are broadcast to the remaining nodes,
where they are validated against the objects contained in the read and write
sets of the transactions currently executing there (the consistency protocol will
be described in detail in future paragraphs). If the transaction can commit, its
changes are made public, i.e., the shared objects are replaced with their respec-
tive modified cloned objects.

The key concept of the ProActive framework is the notion of active object.
Each active object has its own thread of execution and can be distributed over
the network. This means that remote copies of an active object can be created
and active objects are remotely accessible via method invocation. Each active
object has one entry point, the root, which is accessible from anywhere. Each
node has a number of active objects serving several requests. The main thread
on the master node is an active object that serves requests from the worker
nodes. A worker node has two active objects: one that coordinates the execution
on the node and is responsible for updating the worker node’s datasets upon a
transaction’s commit, and another that accepts transactions from other nodes
wanting to be validated against the transactions running on that node.

The following paragraphs briefly describe the Transactional Memory Coher-
ence protocols implemented in this system.

Transactional Coherence and Consistency DiSTM implements an adapta-
tion of the decentralized Transactional Coherence and Consistency [23] valida-
tion protocol. To maintain coherence, transactions acquire a global serialization
number, called a ticket, from the master node before they start the remote
validation, which corresponds to the broadcast of their read and write sets.
When a conflict occurs, the transaction which attempted to remotely validate
its read/write sets first “wins”.

The coherence of the system is ensured by a master-centric, eager approach.
After a transaction makes its changes visible locally, it updates the global dataset
kept at the master node. In turn, the master node eagerly updates all the cached
datasets on the rest of the nodes of the cluster. Upon updating the cached
datasets, the transactions that did not read the most up-to-date values of the
cached dataset are invalidated.

Lease-based Transactional Memory Coherence Protocols

Serialization Lease The role of the lease is to serialize the transactions’ commits
in the cluster, avoiding the expensive broadcast of transactions read and write
sets for validation purposes. Upon commit, each transaction that passes the
local validation stage tries to acquire the lease from the master node. If another
transaction has the lease, the transaction that is acquiring the lease blocks and
waits for its turn to commit, after adding itself to an ordered queue kept at
the master node. Else, it acquires the lease. When the lease owner commits, it
updates the global data at the master node and releases the lease. The master
node then updates the cached datasets of the worker nodes. Any conflicting local

8



transactions are aborted at this stage. Afterwards, if the next transaction in the
queue was not aborted meanwhile, the master node assigns the lease to it.

Even though the cost of the messages broadcast is minimized when compared
to the TCC protocol, the master node becomes a bottleneck for acquiring and
releasing the leases. Besides, transactions waiting to be assigned the lease are
blocked.

Multiple Leases In this protocol, multiple leases are assigned for transactions
that attempt to commit. After a transaction passes the local validation phase,
it tries to acquire a lease from the master node. The master node performs
yet another validation phase, where the transaction is validated against each
transaction that currently owns a lease. If there is no conflict, the transaction
acquires the lease and commits. Else, it aborts and restarts. Upon successful
commit, the transaction updates the global data at the master node and the
master node updates the cached data at the worker node.

When compared to the serialization lease protocol where only one transaction
could commit at a time, here transactions can commit concurrently. However,
there is an extra validation step in the master node.

3.4 Group Communication

Group communication [24,25] is a way to provide multi-point to multi-point
communication, by organizing processes in groups. The objective is that each
process in the group receives copies of the messages sent to the group, often
with delivery guarantees. The guarantees include agreement on the set of mes-
sages that every process of the group should receive and on their delivery order.
Group communication is a powerful paradigm that can be used to maintain the
consistency of multiples replicas of data, in order to build a replicated distributed
software transactional memory system.

Here the focus will be on view-synchronous group communication systems [26],
which provide membership and reliable multicast services. The membership ser-
vice maintains a list of the currently active and connected processes in a group,
which is called view. The reliable multicast service delivers messages to the cur-
rent view members: if a correct process sends a message m, then m is delivered
by all correct processes in that view; if the sender is faulty, m may be delivered
by either all correct processes in that view or by none of them.

The three most commonly provided types of ordering disciplines for reliable
group communication services are FIFO, Causal and Total Order broadcast [24].
The FIFO service type guarantees that messages from the same sender arrive
in the order in which they were sent at every process that receives them. This
service can serve as a building block for higher level services. Causal order ex-
tends the FIFO order by ensuring that if two messages m and m′ are sent and
m causally precedes the broadcast of m′ (according to Lamport’s “happened-
before” relation [27]) then every process that delivers both messages, delivers m
before m′. Total Order broadcast (also known as Atomic broadcast) extends the
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Causal service by ensuring that all messages are delivered in the same order, as
discussed below in more detail.

Total Order Broadcast Agreement is a class of problems in distributed sys-
tems in which processes have to reach a common decision. Total Order broad-
cast [5] belongs to this class of problems: it is a reliable broadcast problem which
must also ensure that all delivered messages are delivered by all processes in the
same order.

Total Order broadcast can be defined in terms of two primitives, TO-broadcast(m)
and TO-deliver(m), where m is some message, and ensures the following prop-
erties:

– Validity: if a correct process TO-broadcasts a message m, then it eventually
TO-delivers m.

– Uniform Agreement: if a process TO-delivers m, then all correct processes
eventually TO-deliver m.

– Uniform Integrity: for any message m, every process TO-delivers m at most
once, and only if m was previously TO-broadcast by its sender.

– Uniform Total Order: if processes p and q both TO-deliver messages m and
m′, the p TO-delivers m before m′ only if q TO-delivers m before m′.

The two first properties are liveness properties [5] (at any point in time, no
matter what has happened up to that point, the property will eventually hold),
while the last two are safety properties [5] (if at any point in time the property
does not hold, no matter what happens later, the property cannot eventually
hold).

Uniform properties apply to both correct processes and to faulty ones. Since
enforcing uniformity can be expensive in terms of performance, Agreement and
Total Order properties can be defined as non-uniform:

– (Regular) Agreement: if a correct process TO-delivers a message m, then all
correct processes eventually TO-deliver m.

– (Regular) Total Order: if two correct processes p and q both TO-deliver
messages m and m′, then p TO-delivers m before m′ if and only if q TO-
delivers m before m′.

Non-uniform properties may lead to inconsistencies at the application level if
the application is not prepared to take the necessary corrective measures during
failure recovery.

Implementing Total Order According to [5], there are five different classes
of algorithms to order messages, depending on the entity which generates the
necessary information to define the order of the messages, as follows:

– Sequencer (process involved in ordering messages)
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• Fixed Sequencer: one process is elected as the sequencer and is respon-
sible for ordering messages. There are three variants to this protocol,
depending on the number of unicasts/broadcasts needed to sequence a
message.

• Moving Sequencer: based on the same principle as fixed sequencer algo-
rithms. However, the role of sequencer can be transferred between several
processes, in order to distribute the load among them. When a sender
wants to broadcast a message m, it sends m to the sequencers. A token
message, carrying a sequence number and a list of all sequenced mes-
sages, circulates among them. When a sequencer receives the token, it
assigns a sequence number to all unsequenced messages and sends them
to the destinations.

– Sender (process from which a message originates)
• Privilege-Based: senders can broadcast messages only when they are

granted the privilege to do so. When one wants to broadcast a mes-
sage, it must wait for the token carrying the sequence number for the
next message to broadcast. Upon reception, the sender assigns a sequence
number to its messages, sends them to the destinations and updates the
token.

• Communication History: processes can broadcast messages at any time,
since total order is ensured by delaying the delivery of messages, which
carry a timestamp. The destinations decide when to deliver the messages
based on their timestamp. A message is delivered when it will no longer
violate total order.

– Destinations (processes to which a message is destined)
• Destination Agreement: the delivery order results from an agreement

between destination processes. This agreement can be on a message se-
quence number, on a message set or on the acceptance of a proposed
message order.

Optimistic Total Order Broadcast Total Order is very important for build-
ing distributed fault-tolerant applications but, unfortunately, its implementation
can be very expensive. This is due to the number of communication steps and
messages exchanged that are required to implement it, resulting in a significant
delay before a message can be delivered [28]. Optimistic Total Order aims at
minimizing the effects of this latency, offering an additional primitive, called
TO-opt-deliver(m): the order by which a process TO-opt-delivers messages is an
early estimate of the order by which it will TO-deliver the same messages [28].
Based on this estimate, the application may (optimistically) perform a number
of actions in parallel with the remaining communication steps of the total order
protocol, which can be later committed when the final order is determined. How-
ever, sometimes the order by which messages are TO-opt-delivered may differ
from the order by which they are TO-delivered. Consequently, aborting the steps
executed optimistically may not compensate the performance gains.
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3.5 Database Replication

The problem of keeping mutually consistent multiple replicas of transactional
data items has been widely studied in the context of replicated database systems.

In [29], a classification based on two criteria is used to analyze existing
database replication algorithms: the transaction location, that states in which
replicas update transactions can be executed, and the synchronization point, that
states at which stage of the transaction execution the inter-replica coordination
is performed.

Regarding the transaction location criteria, two approaches can be identified:
primary copy and update anywhere. In the primary copy approach, the primary
replica executes all update transactions and propagates the write operations to
the other replicas (secondaries). This approach simplifies conflict detection but
is less flexible. On the other hand, the update anywhere approach allows both
update and read-only transactions to be executed at any replica, which results
in a more complex concurrency control mechanism but allows for non-conflicting
updates to execute in parallel on different replicas. Note that, in any case, read-
only transactions can always be submitted to any replica.

Regarding the synchronization point criteria, there are two possible approaches:
eager and lazy. The eager replication technique requires coordination for the
updates of a transaction to take place before it commits. Lazy replication algo-
rithms asynchronously propagate replica updates to other nodes after a trans-
action commits.

Replication algorithms can also be classified based on whether the data is
fully or partially replicated. In the former case, all replicas have a full copy of the
database, whereas in the latter, each data item of the database has a physical
copy on only a subset of sites.

In this report the focus is on variants of eager, update-anywhere protocols
for fully replicated databases, as we would like to maximize the concurrency of
update transactions and still offer strong consistency. The following paragraphs
contain a brief description of four different algorithms, namely: the Database
State Machine approach [30], Postgres-R [31], SI-Rep [32] and Optimistic Active
Replication [33]. These algorithms exemplify different features, such as certifi-
cation type (local versus global), architectural alternatives (kernel-based versus
middleware layer) and concurrency control mechanisms (shadow copies, snap-
shot isolation, etc), to name but a few, that are useful to understand some
fundamental replication mechanisms that could also be used in distributed STM
systems.

The Database State Machine Approach

Overview. The Replicated State Machine Approach [34] is a classical algorithm
to achieve fault-tolerance. This algorithm consists of running multiple replicas
of a deterministic component. Replica coordination is achieved by ensuring that
all replicas receive and process the same set of inputs in exactly the same order.
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For that purpose, state-machine commands are broadcast using a reliable totally
ordered primitive, as described in Section 3.4.

The Database State Machine Approach [30] (DBSM) applies this idea to
replicated databases, by making the commit of a transaction a command to the
replicated state-machine. More precisely, an update transaction is first executed
locally at one replica. When the transaction is ready to commit, its read set and
write set are broadcast to all replicas. Totally ordered broadcast is used, which
means that all sites receive the same sequence of requests in the same order.

When the transaction information is delivered in total order, all replicas
execute a global deterministic certification procedure. The purpose of the certi-
fication is to confirm that the transaction commit respects the target database
consistency criteria (typically, one-copy serializability). If the transaction passes
the certification test, its write-state is applied deterministically at each replica.
A transaction passes the certification test if does not conflict with any concur-
rent already committed transactions. Transaction ta and committed transaction
tb conflict if tb does not precede ta

3 and ta’s read set contains at least one data
item from tb’s write set.

Thus, in the DBSM approach, replicas are not required to perform any coor-
dination at each statement execution; all coordination is deferred to the commit
phase. Due to this reason, the DBSM is said to use a deferred update tech-
nique. Note that if two different replicas execute concurrently two conflicting
transactions, these conflicts will only be detected during the certification phase,
when one of the transactions reaches the commit stage. This may lead to high
transaction abort rates.

In order to reduce the abort rates, the certification test is modified based
on the observation that the order in which transactions are committed does not
need to be the same order in which the transactions are delivered to be certified.
In the Reordering Certification test, a transaction is put in a list of committed
transactions whose write locks have been granted but whose updates have not
been applied to the database yet. The transaction is placed in a position before
which no transaction conflicts with it, and after which no transaction either
precedes it or reads any data item updated by it, thus increasing its probability
of being committed. However, since the transactions in this list have granted
write locks, its size needs to be carefully configured, or else it will introduce data
contention, which would increase transaction abort levels.

Algorithm. During its execution, a transaction passes through three well-defined
states: executing, committing and committed/aborted.

1. Executing: Read and write operations are locally executed at the replica
where the transaction was initiated. When the commit is requested by the
client, it moves to the committing state.

3 Transaction tb precedes transaction ta if either the two execute at the same replica
and tb enters the committed state before ta, or they execute at different replicas and
tb commits before ta enters the committing state at a given replica.
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2. Committing: If a transaction is read-only, it is committed immediately. Oth-
erwise, its read set and write set, as well as the updates performed by the
transaction are sent to all replicas. Eventually, every replica certifies the
transaction and all its updates are applied to the database.

3. Committed/Aborted: If the transaction is serializable with all previously
committed transactions, its updates will be applied to the database. Local
transactions in the first state holding read or write locks that conflict with
its writes are aborted. The client receives the outcome for the transaction
as soon as the local replica can determine whether it will be committed or
aborted.

Discussion. When compared to immediate update techniques, the deferred up-
date technique offers many advantages. The most relevant one is the fact that, by
gathering and propagating multiple updates together, the number of messages
exchanged between replicas is reduced. Since the transaction read and write sets
are exchanged at commit time, the certification test is straightforward, as ex-
plained previously. However, the coordination messages may be excessively long
and take a significant amount of time to be transmitted.

The resulting distributed algorithm runs an optimistic concurrency control
scheme. Therefore, when the number of conflicts is high, it may lead to high
abort rates. Clever re-ordering of ready to commit transactions may mitigate
this problem.

Postgres-R

Overview. Postgres-R [31] is a variant of the DBSM approach that avoids the
need to disseminate the transaction read set during the commit phase. As the
name implies, it was first implemented for the Postgres4 database engine.

As is the case with the DBSM, transactions are executed locally at a single
replica (that will be called the designated replica). While executing locally, up-
date transactions perform all write operations on private (shadow) copies of the
data. Shadow copies are used to check consistency constraints, fire triggers and
capture write-read dependencies. Again, only when the transaction is ready to
commit, a coordination phase is initiated. However, unlike the DBSM approach,
in Postgres-R only the write set of the transaction is broadcast using the total
order primitive.

As in DBSM, the total order defined by the atomic broadcast provides the
basis for a serial execution of all certification procedures. However, since only
the designated replica is aware of the transaction´s read set, only this replica
can perform the certification test. The designated replica is then responsible
for informing the remaining replicas of the outcome of the transaction, using a
second broadcast, which does not need to be totally ordered.

4 http://www.postgresql.org
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Algorithm. In this replication protocol, a transaction is executed in four phases.

1. Local Read: Both read and write operations are performed locally, although
write operations are executed on shadow copies. Before the execution of each
operation, the proper lock is acquired.

2. Send: If the transaction is read-only, it is immediately committed. Otherwise,
its write set is multicast to all sites.

3. Lock: When a write set is delivered, all the locks needed to execute each
operation are requested in one atomic step.
(a) For each operation on an item in the write set:

i. Conflict test: if the local conflicting transaction is in its local read or
send phase, multicast the decision message abort.

ii. Grant the lock to the transaction if there is no lock on the item. Else,
enqueue the lock request.

(b) If the write set belongs to a local transaction, multicast the decision
message commit.

4. Write: Updates are applied to the database when the corresponding write
lock is granted. If the transaction is local, it can commit as soon as all updates
have been applied. Else, it will terminate according to the corresponding
decision message.

Discussion. The advantage of Postgres-R over DBSM is that the size of the
exchanged messages can be significantly smaller, given that only the write set,
which is typically smaller than the read set, needs to be broadcast. On the other
hand, the certification of transactions can only be performed by the designated
replica, because remote replicas do not possess the necessary information to test
them for conflicts. This contrasts with the DBSM, in which a transaction is
globally certified based on its read and write sets. Since the certification test
is deterministic, in DBSM replicas need not exchange additional messages to
inform each other that a transaction is to be committed or aborted. On the
other hand, in Postgres-R the designated replica has to notify all other replicas
of the outcome of every (local) transaction.

SI-Rep

Overview. SI-Rep [32] is a database replication system that is implemented
at the middleware level, i.e., as an intermediate layer between clients and the
underlying DBMS, hiding DBMS internals from both user and the application.
Thus, in opposition to DBSM and Postgres-R, which required changes to the
database engine, SI-Rep can be used with legacy database engines.

Its name comes from the fact that SI-Rep has been designed to provide
snapshot isolation [35] as the target consistency criteria. When using snapshot
isolation (SI), transactions read from a snapshot of the data that was committed
at the time the transaction was initiated, instead of reading data from the most
up-to-date version. As a result, SI does not require the use of read locks and
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only detects conflicts between write operations: when such conflicts exist, only
one of the conflicting transactions is allowed to commit.

With the purpose of reducing the validation overhead, a transaction is val-
idated in two steps: local validation at the local middleware replica and global
validation at all replicas. Local validation starts when the write set is retrieved,
i.e., when the records updated by the transaction are exported from the local
database replica to the local middleware replica at the end of its execution (be-
fore committing). The transaction is validated against the set of write sets that
have been delivered but not yet executed and committed at the replica. It passes
the validation test if it does not update data items present in any of the deliv-
ered write sets. On the other hand, during global validation a replica validates a
transaction’s write set against all the write sets delivered between the moment
it was multicast by its local replica until it was delivered.

Algorithm.

1. When a transaction is submitted to a middleware replica, it is first executed
at the local database (DB) replica. Read and write operations are forwarded
to the DB replica, which reads from a snapshot and writes new object ver-
sions.

2. As soon as the commit is requested, the middleware retrieves the write set
from the DB replica. If it is empty, the transaction is read only and is com-
mitted locally. Otherwise, the middleware multicasts it using Total Order
broadcast to all other middleware replicas. Before the write set is multicas-
ted, the middleware replica performs the local step of the validation process.

3. Each middleware replica has to perform validation for all write sets in de-
livery order. If the global validation succeeds, the middleware replicas apply
the remote write sets in a lazy fashion and commit the transaction. Else, the
transaction is aborted at the local replica.

Discussion. Middleware solutions have the advantage of simplifying the devel-
opment as the internals of the database are either inaccessible, or too complex
and difficult to change. In addition, this kind of solution can be maintained inde-
pendently of the database systems. However, the main challenge is to coordinate
replica control with concurrency control, as middleware has no access to the
information residing on the database kernel.

As with the DBSM approach, this solution also has a global validation step.
However, while the former approach performs validation in only one global step,
the latter solution needs both local and global steps, because the local one does
not consider concurrent remote transactions whose write sets are sent at the
same time and by sending only write sets, there is not enough information for
replicas to decide whether a transaction commits or aborts. Since total order
broadcast is used to order messages, replicas need not notify each other on the
transaction outcome because they will all validate a transaction against the same
set of write sets and validation is a deterministic process.

Optimistic Active Replication
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Overview. The Optimistic Active Replication [33] is another example of the
Replicated State Machine approach [34]. Unlike the DBSM approach, in which a
transaction is executed at the local replica and only at commit time a command
is issued to the replicated state machine, in this case the client is separated from
the database and sends each operation request to all replicas using a totally
ordered reliable multicast primitive. All replicas handle the request and send
back a response to the client.

The key aspect of this approach is that, although each request needs to be sent
to the replicas using a Total Order broadcast, the replication algorithm attempts
to avoid the full cost of this primitive (in particular, its high latency). Instead,
the algorithm is prepared to use a lighter version of Total Order broadcast that
can provide an estimate of the final total order using less communication steps,
in the absence of failures. Thus, the protocol is based on the assumption that
failures are infrequent and is optimized for failure-free runs. Even though its
optimism may lead to inconsistencies among replicas and, as a result, the client
may receive different replies, the algorithm ensures that the client will never
choose an inconsistent reply.

The Total Order broadcast protocol used by this algorithm is a particular
case of the Optimistic Total Order primitives that were introduced in Section 3.4.
As any Optimistic Total Order primitive, it is able to provide an early estimate
of the final total order, which may or may not be the final order of the request.
The protocol is based on electing a sequencer. This sequencer is responsible
for assigning a sequence number to each message, which corresponds to the
optimistic total order. If the sequencer does not fail, every replica will endorse
this sequence number, and the order becomes definitive. If the sequencer fails
before a majority of replicas has endorsed the optimistic sequence number, a
new sequencer is elected and may assign a different sequence number to that
message. So, in good runs, every replica gets the optimistic total order in just
two communications steps: one required to send the message from the client to
the replicas and one required to send the sequence number from the sequencer
to the remaining replicas.

Having this particular Optimistic Total Order protocol in mind, the replica-
tion algorithm works as follows. Each replica processes the request optimistically
as soon as it receives the sequence number from the sequencer and sends the re-
sult back to the client. If the client receives a majority of replies that processed
the request in the same order, it can assume that the order has become definitive
and accept the result.

When the sequencer is suspected of having failed, the remaining replicas
have to reach an agreement regarding the order of the requests already processed
optimistically and those whose order had not been estimated yet. So, a consensus
protocol has too be ran to determine the final order of clients’ requests. After
that, a new sequencer is chosen and replicas return to the optimistic mode. If
the resulting sequence is different from the optimistic order, a primitive is used
to notify the replicas that a message has been optimistically delivered in the
wrong order and the effects induced by its processing must be undone.
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Algorithm.

1. Client-side Algorithm
The client multicast its request to all servers and waits for a quorum of
replies. This set of replies is complete when its total weight equals the ma-
jority weight. Then, the client chooses the reply with the greatest weight.

2. Server-side Algorithm
The algorithm proceeds in a sequence of epochs, each divided in two phases,
optimistic and conservative, and consists of four tasks.
– Phase 1 (Optimistic)
• Task 1a: The sequencer checks for requests received but not yet or-

dered and orders them in a sequence, which is sent to all replicas.
• Task 1b: When a sequence is delivered, the replica processes each

request in the sequence, generates the reply and sends it back to the
client. The weight of the reply consists of the process itself plus the
sequencer, unless the process is the sequencer.

• Task 1c: If a replica suspects the sequencer to have failed, it multicast
a message to notify the other replicas to proceed to phase 2.

– Phase 2 (Conservative)
• Task 2: When a phase 2 message is delivered, replicas run a con-

sensus protocol to order the requests. If the conservative order is
different than the optimistic one, those requests’ effects are undone
before delivering all replies using a primitive providing total order
semantics. After that, the replicas proceed to the next epoch. The
new epoch starts with another replica acting as the sequencer.

Discussion. A striking difference between this solution and those previously
presented is that clients send each operation to all replicas and they all process
it. There is no need for any sort of certification test since all replicas execute
the same operations in the same order. This contrasts with what was described
before, since a whole transaction is executed at a local replica and only at commit
time it is broadcast to the remaining replicas; afterwards it is certified and
committed if possible. In addition, instead of being passive, clients have an active
role in this protocol since they have the responsibility to select the correct reply
from the set they receive from all replicas.

While the previous solutions rely on Total Order broadcast to ensure consis-
tency among replicas, the Optimistic Active Replication only requires a reliable
multicast channel for communication between clients and replicas, a FIFO chan-
nel for replicas to exchange messages and a sequencer to order messages sent
by the clients. As a consequence, this protocol performs better than the others
when the replica acting as the sequencer does not fail, since the overhead of
Total Order broadcast is simply the ordering of the requests received from the
client, which is done optimistically. However, if the sequencer is suspected of
having failed, the remaining replicas have to run a consensus protocol to deter-
mine the correct order to process requests, which results in worse performance
results when compared to the previously described solutions.
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3.6 Bloom Filters

A Bloom filter [6] is a simple space-efficient randomized data structure for rep-
resenting a set in order to support membership queries (i.e. queries that ask: “Is
element x in set S?”). Its main drawback is that the test may return true for
elements that are not actually in the set (false positives). Nevertheless, the test
will never return false for elements that are in the set.

The Bloom filter representation of a set S = {x1, x2, . . . , xn} of n elements
is described in [36] as an array of m bits, initially all set to 0. A Bloom filter uses
k independent hash functions h1, . . . , hk with range {1, . . . , m}. If the set S is
not empty, for each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. A
location can be set to 1 multiple times, but only the first change has an effect. In
order to check if an item y is in S, all hi(y) must be set to 1. If so, y is assumed
to be in S, with some known probability of error. Else, y is not a member of S.
Figure 1 shows how a bloom filter is built and used.

Fig. 1. Example of a Bloom filter [36]. In (a), the filter is an array of 12 bits with all
positions set to 0. In (b), it represents the set S = {x1, x2} with each element hashed
three times, and the resulting bits set to 1. To check if elements y1 and y2 are in the
filter, each must be hashed three times, as shown in (c). Element y1 is not in S since
one of the bits is set to 0, while y2 is probably in S because all bits are set to 1.

The false positive rate depends on the number of hash functions (k), the
size of the array (m) and the number of elements in S (n). After all elements
of S are hashed into the Bloom filter, the probability that a specific bit is 0 is
p =

(
1− 1

m

)kn. If hk return optimally balanced random values, the probability
that a test will return a false positive result is approximately (1− p)k.

To sum up, the main tradeoffs of using Bloom filters are:

– number of hash functions (k);
– size of the filter (m);
– false positive rate.

In spite of reducing substantially the size of a set, the use of Bloom filters is
also associated with some disadvantages that may cause performance to degrade
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if parameters m and k are not correctly chosen. If the consequences of false
positives are too prejudicial for a system’s performance, filters need to be larger.
Moreover, the number of hash functions is a major influence in the computational
overhead.

Counting Bloom filters. The counting Bloom filter [37] aims to avoid the prob-
lem of insertion and deletion of elements in a filter. Each entry is not a single
bit but rather a small counter (it tries to answer the question “How many occur-
rences of the element x are in set S?”). Every time an element is inserted, the
corresponding counters are incremented, and when it is deleted, the counters are
decremented.

Compressed Bloom filters. Some application use Bloom filters to exchange data
across a network, making the size of the transmitted filter relevant. A compressed
Bloom filter [38] may lead to significant bandwidth savings at the cost of higher
memory requirements (as result of larger uncompressed filters) and some addi-
tional computation time to compress the filter that is sent across the network.
This results in a new tradeoff: transmission size versus uncompressed size.

Applications Since their introduction, Bloom filters have seen various uses [36].
Databases use them for differential files, which contain a batch of database

records to be updated, and to speed up semi-join operations, by having the
databases exchange Bloom filters instead of lists of records, reducing the overall
communication between hosts.

There is also a significant range of network applications that rely on Bloom
filters to improve their efficiency. In order to reduce message traffic, proxies in
distributed caching [37] do not transfer lists of URL with the exact contents of
the cache, but instead periodically broadcast Bloom filters that represent the
contents of their cache. Additionally, Bloom filters are also used in resource
routing, since they allow probabilistic algorithms for locating resources, and
packet routing, as a mean to speed up or simplify protocols. Finally, Bloom
filters provide a useful tool for measurement infrastructures used to create data
summaries in routers or other network devices.

3.7 Summary of the Related Work

Since the goal of this project is to build a distributed software transactional
memory system, this section started by introducing two fundamental concepts:
transactional memory and transaction. The latter abstraction is used by both
software transactional memory systems and database systems. Given the similar-
ity among the two systems, some basic mechanisms of database replication, such
as certification, were also introduced. In modern replicated database systems,
communication between sites is done by means of a total order broadcast prim-
itive, which ensures data consistency and serializability of clients requests. The
design and implementation of these communication primitives was also briefly
addressed.
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Distributed shared memory systems share similar goals with replicated and
distributed database systems as they both attempt to minimize the access time
to shared data that is to be kept consistent. In addition, both systems share the
same set of design choices [12]:

1. when and where to allocate physical copies of logical data to minimize access
latency;

2. when and how to update them to maintain an acceptable degree of mutual
consistency, while minimizing coherence management overhead.

However, the algorithms used in these two systems can display significant
differences, as databases must provide for persistent data, reliability and atom-
icity.

This section also introduces a mechanism that may be used to reduce the
size of the messages exchanged by sites. Bloom filters are data structures that
support membership queries and allow for trading off the space compression
factor for the possible existence of false positives.

An alternative approach to build a distributed software transactional memory
system different from the one that will be presented in Section 4 as the basis
of this work was also presented. While the former is a master-centric approach
with the master node responsible for maintaining data consistency among the
worker nodes, the latter is decentralized and relies on a total order primitive to
serialize transactions.

4 Solution’s Architecture

4.1 Overview

At this stage, the envisaged architecture to build a distributed replicated STM
to support the execution of the FenixEDU system is the one described in [4].
In this architecture, illustrated in Figure 2, each of the application servers is
composed of the following components:

– Request Processor (RP): responsible for receiving the requests and starting
the VSTM transactions.

– VSTM: Transactions are executed locally and optimistically by a Versioned
Software Transactional Memory (introduced in Section 3.1), as described in
the following paragraph.

– The Certification Manager (Cert): certifies the transactions ready to commit
to check for conflicts with concurrent transactions. The two certification
protocols used in this architecture will be further described in Section 4.2.

– Group Communication (GC): responsible for maintaining up-to-date infor-
mation regarding the membership of the group of application servers (includ-
ing failure detection), and providing the required communication support for
the coordination among servers. A more detailed description of the services
this module provides is presented later.
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– Persistent Store (PS): responsible for persisting the updates on stable storage
for later recovery.

– Cache Manager (CM): responsible for maintaining a consistent cache of reg-
ularly used objects.

Fig. 2. Proposed Architecture of a distributed replicated STM for the FenixEDU sys-
tem [4].

A transaction is started whenever the application server receives a request
from a client, via a load balancer and it may require the retrieval of some objects
from the storage system. The information kept by each transaction consists of
its identifier (a version number used to read the right values from the versioned
boxes and to tag the values written during its execution), the set of boxes read
during its execution and the set of values written by it [11]. Upon commit, de-
pending on the certification protocol used, either only the transaction’s write set
or both its read and write sets are broadcast. The transaction is then validated
and committed or aborted in all application servers. Consistency is ensured by
the ordering the total order primitive imposes.

Two services are provided by the Group Communication module: a Total
Order broadcast service and a non-ordered Reliable broadcast service. The Total
Order broadcast is used by the VSTM to disseminate both the read and write
sets or just the write sets of transactions that are ready to commit, depending
on the certification protocol. The non-ordered Reliable broadcast service is used
when a local certification protocol is employed by an application server to notify
the other application servers about the outcome of transactions. This is achieved
by using the Appia system [39], a layered communication support framework.
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My work will consist of designing, implementing and evaluating different
replica consistency algorithms for the Certification Manager module.

4.2 Replica Consistency Algorithms

It is clear from the architecture above that the replica consistency algorithms
based on total order primitives are considered to be the most promising to build
an efficient replicated STM. Therefore, two certification based protocols will be
employed: local certification and global certification. Both these algorithms were
already introduced in Section 3.5.

Global certification, used in the Database State Machine approach, requires
every database site to send both the read and the write sets for each transaction
it executes (locally). These sets are broadcast using the total order primitive.
Consequently, every site has enough information to validate every transaction.
So, as the name implies and since certification is a deterministic process, trans-
actions can be validated globally without the need for any other messages to
be exchanged. If the read set is valid, i.e., the versions of the objects read by
the transaction are still up-to-date, the transaction can commit. Otherwise, it is
aborted.

On the other hand, in local certification, used by the Postgres-R algorithm,
only the write set is broadcast to the other replicas. This means that only the
replica where the transaction was executed can determine its outcome. If the lo-
cal replica detects a conflict, it broadcast a message warning the other replicas to
discard the write set. Else, it can multicast the decision message commit so that
the other replicas can apply the write set to the databases. These notification
messages are not required to be broadcast using the total order primitive.

As noted before, a variant of the global certification algorithm will also be
built using Bloom filters as a technique to reduce the size of the messages ex-
changed. The expected use of this technique is detailed in the next subsection.

4.3 Reducing Message Size

From the analysis of Table 1 (presented in Section 2), it is clear that read sets
are considerably larger than write sets. Furthermore, read sets do not need to
convey data values; only the object identifier and the number of the version read
need to be exchanged, which is more appropriate to be represented in a filter.
Therefore, we will experiment to use Bloom filter to represent read sets. This
will result in the reduction of the size of the messages exchanged between sites,
which will consist of the write set and a smaller representation of the read set.

When a transaction finishes its execution and is ready to have its read and
write sets sent to the other sites, a filter representing the compressed read set is
built (this representation consists of an array of bits, which are either set to 0 or
1, according to the results of the hash functions applied to each entry of the read
set). Since different transactions have read sets of different dimensions, the size
of the filter has to be adjusted accordingly. The number of hash functions needs
also to be set according to the size of the filter, so that the false positives rate
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is kept at a constant level throughout the execution. The message composed of
the filter and the transaction’s write set is then broadcast using the total order
primitive.

When a site receives this message, the compressed read set needs to be trans-
lated into meaningful information so that the certification of the transaction can
take place. So, before the certification test is performed, the (probable) entries
of the read set are determined using the transmitted filter, resulting in a read
set with all the entries the original had plus the result of some false matches
(consequence of the false positives problem).

4.4 Challenges

The most relevant drawback associated with the use of bloom filters is the ex-
istence of false positives. Since the read set specifies the set of objects (and
versions) read during the execution of a transaction, if there is an indication
that there are more objects in the filter representing the read set than in the ac-
tual read set, the probability of conflict increases during the global certification
stage, and so does the transaction abort rate.

However, as the false positive rate is constant and known, its value may be
adjusted so that consequences of false hits during certification do not surpass
the performance gains of reducing the size of the messages broadcast.

Moreover, there may also be some additional computational overhead associ-
ated with the creation and decoding of the filters. This overhead is proportional
to the number of hash functions used to represent an entry in the filter. This
means that this number needs to be configured in order not to greatly affect the
performance, but still keeping the false positives rate at a reasonable level.

Finally, the variable dimension of read sets must be taken into consideration
when defining the size of the corresponding filter, since it directly influences both
the false positives rate and the size of the transmitted message.

5 Methodology for Evaluating the Work

This work will be integrated in a running system, the Pastramy prototype. There-
fore, the performance of the different consistency algorithms will be determined
by experimental evaluations.

5.1 Metrics

The most important metrics to evaluate the performance of the algorithms are:

– the number of transactions delivered at a site;
– the number of aborted transactions.

These metrics allow us to compare the system’s performance with and with-
out the blooms filters and to assess the influence of the false positives in the
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certification test. Furthermore, it will be also possible to determine how each of
the following parameters affect the false positives rate and the performance of
the total order primitive:

– number of hash functions;
– size of the filter (considering the size of the read set).

As a result, we expect to get insights on how to configure Bloom filters for
optimal performance and on which scenarios, if any, their use allows significant
improvement on the performance of replicated STMs.

5.2 Benchmarks

The performance of web applications is usually evaluated using benchmarks such
as TPC-App [40], which simulates the activities of a business-to-business trans-
actional application server. This benchmark can approximate the typical usage
of the FenixEDU system, since it falls into this category of applications. How-
ever, it is interesting to assess how the proposed solutions perform under diverse
workloads. Thus, alternative benchmarks will be used. Examples of benchmarks
that can be used to evaluate the performance of the implemented algorithms
include:

– LeeBenchmark [41,42]: based on Lee’s circuit routing algorithm, a classic
algorithm for laying routes on a circuit board. Each thread attempts to lay
a route on the mainboard. Conflicts occur when two threads try to write the
same cell in the circuit. Transactions are significant in size, yet they exhibit
very regular access patterns - every transaction first reads a large number of
locations (searching for suitable paths) and then updates a small number of
them (setting up a path).

– DSTM2 [21]: provides a transactional programming interface for the Java
programming language enabling the comparison of different (STM) imple-
mentations using the same transactional application code. The library uses
transactional factories ( obstruction-free and the shadow factories) to trans-
form sequential (unsynchronized) classes into atomic (transactionally syn-
chronized) ones.

– STMBench7 [43,42]: is a synthetic benchmark whose workloads aim at rep-
resenting realistic, complex, object-oriented applications. It exhibits a large
variety of operations (from very short, read-only operations to very long
ones that modify large parts of the data structure) and workloads (from
those consisting mostly of read-only transactions to write-dominated ones).
When compared to other benchmarks, its data structures are larger and the
transactions are longer and access a larger number of objects.

It is highly probable that any of the examples presented above may have to be
modified in order to support the distributed architecture of the system.
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6 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4- May 23, 2009: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15, 2009: Deliver the MSc dissertation.

7 Conclusions

This work addresses the implementation of efficient distributed and replicated
software transactional systems. These systems emerge from the convergence of
multiple previous research areas, namely: (centralized) software transactional
memory systems, replicated databases and distributed shared memory. The key
issues in these areas were briefly surveyed.

From this survey it was possible to conclude that the most promising tech-
niques to maintain the consistency of replicated STMs are the certification based
protocols, based on totally ordered broadcast primitives. However, the large size
of a transaction’s read set may be a significant impairment to the performance
of such algorithms. To address this problem, Bloom filters were suggested to
encode read sets in a space-efficient manner.

The report is concluded with a brief description of the architecture that will
be used to implement, experimentally compare, and validate the proposed replica
consistency protocols.
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