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Abstract. Gossip, protocols have emerged to serve as building blocks to
applications with high reliability requirements. However, a generic gossip
solution may not be sufficient to ensure competitive performance in spe-
cific topologies such as in datacenter networks. This work addresses the
problem of optimizing gossip-based protocols for use in datacenters. It
starts by making a survey of different techniques that have been proposed
to exploit the topology of the underlying network when optimizing the
operation of gossip protocols. Then the topology of datacenter networks
is studied and abstracted. Based on this analysis, the report discusses
why existing gossip optimization techniques may provide unsatisfactory
results when running on datacenter networks and identifies some direc-
tions of research to improve the state-of-art in this respect.

1 Introduction

Gossip, or epidemic, protocols are based on the periodic exchange of informa-
tion between pairs of nodes [1]. Originally proposed for database replication [1,
2], gossip protocols have proven to be an effective building block in several other
applications, such as reliable message dissemination [3, 4], data aggregation [5, 6],
failure detection [7], among others [8]. One of the most attractive properties of
epidemic protocols is their inherent scalability, as the load imposed on each in-
dividual node is typically logarithmic with respect to the total number of nodes
in the system [9].

Gossip based protocols have been used in the implementation of several prac-
tical systems, including systems that support a very large number of users such
as Amazon’s Dynamo [10] and Facebook’s Cassandra [11]. In this context, gossip
is used to maintain the system membership, detect failures, and replicate control
state. These systems operate on large datacenters, which comprise large numbers
of off-the-shelf machines that are prone to failures. Gossip based protocols are
appealing in this context not only due to their scalability properties, but also
because they are very robust to failures of individual nodes.

Part of the robustness of gossip-based protocols derives from redundancy. In
each gossip round, each node only interacts with a small number of other nodes,
typically selected at random. However, the total number of interactions in the
system is usually very large, and a given node (or link) is not unlikely to receive

1



(transport) the same gossip message multiple times. Therefore, gossip protocols
may stress the network in an undesirable manner. This problem may be exacer-
bated if the gossip protocol is oblivious to the underlying network topology. In
fact, if the network is abstracted by a fully connected clique (i.e., a single group
of fully connected nodes that are able to communicate directly between them-
selves), gossip exchanges among disjoint sets of nodes may appear completely
independent. However, different overlay links may use the same equipment at
the underlay level.

One way to mitigate the potential negative effect of gossip on the underlying
network is to design gossip based protocols that are network aware, i.e., where
gossip exchanges are explicitly biased in an attempt to ensure better network
utilization. Although different techniques to take into account the network topol-
ogy in the operation of gossip-based protocols have been proposed [12–14], it is
unclear which of them are more suitable to optimize gossip operation on top of
the network topologies used in current and future datacenters. For that reason,
we propose to study both network aware gossip protocols and datacenter topolo-
gies with the aim of identifying which techniques are more appropriate for this
particular setting. Our goal is to design, implement, and evaluate a gossip-based
protocol optimized for the network topologies of datacenters.

The rest of the report is organized as follows. Section 2 briefly summarizes the
goals and expected results of our work. In Section 3 we present the fundamental
concepts and survey previous work which is closer to our own. We analyze current
and proposed datacenter topologies in Section 4. Section 5 describes the proposed
solution to be developed and implemented, whereas Section 6 describes how we
plan to evaluate our solution and validate it. Finally, Section 7 presents the
schedule of future work and Section 8 concludes the report.

2 Goals

This work addresses the problem of optimizing the operation of gossip pro-
tocols for datacenter topologies. Our goal is to devise a protocol that can serve
as a building block to support gossip-based services in datacenters with the as-
surance that they will behave in a scalable, efficient, robust, and predictable
fashion, while exploiting the properties of the underlying network. Specifically,
the goals are:

Goals: Research, implement, and test a novel gossip protocol that is
optimized for both current and future datacenter topologies.

To that end, we need to compare the abstractions currently employed to
model existing networks and, if necessary, define a new network model that
captures the specific nature of datacenter networks.

The project will produce the following expected results:

Expected results: The work will produce i) an abstract model for dat-
acenter topologies that can be used to optimize the operation of gossip-
based protocols; ii) a specification of a gossip protocol optimized for
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datacenter networks; iii) an implementation of the designed protocol,
and iv) an extensive experimental evaluation using simulations.

3 Related Work

In this section we survey the main techniques proposed in the literature to
render the operation of gossip-based protocols network aware, i.e., to exhibit
communication patterns that better match the topology of the underlying net-
work. The section starts by describing the characteristics that define a gossip
protocol that is oblivious to the underlying network topology, showing the gen-
eral applications of such protocols. Then, we present useful metrics to evaluate
the performance of gossip-based systems, before identifying the properties of the
underlying network that are relevant for the operation of epidemic protocols.
After that, we identify two general strategies to optimize gossip-based solutions
with regard to the network properties. Finally, we describe a number of exist-
ing gossip systems, and discuss how these systems take the previously identified
network properties into consideration.

3.1 Network Oblivious Gossip

We will now introduce the most common characteristics of gossip protocols
that do not take the underlying network topology into consideration. We will
start by defining a simple gossip protocol (named Flat Gossip) before we incre-
mentally present typical strategies employed to increase the benefits of epidemic
protocols in more complex scenarios. Finally, we will show how to leverage the
introduced properties to build applications that use gossip as a building block.

3.1.1 Flat Gossip

Gossip (or epidemic) protocols are named after the social or natural pro-
cess they mimic in order to disseminate information in a network of computer
nodes: their operation is inspired by the way a rumor, or a disease, spreads in a
population. Typically, these protocols present a periodic behavior, which can be
modeled as a sequence of gossip rounds. In each gossip round, a node exchanges
information with a predefined number f of other nodes selected uniformly at ran-
dom from the entire system population (the parameter f is called the fanout).
Therefore, if a node has some novel information that needs to be disseminated,
after one gossip round this information is also known by other f nodes. Since all
nodes engage in gossip rounds periodically, the number of nodes that know the
information (sometimes referred as infected nodes) grows exponentially with the
number of executed rounds. As a result, in this setting, the time required for a
piece of information to be propagated to all nodes in the system is, on average,
O(log(N)), where N is the total number of nodes executing the protocol [9].

This protocol is known as flat gossip exactly because gossip exchanges are
performed with nodes selected uniformly at random, with no concern for their
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location in the underlying topology. Implicitly, the protocol assumes that each
node has access to the full system membership (such that it can select gossip
peers uniformly). In very large dynamic systems, to maintain full membership at
every node becomes prohibitively expensive, given that every join and leave of
individual nodes would need to be propagated globally. Therefore, many practical
flat gossip protocols operate based on partial membership information, i.e., they
rely on the availability of a companion partial membership service, that offers
to each node a sample view of the full membership [15, 16, 4]. Protocols based
on partial membership exhibit the same properties of gossip protocols based
on full membership as long as local views include a uniform sample of the full
membership [17].

3.1.2 Partial Membership Services

In the context of gossip-based protocols, the goal of a companion partial
membership service is to provide each node with a sample of the entire sys-
tem membership. The main purpose of using such a service is to increase the
scalability of the system. In fact, any large-scale system is faced with system
dynamics, i.e., some nodes depart from the system (for instance, due to failures,
maintenance, etc.) and new nodes are added to the system. This phenomenon is
known as churn [18]. To propagate these changes to all other nodes in a timely
manner would consume a significant amount of resources. By providing nodes
with partial views, the effects of churn can be localized.

A partial membership service, also called a peer sampling service [19], aims
at providing each node with a uniform sample of the entire system membership,
called a local or partial view. Usually, the size of the local view is larger than
the fanout value f . Thus, in its operation, the gossip protocol selects f nodes
at random from its local view, instead of selecting f nodes at random from
the entire membership. Therefore, when a partial membership protocol is used,
gossip no longer operates on an overlay that is a fully connected clique; instead,
it operates on an overlay network with topological properties that derive from
the way partial views are built.

There are two main approaches for maintaining partial views. The reactive
approach only changes the partial view of a node in response to a change in the
membership of the entire system (i.e., when nodes leave or join) [12]. A cyclic
approach continuously shuffles the partial membership information maintained
by the nodes [16]. Finally, there are also protocols that combine features of the
two previous approaches [4].

3.1.3 Gossip Strategies

In the previous sections we have stated that gossip rounds happen period-
ically and that in each round a node exchanges information with other nodes.
Obviously, this is a simplified and abstract description of how gossip may op-
erate, and does not capture all the alternative implementations that have been
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described in the literature. A more detailed description of the possible strate-
gies for information exchange can be made by considering the gossip exchange
unidirectional and by distinguishing the node that triggers the exchange (the
initiator) from the node that is contacted (the target).

In this more refined setting, if the information flows from the initiator to
the target we say that the gossip protocol operates in push mode. Otherwise,
we say that gossip operates in pull mode. Naturally, some protocols exchange
information in both directions, thus combining push and pull in each round, in
what is called a push-pull approach.

Furthermore, when the initiator sends new information to the target without
first inquiring which information the target already knows, we state that the
protocol operates in eager push mode. If the initiator first requests the target
to return the list of missing information, and only later sends the actual data,
we state that the protocol operates in lazy push. Lazy push may be useful if the
information to be transmitted is large and its availability at the target can be
checked by exchanging first small identifiers. In this case, lazy push saves network
bandwidth in exchange for a longer latency in the information dissemination.

Finally, a push protocol can also operate in pure reactive mode, i.e., a node
may initiate a gossip round as soon as it receives new information, instead of
waiting for a predefined interval.

3.1.4 Practical Convergence Techniques

Another practical challenge that arises from a simplistic view of gossiping
local information with peers is how to manage a large amount of information, as
is the case with a broadcast service that was used to disseminate many messages,
or a replication system with many objects suffering constant updates. To achieve
convergence (i.e., ensuring that every node has the same information), one has
to take into account that it may be impractical for a node to transmit all the
information it has received since the startup of the system.

Epidemic convergence approaches are typically divided into two separate cat-
egories [20]: anti-entropy and rumor mongering. In anti-entropy systems, nodes
gossip the most recent changes to their state and merge any differences found,
whereas in rumor mongering systems, nodes gossip new information for a lim-
ited number of gossip rounds. A key aspect to take into consideration is that
while nodes in an anti-entropy system continuously gossip their state, nodes in
a rumor mongering system stop gossiping in the absence of new information.

3.1.5 Common Gossip Applications

After introducing the general flat gossip protocol and some additional fea-
tures that are usually employed to increase scalability in practical scenarios, we
will now demonstrate how gossip can be used as a building block for two example
applications. The proposed examples are a reliable broadcast application and an
anti-entropy state reconciliation application.
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Reliable Broadcast An epidemic protocol to disseminate information reliably
could work using a reactive push strategy as described above. To account for
peers that did not receive the message in the push dissemination, the nodes can
maintain a cyclic lazy push strategy with fanout f , periodically sending the IDs
of messages they know to f neighbors, which in turn request the messages that
they did not yet receive.

As the ID summaries grow with the number of messages, it is useful to limit
the number of rounds a message is kept in the lazy push summary before its
memory can be reclaimed, similarly to a rumor mongering state reconciliation
strategy. Such an approach can be seen in [3].

Anti-entropy State Reconciliation An example of an anti-entropy state reconcil-
iation protocol is proposed in [20], a system in which nodes keep replicas of each
others’ state. To update their vision of the state of a peer p, a node gossips with
another (not necessarily p), exchanging the maximum version number they have
for objects of p. Then, should the version numbers differ, the node with higher
version number for p sends the other as many updates for p objects as it can
(i.e., with regard to the maximum gossip message size), in chronological order.

The chronological order and the limit of the number of updates mitigate the
exchange of outdated information that could occur when the two gossiping nodes
have different versions but neither of them is up-to-date. Because both nodes will
have to gossip with an up-to-date node to receive the latest state, they should
not be wasting resources exchanging their outdated values.

3.2 Metrics for Evaluating Gossip Protocols

To evaluate the performance of an epidemic protocol, one needs metrics that
can grade the system on its key features. Such metrics are useful not only to know
what could be improved in the solution being studied but also to compare it to
other baseline solutions, to gain some insight on whether the system improved
the desired properties or not.

We now present some metrics to evaluate key properties of gossip protocols,
noting the distinction of their implementation in broadcast systems and state
reconciliation systems.

Reliability The robustness of the protocol is one of the key properties of these
systems, so it is commonly evaluated. In broadcast protocols, robustness is typ-
ically measured in terms of reliability, defined as the percentage of nodes which
receive a given message (i.e., the number of infected nodes). In state reconcilia-
tion protocols, reliability can be measured in terms of the percentage of nodes
that converged to a final state.

Reliability is closely tied to the number of peers to which nodes dissemi-
nate each piece of information. Therefore, the fanout parameter of an epidemic
protocol is a fundamental factor when considering the reliability of the system.
Since gossip protocols follow a bimodal behavior, either only a negligible subset
of nodes receives the information or almost all nodes do [21]. Reliability should
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then be tested in both stable scenarios and in the presence of multiple faults,
when the number of nodes that receive the information decreases to values that
could be potentially insufficient to ensure full dissemination.

Latency The latency of messages is also an interesting metric for these systems.
It is typically defined in broadcast systems by the amount of time that messages
take to infect all the nodes in the network. As a simplification, latency can also be
measured in terms of the last delivery hop (LDH) [14] of a message. In epidemic
broadcast protocols, LDH is the number of gossip rounds that a message took
to be delivered to all nodes. Please note that this metric can easily be compared
to the latency (in time units) by multiplying LDH for the gossip round time
duration. As for state reconciliation protocols, the latency of the system can be
measured as the time it takes for all nodes to converge on a final state.

Redundancy As gossip protocols tend to generate redundant information to mask
node failures, it is also useful to measure the link stress in terms of messages per
link, to determine the overhead on the network.

Another strategy to identify the redundancy penalty specifically is counting
the redundant messages that are transfered for each new piece of information.
If we divide the number of redundant messages by the number of nodes in the
system, we discover how many useless messages each node received, on average.
An issue with such an approach can arise when not all the nodes receive the
information, skewing our metric into displaying a false average penalty. For that
reason, the relative message redundancy (RMR) was proposed in [14]. RMR is
given by the expression m

n−1−1, where m denotes the number of message payloads
sent during the dissemination of one message and n denotes the number of nodes
that actually received the message. This metric measures the average number of
message copies (besides the first) that each node received and thus the overhead
of the dissemination process, accounting for scenarios where not all the nodes
received the information.

3.3 Modeling Heterogeneity

When using flat gossip, an initiator selects gossip targets at random, with no
regard for the heterogeneity that may exist among the nodes and the links that
connect them. Naturally, it is unlikely that in practice all gossip exchanges can
be executed with the same efficiency, as different nodes and different links may
have different properties. Therefore, flat gossip may ignore fundamental aspects
that can affect the performance of the protocol in a realistic setting.

In the following paragraphs, we identify the relevant properties that may
affect the execution of gossip protocols. We will divide these properties into three
groups: Link Properties, Node Properties and Overlay Topology Properties.

3.3.1 Link Properties

A link at the overlay level is implemented at the underlay level by one or
more paths that are materialized by physical media and network equipment such

7



as network cards, routers, etc. Given the diversity of technologies available to im-
plement a network link, the physical distance among the nodes, the number and
profile of other applications that share the same paths, etc, the observed behav-
ior of the overlay links may vary substantially. The most important differences
may be abstracted as follows:

Latency The latency can be defined as the elapsed time between the beginning
of a transmission by the sender and the receiver completely receiving the
information. Link latency is often the dominating factor in the time required
to finish a distributed computation, given that in most cases processing time
is negligible when compared with latency. This is especially true when links
connect nodes placed in geographically remote locations. A particular case
of a distributed computation is request-reply operation. In this case, it is
often relevant to measure the round trip time, which is twice the latency as
defined above.
In reactive push based gossip-protocols, by tuning the operation of a gossip
protocol to use more frequently links with low latency, it may be possible to
speed up the dissemination of information in certain scenarios [13, 22].

Loss Rate Loss rate is defined as the fraction of messages sent through the link
that are not successfully transmitted. If the gossip protocol is implemented
on top of a reliable transport protocol such as TCP, the loss rate is masked
at the transport protocol and transformed into latency (as the information
is automatically retransmitted at the transport level). If the gossip protocol
is implemented on top of an unreliable transport protocol such as UDP,
gossip must be configured such that the redundancy in the gossip operation
is enough to mask the loss rate and maintain the reliability values. The
operation of the gossip protocol can be tuned to take heterogeneous loss
rates into consideration, for instance by changing the frequency of gossip on
lossy links [23].

Link Capacity The capacity of a link is defined as the number of bits that it
can transmit per unit of time. If at a given point in time the information that
needs to be sent over a link exceeds its capacity, the information needs to be
temporarily queued, introducing additional latency in the communication.
If the application keeps producing new information at a pace that cannot be
satisfied by the capacity of the links, one needs to resort to some form of flow-
control mechanisms, to throttle the application rate. Typically, the capacity
of a network is limited by the aggregate capacity of the links that constitute
its minimum cut. In some cases, better performance can be obtained if the
gossip rate is limited to match the aggregate capacity of the network [20, 24].
Note that the link capacity as observed by the gossip protocol may be smaller
than the actual capacity at the physical level. This happens because physical
links are often shared by many different applications and users. Therefore
the available capacity needs to the split among the applications that use the
link.
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Link Independence Typically, it is simpler to consider that two different
overlay links are independent from each other. If links are independent this
means that the way the protocol uses a given link does not affect the prop-
erties of another link. For instance, sending messages on a link does not
change the capacity of the remaining links. However, it is often the case that
different links at the overlay level share physical components at the physical
level. In this case, links are not independent. In this scenario, the aggregate
capacity of a set of overlay links may be fixed and, by sending messages
on one link, the available capacity of the other links is reduced, increasing
the risk of queuing messages at the underlay link’s routing equipment. The
knowledge about link dependencies may be used by the protocol to reduce
the likelihood that related links are used simultaneously [12, 23].

3.3.2 Node Properties

Node properties (and therefore the differences among nodes) also have an
impact on the system’s behavior. We now discuss two characteristics of nodes
that are relevant in the context of gossip protocols, capacity and expected uptime.

Node Capacity In most practical cases, not all nodes that participate in a
gossip protocol have the same hardware configuration and run the same
software. Differences in CPU power, available memory, among others, make
that some nodes are able to engage in more gossip exchanges than others. In
an abstract manner, the capacity of a node may be measured by the number
of gossip exchanges which that node is able to perform with other nodes in a
single gossip round. The node capacity may be taken into consideration, for
instance, by assigning different fanout values to different nodes, or employing
an eager push strategy more often when nodes with higher capacity are
involved [25].

Expected Uptime The nodes that engage in a gossip protocol may aban-
don the system due to crashes, software failures, maintenance activities, or
simply because their users decide to unplug the node. Often, not all nodes
have the same probability of leaving the system, as some hardware may be
less reliable, some software more prone to bugs, etc. If these factors can be
estimated during the execution, the gossip protocol may bias its operation to
favor more reliable nodes. At the overlay level, node failures can be difficult
to distinguish from link losses, and therefore some solutions like [23] work
for both.

3.3.3 Overlay Topology Properties

As we have noted before, when the gossip protocol operates with full mem-
bership, the overlay is a fully connected clique. Therefore, the topology has no
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particular impact on the way the information is spread. On the other hand,
when using partial membership, the overlay defined by partial views may have
some topological properties that should be considered when executing the gossip
protocol.

Heterogeneous Degrees In graph theory, the number of links that a node
owns to other nodes is called the degree of that node. If the graph is di-
rected, which in gossip protocols would translate to the neighbor set being
asymmetrical (i.e., node A having node B as a neighbor does not ensure
that node B will have node A as his neighbor), the indegree of a node is the
number of incoming links to it, and the outdegree is the number of links it
owns to other nodes.
If the node degree is not maintained, some nodes may become more eas-
ily disconnected from the network in the presence of faults, due to lack of
neighbors (and, conversely, nodes to which they are neighbors) [4, 22].

Heterogeneous Connectivity In a clique, the number of distinct paths be-
tween any pair of nodes is exactly the same. Therefore, if all nodes use the
same protocol, the probability of information reaching a node in a given
round is also the same for every node.
When a different topology is used, this is no longer true. In fact, the number
of distinct paths among different pairs of nodes may vary greatly. Consider
the example in Figure 1: all paths from nodes in the clique to node 1 include
node 3. However, if node 3 selects gossip targets at random, the probability
of new information, generated in the clique, to remain in the clique, is larger
than the probability of this information being disseminated to node 1. The
gossip protocol can bias the target selection process to ensure a more uniform
spread of the information, despite asymmetries in the overlay [23].

Fig. 1. An example of a topology with heterogeneous connectivity

Hierarchical Overlay In some cases, the overlay defined by the partial views
may be organized in a hierarchical manner. This happens when the views
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reflect the administrative structure of the system where gossip operates or
are correlated with the hierarchical nature of the underlying network. In
this case, the overlay is organized in horizontal layers, and nodes in a given
layer can only communicate with other nodes in the same layer or in ad-
jacent layers. Figure 2 illustrates such an example. Hierarchical topologies
are normally used for data aggregation in systems such as the one presented
in [6].

Fig. 2. An example of a hierarchical topology

3.4 Taking Heterogeneity into Account

As we have seen, the heterogeneous properties of links and nodes, as well
as the properties of the overlay topology, may affect the operation of the gossip
protocol. There are mainly two ways of addressing this heterogeneity, namely, by
acting at the level of the gossip protocol, biasing the gossip targets; or by acting
at the level of the companioning membership service, biasing the composition of
partial views. Each of these alternatives is discussed in the next paragraphs.

3.4.1 Biasing the Gossip Target

A common approach to integrate topology awareness in epidemic protocols
is to associate weights to neighbors and use those weights to bias the probability
with which a node chooses each neighbor as a gossip target [23, 25, 14]. The
weight can capture a utility function, in which case the probability of choosing
a given neighbor for gossiping is directly proportional to the weight; or a cost
function, in which case the probability will be inversely proportional to the
weight.

Typically, the computation of the utility/cost function is encapsulated within
an architectural component commonly named Oracle. For instance, an oracle
that gives information about the latency of the links could exchange ping mes-
sages with neighbors and register the observed round trip time so as to estimate
link latency. Alternatively, another implementation of an oracle could measure
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the hops from a node to another using traceroute and thus provide a cost
function in terms of hops instead of time units.

3.4.2 Biasing the Partial Views

Instead of biasing the gossip target selection, a different approach is to change
the membership service in order to bias the local views provided to each node [12,
13, 22]. This can affect the overlay topology in different manners: for instance,
higher capacity nodes may be assigned a higher number of neighbors than low
capacity nodes; neighbors can be selected such that overlay links have a lower
average cost, etc.

It is worth noting that the biasing of the overlay topology can bring both
benefits and disadvantages. If performed in the wrong manner, biasing the partial
view may introduce undesirable features. One can easily introduce a clustering
effect in the neighboring relations. This might happen because nodes usually
try to bias the neighboring selection using transitive properties. For instance,
taking into consideration the network latency between nodes. This can lead nodes
to organize themselves in a clustered way, where small and highly connected
groups of nodes become weakly connected among them. It has been shown that
clustering can have a negative effect on the time required for information to
spread across the whole system [23], as well as on the connectivity of the system,
increasing the probability of network partitions [26], especially in the presence
of node failures.

3.5 Existing Systems

We now survey a number of relevant gossip-based protocols that illustrate
several of the aspects that have been identified in the previous paragraphs.

3.5.1 Directional Gossip

Directional Gossip [23] is a reliable multicast gossip system that tries to im-
prove Wide Area Network (WAN) gossip in two separate ways.

First, it distinguishes WAN gossip from Local Area Network (LAN) gos-
sip, as to not stress routers that connect the different LANs. The distinction
is made by employing a hierarchical structure of gossip levels as introduced in
section 3.3.3. At the WAN level, Directional Gossip runs a single, but optionally
replicated, gossip server, instead of delegating to the LAN gossip nodes the task
of disseminating messages to the other LANs.

Second, it addresses the issue of poorly connected nodes that we also dis-
cussed in section 3.3.3. It does so by leveraging a neighbor bias strategy, assigning
weights to each neighbor, where each weight is the number of link-disjoint paths
known to exist between the node and the neighbor. Two paths are link-disjoint
if they do not share any link at the overlay level.

It then selects the gossip target with probability inversely proportional to
the weight of the neighbor. To increase reliability, Directional Gossip also floods
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(i.e. sends a received message without waiting for the gossip round time) the
neighbors with weight lesser than a preset value k.

Additionally, the protocol also considers techniques to deal with heteroge-
neous link loss rates, proposing an alternative weight function that takes the
loss rates of the links into consideration and gives less importance to links that
fail with high probability.

The reactive flooding of each message presents an overhead in link stress
when compared to cyclic gossip solutions. However, the overhead is still smaller
than using a pure flooding solution, where each node sends the message to its
entire neighbor list instead of identifying critical neighbors.

3.5.2 HiScamp

HiScamp [12] is a partial membership service proposed to alleviate stress in
core routers, using a hierarchical structure. The system organizes nodes into
clusters according to a proximity measure. Conceptually, each cluster represents
a single node in a higher level gossip layer.

It then restricts the partial views of nodes such that, at the higher level,
each cluster maintains at most one single link to each of the other clusters.
This translates to the lower level in the following manner: for any two clusters
of nodes, for instance cluster a and cluster b, there is only one node in cluster
a with a link to a member of cluster b. This way, there is less traffic between
clusters, as the cluster members divide among themselves the responsibility of
sending information to other clusters. These levels form a hierarchy of arbitrary
depth, repeating the responsibility division at each level.

It is interesting to note that the degree of the nodes updates dynamically with
the number of nodes and clusters in the system, using a subscription process on
node join and an unsubscription process on node departure. Although nodes
can leave the system without executing the unsubscription process, the authors
claim that a subscription lease system can be implemented as proposed in [15].

This approach reduces network load on high latency links but requires a
good proximity metric as soon as the time of joining the system. Additionally,
the proximity metric is not dynamic.

The inherent tradeoff in this solution is that although the link stress between
clusters is reduced, the average latency grows with the number of hierarchy levels
and the message broadcast displays less reliability than a flat gossip protocol.

3.5.3 GoCast

GoCast [13] is a reliable multicast gossip system that builds a multicast tree
to disseminate messages quickly through the links with lower latency, using an
eager push approach. The system uses a membership restriction strategy to build
neighbor lists comprised of Cnear nearby neighbors and (fewer) Crand random
neighbors. Although a node has Cnear + Crand neighbors in the overlay, only a
subset of those links are used as multicast tree links.
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If a branch of the tree fails, nodes can still receive messages through a periodic
lazy push gossip by their other overlay neighbors (peers in the neighbor list
that are not connected by tree links, only by overlay links). A node gossips the
message IDs to each of its purely overlay neighbors using a rumor mongering
approach with the duration of only one round.

Based on results from experiments, the authors conclude that the optimal
values for the neighbor parameters are Cnear = 5 and Crand = 1, claiming
that one random neighbor is sufficient to provide almost the same connectivity
guarantees as larger random membership views. The degree of the nodes is ag-
gressively maintained and, thus, homogeneous. The degree maintenance process
ensures symmetrical neighboring sets, and the same multicast tree is used for
every dissemination, regardless of the source.

3.5.4 Payload Scheduler

Nuno Carvalho et al. [25] propose a lower layer to multicast gossip protocols,
called Payload Scheduler, to approximate gossip multicast to that of a multi-
cast tree, despite not building an explicit tree. The proposed Payload Scheduler
behaves like a gossip target biasing solution. It assigns weights to neighbors ac-
cording to a number of different strategies but, instead of using the weights to
select an appropriate gossip partner, they use them to decide whether to send
the message using an eager or a lazy push approach.

This way, they try to minimize the redundancy of messages that normal
epidemic protocols produce, by approximating the gossip dissemination to a
multicast tree. This approach creates a tradeoff between bandwidth and latency:
the fewer eager push transmissions that are made (and thus less bandwidth
wasted on message payloads), the more likely it is that each node receives the
message id before the message payload (resulting in increased latency due to the
additional request for the payload).

Some of the proposed strategies are of particular interest to us. The Time-
To-Live (TTL) strategy uses an eager push approach only for the first rounds
of the dissemination of each message. This follows the intuition that as the
number of rounds increases, so does the number of nodes that have already
received the message, therefore decreasing the probability of the gossip target
peer needing the message payload. The Radius strategy tries to optimize the
latency of messages using an eager approach only on nearby neighbors, according
to an arbitrary measure of distance. The Ranked strategy always sends the full
message payload to and from nodes that have higher capacity. This approach
reduces the latency penalty in gossips with those nodes, since they are the least
likely to be affected by the bandwidth overhead.

By combining the three above strategies, such as the authors propose in the
Hybrid strategy, it is possible to decrease the radius threshold according to the
number of rounds elapsed since the origin of the message. This can be useful
to emphasize long links in the first hops of a message, distributing it evenly
throughout the network, and then use only low latency links to disseminate it
quickly around the holders of the message, simulating a message with many
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sources. The inclusion of the Ranked strategy prevents an unoptimized usage of
high capacity nodes, applying the above safeguards only for nodes with potential
bandwidth issues.

3.5.5 Plumtree

Plumtree [14], like GoCast, creates a multicast tree to disseminate messages
in an eager push approach. It maintains two distinct sets of peers as well, ea-
gerPushPeers and lazyPushPeers. Contrary to GoCast, however, Plumtree does
not restrict the membership of each node to a majority of low latency neighbors.
Instead, it biases a random peer sampling, selecting the closer neighbors to form
a tree.

A neighbor is deemed close (moved to the eagerPushPeers set and thus con-
tributing a link to the tree) when a previously unknown message is received
from that neighbor. In turn, neighbors that deliver already known messages are
grouped into the lazyPushPeers set. Communication to this set is made by lazy
push gossip.

Because the tree branches are created following the paths of the first broad-
cast message, it is inherently optimized for the sender of that specific message.
Messages sent by different sources experience a higher latency unless multiple
trees are built and maintained.

To overcome the latency penalty for multiple broadcast sources that results
from the tree creation process, Plumtree includes an optimization that continu-
ously updates the tree by promoting lazy links to eager links, when the former
deliver messages with less hopcount than the latter.

It is possible to define Plumtree as a Payload Scheduler strategy (similar
to the Radius strategy described above), where the probability of employing
an eager push approach is 1 for neighbors with low latency links and 0 for the
others. The difference is that Payload Scheduler modifies the behavior of a cyclic
strategy, reducing the load on high latency links, whereas Plumtree implements a
pure reactive strategy, only disseminating information the moment it is received,
without waiting for gossip rounds.

3.5.6 X-BOT

X-BOT [22] is a partial membership service that employs a membership re-
striction strategy to optimize an arbitrary cost function (for instance, latency)
of neighboring links. Each node maintains a small symmetrical list of neighbors,
called the Active View, containing both optimized gossip targets and some other
non-optimized (or unbiased) targets to maintain connectivity and thus guaran-
tee reliability. TCP connections to these neighbors are used as a simple failure
detector, to minimize the impact of having a reduced neighbor list.

Each node has also a larger secondary view, named Passive View, that con-
tains only random nodes. This view is periodically refreshed to reflect the arrival
and departure of nodes in the network. Peers in this list are not considered when
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selecting gossip targets. Instead, the Passive View provides potential new ad-
ditions to the Active View if more suitable neighbors are found. This process
ensures a dynamic biased neighbor list, that converges to the best possible list
instead of stopping at local minima.

Due to the symmetrical list of neighbors, the optimization process cannot
be executed by each node locally. The authors propose then a four node op-
timization process, which, despite introducing some overhead in the protocol’s
optimization steps, still maintains locality to the nodes and their neighbors, not
affecting the rest of the network.

System Approach

Addressed Properties

Link Properties Node Properties Overlay Properties

Latency
Loss
Rate

Link
Cap.

Link In-
depen-
dence

Node
Cap.

Expected
Uptime

Het.
Degrees

Het. Con-
nectivity

Hierarchical
Overlay

Directional
Gossip

Target Bias - X - X - X - X X

HiScamp Membership Bias - - X X - - - - X

GoCast Membership Bias X - - - - - X X -

Payload
Scheduler

Target Bias - - X - X - - - -

Plumtree Target Bias X - - - - - - - -

X-BOT Membership Bias X - - - - - X - -

Table 1. Summary of the system’s analysis

3.6 Comparison of the Analyzed Systems

Now that we have presented each system individually, we will compare their
characteristics, identifying the tradeoffs made by their approaches when opti-
mizing the protocol operation. For reference, we present a brief summary of the
analysis in Table 1.

Generally, systems that take latency into account do so by selecting in each
node an optimized set of peers to which they send messages immediately at
receiving time. Because of this initial flooding and the overhead of maintaining
optimized neighbor sets, the average load on links is greater than in systems with
a cyclic gossip strategy. A common strategy to ensure fast delivery of messages
is to create a multicast tree with the lowest latency links, combining the reliable
gossip approach with previous tree multicast solutions.

Additionally, latency optimized systems also show an inherent tradeoff be-
tween the latency of broadcast messages and catering for link independence.
The intuition behind this tradeoff is that in order to disseminate information
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quickly, the first nodes should send the information to other clusters. However,
if the intercluster communication can be made at will by any node (i.e., the re-
sponsibility of sending the information to other clusters is not divided explicitly
between same cluster nodes), links that connect different clusters have to handle
additional load due to information redundancy.

The inverse is also true: systems that instead define link independence and
link capacity as the key properties to be taken into account introduce a latency
penalty when compared to other solutions that do not.

4 Datacenter Network Topologies

We will now study datacenter network topologies as to better understand
which techniques would have greater potential to improve epidemic protocols in
such networks. We will start by analyzing the datacenter topologies that are cur-
rently being employed in nowadays datacenters. However, restricting our solution
to those particular topologies would be insufficient, as alternative infrastructures
are being proposed to replace them. Therefore, we also need to take the proposed
topologies into consideration in order to design a solution that offers optimized
gossip operation in both.

After analyzing these different datacenter topologies, we will identify their
most relevant properties and propose some guidelines for the design of a gossip
protocol that favors datacenter usage.

4.1 Current Topologies

Current datacenters employ a three-tiered network architecture in the form
of a tree [27]. At the root of the tree, there is a core tier responsible for routing
information to and from the second level, the aggregation tier. The aggregation
tier is in turn responsible for routing information to and from the edge tier, that
connects to the servers, the leaves of the tree. An example is shown in Figure 3.

The core switches1 need to handle potentially more data than the aggregation
and edge switches. Thus, they need to be of highly specialized and expensive
hardware.

One important aspect to notice is the relative properties of communication
between different servers. For instance, sending data to a server handled by the
same edge switch has less latency and loss rate than sending the same data to
a server handled by a different edge switch but the same aggregation switch.
Similarly, it has even less latency and loss rate than sending the data to a server
handled by a different aggregation switch. This fact implies a ranking of the
neighbors in terms of total cost of communication that should be explored in
the final solution.

1 We will use the word switches to refer to routing equipment such as routers and
switches with no differentiation, as to comply with the suggested bibliography.
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Fig. 3. A three-tiered datacenter architecture

Another relevant fact to consider is that different patterns of communication
have a different impact in the regions of the network. If there is a lot of commu-
nication between same-edge servers, the aggregation and core switches will have
less load, but if there is a lot of communication between servers handled by dif-
ferent aggregation switches, the edge switches still have to deliver the messages,
although their total load is divided more evenly between them in this case.

In the worst case scenario, where all the nodes want to communicate with a
single node, the switches closer to that node will have to handle all the traffic in
the network, generated by all the nodes at once. With high probability, a lot of
messages will block while waiting to be delivered. Although this is an unlikely
scenario, it is not difficult to imagine close variants with gossip protocols that
do not employ a uniform peer sampling service.

4.2 Proposed Topologies

Recent proposals for datacenter topologies try to address the different cost of
communication for different peers and the monetary cost of the hardware used
in these systems. We will now show some examples of state-of-the-art proposals,
identifying the network properties that change from the currently used topologies
to these proposed ones.

4.2.1 Triton

Vahdat et al. [28] propose a novel architecture for datacenters based on mod-
ular groups of commodity switches, called pods. Each pod consists of multiple
aggregation and edge switches, and is connected to the core switches through
multiple aggregation switches. This ensures a better load balancing scheme due
to the multiple paths connecting any two nodes.
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They guarantee 100 percent throughput with this model, while reducing the
hardware cost by employing merchant silicon, creating a single piece of hardware
comprised of multiple chips of commodity switches. The cost is reduced not only
due to the commodity switches but the absence of cables connecting the switches
that share a pod. The core switches are also bound together in a core switch
array.

To take advantage of the multiple paths between servers, they use both Equal-
Cost Multi-Path (ECMP) forwarding and Hedera. ECMP is a standard multipath
forwarding mechanism in which some of the packet header’s fields are hashed.
The resulting hash is used as an input to a function that decides the next switch
in the path (when there is a choice), ensuring uniform load distribution while
maintaining the same path for a unique data flow.

Hedera is their contribution to solve the problem of certain communication
patterns that exhibit suboptimal performance on ECMP. When multiple large
flows are assigned the same path, the corresponding link has to support all
the load, whether the alternative links are stressed or not. For that reason,
Hedera monitors the network for large flows and when it finds cases like the one
mentioned above, reassigns some of the flows to different paths.

Since Hedera only addresses long communication flows and ECMP is obliv-
ious to communication patterns, blocking may still occur when the same route
is used for a number of nodes that wish to gossip with another group of peers
that share links in the path. We believe more could be done to accommodate
this scenario and we plan on testing it to understand how likely it is to happen
and what we can do to avoid it.

4.2.2 CamCube

Given that many services running on datacenters are essentially key-value
storage systems, Costa et al. [29] propose a physical Distributed Hash Table
architecture for the datacenter hardware itself. Each server can be directly con-
nected to a group of other servers, mimicking the links in the structured overlay
(in their case a 3D torus).

To optimize the information flow, they realize that different services want to
achieve different properties, which may not be guaranteed by the default routing
method [30]. They state that a transparent, customizable routing method can
increase the performance of the overall network when multiple services are used.
To demonstrate this, they implement specific routing for a number of services
(TCP/IP Support, Virtual Machine Distribution, Cache Service and Aggregation
Service for MapReduce systems) and show that each service’s overhead decreases,
while not straining each link with too many services.

Although this topology maximizes the synergy between the physical and
logical networks, it is designed with static structured networks in mind. Still,
the authors recognize that different services have different routing requirements.
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We have seen that broadcast services, for instance, can benefit from an epidemic
approach to information dissemination. Therefore, it could be beneficial to those
services if we included in our solution the ability to take advantage of these types
of synergy between physical and logical networks when selecting gossip targets.

5 Architecture

As stated before, we want to optimize gossip for use in datacenters. To that
end, we need to consider a network model that captures the properties of both
current datacenters and possible future ones. In this section, we will formalize
the characteristics of our proposed model and present the guidelines we believe
are critical for the design of our optimized gossip protocol.

5.1 Modeling Datacenter Networks

As we have shown, an important characteristic of most datacenter topologies
is that they are often shaped like a tree of connections where the leaves are the
nodes, creating a noticeable difference in communication time between distinct
pairs of nodes. In our abstraction, we should model this latency penalty so it
can contribute to the selection of neighbors.

Because we are taking advantage of the underlying network when building
our overlay (increasing the synergy between the two), the division of nodes in
regions (where applicable) should also be taken into account, in terms of both
link independence (to reduce load on links that connect different regions) and
heterogeneous connectivity (to ensure connectivity of the regions).

However, we have seen in the analyzed systems that latency optimization is
typically tackled by a reactive push gossip strategy. This increases the average
load of the system, creating an overhead that could stress links that connect
regions. Since this conflicts with our objective of optimizing the load on these
links, it is crucial to adopt more sophisticated strategies to reduce the latency
penalty. Alternatively, it is fundamental to define tunable parameters that can be
used to give more importance to each side of the tradeoff, letting administrators
or even service designers specify which properties are more important for their
applications.

The relevant properties to be considered in our solution are then:

– Latency (as the number of hops between two nodes)
– Link independence
– Heterogeneous Connectivity

Since heterogeneous connectivity is a property of the overlay, this means
that our protocol will need to have access to two properties of the underlay: hop
count between the nodes and the overlay-to-underlay link mapping. To include
the hop count in the network model, we propose an undirected, fully connected,
weighted graph. The weights are the number of hops between the nodes.
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Because link independence is difficult to represent in a model, we will assume
that our protocol can have access to either a diagram of the underlay network
or a way of inferring the positions of nodes in the physical topology, given a
numeric division of clusters. To identify the cluster of each node, its node id is
prefixed with its cluster number.

An example is shown in Figure 4. For clarity, only links pertaining to node
1 are fully represented.

Fig. 4. Overlay model of a datacenter network

It is important to note that this model does not assume a full membership
view in the gossip protocol. To adapt the model to a specific scenario that
uses partial views and asymmetrical neighbor lists, we need only to omit the
nonexistent or unknown edges from the model and replace the undirected edges
with directed edges for the asymmetrical neighbor relations.

5.2 Designing a Datacenter Gossip Protocol

We will now translate the model into potential guidelines for our proposed
solution.

We have seen in Directional Gossip and HiScamp that a potential strategy
to deal with a hierarchy of communication costs is to adopt that same hierarchy
in the system structure. Current and future datacenter topologies differ in the
number of levels in the hierarchy. For instance, current datacenters have three
levels of switches that affect the communication cost: core, aggregation and edge.
The Triton architecture reduces that number to two, by merging aggregation
and edge switches into pods. With this in mind, our protocol should create
a gossip layer hierarchy of variable depth, similarly to HiScamp, featuring a
different number of levels for each topology (e.g. three levels of gossip for current
datacenters, two levels for the proposed Triton architecture, and a single level
for the CamCube architecture).

However, HiScamp maintains only a single link between clusters, which re-
duces the reliability of the system, a key feature in epidemic protocols. Further-
more, each HiScamp level introduces a penalty in latency, which we are trying
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to optimize. For those reasons, we plan on employing a neighbor bias strategy
instead of HiScamp’s membership restriction strategy. A possible approach to
that type of solution would be integrating some of the ideas present in Payload
Scheduler when choosing weights for each neighbor. If we applied the Radius
and Time-To-Live strategy, nodes could send the intended information to inter-
cluster links with inverse probability to the number of hops that the message
took until the present time. This would ensure fast dissemination to all the clus-
ters in the first hops and parallelized intra-cluster information sharing in the
following hops.

Inside the lower level clusters (or the whole system in solutions like Cam-
Cube), latency should be similar between any pair of nodes. However, there are
still possible optimizations to the neighbor selection. In fact, since in most so-
lutions the clusters are evenly divided and contain only a fraction of the nodes
of the whole system, it may be feasible to manage a full cluster membership
view such as in HiScamp and organize the nodes with the objective of minimiz-
ing intra-cluster information redundancy. In already structured solutions like
CamCube, the organization is aided by the coordinates system.

6 Evaluation

We will conduct an experimental evaluation of the protocol, through exten-
sive simulations using the Peersim Simulator [31].

6.1 Metrics

As explained previously, we want to improve the average load on the links,
especially the ones that connect different regions of the network. However, the
impact on the latency of the messages must be minimized. Finally, we need to
ensure that the robust properties of gossip are still maintained. For those reasons,
we will evaluate the protocol with the following metrics, as defined in 3.2:

– Link Stress (measured by the number of messages that go through each
link in each gossip round) and Relative Message Redundancy to assess
the load on the links and if it can be reduced

– Last Delivery Hop to estimate latency in an easily comparable fashion.
For state reconciliation systems, a similar metric will be used to count the
number of rounds that the protocol takes to converge.

– Reliability to ensure that the gossip robustness still holds

6.2 Methodology

We will evaluate the above metrics using implementations of the other avail-
able solutions as a baseline for comparison. The evaluation steps will be:

– Build two prototype PeerSim applications that use the designed protocol as
a building block for reliable broadcast and state reconciliation
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– Evaluate the benefits of the optimized protocol with the above metrics in a
simulation of a current datacenter topology in stable conditions

– Evaluate the benefits of the optimized protocol with the above metrics in a
simulation of a current datacenter topology in the presence of node failures
(with various percentages of failures)

– Repeat the simulations with the proposed topologies Triton and CamCube

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29, 2012: Detailed design and implementation of the
proposed architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15: Deliver the MSc dissertation.

8 Conclusions

In this report, we have presented a survey of the different techniques that have
been proposed to exploit topology of the underlying network when optimizing the
operation of gossip protocols. We divided the solutions in two major categories,
biasing the gossip target and biasing the partial views, and explained both.

We have also studied the topologies of datacenter networks, proposing a possi-
ble abstraction that can address the most relevant properties of these topologies.

Finally, following this model, we have identified some directions of research
to improve the state-of-art in this respect, including guidelines for the design of
a novel gossip protocol adapted to datacenter networks.
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tion dissemination in distributed systems. Computer 37 (May 2004) 60–67

22. Leitão, J., Marques, J., Pereira, J., Rodrigues, L.: X-BOT: A protocol for resilient
optimization of unstructured overlays. In: Proceedings of the 2009 28th IEEE
International Symposium on Reliable Distributed Systems, Washington, DC, USA,
IEEE Computer Society (2009) 236–245

23. Lin, M.J., Marzullo, K.: Directional gossip: Gossip in a wide area network. In: Pro-
ceedings of the Third European Dependable Computing Conference on Dependable
Computing. EDCC-3, London, UK, Springer-Verlag (1999) 364–379

24. Vigfusson, Y., Birman, K., Huang, Q., Nataraj, D.P.: Optimizing information flow
in the gossip objects platform. SIGOPS Oper. Syst. Rev. 44 (April 2010) 71–76

25. Carvalho, N., Pereira, J., Oliveira, R., Rodrigues, L.: Emergent structure in un-
structured epidemic multicast. In: Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. DSN ’07, Wash-
ington, DC, USA, IEEE Computer Society (2007) 481–490

26. Kermarrec, A.M., Steen, M.v.: Gossiping in distributed systems. SIGOPS Oper.
Syst. Rev. 41 (October 2007) 2–7

27. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center net-
work architecture. SIGCOMM Comput. Commun. Rev. 38 (August 2008) 63–74

28. Vahdat, A., Al-Fares, M., Farrington, N., Mysore, R.N., Porter, G., Radhakrishnan,
S.: Scale-out networking in the data center. IEEE Micro 30 (July 2010) 29–41

29. Costa, P., Donnelly, A., O’Shea, G., Rowstron, A.: CamCube: A key-based data
center. Technical Report MSR TR-2010-74 (2010)

30. Abu-Libdeh, H., Costa, P., Rowstron, A., O’Shea, G., Donnelly, A.: Symbiotic
routing in future data centers. SIGCOMM Comput. Commun. Rev. 41 (August
2010) 51–62

31. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of the 9th
Int. Conference on Peer-to-Peer (P2P’09), Seattle, WA (September 2009) 99–100

25


