
Topology-aware Gossip Dissemination for Large-scale Datacenters
(extended abstract of the MSc dissertation)

Miguel Branco
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Gossip-based protocols are very robust and are
able to distribute the load uniformly among all nodes. Further-
more, gossip-protocols circumvent the oscillatory phenomena
that are known to occur with other forms of reliable multicast.
As a result, they are excellent candidates to support the dissem-
ination of information in large-scale datacenters. However, in
this context, topology oblivious approaches may easily saturate
the switches in the highest level of the datacenter network
fabric. This document presents and evaluates a novel gossip
protocol for datacenters, named Bounded Gossip, that provides
an adequate load distribution among the different layers of the
switching fabric of the datacenter, avoiding being a source of
network bottlenecks.

Bounded Gossip embodies techniques from previous proto-
cols, such as Hierarchical Gossip and CLON, and combines
them with a topology-aware membership maintenance scheme
and a topology aware rate-based flow control scheme. The
benefits from our solution are illustrated by an experimental
evaluation that compares the performance of Bounded Gossip
with that of other competing protocols, in terms of imposed
load in the routing topology, overall cost of communication,
and dissemination latency.

I. INTRODUCTION

Gossip-based dissemination protocols have proved to be
very effective in supporting reliable dissemination of infor-
mation in systems with large numbers of participants. Two
of the main reasons for their success is their robustness and
their ability to distribute the load uniformly among all nodes.
This type of protocols has been used for different purposes,
including reliable broadcast [1], [2], data aggregation [3],
membership maintenance [4], among others [5].

Another important aspect of gossip protocols is that they
can avoid the oscillatory phenomena that are known to
occur with other forms of reliable multicast (.e.g, group
communication based on view synchrony) [1]. Also, these
protocols are based on point-to-point interactions, not re-
quiring switches to support IP multicast. All these properties
make gossip protocols particularly well suited to operate in
large-scale datacenters [6].

Unfortunately, in this context, topology-oblivious ap-
proaches may easily saturate switches at the highest level
of the datacenter network fabric. Therefore, gossip protocols
for the datacenter must rely on some form of topology-aware
approach. A number of topology-aware gossip protocols
have been proposed in the literature, including HiScamp [7]
, Hierarchical Gossip [8], and CLON [9]. As we will show,

these protocols still exhibit some limitations, namely: i)
despite trying to minimize the load imposed on core routers,
the resulting load can still be unbounded, ii) resource usage
is not very efficient, or, iii) their latency can be significantly
larger when compared with flat gossip schemes.

In this document we propose a novel gossip protocol
designed to operate on datacenters. Our solution, named
Bounded Gossip, is based on a topology-aware approach.

In contrast with previous work, Bounded Gossip leverages
a low-cost topology-aware membership maintenance scheme
which imbues the overlay network established among nodes
with deterministic topology-aware properties. Bounded Gos-
sip leverages this membership service to provide a dissemi-
nation scheme that is partially deterministic, topology-aware,
and robust. Additionally, we propose a topology-aware rate-
based flow control scheme. The dissemination scheme also
takes into consideration the freshness of messages during
the dissemination process. The combination of these fea-
tures allow Bounded Gossip to provide an adequate load
distribution among the different layers of the switching
fabric of the datacenter and to achieve a better resource
utilization. The benefits of our solution are illustrated by an
experimental evaluation that compares the performance of
Bounded Gossip with that of relevant competing protocols.

The rest of this document is organized as follows: Sec-
tion II discusses gossip-based protocols, and presents several
works that have attempted to enrich gossip protocols with
topology-awareness. Section III describes current datacenter
network topologies. Section IV motivates, presents, and
describes Bounded Gossip. In Section V we experimentally
evaluate and compare our work to previous solutions found
in the literature. Finally, Section VI concludes the document
and provides points for future research directions.

II. RELATED WORK

Several past works have proposed variants of gossip to
make them topology-aware. In this section we discuss the
most relevant examples and briefly compare their design
with that of Bounded Gossip. One important aspect to point
out, before we present our survey, is that most practical
gossip protocols do not operate with full membership. A
protocol that has access to full membership selects gossip
targets at random from the entire population. However,
maintaining full membership is impractical in large-scale

1

settings. Therefore, gossip protocols are supported by a
companion peer-sampling service, that provides to each node
a partial view of the system. The closure of partial views
defines an overlay over which gossip is executed.

Consequently, there are two different ways to make a
gossip protocol topology-aware: one consists in acting at
the peer-sampling level, by selecting neighbors using some
algorithm that takes the underlying network topology into
consideration; another is to act at the gossip protocol level
(for instance, by biasing the probabilities of selecting some
particular members from the partial view). Naturally, some
protocols, including our own, act at both levels.

A. Topology-aware Peer-Sampling
Recently, X-BOT [10] was proposed, an adaptive scheme

which enables the topology of an unstructured overlay
network to continually adapt itself to optimize a performance
criteria provided by a companion oracle. X-BOT can be
used to maintain a topology-aware unstructured overlay over
which a flat gossip protocol can be executed. Unfortunately,
X-BOT design can only distinguish between close and dis-
tant nodes, being therefore unable to capture more complex
topologies, namely the hierarchical topologies with several
levels that are usually used to connect nodes in datacenters
(we discuss these topologies in the following section), being
therefore inadequate to support efficient and topology-aware
gossip solutions for datacenters.

The HiScamp protocol [7] is a distributed membership
protocol designed on top of the Scamp peer sampling
service [11]. HiScamp organizes nodes in clusters according
to the underlying network topology. The notion of clusters
is employed by the protocol to limit the number of overlay
links that connect nodes in different clusters, and conse-
quently, to limit the load imposed on key routing compo-
nents of the underlying network topology. Unfortunately, and
contrary to our work, the resulting overlay topology presents
only few, and completely random, links among nodes in
distinct clusters. This has a significant negative impact over
the latency and reliability of a gossip protocol executed on
top of it. The authors of HiScamp argue that their solution
can be extended to cope with hierarchical topologies with
several layers, however the proposed solution increases the
negative effects identified above.

None of the protocols above match well the topologies
of datacenters and, to the best of our knowledge, no peer-
sampling service has been previously designed with that
goal in mind. Furthermore, as it will become clear with
the remaining of the document, it is questionable that a
satisfactory solution can be achieved acting exclusively at
this level. Therefore, Bounded Gossip combines a novel
peer-sampling strategy with other mechanisms.

B. Topology-aware Gossip
In contrast with the aforementioned solutions, that work

at the peer-sampling level, an alternative approach consists
in directly manipulating the patterns of communication
exhibited by the gossip dissemination scheme.

A protocol that follows this approach is the Hierarchical
Gossip protocol [8]. Hierarchical Gossip operates by relying
on a non-uniform selection of nodes when gossiping, in such
a way that each node has a higher probability of gossiping
with nodes close to the initiator in the underlay. The solution
can take into consideration several levels of distance, offer-
ing therefore a possibility for capturing the inherent com-
plexity of typical datacenter’s topologies. Unfortunately, the
peer selection strategy employed by Hierarchical Gossip is
still completely random in nature, and contrary to Bounded
Gossip, it does not take into consideration the freshness of
messages being gossiped when selecting nodes to forward
them to. This reduces the efficiency of Hierarchical Gossip’s
resource usage. As our experimental results demonstrate,
this induces excessive load on key routing components
of the hierarchical topology. Consequently, the maximum
throughput of Hierarchical Gossip is extremely below the
one that can be achieved with Bounded Gossip.

C. Hybrid Approaches
Contrary to the works discussed above, our solution relies

on an integrated approach, which combines a topology-
aware partially deterministic membership service, with a
topology-aware partially deterministic gossip dissemination
scheme. CLON [9] is a recent work that follows a similar
approach to our own, and that, similar to Bounded Gossip,
also explicitly tackled the problem of supporting efficient
and reliable topology-aware gossip protocols for, and be-
tween, datacenters.

In a similar fashion to HiScamp, CLON leverages the
Scamp protocol to build a topology-aware overlay network
connecting nodes in a datacenter. The design of this member-
ship service promotes the maintenance of distant neighbors
by each node in the system. On top of this topology-aware
membership service, CLON executes a gossip dissemination
scheme that manipulates the probability of selecting an
overlay neighbor to receive a gossip message according to
the freshness of that message.

However, and contrary to our solution which aims at
supporting efficient and reliable gossip inside a single dat-
acenter, CLON is mostly concerned with providing gossip
support for services deployed across multiple datacenters.
This clearly reflects on the membership service employed by
CLON, which can only distinguish between close and distant
neighbors, being therefore unable to capture hierarchical
topologies with several tiers. This significantly increases the
average dissemination latency of the solution. Also, in sharp
contrast with our solution, CLON does not apply any form
of deterministic biasing to the gossip targets selection and
does not rely on a topology-aware flow rate control scheme.
This leads CLON to consume high bandwidth when several
nodes concurrently inject messages on the gossip protocol.

As the overview above indicates, to the best of our
knowledge, Bounded Gossip is the first gossip dissemination
solution that combines a partially deterministic topology-
aware membership service, a dissemination scheme that not
only is topology-aware but also partially deterministic, and

2

a topology-aware flow rate control mechanism to support an
efficient, reliable, and topology-aware gossip solution that is
specially tailored for operation on a datacenter network.

III. NETWORK ARCHITECTURE

In this section we describe the typical topology of a
datacenter. Our protocol is designed to operate efficiently on
topologies similar to the ones described here. More precisely,
we aim at achieving the following relevant characteristics: i)
minimize the load imposed on the switches of the network
infrastructure; ii) use resources in an efficient fashion, as
to maximize the throughput with a maximum acceptable
communication load; and iii) minimize the overall latency
of the gossip dissemination process. Datacenter network
topologies usually follow a three-tiered architecture or a two-
tiered architecture, as described below.

A. Three-tiered Architecture
The most common architecture for large datacenter net-

works is the three-tiered architecture [12]. In this architec-
ture, the network is characterized by three levels of routing
equipment1. The top tier, usually named the core tier, is
composed of a single core switch that spawns multiple
aggregation switches at the second tier. The aggregation
switches connect multiple edge switches that form the edge
tier. Those switches are typically top-of-rack switches and
connect directly to nodes. In typical configurations, each
edge switch connects from 20 to 80 nodes [12]. In the
remainder of the document we refer to the set of all
nodes connected directly to an edge switch as a cluster.
To minimize the load imposed over the core switch, some
configurations rely on multiple core switches. In this type of
architecture each of these core switches owns an independent
physical link to each aggregation switch, providing redun-
dant paths between every pair of switches at the aggregation
tier2. In smaller deployments, the three-tiered architecture is
sometimes simplified to a two-tiered architecture. This is
achieved by eliminating the aggregation tier and having the
edge switches connect directly to the core.

B. Abstracting the Physical Topology
To make our protocol as generic as possible, we make

a number of assumptions that allow us to abstract the
physical topology, namely by considering that the naming
scheme used to identify nodes encodes some information
about the location of those nodes in the physical topology.
Note that similar assumptions are employed by competing
protocols [8].

We assume that all switches in the datacenter are num-
bered following a hierarchical naming scheme. Furthermore,
we treat the identifier space of any set of switches connected
to the same switch as a circular space. The child switches

1We will use the word switches to refer to both routers and/or switches,
as found in most literature [12].

2As our solution in no way affects the uniformity provided by consistent
hashing over messages employed by Equal-Cost Multi-Path routing, the
overall load of the switches is still reduced in those topologies.

of another switch are numbered from 0 to N − 1, where
N is the number of child switches. An example for this
numbering scheme is shown in Figure 1.

Figure 1. An example of the switch numbering scheme

We further assume that the IP address of a node enables
any node to locally determine the identifier of the edge
switch to which that node is connected. While the specific
strategy to determine the node’s location in the network
from its IP address is outside the scope of this document,
it is important to note that the translation process does not
need to be direct, i.e., an IP address of 1.2.3.4 may not
mean that the node is connected to switches 1, 2 and 3 of
the datacenter hierarchy. This notion is essential to allow
our solution to support network topologies with different
numbers of hierarchical levels.

IV. BOUNDED GOSSIP

In this section, we describe Bounded Gossip. We start
by providing an overview of the Bounded Gossip building
blocks and then proceed to make a detailed description of
the operation of each of those components.

A. Overview
Our solution follows, and builds upon, the same intuitions

behind the design of Hierarchical Gossip [8] and CLON [9],
which we refine and extend with new mechanisms.

Bounded Gossip is composed of three main components
which complement each other to provide a reliable, ef-
ficient, and topology-aware gossip dissemination scheme,
that imposes a bounded load on switching components of
the datacenter infrastructure. A peer sampling service is
responsible for providing to each node in the system a
set of partial views. The partial views are managed in
such a way that their contents take into consideration the
underlying network topology through the use of a limited
form of determinism on the contents of those views. On
top of this peer sampling service we devised a specially
tailored gossip-based dissemination scheme, which leverages
the characteristics of the resulting overlay. Our dissemination
scheme induces a controlled amount of determinism to the
gossip-based message dissemination pattern. This enables to
lower the overhead imposed on switches while preserving
fault tolerance. This dissemination scheme also takes into

3

consideration the freshness of messages when forwarding
them. Finally, the mechanisms above are complemented by
a rate-based topology-aware flow control mechanism.

Our scheme can easily be configured to accommodate
an arbitrary number of hierarchy levels in the datacenter
topology. However, for the sake of clarity of exposition, we
have opted to describe the operation of Bounded Gossip
considering a three-tier network hierarchy. In the following
we describe the operation of the three main components of
Bounded Gossip.

B. Peer sampling Service
We rely on a gossip-based membership service that op-

erates in a similar fashion to Cyclon [13]. In our solution
however, each node maintains a set of distinct partial views,
each view encapsulates information concerning each of the
hierarchical levels of the underlying topology. Furthermore,
and contrary to previous solutions, our membership service
strives to induce a relaxed form of determinism in the
way nodes are selected to fill partial views, such that it
enables the emergence of topology-aware redundant tree-
like topologies connecting all clusters in the datacenter.

Similar to Cyclon, every node periodically exchanges
samples of the contents of their partial views with a par-
ticular peer. When exchanging these samples, nodes also
add their own identifier to the sample sent to its peer. As
Cyclon, we also assume that node identifiers stored in partial
views are enriched with an age counter, which is increased
periodically by nodes to reflect the amount of time that has
passed since the creation of that particular identifier.

When a node receives a sample of the system membership
from a peer, it uses the enclosed information to update the
contents of its local partial views, respecting the constraints
that are imposed by our membership service, which we
will describe in the next paragraphs. In this process, nodes
give preference to identifiers with lower age counters, as
this increases the probability of the node that produced that
identifier to be still active.

In our system, each individual node maintains L indepen-
dent partial views of the system, where L is the number
of hierarchical levels of the underlying network topology.
We named these partial views PVi where i indicates the
hierarchy level encoded in the partial view contents (note
that our solution supports an arbitrary number of hierarchy
levels). Considering the 3-tier network topology discussed
earlier, a node n owns the following 3 partial views:

PV0 represents the lowest hierarchy level of the topology.
This view should contain all the identifiers of nodes in the
cluster of n. To optimize the dissemination, we ensure that
the identifier of n also appears in the PV0 of n. Furthermore,
the contents of these views are kept sorted considering node
identifiers. The size of this view depends on the network
topology of the datacenter, having a size equal to the number
of nodes in each cluster.

PV1 contains identifiers of nodes which are reachable by
n only by crossing a single aggregation switch. Nodes try to
maintain in this view identifiers from K1 deterministically

chosen clusters. The preferred clusters of a node n are
selected considering the id of the edge switch to which
n is connected. Considering that n is connected to an
edge switch with id c.a.e, n will give preference to nodes
connected to switches with an id between c.a.(e∗K1+1) and
c.a.((e+1) ∗K1) (notice that we assume that the identifier
space of switches is circular at each hierarchy level).

PV2 captures the highest hierarchy level of the under-
lying topology. This is achieved by storing identifiers of
nodes which are accessible to n only by crossing the core
switch. Similarly to PV1, this partial view is built while
trying to keep K2 identifiers from different deterministi-
cally chosen aggregation switches. Considering that n is
connected through an aggregation switch with an identifier
c.a, n will give preference to nodes connected through
aggregation switches with identifiers between c.(a∗K2+1)
and c.((a + 1) ∗ K2). The edge switch identifiers are not
relevant when managing the contents of this partial view.
An example of such a bias is represented in Figure 2.
In this scenario, we can observe some good properties of
our membership scheme which will be leveraged by our
dissemination process. If a message is generated in the first
core zone (the blue zone), it can be disseminated to the
next two zones, depicted in green and red. While the green
zone can ensure the rest of the datacenter is infected by the
message, the red zone is able to send redundant copies to the
previously infected zones, which not only help the system
recover from failures but also speeds up the delivery of the
message in those zones by having more copies circulating
when there are no failures. The core neighbors maintained
by the rest of the zones are not depicted in the figure for
clarity, but offer similar properties.

Figure 2. An example of membership bias at the core level

To improve reliability, we rely on the following strategies:
i) When exchanging samples of their partial views, nodes
include the complete contents of their PV1 and PV2 views.
ii) They also remove from their partial views nodes that
do not reply to previously request to exchange partial view
samples. In this case, the membership service assumes those
nodes to have failed and removes them from partial views.
Additionally, as we discuss further ahead in the text, iii)
in our dissemination scheme nodes have specialized roles,
such as edge, aggregation or core roles. When nodes with a
role r choose another node with whom they exchange shuffle
messages in each round, they bias their selection to promote
exchanges with nodes on their PVr view with probability of

4

99%.

Figure 3. An example membership view of node 0

Figure 3 shows an example of how the partial views of a
node are filled considering the underlying network topology.

C. Gossip-based Dissemination Scheme
We rely on a gossip-based dissemination scheme that

operates in a semi-deterministic fashion by leveraging the
underlying topology-aware membership service. The algo-
rithm is based on the principle suggested in a number of
previous works, including CLON [9], that in order to mini-
mize latency, messages should be disseminated primarily to
remote nodes, and only then at more local levels. However,
contrary to what happens in Hierarchical Gossip [8], nodes
in our algorithm operate in the infect and die [14] model,
where each node processes a message only once. When a
node processes a message for the first (and single) time,
it (re)transmits it to f neighbors (where f is the fanout
parameter).

To that end, and considering the 3-tier architecture men-
tioned previously, when an application-level message m is
generated in our system, the source node starts to transmit
it through the core links of the topology, disseminating
message m to all the different zones of the datacenter
connected to the core switch. When a source s sends m,
it also forwards at least one copy of the message to its local
cluster, to ensure the continuation of the dissemination in
its own zone. An example of such behavior is present in
Figure 4(a). The nodes that received the message sent in the
first step will then continue the dissemination, leveraging the
properties of the biased membership service. They will not
only send the message to uninfected zones in the datacenter
but also forward redundant copies of the message to areas
that have most likely been previously infected but that can
still be oblivious to the message due to node or message
failures. Similarly to the first step, each node that forwards
a copy of m also sends at least one copy to its cluster. An
example of this behavior is shown in Figure 4(b).

When all the zones in the datacenter separated by core
links are infected by the message, our system will start
saving core switch load by stopping transmission at that
level. Instead, nodes will focus on transmitting the message
at the aggregation level to infect all the clusters in their
core zone. Again, to ensure continued dissemination inside

(a) Step 1

(b) Step 2

Figure 4. Example of dissemination at the core level

their cluster, the nodes will send at least one copy of the
message to peers in their cluster. This process is illustrated
in Figure 5.

Figure 5. Example of dissemination at the aggregation level

Because nodes in the system are not able to know whether
all the different zones in the datacenter are already infected
by the message being transmitted, they use preconfigured
round values to limit the number of rounds that a message
can be disseminated using each of the hierarchy levels. In
order to apply this strategy, that takes into account the
freshness of messages, messages being disseminated by
Bounded Gossip carry a T counter that indicates the number
of times that the message has been retransmitted. To take the
hierarchical topology into consideration, our dissemination
process is controlled by a set of parameters πi, i ∈ [0, L[,
which limit the number of times a message can be retrans-
mitted at each hierarchy level of the topology (notice that π0

behaves as the typical time to live parameter of flat gossip

5

solutions [2]). To know the required hierarchical level for a
message, a node finds the maximum i such that m.T < πi.
The intended level for disseminating the message is thus i.
This also means that the message still requires dissemination
at all the levels lower than i, which will be considered at a
later stage. By transmitting fresh messages through remote
links we “parallelize” the message dissemination, avoiding
cases where a message is known by all nodes in a cluster
before being transmitted to a second cluster, taking therefore
double the time to infect nodes in both clusters. These
scenarios occur in overlays with a small number of remote
links, such as HiScamp and some aggressive configurations
of CLON.

However, to ensure that there is a bounded communication
cost at each routing element of the datacenter network infras-
tructure, even when multiple messsages are being generated
and thus scheduled for remote transmission, we rely on the
PV0 provided by the membership service to attribute, in a
deterministic fashion, specialized dissemination roles across
nodes of a cluster.

A replication factor R is used to attribute roles to nodes
in the same cluster as follows: the first R nodes in the
(sorted) PV0 of a cluster are chosen to disseminate messages
using the highest hierarchical level of the datacenter network
topology (they are thus called core nodes). The following
R nodes in PV0 are responsible for the dissemination at
the next hierarchy level (aggregation nodes). Other nodes
disseminate information only through the lowest hierarchical
level (edge nodes). Please recall that PV0 is a full view of
the cluster and that it is sorted by node identifiers, so nodes
can keep a consistent view of each member’s role.

Algorithms 1 and 2 denote the pseudocode for the dis-
semination procedure of Bounded Gossip. When a node
produces or receives a message for the first time, it stores
the message in its local queue (lines 57− 60). Our dissem-
ination scheme is modeled to operate in rounds. Therefore,
periodically in each round, each node checks its queue for
messages and processes them until its quota is reached (the
quota values are defined by the flow control mechanism and
will be detailed later). Recall that each processed message
is sent to f other nodes.

For each message in a node’s queue, there is a specific
set of rules for its dissemination. Considering the message’s
round counter T , the node first discovers at which hierarchi-
cal level the message should be transmitted. Let h represent
that level and r be the role of the node.

• If the message is already at the edge level (0), the node
will forward the message to f nodes in its cluster, increasing
the T counter (lines 9− 13).

• Otherwise, if h < r but not 0, or the node has an
edge role, the node redirects the message to the R nodes
in its cluster responsible for retransmitting the message at
level h (without increasing the T counter). Then, the node
forwards the message to f−R additional nodes in its cluster,
starting by selecting nodes that are responsible for level h−1
and so forth, configuring T with appropriate values when
forwarding the message for each level (lines 14− 26).

Algorithm 1: Bounded Gossip Dissemination (part 1)
Variable Description

f : fanout parameter; knownMessages: list of ids of received messages
queue: local message queue; quota: available message quota
r: hierarchical level of the node’s role
time-to-live: messages’ retransmission limit

1 upon event begin round do
2 quota ← resetQuota()
3 notified ← false
4 while queue �= ⊥ and quota > f do
5 msg ← queue.removeNextMessage()
6 h ← level(msg)
7 if msg.T < time-to-live do
8 quota ← quota − f
9 if h = 0 do
10 targets ← membership.getPeersInView(0, f)
11 newMsg ← msg.getCopyWithIncreasedLived()
12 for all peer ∈ targets do
13 trigger SEND(DATA, peer, newMsg)
14 else if h < r or r = 0 do
15 alreadySent ← 0
16 for role in [h to 0] do
17 targets ← membership.getPeersWithRole(role, f−alreadySent)
18 if role = h do
19 newMsg ← msg.getCopyWithSameLived()
20 else
21 newMsg ← msg.getCopyWithLivedFor(role)
22 for all peer ∈ targets do
23 trigger SEND(DATA, peer, newMsg)
24 alreadySent ← alreadySent + targets.size()
25 if alreadySent = f do
26 break for

If h >= r, the node will start by sending the message to
all the nodes in its cluster with roles between h and r (if
applicable). Then, the node will perform its role, forwarding
the message to all the Kr neighbors in the corresponding
view (increasing the T counter), as well as to the other R−1
nodes in the cluster also responsible for level r. Furthermore,
the node uses the remaining fanout to forward the message
to additional nodes in its cluster, starting by selecting nodes
that are responsible for level r− 1 and so forth, configuring
T with appropriate values when forwarding the message for
each level (lines 27− 52).

However, this step is executed only by one of the R nodes
responsible for level r in the cluster, using a deterministic
criteria based on the number of the gossip round. This
allows Bounded Gossip to avoid redundant transmission of
messages. A message that is processed by one of the replicas
responsible for level r can be discarded by the remaining
replicas of the same level, unless the copy to be discarded
required dissemination at a higher hierarchical level than
the already processed copy (lines 61− 64). This additional
verification is meant to reduce cases where older copies of
the message were processed first, which was problematic in
scenarios where the first copy required dissemination at the
core level and the second copy only required dissemination
at the aggregation level. This erroneous behavior decreased
the reliability of the protocol because the message would
not traverse enough core links. To maintain synchroniza-
tion between nodes with the same roles, they execute the
dissemination strategy associated with their role in a round-

6

Algorithm 2: Bounded Gossip Dissemination (part 2)
27 else if myTurn() = true do
28 alreadySent ← 0
29 for role in [h to 0] do
30 if role = r do
31 targets ← membership.getPeersInView(r)
32 newMsg ← msg.getCopyWithIncreasedLived()
33 for all peer ∈ targets do
34 trigger SEND(DATA, peer, newMsg)
35 alreadySent ← alreadySent + targets.size()
36 targets ← membership.getPeersWithRole(r)
37 newMsg ← msg.getCopy()
38 for all peer ∈ targets do
39 trigger SEND(NOTIFICATION, peer, newMsg)
40 alreadySent ← alreadySent + targets.size()
41 notified ← true
42 else
43 targets ← membership.getPeersWithRole(role, f − alreadySent)
44 if role = h do
45 newMsg ← msg.getCopyWithSameLived()
46 else
47 newMsg ← msg.getCopyWithLivedFor(role)
48 for all peer∈ targets do
49 trigger SEND(DATA, peer, newMsg)
50 alreadySent ← alreadySent + targets.size()
51 if alreadySent = f do
52 break for
53 if notified �= true do
54 targets ← membership.getPeersWithRole(role)
55 for all peer ∈ targets do
56 trigger SEND(NOTIFICATION, peer, ⊥)

57 upon delivery DATA (sender, msg) do
58 if msg.id /∈ knownMessages do
59 knownMessages ← knownMessages ∪ msg.id
60 queue ← queue ∪ msg

61 upon delivery NOTIFICATION (sender, msg) do
62 if msg �= ⊥ do
63 if msg.id ∈ queue and level(msg) ≥ level(queue.get(id)) do
64 queue ← queue \ msg.id

robin fashion, ordered by increasing node identifier (recall
that the identifier space of each role is considered circular).
When a synchronization error occurs and more than one
node transmits at once, the nodes reconfigure the order
taking into account the smallest node identifier across those
that have sent messages in the previous round. Because the
current active node is important for the synchronization,
nodes notify their peers with the same role even if they
do not send actual messages of that role (lines 53− 56).

This procedure allows to effectively propagate a message
throughout all nodes in the datacenter in an efficient manner,
while still promoting a controlled amount of redundant
messages to mask both message omissions and node fail-
ures. The amount of redundant traffic is controlled by the
parameter R. Our experiments have shown that configuring
R with a value of 2 yields high fault-tolerance in our scheme.

D. Flow Control Mechanism

In order to ensure a bounded dissemination traffic gener-
ated by Bounded Gossip, we rely on a simple, yet effective,
distributed flow rate control mechanism. We remind the
reader that each node maintains a queue which contains
messages to be disseminated to its peers. To limit the number
of messages transmitted per round, we use quota values for
each node. Each round, nodes extract from its local queue a

number m of messages such that m×f ≤ quota. Evidently
this assumes that quota ≥ f , i.e, the quota value is always
greater than the fanout parameter of the protocol. The quota
of each node depends on the node’s role in the cluster, as
there are different quota values for each hierarchical level,
allowing for the limits of the dissemination traffic generated
by Bounded Gossip to be finely-tuned across all levels of
the topology.

Configuring the quota values to achieve a target load limit
at each hierarchical level can be done through the expression
qi =

loadi
Nclusters

f
|PVi| .

E. Fault Tolerance
Because our protocol maintains a notion of node roles,

it is crucial to guarantee that each role is fulfilled by at
least one node at all times. While this is a simple goal in
scenarios where no failures can occur, maintaining the roles
in the presence of failures can present a challenge.

Besides the mechanisms described in the previous sections
designed to improve reliability, nodes in the same cluster
maintain TCP connections between themselves, as a simple
failure detection mechanism. When the connection to a node
fails, the other members of the cluster remove it from their
views and reconfigure their cluster roles, as to ensure R
replicas per level, as explained in Section IV-C.

In scenarios with a large number of nodes in each cluster,
maintaining TCP connections to every edge neighbor may
prove impractical. In those cases, it is possible to save some
connections in the nodes with edge role by keeping TCP
connections only to nodes which role must be replaced in
case of failure. We have also experimented alternatives to
the TCP connections such as flooding the PV0 or gossiping
the nodes failures as an internal cluster message. However,
the first alternative either greatly reduces the quota values
of nodes when failures occur or increases the edge traffic in
those cases. The second alternative increases the recovery
time and thus offers weaker reliability properties.

V. EVALUATION

To evaluate the performance of Bounded Gossip, we have
simulated the protocol considering a datacenter network
topology consisting of 1 core switch branching into 8
aggregation switches, each with 10 edge switches of clusters
of 32 nodes. The total number of nodes in this network is
2, 560. All experiments were conducted using the PeerSim
simulator [15], using its event driven engine.

To offer comparative baselines, we have also experi-
mented with other solutions found in the literature over
this topology. In particular we have tested: i) a Flat Gos-
sip solution operating over a full membership; ii) a flat
gossip solution operation on top of Scamp [11]; iii) the
Hierarchical Gossip solution operating with full membership
information [8]; and finally, iv) the CLON system [9]. All
the protocol implementations were validated experimentally.

We configured every protocol to achieve 100% reliability.
We set the f parameter of the Full Flat Gossip protocol to
13, and configured Scamp’s redundancy factor C to match

7

this degree. Due to the number of parameters of the CLON
protocol, we decided to conduct the experiments with 3 dif-
ferent configurations: CLON1 adds the nodes to the system
randomly, achieving a total number of core connections close
to 7.5% all connections; CLON2 uses a redundancy value
C large enough to ensure a high degree for every node,
so we can limit f and the core round limit; CLON3 uses
an external method to add the nodes to the system, using
as contact, a node in the closest hierarchical level possible,
allowing for a smaller number of remote connections. For
the Hierarchical Gossip solution, we manually selected a
probability generating value K of 6 to artificially increase
the probability of a node using the non-edge links and thus
achieve the desired target reliability. We tested each protocol
in a cyclic, infect-and-die, model, adding quota limits so we
could limit the core load equally.

Figure 6. Core switch load for all protocols

Figure 7. Core switch load (detail)

We can see that even the absolute minimum core switch
load produced by Full Flat Gossip and Scamp greatly
exceeds the configured quotas of the other protocols. This
behavior is achieved by processing only one message at
each gossip round, meaning that no less core switch can be
produced while still executing the topology-oblivious proto-
cols without some sort of flow control synchronization. The

CLON1 configuration was not able to leverage the fanout
and core rounds limit (otherwise it would lose reliability
due to the reduced number of remote links used for each
message) and therefore uses the maximum allowed load
during the entire simulation.

Hierarchical Gossip maintained the maximum core switch
load during all the simulation, wasting more total resources
than Bounded Gossip, which only transmitted young mes-
sages through core links. It is also visible that the maximum
core load in Bounded Gossip is only achieved in the scenario
where 100% of messages are new and must be transmitted
through core links. When both new and old messages are
being transmitted, the core switch load is diluted through
the rounds. A closer look at both protocols’ behaviors is
provided by Figure 7.

Figure 8. Aggregation switch load for all protocols

We also measured the load in the aggregation-level
switches (without counting the load in these switches in-
duced by the messages sent at the core level) in the
virtual datacenter. Results are shown in Figure 8. In this
case, the topology-oblivious solutions have a reduced load
only because the number of connections to core nodes
greatly exceeds that of connections to aggregation nodes.
Still, Bounded Gossip is on par with these solutions and
outperforms Hierarchical Gossip and the different CLON
configurations.

It is important to note that Bounded Gossip is the only so-
lution that sends membership messages (i.e., messages that
do not contribute to the dissemination of application-level
messages but instead focus on maintaining the connectivity
of the overlay network and the desired properties of the
partial views) during the dissemination process. Scamp and
CLON use a subscription mechanism that only sends mes-
sages when nodes join the system, which in our simulations
is a process that happens exclusively before the generation
of the messages. Our implementation of the remaining
protocols operates over a full membership view. While this
clarifies the contributions of each solution regarding the total
number of messages sent (it reduces the likelihood of the
results being confused with results of an implementation of
any peer sampling service), such deployments of epidemic

8

protocols are unfeasible in production environments, where
systems have to deal with nodes joining and departing the
system and maintain an updated membership view.

Figure 9. Latency measurements for all protocols

We also measured the latency distribution (in rounds) of
all the application-level messages generated in the scenario
above, to compare the overall latency of the dissemination
process between the various solutions. The results can be
seen in Figure 9.

Both topology-oblivious approaches show that due to the
quota limitation with the objective of reducing the core
load, the small number of messages processed in each round
penalizes latency in an unfeasible way, achieving latency val-
ues for some messages of over 5, 000 gossip rounds. While
the same is true for the two first configurations of CLON,
the CLON3 setting is able to reduce the average latency
of the messages, having fewer occasions where messages
take more than 3, 000 gossip rounds to infect all nodes. The
protocols with lower overall latency are Hierarchical Gossip
and Bounded Gossip, delivering messages with an average
latency of around 300 gossip rounds.

!"

!#"

!$"

!%"

!&"

!'""

!'#"

()**!(*+, -.+/0 1234' 1234# 12345 6789+9.:7.+*;<)=>8>

?:
9<
)@

:0
),
!A/

8B
B+
@8

BC

?:9<)@:0),!)=,7*!.<98!*<+>!*7/7,!<D!'5""

Figure 10. Throughput before core limit is reached

For the throughput experiment, instead of limiting the core
switch load per round, we limited the total core switch load
induced during the entire dissemination process, to simulate

the expected throughput of the different solutions when there
is a limit of the core switch load in a given time frame. For
each protocol, we then observe the number of application-
level messages they can deliver to every participant using
only the determined number of core messages. Figure 10
illustrates the results.

It is visible that Bounded Gossip offers the best through-
put when we limit the total core load to 1, 300 messages,
by a factor greater than 10 over the second best protocol.
As expected, considering the results presented above, the
topology-oblivious solutions, Flat Gossip and Scamp, cannot
effectively disseminate any messages to all participants
with such a small core load. Although the first CLON
configuration tries to send more core messages for a single
application-level message than the ones allowed in total, the
1, 300 that were not dropped allowed that message to reach
every node in the network. The second and third CLON
configurations achieved slightly better results, due to the
core round limits and the fewer core links, respectively.
The poor resource utilization of Hierarchical Gossip also
induces a high core load even when such messages are not
needed, drastically reducing the throughput that the solution
can achieve when the core switch load is limited in a given
amount of time.

Figure 11. Reliability

In the reliability experiment, we evaluate Bounded Gos-
sip’s robustness in the presence of failures. We continuously
generate messages up to a total of 5, 600 messages, failing a
node uniformly at random in each gossip round. We executed
various simulations with different percentages of nodes
failing, up to 30% of all nodes in the system. Failed nodes
did not join the system again. In the end of the simulation,
we counted the number of active nodes that received each
message and divided it by the total of active nodes still
in the system. We then averaged that number to find the
reliability of the protocol in that experiment. To exclude
messages that had little chance of being disseminated, we
only count messages that are known by at least one active
node. Finally, we plotted the results and present them in
Figure 11.

All the protocols were able to achieve similar results in

9

these conditions, although two of the three CLON config-
urations had weaker results (but still with reliability values
of at least 96%). The other protocols are able to achieve
reliabilities close to 100% even when 30% of all nodes
fail. This demonstrates the inherent robustness of epidemic
protocols, and one of the reasons their redundancy properties
are important to keep in a system that requires reliability.
Another important aspect to consider is that our solution is
able to maintain those properties despite the membership
and dissemination bias employed, that allowed for a better
resource utilization and less core and aggregation switch
load as seen in previous experiments.

VI. CONCLUSIONS

In this document we proposed Bounded Gossip, a gossip
protocol for large-scale data centers. We showed the benefits
of adding determinism to epidemic broadcast, creating a
protocol that relies on three topology-aware components:
a membership service, a dissemination scheme and a rate-
based flow control mechanism. We evaluated the perfor-
mance of our solution against previous works found in
the literature and achieved better resource utilization that
translates in 10 times message throughput with less switch
load per round in the higher levels of the hierarchy and
no penalty to overall dissemination latency or reliability.
As future work, we plan on extending our solution to
operate efficiently across multiple datacenters, leveraging the
architecture described in this document that offers support
for an arbitrary number of hierarchy levels. Additionally, it
would be important to adapt and evaluate Bounded Gossip
in more recent datacenter architectures, proposed to improve
the conditions set by the current three tier architecture. These
proposals include the use of modular switches and redundant
links between servers [16] or more significant changes such
as deploying the servers in a way that physically translates
a structured network [17].

ACKNOWLEDGMENTS

This work was partially supported by FCT - Fundação
para a Ciência e a Tecnologia under the projects
PEst-OE/EEI/LA0021/2011 and HCPI under the grant
(PTDC/EIA-EIA/102212/2008). Parts of this work have
been performed in collaboration with other members of
the Distributed Systems Group at INESC-ID, namely, João
Leitão.

REFERENCES

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky, “Bimodal multicast,” ACM TOCS, vol. 17, pp.
41–88, May 1999.

[2] J. Leitão, J. Pereira, and L. Rodrigues, “HyParView: A
membership protocol for reliable gossip-based broadcast,” in
Proc. of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, ser. DSN ’07. Edin-
burgh: IEEE Computer Society, 2007, pp. 419–429.

[3] R. v. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining,” ACM TOCS, vol. 21,
pp. 164–206, May 2003.

[4] A. Lakshman and P. Malik, “Cassandra: A decentralized
structured storage system,” SIGOPS Oper. Syst. Rev., vol. 44,
pp. 35–40, April 2010.

[5] R. v. Renesse, Y. Minsky, and M. Hayden, “A gossip-style
failure detection service,” Cornell U., Tech. Rep., 1998.

[6] The Amazon S3 Team, “Amazon S3 availability event: July
20, 2008,” http://status.aws.amazon.com/s3-20080720.html.
[Online]. Available: http://status.aws.amazon.com/s3-
20080720.html

[7] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “HiScamp:
self-organizing hierarchical membership protocol,” in ACM
SIGOPS EW 2002, Saint-Emilion, France, 2002, pp. 133–139.

[8] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh, “Efficient and
adaptive epidemic-style protocols for reliable and scalable
multicast,” IEEE TPDS, vol. 17, no. 7, pp. 593–605, Jul. 2006.

[9] M. Matos, A. Sousa, J. Pereira, R. Oliveira, E. Deliot, and
P. Murray, “CLON: Overlay networks and gossip protocols
for cloud environments,” in On the Move to Meaningful
Internet Systems, International Symposium on Distributed
Objects, Middleware, and Applications (DOA), ser. Lecture
Notes in Computer Science. Springer Verlag, 2009, vol.
5870, pp. 549–566.

[10] J. Leitão, J. Marques, J. Pereira, and L. Rodrigues, “X-
BOT: A protocol for resilient optimization of unstructured
overlays,” in Proc of the 2009 28th IEEE International
Symposium on Reliable Distributed Systems. Niagara Falls,
NY: IEEE Computer Society, 2009, pp. 236–245.

[11] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “SCAMP:
Peer-to-peer lightweight membership service for large-scale
group communication,” in Networked Group Communication
Workshop (NGC), ser. Lecture Notes in Computer Science.
London, UK: Springer Verlag, 2001, vol. 2233, pp. 44–55.

[12] T. Benson, A. Akella, and D. A. Maltz, “Network traffic
characteristics of data centers in the wild,” in IMC 2010, 2010,
pp. 267–280.

[13] S. Voulgaris, D. Gavidia, and M. v. Steen, “CYCLON:
Inexpensive membership management for unstructured P2P
overlays,” Journal of Net. and Syst. Man., vol. 13, p. 2005,
2005.

[14] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie,
“From epidemics to distributed computing,” IEEE Computer,
vol. 37, no. 5, pp. 60 – 67, May 2004.

[15] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P
simulator,” in P2P 2009, Seattle, WA, pp. 99–100.

[16] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore,
G. Porter, and S. Radhakrishnan, “Scale-out networking in
the data center,” IEEE Micro, vol. 30, pp. 29–41, July 2010.

[17] P. Costa, A. Donnelly, G. O’Shea, and A. Rowstron, “Cam-
Cube: A key-based data center,” Technical Report MSR TR-
2010-74, 2010.

10

