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Abstract

Technological advances are leveraging the widespread deployment of
mobile ad hoc networks. An interesting characteristic of ad hoc networks
is their self-organization and their dependence of the behavior of individ-
ual nodes. Until recently, most research on ad hoc networks has assumed
that all nodes were cooperative. This assumption is no longer valid in
spontaneous networks formed by individuals with diverse goals and in-
terests. In such environment, the presence of selfish nodes may degrade
significantly the performance of the ad hoc network. This paper proposes
a novel algorithm that aims to discourage selfish behavior in mobile ad
hoc networks.

1 Introduction

The research effort on mobile networks (infra-structured or ad hoc) has focused
mainly on routing and usually assumes that all nodes are cooperative. These
assumptions hold on application such as military or search-and-rescue opera-
tions, where all nodes belong to the same authority and their users share the
same goals. The application of mobile ad hoc networks (MANETs) for the sup-
port of open communities has emerged recently. In such environment, different
users, with different goals, share the resources of their devices, ensuring global
connectivity. This sort of communities can already be found in wired networks,
namely on peer-to-peer networks.

However, there is a significant difference between the fixed and the mobile
environment. Some resources, like battery power, are scarce in a mobile envi-
ronment and can be depleted at fast pace with the device utilization. In this
scenario, open MANETs will likely resemble social environments: a group of
persons can mutually benefit from cooperation as long as every participant con-
tributes with approximately the same share. In this paper, we are concerned
with the resources invested in forwarding messages and in the participation on
routing protocols. To extend the life of their devices, users may fell compelled to
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exhibit a selfish behavior, by benefiting from the resources provided by the other
nodes without, in return, making available the resources of their own devices.

Selfish behavior threatens the entire community. Optimal paths may not
be available and cooperative nodes may become overloaded and be forced to
abandon the community. In the worst case scenario, the network may become
partitioned. This kind of problems as been already observed on peer-to-peer file
distribution systems. For instance, it was observed in Gnutella that the number
of sites providing valuable content to the network is a small part of the number
of users retrieving information [1].

In order to effectively support open and spontaneous communities, MANETs
should complement routing protocols with additional mechanisms and algo-
rithms that discourage selfish behavior. This paper presents a novel algorithm
that meets this goal. The algorithm penalizes users that are intentionally selfish.
Additionally, the algorithm is tolerant to malicious attacks and communication
failures.

The paper is organized as follows. Section 2 motivates the need of selfishness
prevention algorithms using a concrete scenario. Sections 3 and 4 provide an
overview of previous work. Our proposal is then described in Section 5. Future
work and conclusions are presented in Section 6.

2 Motivation

Consider a campus wide wireless network with incomplete coverage. In order
to preserve Internet access while moving within the campus, students are mo-
tivated to cooperate. If nodes accept to forward messages when located close
to base stations, connectivity for the whole MANET may be insured (with the
contribution of some underlying MANET routing protocol).

However, if no mechanisms is present to reward cooperation and discourage
selfishness, some users may instruct their devices not to relay incoming messages,
as this would extend their battery power and increase the available bandwidth.
Such behavior may cause a snow-ball effect: cooperative nodes that are willing to
forward messages for third parties obtain no benefit for their behavior and realize
that selfish nodes are implicitly rewarded. This motivates them to become
also selfish. Message forwarding may be disrupted to the point the MANET
collapses.

The disadvantage of selfish behavior may be exacerbated by the operation
of the routing protocols used in the MANET: some protocols use caches to
accelerate route discovery. Routes containing cooperative nodes will be more
frequently present in the caches and, therefore, will be used more seldom. Thus,
the batteries of cooperative users are likely to be drained at a fast pace while
other potential intermediary nodes do not spend any of their batteries forward-
ing messages.

As previously mentioned, most algorithms for MANETs where envisioned
for search-and-rescue, military and law enforcement operations. In these appli-
cations, all users work together toward a common goal. Therefore, selfishness
behavior is often not expected. We envision that MANETs will rapidly expand
to other domains, like the one presented above. In these open MANETs, users
do not share a common goal. Each user will agree to share the resources of his
node only if this brings him some benefits. While it is impossible to prevent self-
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ish behavior, it is possible to design algorithms that discourage such behavior.
This can only be achieved by applying some kind of penalty/reward to users.
The following section provides an overview of previous proposals toward this
goal.

3 Related Work

Malicious nodes that participate in routing protocols but refuse to forward mes-
sages may disrupt the operation of the MANET. These nodes may be circum-
vented by implementing a reputation system. In [5], the reputation system is
used by correct nodes to avoid malicious nodes when selecting message routes.
However, as is, the system rewards selfish nodes, who benefit from not forward-
ing messages while being able to use the network.

On modern societies, services are usually provided in exchange of an amount
of money, previously agreed between both parts. Several e-currency models have
been proposed as a reward mechanism for cooperating nodes. However, most
of them assume that protocols are trusted and will not subvert the system.
Trustos [6], for example, defines a model where users open “emotional bank
accounts” on their service providers.

The Terminodes [3] project proposes the use of a virtual currency named
beans. This currency is used by nodes to pay for the forwarding of their own
messages. The payment is distributed by the intermediary nodes that forwarded
the message. Unfortunately, current implementations of reliable digital cash
systems require several different participants and the exchange of a significant
number of messages [8]. To reduce this overhead, Terminodes assumes that
nodes are equipped with a tamper resistant security module, responsible for all
the operations over the beans counter. The security module refuses to forward
messages whenever the number of beans available are not sufficient to pay for
the service. To ensure the authentication of the tamper resistant modules,
a Public Key Infrastructure (PKI) is used. This infrastructure can be used
with two billing models. In the Packet Purse Model, the sender pays to every
intermediary node for the message, while in the Packet Trade Model is the
receiver that is charged. In both models, nodes are charged as a function of the
number of hops traveled by the message.

The CONFIDANT protocol [2] implements a reputation system for the mem-
bers of MANETs. Nodes with a bad reputation may see their requests ignored
by the remaining participants, which in practice excludes them from the net-
work. CONFIDANT does not require any special hardware and tolerates certain
kinds of attacks by being suspicious on the incoming selfishness alerts that other
nodes broadcast and relying mostly on its self-experience.

In a MANET, the number of requests received by each node depends of its
geographical position. Nodes may become overloaded with requests because
they are positioned in a strategical point of the topology. A well-behaved node
that temporarily supports a huge amount of requests should latter be rewarded
by this service. The previous approaches do not address this aspect adequately.
CONFIDANT has no memory, in the sense that the services provided by some
node are quickly forgotten by the reputation system. Terminodes does not suffer
from this problem, since beans can be kept indefinitely by nodes. However, the
charges for packets depends on the number of hops on the message’s path, a
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factor that is outside the control of the participants.

4 MANET Routing

In order to evaluate the effect of cooperative/selfish behaviors on the resource
consumption of nodes, one needs to understand the underlying MANET routing
protocol. Although the mechanisms proposed in this paper could be adapted to
other routing protocols, to make our discussion concrete, we assume that nodes
use the Dynamic Source Routing protocol (DSR) [4]. For self-containment, we
provide here an overview of the DSR protocol.

In DSR, multi-hop routes can be learned either by the replies to the broad-
cast of a RouteRequest message or by inspecting packets flowing on the
network. All operational routes are kept in a route cache. When receiving a
RouteRequest message, nodes should verify if they are themselves the des-
tination of the RouteRequest or if some route for the destination is avail-
able in their route cache. If a route toward the destination is available in the
node’s route cache, it will prefix its entry in the route cache with the payload
of the RouteRequest and send it in a RouteReply message to the initiator.
When none of the previous conditions apply, and the node has not received a
previous copy of the same request message, it will append its address to the
RouteRequest payload and forward the request to all neighbors. When a
RouteRequest reaches its destination, its payload will be copied into the
RouteReply message, because it contains a valid route between the initiator
and the destination.

The protocol includes provisions for non-bi-directional links: while the des-
tination of a RouteRequest message can invert the route in the request to
forward the RouteReply, it can also start a new route discovery and piggyback
the reply in it.

Routing is performed as follows. The header of data messages include the
route to be followed. Each hop will look into the message header to find the
address of the next hop. Additionally, each hop also adds this route to its route
cache. This avoids a new RouteRequest to be issued by the intermediary hop
whenever it sends a message to one of the nodes in that path.

Route errors can occur due to the movement of the nodes or from radio
interference. When one link finds that the next hop is unreachable, it should
send a RouteError message to the source. If no further paths are available in
the route cache, a new route discovery should be initiated. Otherwise, the source
should use a new route that avoids the missing link. A complete description of
the DSR protocol can be found elsewhere [4].

5 Friends and Foes

People tend to cooperate as long as they notice that there is a fair division
of tasks in a group. This observation can also be applied in MANETs where
the unfairness of the service division may prevent users from using their own
devices. Therefore, any selfishness prevention algorithm must also include some
mechanisms to foster a fair distribution of resource consumption. This can be
achieved if nodes are allowed to present some “justified selfishness”, by refusing
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some of the requests received, forcing the clients to search for alternatives. The
algorithm should equally provide hooks to allow nodes to be selective in the
way they apply selfishness prevention. For instance, two friends may provide
unlimited service to each other while resources are available. One may also
be willing to unconditionally accept messages from particular users, such as
administrators.

This section presents a new selfishness prevention algorithm which embodies
some of the properties of the protocols described in the related work section:
it presents a long lived memory that allows nodes to be rewarded by services
provided in the past but also does not charge by the number of hops used. Addi-
tionally, the algorithm introduces new features by tolerating justified selfishness.
The algorithm uses only one type of message, that each node periodically broad-
casts. Furthermore, nodes that do not participate in the algorithm may be still
allowed to benefit from the MANET.

5.1 System Model

In the exposition of the algorithm, every node is assumed to have the same
transmission power and to be equipped with an omni-directional antenna. Like
in other broadcast media, nodes are able to listen to messages that are not
addressed to them. Each node has a unique link-level address which cannot
be changed and that is included in all the messages that it sends (this address
serves as the node unique identifier).

In order for the protocol to perform correctly two conditions are required:
i) at least one route composed of only well-behaved nodes must exist between
any two well-behaved nodes and ii) selfish nodes do not conspire to disrupt the
network. Removing these constraints is an open issue that will be addressed in
the future.

5.2 The Algorithm

The algorithm supports the management of fairness by allowing nodes to pub-
licly declare that they refuse to forward messages to some nodes.

Each node p maintains three variables:

friendsp The set of nodes to which p is willing to provide services.

foesp The set of nodes to which p is not willing to provide services.

selfishp The set of nodes which are known to act as if p is a foe.

Note that, in our protocol, it is acceptable for participants to have some
foes. It is up to the community to evaluate if the number of foes a given node
declares reaches an unacceptable level of selfishness. Each node p advertises the
content of these three variables in a control message with the following format:

SelfState[p, friendsp, foesp, selfishp]

This is the only type of message exchanged by the protocol. In order to
evaluate the degree of selfishness of other nodes, and to detect inaccuracies in
the information advertised by other nodes, each node keeps a record of received
SelfState, as described below.

5



For each other known node q, node p will keep a number of status variables,
as follows:

creditsq
p a signed integer increased for each message that p forwarded on behalf

of q and decreased for each message that q sent on behalf of p. The initial
value is 0.

maxCreditsq
p the upper bound to creditsq

p.

friendsq
p The set of nodes for which q is willing to provide services. This set

is initialized with every node known by p.

foesq
p The set of nodes to whom q is known not to provide services. A node r
can be inserted in this set either because q explicitly advertises r as its foe
or because r declares q to be selfish. This set is empty when initialized.

liedToq
p A set of nodes to which q is known not to provide services, even though

it had advertise them as friends. The set liedToq
p is always a subset of foesq

p.

msgpendingq
p The set of messages forwarded by p to q waiting to be acknowl-

edged.

msgsuspectedq
p An unsigned integer increased for each message forward by

p to q, but whose forwarding by q was not listened by p (e.g. due to
collisions).

deadbeatq
p An unsigned integer that will be set to zero whenever a message is

listen from q. Periodically, a timer will increase this value. If it reaches
some threshold, one can consider that the node is no longer in the neigh-
borhood.

These variables are updated in response the following relevant events: i)
when the node wants to transmit a data message; ii) when the node forwards
a data message on behalf of other nodes; iii) when the node receives a data
message addressed to it; iv) when a node is able to listen on the shared medium
a message exchanged among two other nodes and, finally; v) when the node
receives a SelfState control message. The actions taken in each of these cases
for some node p are depicted in Figure 1.

When a node sends a message m, it looks for a route such that the next hop
q is its friend. It then forwards the message m to q and stores m in msgpendingq

p
(l.04). The message m is removed from msgpendingq

p when p detects that q has
forward m along the route (l.18–22).

When requested to forward a message m on behalf of q, p only does so if q
is its friend (l.07) and if the next hop is not believed to be a foe of p (l.09). If
the message is forwarded, node p accounts credits for providing the service and,
as in the previous case, stores m to later check the behavior of the next hop.

Slightly more elaborate steps are executed when a SelfState message is
received. First, the message is purged from information about nodes unknown
by p (l.25–27). If node q declares r to be a liar, the status of q with regard to
r is updated accordingly (l.28–31). Next, if q is declaring p itself as a liar, p
further treats q as a foe (l.32–34). Then, p updates its record of q’s friends and
foes (l.35–37). Finally, every peer r of q that has not previously declared itself
as a friend of q is simply assumed to be a foe of q (l.38–40).
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01 upon event service request for message m do
02 find an adequate route such that next hop q satisfies p ∈ friendsq

p;
03 send m to q;
04 msgpendingq

p := msgpendingq
p ∪ {m};

05 upon event forward message m from q to r do
06 deadbeatq

p := 0;
07 if q ∈ foesp then
08 discard m;
09 else if p ∈ foesr

p then
10 reply with a RouteError to q;
11 else
12 forward m to r;
13 if r is not the last hop for m then
14 msgpendingr

p := msgpendingr
p ∪ {m};

15 creditsq
p := creditsq

p + 1;
16 upon event receive message m from q do
17 creditsq

p := creditsq
p + 1;

18 upon event listen message m sent by q to r do
19 deadbeatq

p := 0;
20 if m ∈ msgpendingq

p then
21 creditsq

p := creditsq
p − 1;

22 msgpendingq
p := msgpendingq

p \ {m};
23 upon event receive message SelfState[q, friendsq , foesq , selfishq ] do
24 deadbeatq

p := 0;
25 friendsq := friendsq ∩ (friendsp∪ foesp ∪ p);
26 foesq := foesq ∩ (friendsp∪ foesp ∪ p);
27 selfishq := selfishq ∩ (friendsp∪ foesp ∪ p);
28 forall r ∈ selfishq : q ∈ friendsr

p do
29 friendsr

p := friendsr
p \ {q};

30 foesr
p := foesr

p ∪ {q};
31 liedTor

p := liedTor
p ∪ {q};

32 if p ∈ selfishq ∧ q 6∈ foesp then
33 friendsp := friendsp \ {q};
34 foesp := foesp ∪ {q};
35 friendsq

p := friendsq\ liedToq
p;

36 foesq
p := foesq ;

37 liedToq
p := liedToq

p\ foesq;
38 forall r ∈ friendsq∪ foesq do
39 if q 6∈ friendsr

p then
40 foesr

p := foesr
p ∪ {q};

41 upon event timeout for message m ∈ msgpendingq
p do

42 msgsuspectedq
p := msgsuspectedq

p + 1;
43 msgpendingq

p := msgpendingq
p \ {m};

44 if msgsuspectedq
p > threshold then

45 selfishp := selfishp ∪ {q};
46 foesp := foesp ∪ {q};
47 friendsp := friendsp \ {q};
48 msgsuspectedq

p := 0;

Figure 1: Variable update.

Nodes detect selfish behavior when they verify that, after some time, their
pending messages have not been forwarded by q. When a sufficient number of
messages is not forwarded by q, the node is appended to the selfish list to alert
its neighbors (l.41–48).
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5.3 Execution Scenarios

We now illustrate the operation of the algorithm in some concrete scenarios.
Due to the lack of space, only the most representative cases are presented.

All Cooperative Nodes, Lightly Loaded Network This is the most fa-
vorable scenario. Nodes will broadcast periodically one SelfState message,
where the fields foesp and selfishp will be empty. The overhead introduced by
the protocol is minimal: the periodic broadcast of one message. The case where
some nodes do not implement the protocol is handled transparently: they will
ignore the content of these messages. The nodes that are running the protocol
will create variables for them, that will be mostly kept with the default values.

All Cooperative Nodes, Unbalanced Load Network The nodes that
have been more loaded by requests from others will start to move some of the
nodes from the friendsp to the foesp set. One can envision several criteria for
the selection, using for example statistical information about the number of
hops toward the usual destination of the messages of each node, or the number
of credits. To preserve network connectivity, it is important that two or more
loaded nodes attempt to define disjoint foesp sets. Note that well-behaved nodes
should keep providing services to peers, even if these peers consider them as foes.

Nodes not running the protocol that are classified as foes will notice that
their messages are not being delivered. Their response to this event will depend
on several factors, as for example, the routing protocol being used.

One Selfish Node Selfish nodes are always penalized, whether they run the
protocol or not, because the decision is taken locally at each node based on the
information provided by its peers. When a node q refuses to forward messages,
its address will be included in the selfishp set of the SelfState messages of the
other nodes. Nodes listening to these messages will start to remove the entries

from friendsq
p and placing them in foesq

p. Whenever the rate
|friendsq

p|
|friendsq

p|+|foes
q
p|

goes bellow some threshold, node p will begin to mark q as selfish and recip-
rocally become its foe. Eventually, q will have all other nodes to refuse its
messages.

Previously selfish nodes may be reintegrated in the group by broadcasting
SelfState messages first acknowledging that they have been selfish for some
nodes (to remove their entries from the liedTo sets) and latter with some nodes in
the friendsp set. Two measures are implemented to prevent selfish nodes from
abusing this mechanisms: i) to be accepted, a liar must consume additional
energy by broadcasting two SelfState messages, and ii) non-selfish nodes
reduce maxCreditsq

p for the node, reducing the number of messages that it can
send without providing useful work for the community. Another mechanism,
which also allows the reintegration of nodes not running the protocol, is to
let the node voluntarily prevent itself from using the community resources by
becoming silent for a sufficient period of time so that its records can be erased
by having the deadbeat counter reach the threshold.

Malicious Selfish Node Malicious nodes will attempt to hide its selfishness
from the remaining participants. Classifying a node as selfish is an operation
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local to each protocol based on the following conditions: i) it exhausted the
credits limit or ii) it refused to forward messages to some nodes.

The protocol provides enough information to let each node to detect the
envisioned attacks. A malicious node could try to defeat the system using one
of the following methods: i) by declaring to be friend to a large number of fake
nodes or; ii) by omitting to be foe of some nodes. Fake nodes are ignored when
each node accounts for the number of nodes that each peer is serving, so the
node gain no advantage from advertising dummy friends. Note that the limited
transmission range of the network devices will make some nodes mark correct
addresses as invalid, so their existence can not be considered an attempt to
subvert the protocol. Additionally, nodes can not hide their selfishness because
information about the nodes known by each other node is crossed: if some node
p mentions some other node q in is SelfState message, and q omits p in is
own message, then it is assumed that q is selfish for p.

Malicious nodes may also attempt to corrupt the MANET by falsely declar-
ing other nodes as foes. However, in order to consider q as selfish, correct node
p will use the information provided by all of p’s neighbors. If the malicious node
acts alone, its information will not be sufficient to achieve its goal.

The definition of a proper rate threshold must be subject to further study
and may vary depending on the density of the nodes in the MANET area.

5.4 Other Considerations

In MANETs nodes are expected to move frequently, changing the network topol-
ogy. When moving, one node may become outside the range of another. Even
in the presence of pending messages, the protocol does not falsely consider these
nodes as selfish thanks to the deadbeat timer that will erase all the information
of the node if no messages are heard from it for some period of time.

The two categories of socially acceptable selfishness presented above are
handled differently by the protocol. Friendship can be tolerated by instructing
nodes to never declare some addresses to be selfish. This way, even when the
remaining members of the community start to declare some node as selfish, it
will always be able to forward messages to that node. Note that the friends
of a selfish node must still be able to request services from other nodes, and
are accountable by the credits that should be payed for the service. MANET
acceptable selfishness can be implemented with a Private Key Infrastructure
where the certification authority makes available the public key of the nodes that
can use the network without restrictions. All messages from that node should be
signed and no credits accountability should be imposed to intermediary nodes.

5.5 Integration with Routing Protocols

The selfishness prevention protocol must work close to the routing protocol for
the MANET to keep its efficiency for justified selfishness cases. This section
shows how the protocol can be integrated with the Dynamic Source Routing
(DSR) protocol [4].

Message forwarding penalizes each intermediary hop by reducing its available
power and bandwidth. A desirable feature of MANETs would be to distribute
evenly the overhead of the network maintenance tasks (like message forwarding)
across all participants. While optimizing the route discovery process, the DSR
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route cache hurts load balancing by making all nodes in the neighborhood of
some path to share it. [7] proposes a new set of metrics for routing protocols
that consider the available power at each node. However, such protocols can
hardly be used in Open MANETs where it is assumed that nodes can lie.

By applying to RouteRequest and RouteReply messages the same rules
defined above for selfishness prevention, nodes that were previously considered
selfish would see their route requests and replies ignored and would become un-
able to send their messages. This rule would also benefit load-balancing: a node
p that based on justified selfishness criteria refuses to forward RouteRequest
messages from a node q is forcing an alternative path to be established. For
efficiency, all nodes should remove from their route cache all entries pointing to
selfish nodes. A side effect of this protocol is that bi-directional routes may be
harder to achieve due to the arbitrary selection of nodes to whom some other
node will be selfish. However, DSR can handle unidirectional links efficiently
by piggybacking the RouteReply message in the RouteRequest issued by
the intended destination.

The load-balanced routes may suffer from an excessive inefficiency that could
be avoided if overloaded nodes agree on the set of nodes to whom they will
become selfish.

6 Conclusions and Future Work

MANETs are particularly sensible to uncooperative behaviors. The generaliza-
tion of wireless devices will soon turn MANETs in one of the most important
connection methods to the Internet. However, the lack of a common goal in
MANETs without a centralized human authority will make them difficult to
maintain: each user will attempt to retrieve the most of the network while ex-
pecting to pay as less as possible. In human communities, this kind of behavior
is called selfishness. While prohibiting selfishness shows to be impossible over a
decentralized network, applying punishments to those that present this behavior
may be beneficial.

This paper outlined a selfishness prevention protocol for Open MANETs.
The protocol includes a set of new interesting features: its decentralization
avoids the usage of complex payment systems and it introduces the concept of
“justified selfishness” that makes the whole system more fair, not penalizing
users by their physical location. By using just one message that is periodically
broadcasted by every node, it does not introduce a substantial overhead on
the network or in the nodes. Additionally, it is scalable since each node is
only supposed to keep information about the nodes in the range of its network
card. This work is on its early stages of development. Future work includes
an experimental evaluation over a network simulator, where different topologies
and node movements will be tested.
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