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Abstract—One of the main goals of edge computing is to

support latency-constrained applications. For applications that

need to access information stored in the edge, this can be achieved

by storing data replicas on edge nodes. Because edge nodes are

resource constrained, full replication is infeasible. Therefore, any

edge storage service needs to support partial replication. Also, in

most cases, edge storage needs to support weak consistency, to

avoid the latency and overhead associated with algorithms that

enforce strong consistency. In this context, session guarantees

are a powerful tool that simplify the design of edge applications.

Unfortunately, the mechanisms typically used to enforce session

guarantees, such as vector clocks, perform poorly under partial

replication. This paper presents ENGAGE, a storage system that

combines the use of vector clocks and distributed metadata prop-

agation services to offer efficient support for session guarantees

in a partially replicated edge storage.

Index Terms—edge, session guarantees, causal, consistency, low

latency

I. INTRODUCTION

Numerous applications of today that have clients running
on the edge of the network rely on cloud structures for com-
putation offloading and storage [1]. Unfortunately, the high
network latency between clients and data centers can impair
novel, latency-constrained, applications such as augmented
reality [2]. Edge computing has emerged as a potential solution
to circumvent this problem. To unleash its full potential,
the edge nodes must replicate data that is frequently used.
However, because edge nodes are resource constrained, full
replication is infeasible. Therefore, any edge storage service
needs to support partial replication. Furthermore, there is also
evidence that edge storage should support weakly consistent
memory models [3, 4]. This happens because strong con-
sistency models, such as linearizability [5], require strong
coordination among the replicas when updates are performed,
which increases latency.

In a seminal work, Terry et al. [6] have introduced the notion
of session guarantees, a set of well defined semantics that
may be used to simplify the design of distributed application
using weakly consistent stores. Session guarantees are relevant
in scenarios where a client may access different replicas of
a weakly replicated system. In particular, if a client, after
performing a number of read and/or write operations on a
given (origin) replica, needs to access another (destination)

replica, it may observe a state that is inconsistent with its
causal past: updates that the client has performed or observed
on the origin replica may have not been applied yet at
the destination replica. Depending on the semantics of the
application, the client may be forced to wait for some (or
all) of these operations to be applied at the destination replica
before being served, to ensure correctness of the results.

In [6], the authors have also suggested a set of mechanisms
to enforce the session guarantees that rely on the use of
version vectors [7]–[9], a form of vector clocks [10]. However,
these mechanisms are only efficient in settings that use full
replication, i.e., all updates are propagated to all replicas.
In systems that implement partial replication, one may be
required to maintain and exchange large amounts of metadata
(for instance, by forcing all messages to carry many vectors
clocks, one vector clock for each shard in the system) or
may cause update propagation to stall (later in the paper we
elaborate on this phenomenon).

This impairs the remote visibility latency, i.e., the time it
takes for an update performed in one replica to become visible
in remote replicas. There are many edge applications where
small remote update visibility is highly desirable (for instance,
in vehicular applications, events such as accidents should be
propagated to other roadside units, to divert traffic from the
hazard). Thus, this limitation of vector clocks is of significant
concern for edge applications.

The challenges of providing small remote visibility latency
with small metadata have been recognized in the litera-
ture [11]–[13]. To address these challenges, the abstraction of a
distributed metadata service has been recently introduced [11].
A metadata service is a helper service that instructs replicas
regarding the order by which they should apply remote updates
without violating a given consistency criteria. However, to
the best of our knowledge, existing metadata services such as
Saturn [11] only offer causal consistency and have no support
for session guarantees. Therefore, they may force clients that
have weaker requirements to suffer unnecessary delays when
performing remote reads.

The dichotomy above is illustrated in Figures 1a and 1b
that show, respectively, the remote visibility latency and the
remote read latency in two separate systems, one using vector
clocks and the other using a metadata service (in this case,

1



Bayou-Causal Saturn-Causal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Contention

0

20

40

60

80

100

120

140

A
ve

ra
ge

V
is
ib

ili
ty

La
te

nc
y

(m
s)

(a) Remote Visibility Latency

0 2 4 6 8 10

Think Time (ms)

0

2

4

6

8

10

12

A
ve

ra
ge

R
em

ot
e

O
p.

La
te

nc
y

(m
s)

(b) Remote Operation Latency

Fig. 1: Remote Visibility Latency and Remote Read Latency.

Saturn [11]). We postpone to Section IV a detailed description
of the experimental setup used to collect the data, and present
here just the required information to understand the results.
We consider a partially replicated system and clients that have
a preferential replica (typically the nearest one). By default,
clients perform reads and writes on its preferred replica unless
they need to access an object that is not replicated there; in
this case they perform a remote operation. When a client is
forced to contact another replica, it must wait until the replica
is consistent with its past; in this figure we just assume causal
consistency. This waiting time can contribute substantially to
delay the remote operation.

Figure 1a shows the remote visibility latency, i.e., the time it
takes for a local update to be applied remotely, for both classes
of systems. Updates are applied in causal order, such that
clients are required to keep a single vector clock, and do not
need to maintain a separate vector clock for each object. In this
figure, in the x axis we vary the diversity in access frequency
to different objects. For small values all objects are accessed
at the same pace, for larger ones, some objects are accessed
much more frequently than others. Systems based on vector
clocks need to receive updates from all nodes before applying
remote updates (to determine the correct order), and the update
visibility latency increases sharply when the access frequency
is skewed (because some updates are much less frequent than
others). Metadata services were invented to circumvent this
problem and, in fact, as it can be seen, these offer small
visibility latency regardless of access skews.

Figure 1b shows the delays experienced by clients when
they perform a remote operation. In this case, in the x axis
we vary the think time of the clients, i.e., the average time
between two consecutive operations. The larger the think time,
the more likely it is that updates in the causal past of the
client have already been propagated and applied when the
client performs a remote operation. Thus, we expect the remote
operation latency to decrease as the think time increases.
Systems based on vector clocks have fine grained information
about which updates the client has observed and that need
to be locally applied in order to avoid violating the client
consistency requirements. By using this information, they can
reply faster. Unfortunately, systems based solely on a metadata
service do not keep detailed information regarding the causal
past of each client; they have to conservatively wait for all
updates that may have been observed by the client to be

applied. Thus, these systems are unable to leverage the think
time of the client and are penalized by depicting a (constant)
high remote operation latency (the horizontal blue line at the
top of the figure).

The goal of this paper is to derive a strategy that can
achieve the best of both worlds, i.e., to combine small remote
visibility latency and efficient support for clients perform-
ing remote operations using different session guarantees. We
present ENGAGE, a storage system that achieves this goal
by combining, in a synergistic manner, the use of vector
clocks and distributed metadata propagation services to offer
efficient support for session guarantees in partially replicated
edge storage. We provide an extensive evaluation of ENGAGE
against a system based on vector clocks and against a system
based on Saturn [11], using different combinations of the
session guarantees proposed in [6].

II. BACKGROUND AND RELATED WORK

Weakly consistent replication schemes have been introduced
as a way to circumvent the performance bottlenecks associated
with strong consistency and to augment the system availabil-
ity [14]. In strongly consistent systems all updates need to be
serialized [15]; this requires the use of a single primary replica
or the use of a consensus protocol [16]. Weakly consistent
systems allow updates to be performed concurrently and
without coordination at different replicas. Also, while strongly
consistent systems may block, weak consistency offers higher
availability as requests can be served locally by any replica.

Session Guarantees Unfortunately, without any additional
support, weakly consistent systems allow applications to ob-
serve inconsistent states. For instance, a client may perform an
update at a given replica and later, be forced to contact another
replica and observe a state where its update its missing, or to
observe states that do not respect causality. Experience has
shown that weak consistency makes application development
difficult [17, 18]. Session guarantees have been introduced
in [6] as way to simplify the application development in
weakly consistent replicated systems. This seminal paper
identifies four relevant properties for a client accessing a
weakly consistent datastore, namely, Read Your Writes (RYW),
Monotonic Reads (MR), Writes Follow Reads (WFR), and
Monotonic Writes (MR). These properties can be matched to
the application semantics and define a framework where the
programmer can specify which properties should be ensured
for each individual operation, such that the system maximizes
the availability while still preserving high-level consistency.
It is interesting to note that, when all these guarantees are
combined, the system offers causal consistency [19].

Vector Clocks Version vectors [7]–[9], also known as vector
clocks [10], are a way to keep track of concurrent updates.
Each replica keeps a sequence number that it uses to identify
updates performed locally. The vector clock keeps one entry
for each replica, with the value of the last update that was
received from that replica. For instance, consider a system with
three replicas. Consider an object stored in some replica with
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vector clock [0, 2, 1]: this vector clock captures the fact that
the state of the object includes 2 updates performed at replica
R1 and 1 update performed at replica R2. Vector clocks can be
used to enforce session guarantees [6]. For that purpose each c
client keeps a vector clock with the most recent version of the
object it has observed (V R

c ), and a vector clock that captures
all write operations it has performed (V W

c ). The values of
these clocks can then be checked against the version stored
by a given replica, to check if it is safe to serve the request
without violation the desired semantics.

Limitations of Vector Clocks Vector clocks are able to keep
track of this partial order accurately, for a single object. To
keep track of all causal dependencies accurately, it would
be necessary to store and exchange the vectors clock for
all objects in all messages [20] or, alternatively, a matrix
clock [21]. Both approaches are extremely expensive and
impractical on the edge. A common strategy to limit the size
of metadata is to use a single vector clock for the entire
object store. This creates what is known as false dependencies,
i.e., scenarios when the operation of a client may be stalled
because of independent operation performed by other clients
on unrelated objects. The use of a single vector clock for the
entire data store also performs poorly with partial replication.
Assume that the read set of a client is captured by clock
V R = [1, 0, 0] and that this client attempts to read some
object from replica R2 whose clock is still [0, 0, 0]. The clocks
indicate that the client has observed some update that has not
been applied to R2 yet. Unfortunately, there is no way for R2

to infer if the missing update corresponds to some object that
is replicated locally (and should be received) or to some object
that is replicated somewhere else (and will never be received).

Metadata Services Distributed metadata services [11]
emerged as a solution to provide small visibility latency in
partial replicated system while keeping the size of metadata
very small. When an update is generated at a given replica,
this information is propagated to the metadata server. The
metadata server will later tell the relevant replicas when it
is safe to apply the update. Metadata services have proven to
be an interesting mechanism to provide short visibility latency
but enforce only causal consistency. It is unclear if and how
these services can be extended to support weaker consistency
models such as session guarantees.

Edge Storage Several works have addressed edge storage,
but few have addressed the problem of latency when con-
sidering session guarantees. SessionStore [22] is a data store
for edge applications that also supports session guarantees.
However, instead of optimizing for latency, SessionStore uses
the semantics to reduce the amount of data that needs to
be shipped before serving a client. SessionStore is based
on PathStore [23], which is a hierarchical eventual-consistent
object store built on CloudPath [3], a system that replicates ap-
plication data on-demand. Because data is shipped on demand,
clients can experience a large latency. Like us, FogStore [4]
and DataFog [24] also aim at offering low latency with
different semantics. However, in FogStore and DataFog, the

Extended Metada Service
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Cloud Servers

Read/ Write Requests Data Propagation 
(Background)
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Fig. 2: ENGAGE Architecture

semantics drive how many replicas need to be read/written for
executing a given operation, while we always serve requests
locally (furthermore, the consistency criteria supported by
FogStore are not directly comparable with session guarantees).
EdgeCons [25] and DPaxos [26] propose efficient consensus
algorithms for the edge that are targeted at strongly consistent
systems. In [27], the use of CRDTs [28] is suggested to avoid
the cost of strong consistency; however, the paper does not
address the problem of offering consistency to the clients,
when they access different edge servers. Timeseries DBs [29]
focuses on establishing semantic specifications to handle fault
detection and providing diagnosis in IoT-based monitoring
systems for critical systems. Differently from our proposal,
Timeseries DBs is not focused on latency optimization.

III. THE ENGAGE SYSTEM

ENGAGE is a system that aims at combining low visibility
latency and support for session guarantees while avoiding the
costs of using matrix clock. It does so by combining, in a
synergistic manner, the use of vector clocks to keep track of
the read set and write set of clients, and the use of metadata
services to speed up the propagation of updates.

A. System Model

Figure 2 depicts the architecture of ENGAGE. We consider
a set of edge servers, fog nodes or cloudlets, that are used to
replicate data. We assume the number of cloudlets to be in the
order of a few dozens to one hundred. The system uses partial
replication, i.e., not every cloudlet replicates every object. In
this paper we do not address data placement: the decision of
which cloudlets store each data object is orthogonal to our
work; we just assume that some data placement policy is in
place and that the assignment of data object to cloudlets is
known, at least by all cloudlets. Typically, data replicated in
the cloudlets will also be stored in a cloud datacenter, but this
is not necessary for the operation of ENGAGE. Cloudlets are
connected by a backbone network that is used to propagate
updates among replicas.
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ENGAGE supports two types of clients, namely placement-
aware and placement-unaware clients. Placement-aware
clients know the location of the objects, and send requests
directly to the nearest replica when performing an operation.
Placement-unaware clients do not know the object locations.
Therefore, these clients have a preferred cloudlet, to which
they forward all the requests. If the preferred cloudlet does
not replicate the target of an operation, in turn, the cloudlet
forwards the request to the nearest replica that does. Typically,
the preferred cloudlet is selected based on the network latency
from the client to the cloudlet. If clients are mobile, they may
change their preferred cloudlet on-the-fly.

B. Metadata
We assume that each cloudlet is linearizable [5], which

means that all updates performed at a cloudlet can be serialized
and when one update becomes visible for a client, it becomes
visible for all clients of that cloudlet. Thus, each cloudlet keeps
a unique sequence number that is used to uniquely identify
updates that are performed locally on behalf of clients; this
sequence number is shared by all objects. For instance, if client
c1 makes an update on object o1 and this update is assigned
sequence number x, the next update on that cloudlet will be
assigned sequence number x + 1, even if it is performed by
some other client c2 on some other object o2.

ENGAGE uses vector clocks to keep track of the updates
that are observed by clients. Vector clocks have one entry per
cloudlet. Multiple vector clocks are maintained by ENGAGE
as follows:

- A vector clock V i
o is stored with each replica oi of each

object o. The vector clock captures the causal past of all
updates that have been applied to replica oi.

- Each cloudlet i also keeps a cloudlet vector clock V i
⇤ that

captures the state of the local database. This clock is computed
by taking the maximum value of the clock values of all objects
replicated in cloudlet i, i.e., V i

⇤ = max(V i
o ) 8o 2 i.

- Finally, each c client keeps two vector clocks: V R
c , that

captures the past of all objects the client has read, and V W
c ,

that captures all write operations it has performed.

C. Performing Read and Write Operations
When a client performs a read or a write operation it

can specify one or more session guarantees to be ensured.
ENGAGE supports the session guarantees of the original Bayou
paper [6], namely: Read Your Writes (RYW), Monotonic Reads
(MR), Writes Follow Reads (WFR), and Monotonic Writes
(MR). From the point of view of the client operation, ENGAGE
offers no novel contribution. Instead, we are faithful to the
original implementation proposed in [6].

On the server side we perform a number of adaptations to
the original algorithm, in order to support multiple objects that
keep different clock values. When performing a read or write
operation on object o using cloudlet C, the client c provides
its own V R

c , V W
c , and the desired session guarantees. The

cloudlet i holds the request until it is safe to execute. In order
to check if the cloudlet is in a state that is consistent with the

guarantees specified by the client, the cloudlet compares the
value of its own vector clock V i

⇤ with the values of V R
c and

V W
c as follows:
• If the client requests WFR or MR, it is safe to execute

the operation if V i
⇤ � V R

c .
• If the client requests MW or RYW, it is safe to execute

the operation if V i
⇤ � V W

c .
If the operation is a read, the cloudlet sets V R

c =
MAX(V R

c , V i
o ), and returns the state of the object and the new

value of V R
c to the client. If the operation is a write, the

cloudlet assigns a unique sequence number snb to the update,
by incrementing the local counter that serializes all updates.
It then creates a temporary update vector clock V up that has
all entries to 0 except the entry i associated with cloudlet that
is set to snb. Then it updates several clocks as follows:

• It sets V i
⇤ = MAX(V i

⇤ , V
up).

• It sets V i
o = MAX(V i

o , V
up, V R

c , V W
c ).

• It sets V W
c = MAX(V W

c , V up).
After these updates, it returns the new value of V W

c to the
client. In parallel, it schedules the update to be sent, tagged
with V i

o , to the other cloudlets that replicate o. The update
can be shipped immediately, or in background using epidemic
dissemination.

D. Applying Remote Updates
When an update performed at cloudlet orig, tagged with

vector clock V orig
o , is received at some other cloudlet dest,

it is applied in causal order with respect to all other remote
updates. There are two complementary mechanisms that can
be used to decide when an update can be applied, namely,
using vector clock stability or using the ENGAGE extended
metadata service. The update is applied as soon as one of
these mechanisms indicates that the update is safe (whichever
triggers first). We will describe the ENGAGE metadata service
in the following sections. Here we will describe how updates
can be applied based on vector clock stability.

The remote update is put in a list of pending updates and
it remains there until the following conditions are met:

• From all updates received from orig, the update has the
lowest sequence number, and

• For all other entries i 6= orig, we have V dest
⇤ [i] � V orig

o [i].
When these conditions are met, the update is applied to the

object and cloudlet dest performs the following updates to its
own metadata:

• It sets V dest
⇤ = MAX(V dest

⇤ , V orig
o ).

• It sets V dest
o = MAX(V dest

o , V orig
o ).

E. The ENGAGE Extended Metadata Service
Using vector clock stability to apply remote updates is not

effective under partial replication. We recall the example from
Section II to illustrate the problem. Assume that cloudlet 2
receives a remote update u for object o from cloudlet 1 with
vector clock V u

o = [1, 1, 0]. Assume that cloudlet 2 is still
in the initial state, and its cloudlet vector clock has value
V 2
⇤ = [0, 0, 0]. According to the rules stated in the previous
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section, the update cannot be applied safely on cloudlet 2
because V u

o [0] > V 2
⇤ [0]. In fact, the update has in its causal

past some previous update u0 generated by cloudlet 0 with
sequence number 1. Under full replication, cloudlet 2 would
eventually deliver u0 which, in turn, would allow to deliver u.
Unfortunately, under partial replication, cloudlet 2 may never
receive u0. Furthermore, cloudlet 2 has no way to know if it
is supposed to receive u0 or not.

To solve the problem above, nodes can periodically send
to each other the values of their cloudlet vector clocks (in
this paper we call these messages metadata flush (MF) mes-
sages). This generates additional traffic and makes the remote
update latency a function of the period used to exchange MF
messages. Note that, under partial replication, MF messages
are necessary not only to apply remote updates but also to
serve remote reads. This happens because, to enforce session
guarantees, cloudlets need to compare the client read/write
with their own cloudlet vector clock; therefore they need to
keep the values of V⇤ up-to-date by receiving MF messages.

A key insight behind the design of ENGAGE is that a
metadata service, such as the one proposed in [11], can be
extended to perform a dual function: it can be used to instruct
cloudlets to deliver remote updates (as proposed in [11]) and,
with minimal additional overhead, it can also be used to
propagate MF messages, such that cloudlets can keep vector
clocks up-to-date, regardless of the objects they replicate.

Thus we propose to connect all cloudlets by a distributed
metadata service, inspired by Saturn [11]. The medatada
service is implemented by a set of servers that are distributed
in different locations of the backbone network that intercon-
nects the cloudlets. The servers are organized as an acyclic
graph and each cloudlet is connected to one of these servers.
Unlike Saturn, that only propagates update labels (a label
is a scalar that uniquely identifies an update), ENGAGE’s
metadata service propagates two types of control messages
that carry a vector clock: update notifications and metadata
flush messages.

Update notifications are tuples associated with a
concrete update. They include the following fields
hUN, src, snb, oid, V src

oid i, where src is the identifier of
the cloudlet where the update was originated, snb is the
sequence number assigned by src to the update, oid is the
identifier of the object that has been updated and, finally,
V src
oid is the vector clock assigned to the update by the src

cloudlet. Metadata flush messages are tuples that include the
following fields hMF, VMFi where VMF is a vector clock that
will be used to update the cloudlet vector clocks.

When a cloudlet processes a write request, and a new
update u is created as explained in Section III-C, the cloudlet
also creates an update notification message that it delivers to
the local metadata server. When a metadata server receives
an update notification, it performs the following sequence of
actions for all edges e (except for the incoming edge):

• If the edge e is in the path from src cloudlet to another
cloudlet that replicates oid, it forwards the update noti-
fication eagerly on that edge. If there is a MF message

pending on that edge, the MF message is also forwarded
piggybacked with the update notification and any timeout
associated with the MF message is cancelled.

• Otherwise, it transforms the update notifications into a MF
message, by preserving the associated vector clock. The
resulting MF message is then scheduled to be propagated
asynchronously on that edge. If there is already another
MF message scheduled for transmission on the same edge,
both MF messages are merged on a single MF message,
with a vector clock that has the max of both clocks. If
there was no other MF message already pending on edge
e, the metadata server starts a timeout timer to propagate
the MF message later.

• When the timeout associated with an edge expires, the
metadata server forwards the pending MF message.

When a MF message hMF, VMFi is received by a cloudlet
dest, either isolated or piggybacked with some update no-
tification message, the cloudlet dest uses VMF to update
V dest
⇤ = MAX(V dest

⇤ , VMF). Finally, when an update message
hUN, src, snb, oid, V src

oid i is received by a cloudlet, it performs
the following checks:

• If V dest
⇤ � V src

oid , then the update has already been received
and delivered via the vector clock stability described
in Section III-D. The update message can be safely
discarded.

• Otherwise, the cloudlet waits until it has received the
payload of the update directly from src.

• When the cloudlet dest has received the update message
from the metadata service and the payload directly from
src, it applies the update to object oid and updates vector
clocks V dest

⇤ and V dest
o as described in Section III-D.

F. Example
We now illustrate the propagation of update notifications

and metadata flush messages in the network of metadata
servers with the help of Figure 3. The figure shows a network
with 4 cloudlets. Geometric figures in the cloudlets represent
partially replicated data objects: for instance, the pink triangle
is replicated in cloudlet c1 and c2 only. The ENGAGE extended
metadata service is implemented by a network of 7 servers
(A,B, . . . , G) organized in a tree rooted at server A. The
figure illustrates a sequence of events where a client first
makes an update on an object replicated in c1 and c2 (Step 1,
Figure 3a), then another client makes an update on an object
replicated in c2 and c3 (Step 2, Figure 3b), finally, another
client makes an update on an object replicated in c3 and c4
(Step 3, Figure 3c). In the figure, the green boxes at the bottom
represent the values of the cloudlet vector clock and the blue
boxes represent metadata messages; update notifications are
represented in light blue, tagged as UN, and metadata flush
messages are represented in dark blue, tagged as MF.

In Step 1, the client makes an update on c1; this creates
an update notification that is propagated in the network of
metadata servers via the path c1 ! D ! B ! E ! c2. Since
c3 and c4 do not replicate the object that has been updated,
the notification is not propagated on the link B ! A. Instead,
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Fig. 3: Propagating metadata messages.

the update is transformed in a metadata flush message that is
scheduled for future transmission.

In Step 2, the client makes an update on c2; this creates
an update notification that is propagated in the network of
metadata servers via the path from c2 to c3. Because the
object written is not replicated in cloudlet c1, the notification
is not propagated on the link from B to D; instead it is
transformed in a metadata flush message that is scheduled for
future transmission. When the notification is propagated over
the link from A to C, it “piggybacks” the MF message that
was pending from Step 1: that MF message is sent together
with the notification, in a single message, on the path to c3.
Because C4 does not replicate the object, the notification is
not propagated on the link C ! G; instead it is transformed in
a metadata flush message that is merged with the MF message
from Step 1.

In Step 3, another client creates an update that generates a
notification that is propagated in path c3 ! F ! C ! G !
c4. This notification flushes the pending MF message waiting
on link C ! G from Step 2. At the end of this step there
are still two MF messages pending on the metadata broker
network: the MF message generated on Step 2 on the link
B ! D and the MF message generated on Step 3 on the
link C ! A. These will be piggybacked on future update
notification messages or propagated alone, after some timeout.

G. Optimization

A client is said to be sticky if it performs all the operations
on the same set of servers (typically, the nearest to the cloudlet
they are attached to). It has been shown that availability
under consistency criteria such as causal consistency or RYW
cannot be guaranteed unless clients are sticky [30]. Therefore,
although we support client mobility, in ENGAGE clients remain
sticky while stationary. The knowledge of clients being sticky
combined with remote updates applied by causal order, allows
for implementing RYW and MR guarantees without blocking
operations, which reduces the overall latency of the system.

When using RYW, the client executes operations on the
same set of servers, so the clients’ previous write operations
are always reflected on the cloudlet as the servers are lineariz-
able. When using MR, updates are applied by causal order
combined with the client being sticky. The client will always
read a version of the key that is greater or equal than the
previous version that the client has read. To achieve non-

TABLE I: Parameters of the dynamic workload generator.

Parameter Default Range
Write % 10% 5%-50%
Access Locality 10% -
Zipfian Constant / Contention 0.8 0.1-1.1
Think Time (ms) 0 0 - 10
I’m Alive Timeout (ms) 25 5 - 100

blocking operations, the client zeros its vector clock before
sending the RYW or MR operation. Thus, the client vector
clock will be lower or equal than the cloudlets vector clock.

Note that supporting sticky clients does not interfere with
supporting mobile clients. If the client changes its set of
servers due to change of location, for the first RYW or MR
operation, it needs to send its complete vector clock. For the
following operations, the client zeros its vector clock before
issuing RYW or MR operation.

IV. EVALUATION

In the evaluation, we address the following research ques-
tions:

• How does ENGAGE perform in comparison with the
classical vector clock approach used in Bayou [6] and
with recent metadata services, such as Saturn [11]?

• Can ENGAGE bring advantages to clients that exploit
session guarantees to reduce the latency experienced by
clients when accessing the data?

• Can ENGAGE help in tolerating transient network parti-
tions?

• What is the signaling cost of ENGAGE?
For this purpose we have run a performance evaluation

of ENGAGE against Bayou, a system based solely on vector
clocks, and against Saturn, a system based solely on a metadata
service.

A. Experimental Setup
The evaluation has been performed using a version of

the Peersim network simulator [31] running in the event-
based mode to capture the asynchrony of the interactions,
configured with extensions that simulate network latency and
finite bandwidth. The channels between two points ensure
FIFO order with a bandwidth limit of 1 Gb/s.

We have considered a scenario where cloudlets are de-
ployed in a grid network, which abstracts a urban deployment.
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Fig. 4: Cloudlet placement (white) and broker network (blue)

We consider an hierarchical broker network consisting of a
quadtree where the root is placed in the center of the area.
Figure 4 illustrates the cloudlet deployment and the broker
network for the case of a 8⇥ 8 grid.

We populate cloudlets with a set of objects that are partially
replicated. Every object is replicated in exactly one node per
bucket and each bucket has size of k = 16. The buckets are
represented as green squares in Figure 4.

When a client issues an operation, it chooses with a certain
probability whether it corresponds to a read or write operation
(Write %) and if the operation is remote or local (Access
Locality). The keys accessed by each request are selected
using a Zipfian distribution. If the operation is local, using the
Zipfian distribution selects it from a local object list, and if the
operation is remote, it selects from a remote object list. The
Zipfian Constant affects the contention of the workload, higher
the Zipfian Constant higher the contention. After executing an
operation the client has a cooldown time before issuing another
operation (ThinkTime), if the ThinkTime = 0 we say that the
client is eager. We also assume that, unless there is a transient
network partition, as soon as an update is performed in a given
replica, it is propagated immediately to the remaining replicas.
A timeout value is used to control the frequency of control
information: for Bayou the timeout controls how often each
node broadcasts an “I’m alive message” and in ENGAGE the
timeout is used to control for how long a broker holds a MF
message (to piggyback it with an update notification).

The workload parameters are summarized in the Table I.
We consider variations of this workload in which we change
the value of one parameter and keep the others at their default
values. In the following experiments, we measure two metrics,
namely the remote visibility latency and the remote operation
latency. The remote visibility latency is the time from which
the replica received the update until it can apply it using the
correct semantics. The remote operation latency is the time
from which the remote cloudlet received the client’s request
until it can respond using the correct semantics.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Contention

0

20

40

60

80

100

120

140

A
ve

ra
ge

V
is
ib

ili
ty

La
te

nc
y

(m
s)

(a) Remote Visibility Latency

0 2 4 6 8 10

Think Time (ms)

0

2

4

6

8

10

12

A
ve

ra
ge

R
em

ot
e

O
p.

La
te

nc
y

(m
s)

(b) Remote Operation Latency

Fig. 5: ENGAGE vs Bayou and Saturn

B. ENGAGE vs Bayou and Saturn

In this section, we try to answer the first question and posi-
tion ENGAGE with regard to Bayou and Saturn. In particular,
we present again the results from Figure 1 (that we have used
in the motivation) now including the performance of ENGAGE.

Figure 5a shows the remote visibility latency, i.e., the
time it takes for a local update to be applied remotely. In
this case, in the x axis, we vary the diversity in access
frequency to different objects. For small values, all objects
are accessed at the same pace, and for large values, some
objects are accessed much more frequently than others. In this
experiment, we disabled the metadata flush of ENGAGE and
Bayou (an evaluation of these mechanisms is postponed for
Section IV-E). Instead, there is a set of keys that are replicated
in every cloudlet; updates on these keys keep vector clocks up
to date. For a high skewed workload, cloudlets communicate
with each other at different rates. Bayou needs to receive
updates from all the cloudlets before it can apply a remote
update. Thus, the update visibility latency increases sharply
when the access frequency is skewed. In opposition, ENGAGE
and Saturn use a metadata service to apply updates. Therefore,
they do not depend on metadata from operations on objects
they do not replicate. As a result, ENGAGE and Saturn exhibit
a visibility latency that is 10⇥ lower than Bayou for high
contention workloads.

Figure 5b shows the delays experienced by clients when
they perform a remote operation. In this case, in the x axis,
we vary the clients’ think time, i.e., the average time between
two consecutive operations. The larger the think time, the more
likely it is that updates in the causal past of the client have
already been propagated and applied when the client performs
a remote operation. Thus, we expect the remote operation
latency to decrease as the think time increases. ENGAGE,
and Bayou are systems based on vector clocks that have
fine-grained information about which updates the client has
observed and that need to be locally applied to avoid violating
the client consistency requirements. Using this information,
they can reply faster. Saturn does not keep detailed information
regarding the past of each client. Thus, when a client executes
a remote operation, Saturn needs to propagate a migration label
to the remote cloudlet through the metadata service, making
the client always dependent on the last operation executed
or received by the local cloudlet. As such, Saturn is unable
to leverage the think time of the client to lower the access

7



WFR MW Engage-Causal Bayou-Causal Saturn-Causal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Contention

0

2

4

6

8

10

12

A
ve

ra
ge

R
em

ot
e

O
p.

La
te

nc
y

(m
s)

(a) Latency vs contention

5 10 20 30 40 50

Write Percentage

0

2

4

6

8

10

12

A
ve

ra
ge

R
em

ot
e

O
p.

La
te

nc
y

(m
s)

(b) Latency vs read/write ratio

Fig. 6: Remote Latency with Session Guarantees

latency and exhibits a (constant) high remote operation latency
(the horizontal blue line at the top of the figure), resulting
in a 7⇥ higher remote operation latency than ENGAGE for
ThinkTime = 2ms and 20⇥ for ThinkTime = 10ms.

C. Benefits from Session Guarantees
In the previous section we have shown that ENGAGE is able

to match Bayou when supporting remote reads using causal
consistency. We now show that ENGAGE can further reduce
the latency of remote operations if the user uses the weaker
session guaranties, instead of using full causal consistency.
Figure 6 shows the remote latency associated when different
session guarantees are used (for RYW or MR it shows the
latency of remote reads and for MW and WFR it shows the
latency of remote writes). The figure shows how the latency
for the different session guarantees is affected by parameters
such as the contention level and the read/write ratio.

Figure 6a shows the impact of the contention level on
remote latency for different system and session guarantees.
In Saturn, a remote operation always requires the exchange
of a migration label from the origin cloudlet to the remote
one. This makes the remote operations in Saturn depend on
the network latency, regardless of the workload pattern. Not
surprisingly, causal consistency, being stronger than any of the
session guarantees in isolation, is the criteria that leads the
client to experience larger latency. This is more noticeable in
Bayou than in ENGAGE, as our system is able to update remote
clocks faster, by leveraging on normal data flow to flush MF
messages (instead of depending exclusively, on “I’m Alive
messages”, as Bayou). When weaker session guaratees are
chosen, ENGAGE offers even lower latency. Since Monotonic
Reads and Read Your Writes never need to block the client,
the latency is always zero (in the figure, these lines overlap
with the x-axis). Monotonic Writes tend to remain constant,
as the worst-case consists of writing consecutively on objects
located in distant cloudlets, a scenario that is not greatly
affected by varying contention. Write Follow Reads growth
follows causality, as the worst-case is reading a freshly written
object before the remote write operation, this case is boosted
with higher contention because it is easier to read an object
that was freshly written. Figure 6b shows the impact of the
read/write on remote latency. For most guarantees, the figure
shows a similar trend. As in Figure 6a, Saturn tends to remain
constantly high. Also, as expected, the latency tends to grow
slightly with the write ratio. However, it is interesting to notice
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Fig. 7: CDF of the Remove Visibility Latency and Remote
Operation Latency.
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that while contention has little effect on MW and a large
impact on WFR, the opposite happens when we increase the
write/read ratio. This is not surprising, given that the larger
fraction of writes, the more likely it becomes that a client
depends on some recent update that is still in transit.

Figures 5b and 6b depict average latencies. It is also
interesting to look in detail to the Cumulative Distribution
Function (CDF) of the latency, both for the remote visibility
latency and for the remote operation latency of the different
systems. This is depicted in Figure 7. In this case, we used the
default parameters from Table I. We can observe that Bayou
has high tail latency, in the 90th percentile, Bayou has almost
2.7⇥ the remote operation and 6⇥ the visibility latency when
compared with ENGAGE. This shows that ENGAGE is much
more suitable than Bayou for latency-critical applications and
must achieve small and predictable tail latencies (e.g., 95th or
99th percentile) to work properly [32].

D. Tolerance to Transient Partitions

All networks can be subject to transient partitions, where
a node or a set of nodes becomes temporarily disconnected
from the rest of the network. During a transient partition, the
propagation of updates that are performed at a given cloudlet
may be delayed or postponed. A prominent feature of session
guarantees is that they have the potential for shielding client
from being affected by a transient partition. In fact, operations
that can be performed on their local client can be executed
without coordination, and are not affected by the partition.
Remote operations may depend on updates affected by a
partition, but with session guarantees clients have more control
of what updates they need to observe to operate without
violating consistency.
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In Figure 8, we show the average time to execute an
operation using different session guarantees of the clients that
migrated to the nearest cloudlet due to a transient fault. We
set the transient partition time to 800ms (i.e., during 800ms
no client or cloudlet could send or receive messages from the
partitioned cloudlet) and observe how the different systems
behave as we vary the client think time. As Saturn does not
keep detailed information regarding each client’s past and
requires to propagate a remote label through the metadata
service, the clients either break causality or need to wait
until the transient fault is healed. In contrast, ENGAGE and
Bayou can perform fine-grained dependency checking, using
the information stored in the client vector clock. This allows
some clients to execute remote operations without violating
causality, even if the remote cloudlet is not completely up-
to-date, as long as the missing information is not in the
client’s causal past. Interestingly, ENGAGE is able to outper-
form Bayou. This happens because Bayou needs to receive
messages from all other cloudlets to apply any remote updates
(therefore, all updates are affected by the network partition)
while in ENGAGE, only the updates that have origin in the
partitioned cloudlet are delayed.

Moreover, the ENGAGE session guarantees give clients more
control over what updates they need to observe to operate
without violating consistency. Thus, allowing to execute op-
erations with much lower latency than causal consistency,
notably in cases where not all client’s causal dependencies
were propagated before the transient fault, as the client would
need to wait for the transient fault to be resolved. MR/WFR
achieves 36% lower latency, and MW/RYW achieves almost
5⇥ lower latency than causal consistency.

E. Signaling Overhead
Both ENGAGE and Bayou require the exchange of control

messages to update the cloudlet’s vector clocks. This is of
paramount importance to allow clients to be served quickly
and avoid unnecessary delays due to false dependencies. In
systems such as Bayou, vector clocks can be updated via the
periodic exchange of “I’m Alive” messages, that carry the
vector clock of the sender [13, 33]. ENGAGE uses metadata
flush (MF) messages for the same purpose. However, unlike
Bayou, in ENGAGE MF from a cloudlet can be piggybacked on
the updates messages sent from other cloudlets, as explained
in Section III (for instance, see the example of Section III-F).
This often prevents ENGAGE from being required to send
signaling messages just to update vector clocks. Figure 9a
shows the number of control messages exchanged both by
Bayou and by ENGAGE as a function of the timeout value
(the timeout value indicates when a control message needs to
be explicitly sent in absence of a suitable update). Note that
Saturn is not depicted, as it does not rely on vector clocks
(with the latency penalty shown in previous sections).

In the Figures 9a, in the x axis we vary the timeout value
and in the y axis we depict the number of control messages per
second (note that we use a logarithmic scale in this figure).
In ENGAGE, we only count the MF messages that were not
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Fig. 9: Signaling Impact: ENGAGE vs Bayou

piggybacked with update messages, this captures the extra
messages incurred by ENGAGE over the Saturn’s metadata
service. Obviously, the larger the timeout the smaller is the
signaling overhead, given that control messages are only sent
when the timeout expires. However, it is interesting to see
that ENGAGE benefits much more from a larger timeout than
Bayou. In fact, it can be observed that, for a timeout of 5ms,
Bayou sends approximately 32000⇥ more control messages
than ENGAGE, and after a timeout of 20ms, all the ENGAGE
MF messages can piggybacked in some update message with
high probability. This shows that the piggyback mechanisms
of ENGAGE become more and more effective as the timeout
increases.

In Figure 9b, we can observe how the timeout value affects
the remote operation latency in both systems. For a timeout of
20ms, both systems present almost the same remote operation
latency. However, as we increment the timeout value, the
Bayou latency sharply increases. From these experiments, it
is clear that the timeout value has a large impact on the per-
formance of Bayou, while the performance of ENGAGE stays
mostly unchanged. This allows for ENGAGE to achieve low
remote operation latency with high timeout values, avoiding
the need to send unnecessary MF messages.

V. CONCLUSIONS

Given that latency driven applications are one of the main
drivers for edge computing, to offer low latency when ac-
cessing data on the edge is of paramount importance. In
this paper we have presented ENGAGE, a novel architecture
for supporting session guarantees for partially replicated edge
storage systems. ENGAGE combines, in a synergistic way, the
use of vector clocks and metadata services to achieve both low
visibility latency and low remote operation latency. We show
that ENGAGE allows the programmer to fully exploit the ap-
plication semantics to improve the performance of operations:
by using session guarantees the application avoids the latency
imposed by strong consistency, and can outperform systems
based on full causal consistency. At the same time, ENGAGE
avoids stalling remote updates due to false dependencies,
offering small remote visibility latency.

Our experimental evaluation shows that the latency gains
achieved with ENGAGE can be as high as 7⇥ for remote
update visibility 2.7⇥ for remote operations, compared with
Bayou for high contention workloads. Moreover, ENGAGE can
tolerate transient partitions much better than Saturn, reducing
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the latency 2.6⇥ for eager clients and almost 27⇥ for non
eager clients, while offering alternative session guarantees to
causality that can further reduce the latency. Finally, ENGAGE
has a much lower signaling cost than Bayou.
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