
Context Adaptation of the Communication Stack∗†

José Mocito Liliana Rosa Nuno Almeida Hugo Miranda Luı́s Rodrigues Antónia Lopes
Faculdade de Ciências da Universidade de Lisboa

{jmocito,lrosa,nalmeida}@lasige.di.fc.ul.pt {hmiranda,ler,mal}@di.fc.ul.pt

Abstract

This paper presents a middleware framework to support
the development of context-aware adaptive communication
protocols, that can be reconfigured according not only to
the local context, but also to the context of the remaining
remote participants. The advantages of the framework are
illustrated by using the concrete example of an adaptive
group communication protocol. The protocol supports a
distributed chat application that can be executed in both
fixed PCs and mobile devices.

1. Introduction

Today’s applications need to be designed to operate in
a wide range of heterogeneous devices, including servers,
PCs, laptop computers, PDAs, or even mobile phones.
When the application is distributed, each participant may
execute it in a different device. Consider, for instance, dis-
tributed cooperative applications such as network games or
messaging applications (“chat”, “messenger”, etc). In these
applications it is perfectly possible to find scenarios where
some participants execute in the fixed network and oth-
ers execute in mobile devices (it is worth notice that many
PDAs and mobile consoles also support multi-user interac-
tion in ad hoc mode).

Given this diversity, it is fundamental to be able to de-
sign and deploy adaptive communication protocols that can
be reconfigured according not only to the local context, but
also to the context of the remaining remote participants. We
illustrate this idea by using a multicast protocol as an ex-
ample (the need to multicast messages to a group of partic-
ipants is common in many multi-user cooperative applica-
tions, such as on-line games). Typically, the most straight-
forward design of a multicast protocol consists of imple-

∗This work was partially funded by LaSIGE and by FCT project MI-
CAS, POSI/EIA/60692/2004 through POSI and FEDER.

†A short version of this paper has been published in the Proceedings
of the 25th International Conference on Distributed Computing Systems
Workshops, Columbus, Ohio, USA, June 2004

menting the multicast as a sequence of point-to-point mes-
sages (one for each participant in the system). This imple-
mentation is quite generic, as it does not depend of any spe-
cific network support (such as native multicast) but is also
very inefficient. When the participants are located on the
same local-area network, or inside a single autonomous sys-
tem with IP-multicast support, the usage of native multicast
offers a much better performance. When the participants
are in large numbers and distributed geographically over a
large-scale network, it can be preferable to rely on epidemic
protocols to implement the multicast [17]. If some partici-
pants execute in the fixed network and others in mobile de-
vices, fixed nodes can play a bigger role in the data dis-
semination to save the resources of mobile nodes. When all
participants execute in mobile devices, one can use informa-
tion about the available battery at each device to increase the
lifetime of the network [19]. Note that similar trade-offs ap-
pear when designing other protocol layers (transport, group
membership, etc). As it should be obvious from the previ-
ous example, the context adaptation of the communication
protocols is a topic of major relevance.

This paper presents a middleware framework that sup-
ports the development of communication protocols that are
adaptive to the distributed context. The framework includes
several components, namely: a sub-system to collect and
disseminate context information; a protocol composition
and execution environment; a sub-system to control the
adaptation and reconfiguration of the communication pro-
tocols. The paper motivates the need for these components
and describes their first prototype implementation. The ad-
vantages of the framework are illustrated by using a con-
crete example of an adaptive group communication proto-
col that supports a distributed chat application, executed in
both fixed PCs and mobile devices.

The paper is organized as follows: Section 2 motivates
our work and Section 3 describes the Morpheus framework.
The advantages of the architecture are illustrated by a con-
crete application, which is described and evaluated in Sec-
tion 4. Related work is referred in Section 5. Section 6
concludes the paper and overviews future work.



2. Motivation

This paper addresses the problem of designing and im-
plementing a middleware framework to support the devel-
opment of communication systems that have the ability to
adapt to the distributed execution context. Before enumer-
ating the components of the architecture, we capture the re-
quirements imposed by our target applications.

As we have noted before, the characteristics of the de-
vices where the application components are running rep-
resent an extremely relevant portion of the context infor-
mation required to properly configure the communication
protocols. In the scope of this paper, the word context is
used to describe system context, i.e., information that can
be directly inferred from network interface cards or operat-
ing system calls. Examples are route lengths or the available
network bandwidth. We do not exclude however that subse-
quent research in Morpheus also considers more high-level
context information.

Different types of devices have different characteristics
in terms of battery, available memory, processing capacity,
etc. These characteristics bias the operation of protocols
that run at each device. There is a broad range of literature
covering this type of adaptation (for instance, [3, 11]).

The adaptation of the protocols to the characteristics of
each device can be performed using off-line configuration
(in a process similar to the one used to build versions of
most current operation systems). However, there are multi-
ple aspects of the context information that can not be fore-
seen. For instance, the network error rate may influence the
type of error recovery: for small error rates it is preferable to
detect and recover (using retransmissions) while for larger
error rates it is preferable to mask the errors (using forward
error recovery techniques [13]). To react to this sort of con-
text changes, run-time adaptation is mandatory.

Our work encompasses also another form of adaptation
that consists in adapting the protocols not only as a function
of the local context, but also as a function of the context of
the other participants in the distributed application. For ex-
ample, when some participants execute in the fixed network
and others in mobile devices, we intend to promote the use
of protocols that make use of the better resources of fixed
nodes (such as network bandwidth and energy). To support
this type of adaptation one needs a service to capture and
disseminate the context information. At this point, it is use-
ful to distinguish two orthogonal aspects in the adaptation
of the protocol stacks: the granularity of adaptation and the
location of the adaptation code.

Regarding the granularity of the adaptation, one can per-
form adaptation by reconfiguring the entire communication
stack or by reconfiguring just individual components of the
communication stack. The first approach is typically sim-
pler and can be applied to monolithic implementations of

the communication stack. The second approach permits
an accurate tuning of each individual protocol in the stack.
However it requires the protocol stack to be implemented
in a modular manner. Furthermore, it imposes an additional
burden on the reconfiguration code, as the reconfiguration
policies must balance the local optimization criteria of each
individual component with global optimization criteria.

Regarding the location of the adaptation code, one may
embed the reconfiguration code within the protocol code or
let all reconfiguration code be executed in an independent
component. When the first approach is used, each proto-
col includes one or more operational modes and the code
to commute between modes. A typical example of this sort
of protocol is the TCP implementation that automatically
adjusts several operational parameters in response to the
observed network behavior. However, there are disadvan-
tages of entangling the reconfiguration code with the pro-
tocol code: it becomes harder to re-use the reconfiguration
policies in another context and it becomes impossible to ap-
ply global optimization policies (that do not consider each
protocol individually, but the whole system). For instance,
using this approach it may be impossible to exclude a proto-
col from the communication stack. An alternative approach
consists in having the reconfiguration be controlled by an
independent component that applies global configuration
policies.

Many of the ongoing research projects in this field exper-
iment with different combinations of the strategies referred
above [12, 7, 9, 18, 1]. In this paper we are interested in
building a framework that supports fine-grain reconfigura-
tion of protocol compositions and where the reconfiguration
is controlled by a dedicated component that is able to ap-
ply global optimization policies. Therefore we need to use
a protocol composition framework that simplifies the task
of combining and adapting individual protocol components
and to develop mechanisms that allow the control compo-
nent to obtain information about the system context in order
to apply the reconfiguration policies.

3. The Morpheus framework

To address the requirements above we have designed a
middleware framework called Morpheus, which uses the
following components: a protocol composition and exe-
cution environment, that eases the task of building modu-
lar protocol compositions; a system to collect and dissemi-
nate context information; a control and reconfiguration sub-
system, to perform the run-time adaptation of the commu-
nication protocols; a set of modular protocol components
that can be combined in different manners, according to the
context.

In the following paragraphs, we describe the first proto-
type of the Morpheus architecture, depicted in Figure 1. The

2



AppiaAppia

Co
ca

di
te

m

Co
re

Co
ca

di
te

m

Co
re

A
da

p.
 P

ro
to

co
ls

A
da

p.
 P

ro
to

co
ls

Figure 1. Morpheus prototype

goal of this prototype is to provide the means for performing
an early evaluation of the architecture, illustrate the opera-
tion of each of its components and validating the interaction
among those components. Therefore, this first prototype
implements a simplified version of each component; the de-
sign and implementation of more sophisticated versions of
each of Morpheus’s architecture is current work. It should
be noted, however, that the prototype is fully functional and,
as described in Section 4, it allowed us to perform an exper-
imental evaluation of the architecture and demonstrate its
practical advantages.

3.1. Protocol Composition and Execution Support:
Appia

We start by describing the protocol composition and ex-
ecution support environment used in our prototype. The lit-
erature is rich in systems that satisfy the modularity and re-
configurability requirements imposed by Morpheus, includ-
ing Coyote/Cactus [4], Ensemble [8], and Appia [14]. We
have selected the Appia system mainly because it has been
developed “in house”, has a number of features particularly
well suited for our goals, and it is available in the Java pro-
gramming language, which helps rapid prototyping.

Appia [14] is a framework that support the implementa-
tion and execution of modular protocol compositions. Each
Appia module is a layer, i.e., a micro-protocol responsible
for providing a particular communication service. These
layers are independent and can be combined. A combina-
tion of layers constitutes a protocol stack that offers a given
quality of service, QoS for short (in the broad sense of QoS,
encompassing reliability, security, etc).

Once a QoS has been defined, by composing the appro-
priate layers, it is possible to create one or more commu-
nication channels. To each channel is associated a stack of
sessions: for each protocols layer there is a session respon-
sible for maintaining the state required for the execution of
the correspondent protocol. Two channels that share a given
layer may share the same session. In this case, the protocol
may correlate events exchanged in different channels with

the help of the state maintained by the shared session. For
instance, if two different channels share a session of a causal
order protocol, messages exchanged by these channels are
ordered among each other.

Layers interact through the exchange of events. Events
are typed and each layer is responsible for declaring which
types of events it needs to processes and which type of
events the layer creates. Using this information, Appia sys-
tem automatically optimizes the flow of events in the stack.

A recent extension to the Appia system, developed in the
context of this work, allows for the run-time to dynamically
instantiate a channel based on its XML description [15].
This functionality is particularly useful as a means for the
control and reconfiguration sub-system to load the correct
configuration in each node.

The Appia distribution also includes a protocol suite im-
plementing reliable group communication. This protocol
suite has been used and enhanced in our prototype. Avail-
able group communication services include membership
services, reliable multicast services, view-synchrony, order-
ing services (causal and total order), among others.

3.2. Context Capture and Dissemination System:
Cocaditem

The Context Capture and Dissemination System (Coca-
ditem) is, as the name implies, the subsystem for captur-
ing and disseminating context information in the prototype.
This is a distributed component, composed of: i) a set of
context retrievers, located in all nodes of the system, and;
ii) a publish-subscribe component responsible for dissemi-
nating the collected information to the interested parties.

The current prototype of Cocaditem implements a topic-
based publish-subscribe interface. The components inter-
ested in this information (namely the control component
described below) subscribe the topics required for their op-
eration.

The Cocaditem is a distributed component executed in
each node of the distributed system. It is responsible for
collecting the local context information and for coordinat-
ing with others to select the most effective manner to make
this information available to subscribers. The actual Coca-
ditem implementation is quite simple. A group communi-
cation control channel is used to coordinate all instances.
Each multicasts in the control channel the locally collected
context information. This is a clearly simplified and non-
scalable version of the publish-subscribe system under de-
velopment, but enough to support the example used in the
paper to demonstrate the Morpheus architecture.

3



3.3. Control and Reconfiguration: Core

Similarly to the Cocaditem sub-system, the control and
reconfiguration is also a distributed sub-system, composed
of two main components: i) a control component, respon-
sible for monitoring the state of the distributed application
and for coordinating the reconfiguration and; ii) a set of lo-
cal modules, responsible for locally deploying a new config-
uration of the communication protocols when needed. Core
components also coordinate using a group communication
control channel (in fact, for performance reasons, Core and
Cocaditem share the same control channel even though they
are logically independent).

The current version of the control component is based on
a coordinator, deterministically elected in run-time among
all the members of the control group (the election and the
replacement of a failed coordinator can be trivially derived
from the properties of the underlying group membership
service). The coordinator is responsible for deciding when
adaptation is required, in response to changes in the context
information.

The reconfiguration procedure executes as follows. The
coordinator first instructs all participants to trigger a group
view change in the data channels. The view-synchronous
properties of the group communication protocol suite en-
sure that those channels become in a quiescent state. In
parallel, the coordinator sends to each participant the con-
figuration that should be deployed at that node. For this pur-
pose, a XML description of the relevant channels is used.
Then, each local Core module deploys the new protocol
stack (using the Appia features) and the data flow is re-
initiated.

3.4. Adaptive Protocols

One of the responsibilities of the Core sub-system will be
to evaluate context information in order to select the more
adequate configuration. As the number of protocols made
available to Core increases, so will the number of alternative
compositions and, therefore, the adequacy of the composi-
tions to the running environment. To illustrate the adapta-
tion to the context in group communication protocols, we
have designed and implemented a protocol stack that in-
cludes an adaptive multicast algorithm that we have named
Multicast Echo (Mecho).

Multicast Algorithm: Mecho Mecho implements an al-
gorithm for a best-effort multicast service and is executed at
the base of the group communication protocol suite used in
our prototype. We recall that, on top of this best-effort ser-
vice, one offers a broad range of services including reliable
view-synchronous multicast.

Application

Group

Communication

Application

Group

Communication

Homogeneous devices

Application

Group

Communication

Network Intf. Network Intf. Network Intf.

(a) homogeneous

Application

Mecho/Wired

Fixed device

Group

Communication

Network Intf.

Mecho/Wireless

Mobile device

Group

Communication

Application

Network Intf.

Mecho/Wireless

Mobile device

Group

Communication

Application

Network Intf.

(b) hybrid

Figure 2. Protocol stacks

The original (non-adaptive) best-effort multicast imple-
mentation of the Appia group communication protocol suite
implements multicast as a sequence of point-to-point mes-
sages (one for each member of the group). When avail-
able, it may also use native multicast. This approach is ade-
quate when the system is homogeneous (i.e., when all nodes
are mobile nodes or connected to the fixed infra-structure).
However, in hybrid scenarios where the mobile nodes are
in range of the base station and one or more hosts are con-
nected to the fixed infra-structure, the protocol stack is ex-
tended with Mecho, whose behavior is quite different. In
this case, mobile nodes only send a single point-to-point
message to a selected fixed node which, in turn, is responsi-
ble for relaying the message to the remaining participants.

The Mecho protocol was designed in a modular manner
and, according to its operational mode (wired or wireless
node), it is implemented by a different algorithm. Fig-
ure 2(a) presents a configuration with homogeneous de-
vices, where Mecho is not used while, Figure 2(b) outlines
a configuration using Mecho.

4



4. Application and Validation

With the aim of validating the prototype described in the
previous section, we have implemented a simple multi-user
chat application. Each group of users, defined from their
interests, is supported by a different multicast group. The
application relies on the Appia group communication pro-
tocol suite to exchange data among the users of the chat
application. A non-adaptive implementation of the applica-
tion would require each mobile node to send one data mes-
sage for each participant at each user interaction. The adap-
tive version that we have implemented using the Morpheus
architecture reconfigures the underlying best-effort service
that supports the group communication protocol suite, as
described in Section 3.4.

We have measured the advantages of adapting the com-
munication stack by comparing the number of messages
sent by mobile devices using the non-adapted against the
adapted version of the best-effort multicast protocol during
the use of the chat application. Fixed participants executed
in PCs running either Windows or Linux. Mobile partici-
pants executed in HP Ipaq 5550 PDAs using a 802.11b wire-
less network and the Jeode Java run-time. For each version
we have experimented scenarios with 2, 3, 6 and 9 nodes.
Each run consisted of the exchange of 40.000 messages at
the pace of 10 msg/s. We have counted all the messages
transmitted by the mobile device, including data and con-
trol messages.

The results, depicted in Figure 3, have shown that signif-
icant advantages can be obtained by using the Mecho pro-
tocol in hybrid scenarios. While for two nodes the number
of messages sent is approximately the same for both con-
figurations (in fact, all interactions are point-to-point), for a
larger number of nodes the adaptive protocol is able to pre-
vent the increase in load of the mobile node (naturally, at
the expense of an increase in the number of messages of the
fixed node)1.

5. Related Work

In the context of wireless applications, there have been
many proposals of adaptive systems that automatically re-
configure according to the characteristics of the devices or
the quality of the communication link. However, most ap-
proaches do not rely on a middleware framework able to
integrate adaptation and protocol composition. A refer-
ence architecture has been proposed in the MobileMan [6]
project. MobileMan assumes that each protocol must adapt
independently of the remaining protocols and does not pro-
vide any support to reconfigure, in run-time, the stack of

1Note that even in the adaptive version there is a small increase in the
traffic due to the need of exchanging more control information.

0

50000

100000

150000

200000

250000

300000

350000

2 3 4 5 6 7 8 9

se
nt

 m
es

sa
ge

s

nr. of devices

optimized
not optimized

Figure 3. Messages sent by mobile nodes

protocols to be used by the application. Chisel [10] sup-
ports adaptive protocols using reflexive programming lan-
guage constructs, such as Iguana/J. However, it also does
not allow the reconfiguration of the entire communication.
In both MobileMan and Chisel it becomes very difficult to
use protocols other than those built specifically for those ar-
chitectures, as the adaptation logic is entangled inside the
protocol implementations.

Odyssey [16] is a framework for data access in mobile
environments that is used for context-aware adaptation. The
system notifies the application when a relevant change in the
available resources occurs and the application is responsible
by reconfiguring itself accordingly. In this paper we are in-
terested in performing the adaptation of the communication
protocols in a manner that is transparent to the application.

The WebPads [5] system exploits adaptation in Web ac-
cess services. Context information is collected by the in-
dividual components of the communication stack, that re-
configure autonomously. This makes very hard to perform
a global reconfiguration that takes into account the context
of all participants.

The modularity of the Morpheus architecture is particu-
larly suited to encompass a myriad of adaptation algorithms,
possibly developed in independent projects. As an example,
we cite [2], which proposes to relocate services to the nodes
near the barycenter of an ad hoc network and that could be
easily adapted to complement Mecho’s functionalities.

6. Conclusions and Future Work

Morpheus is a middleware framework that supports the
development of adaptive communication systems. This pa-
per motivates and describes the main components of the
architecture. A first prototype of the architecture, built to
validate the interaction among the components, and to illus-
trate the benefits of the resulting system has also been de-

5



scribed. Early experimental results illustrate the advantages
of building adaptive communication systems that are able to
reconfigure according to the context. We are currently im-
plementing more sophisticated versions of each component
of the Morpheus architecture.

References

[1] Fault-tolerance in audio / video communications via
best effort networks. http://www.informatik.uni-
hamburg.de/TKRN/world/abro/ongore.htm.

[2] M. Avvenuti, D. Pedroni, and A. Vecchio. Core services in
a middleware for mobile ad-hoc networks. In Proc. of the
9th Workshop on Future Trends of Distributed Computing
Systems (FTDCS’03), pages 152–158, 2003.

[3] N. M. Belaramani, C.-L. Wang, and F. Lau. Dynamic com-
ponent composition for functionality adaptation in pervasive
environments. In Proc. of 9th Workshop on Future Trends of
Distributed Computing Systems (FTDCS’03), 2003.

[4] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu.
Coyote: A system for constructing fine-grain configurable
communication services. Trans. on Computer Systems,
16(4):321–366, 1998.

[5] S. N. Chuang, A. T. S. Chan, J. Cao, and R. Cheung. Ac-
tively deployable mobile services for adaptive web access.
Internet Computing, 8(2):26–33, 2004.

[6] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-
layering in mobile ad hoc network design. Computer,
37(2):48–51, 2004.

[7] R. Cunningham. Architecture for location independent
corba environments. Master’s thesis, University of Dublin,
Trinity College, Sept. 1998.

[8] M. Hayden. The Ensemble System. PhD thesis, Cornell
University, Computer Science Department, 1998.

[9] J. Keeney and V. Cahill. Chisel: A policy-driven, context-
aware, dynamic adaptation framework. In POLICY ’03:
Proc. of the 4th IEEE Int’l Workshop on Policies for Dis-
tributed Systems and Networks, page 3, 2003.

[10] J. Keeney and V. Cahill. Chisel: A policy-driven, context-
aware, dynamic adaptation framework. In Proc. of the 4th
Int’l W. on Policies for Distributed Systems and Networks,
pages 3–14, 2003.

[11] S. Lalis. Supporting adaptive operation in a dynamically
composable personal system. In Proc. of the Workshop on
European Research on Middleware and Architectures for
Complex and Embedded Cooperative Systems, 2003.

[12] S. Lalis, A. Karypidis, A. Savidis, and C. Stephanidis. Run-
time support for a dynamically composable and adaptive
wearable system. In ISWC ’03: Proc. of the 7th IEEE Int’l
Symposium on Wearable Computers, page 18, 2003.

[13] M. Luby, L. Vicisano, J. Gemmel, L. Rizzo, M. Handley,
and J. Crowcroft. Forward error correction (FEC) building
block. RFC 3452, 2002.

[14] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels. In
Proc. of The 21st Int’l Conf. on Distributed Computing Sys-
tems (ICDCS-21), pages 707–710, Phoenix, Arizona, USA,
Apr. 16–19 2001.

[15] J. Mocito, L. Rosa, N. Almeida, and L. Rodrigues. Appi-
aXML - brief tutorial. http://appia.di.fc.ul.pt/, Sept. 2004.

[16] B. D. Noble and M. Satyanarayanan. Experience with adap-
tive mobile applications in odyssey. Mobile Networks and
Applications, 4(4):245–254, 1999.

[17] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and
A.-M. Kermarrec. Neem: Network-friendly epidemic mul-
ticast. In Proc. 22th Symp. on Reliable Distributed Systems
(SRDS’03), pages 15–24, 2003.

[18] P. Verı́ssimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday,
and J. Kaiser. Cortex: Towards supporting autonomous and
cooperating sentient entities. In Proc. of European Wireless
2002, pages 595–601, Florence, Italy, Feb. 2002.

[19] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides.
Energy-aware wireless networking with directional anten-
nas: The case of session-based broadcasting and multicas-
ting. Transactions on Mobile Computing, 1(3), 2002.

6


