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Abstract. Malicious attacks, software bugs or even operator mistakes,
may cause a system to behave in an arbitrary, and hard to predict man-
ner. Byzantine fault tolerance (BFT) encompasses a number of tech-
niques to make a system robust in face of arbitrary faults. Several BFT
algorithms have been proposed in the literature, each optimized for dif-
ferent operational conditions. In this report we study the mechanisms
and policies that permit to build adaptive BFT systems, able to adjust
the used algorithms in response to changes in their operational envelope.

1 Introduction

Due to the growth of cloud and on-line services, building dependable, fault
tolerant systems is becoming more challenging. This happens because cloud and
on-line services are more complex and more difficult to protect. Thus, they are
more prone to malicious attacks, software bugs or even operator mistakes, that
may cause the system to behave in an arbitrary, and hard to predict manner.
Faults that may cause arbitrary behaviour have been named Byzantine faults,
after a famous paper by Lamport, Shostak, and Pease[1]. Due to their nature,
Byzantine faults may cause long system outages or make the system behave in
ways that incur in significant financial loss.

State-machine replication[2] is a general approach to build distributed fault-
tolerant systems. Implementations of this abstraction that can tolerate Byzan-
tine faults are said to offer Byzantine fault tolerance (BFT) and typically reply
on some form of Byzantine fault-tolerant consensus protocol.

The exact number of replicas that are needed to tolerate f Byzantine faults
depends on many system properties, such as on whether the system is syn-
chronous or asynchronous, what type of cryptographic primitives are available,
etc. In most practical settings, 3f + 1 replicas are needed to tolerate f faults.
Thus, BFT protocols are inherently expensive. It is therefore no surprise that
after the algorithms proposed in [1], a significant effort has been made to derive
solutions that are more efficient and can operate on a wider range of operational
conditions, such as[3–7].

Unfortunately, despite the large number of solutions that exist today, there
is not a single protocol that outperforms all the others for all operational con-
ditions. In fact, each different solution is optimised for a particular scenario,
and may perform poorly if the operational conditions change. For instance,
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Zyzzyva[6] is a BFT protocol that offer very good performance if the network is
stable but that engages in a lengthy recovery procedure if a node that plays a
special role (the leader) is suspected to have failed.

Given this fact, researchers have also started to design adaptive BFT systems,
that can switch among different protocols according to the observed operational
conditions. One of the first systems of this kind is Aliph[8]. An important con-
tribution of Aliph was that it introduced a precise property that BFT protocols
must exhibit in order to support dynamic adaptation, named abortability. On
the other hand, the number of possible adaptations, and the sequencing of those
adaptations, is very limited in Aliph: the system is only able to switch among a
small set of pre-defined protocols in a sequence that is hardcoded in the imple-
mentation. Other authors have extended the approach in an attempt to support
a richer set of adaptations, and to provide the user more control on how the sys-
tem adapts, depending on the specific business goals of a given deployment[9].
Still, as we will discuss later in this report, even those approaches suffer from
several limitations.

An adaptation policy is a specification that captures the goals that the system
aims at achieving and that guides the selection of the adaptations that are
better suited to achieve those goals under different conditions. In this work
we are interested in studying policy-based adaptation of BFT systems. We are
interested in two complementary aspects: first we aim at identifying policies
that may be relevant in practice and experimentally assess the benefits of those
policies; second we are interested in identifying the right abstractions to express
those policies, such that they can be easy to write and easy to understand,
without requiring a deep understanding of the internals of all components that
execute in the system.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present all the
background related with our work. Section 4 describes the proposed architecture
to be implemented and Section 5 describes how we plan to evaluate our results.
Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

This work addresses the problem of building adaptive BFT systems. In par-
ticular, we are interested in building an adaptation manager that can execute
a flexible set of policies to drive the adaptation of a target BFT state machine
replication system (the managed system). The adaptation manager collects in-
formation from a monitoring tool, and runs an adaptation policy that drives
the re-configuration of the managed system. The adaptation manager must be,
itself, tolerant to Byzantine faults thus it will be implemented as a distributed
set of independent replicas that will run a BFT-consensus protocol to coordinate
their actions. More precisely:
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Goals: Our work is to build a robust and flexible adaptation manager
for BFT systems.

Our work builds on an early prototype of architecture to support the adap-
tation of BFT system named ByTAM[10]. The adaptation manager provided in
ByTAM only supports a small set of policies, in the form of Event-Condition-
Action policies. Our goal is to extend the expressiveness of the policies that can
be supported by the adaptation manager.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the adap-
tation manager; ii) an BFT implementation of the manager, iii) a set of
policies for the dynamic adaptation of BFT systems, iv) an extensive
experimental evaluation using a fully operational prototype.

3 Related Work

In this section we give an overview of previous work addressing adaptation
Byzantine Fault Tolerant systems. We start by describing some of the existing
BFT protocols, to motivate the need for changing the protocol according to the
conditions of execution environment. Next we survey previous adaptive BFT
systems. Then we overview BFT-SMaRt, one of the few open source libraries
supporting BFT state machine replication, and ByTAM, an early prototype on
which we will build on. For completeness, at the end of the section, we also survey
a number of systems that, although not targeting BFT systems specifically, can
provide useful input to our work.

3.1 Byzantine Fault Tolerance

In this subsection we give an overview of four different BFT protocols,
namely: the original protocol by Lamport, Shostak, and Pease[1], PBFT[3],
Zyzzyva[6] and Aardvark[7]. We start by the original formulation provided in [1]
even if these protocols only work in synchronous systems, then we address PBFT
because it is one of the first BFT algorithms to exhibit acceptable performance
on asynchronous systems; Zyzzyva and Aardwark are variants of PBFT that
optimize its operation for different operational conditions.

3.1.1 Byzantine Generals Problem The term Byzantine Fault Tolerance
was introduced by Lamport, Shostak, and Pease[1]. In that paper the authors
identified a key problem to achieve BFT, namely the need to reach consensus in
the presence or arbitrary faults, that they have named the Byzantine Generals
Problem. The problem has been illustrated as follows:

Several divisions of the Byzantine army, each commanded by its own general,
are surrounding an enemy city. After observing the city, they must agree on a
common plan of action. The generals may only communicate by messenger. The
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problem becomes harder as some of the generals are traitors and try to prevent
the loyal generals from reaching an agreement, for example, by sending different
messages to different generals. A correct solution to this problem must guarantee
that:

1. All loyal generals decide upon the same plan of action.
2. A small number of traitors cannot cause the loyal generals to adopt a bad

plan.

The authors then proved that this problem can be reduced to an equivalent
one in which a commander general must send an order to his n− 1 lieutenants
such that (1) all loyal lieutenants obey the same order and (2) if the commanding
general is loyal then every loyal lieutenant obeys the order he sent. From now
on, we will refer to the commander general as the primary and the lieutenants
as backups. Also, we will refer to either the primary or backups as nodes.

In that paper, two protocols to solve Byzantine consensus are presented.
Both protocols assume a synchronous system but make different assumptions
about the cryptographic primitives used, namely in what regards the ability to
sign messages. The protocols are elegant but rely on a recursive design that
makes them exhibit a high message overhead. For simplicity in the algorithms
specification, we will refer to “obtaining a value” instead of “obeying an order”.

The first protocol assumes that nodes can communicate through messages
that are delivered correctly and the absence of a message can be detected. Fur-
thermore, a receiver of a message knows who sent it. As nodes can detect the
absence of a message, we will ignore the case in which a node does not send
a message, as a previously defined default value can be used by the nodes who
should have received that message. The algorithm is a recursive function OM(m)
that solves the problem of a primary sending an order to its n − 1 backups if,
at most, m out of n = 3m + 1 total nodes are faulty. Since the algorithm is
a recursive function, we start by defining the stopping condition as m = 0. In
that case, the primary sends a value to every backup and every backup uses
that value. In the recursive case, (1) the primary sends his value to all backups,
then (2) for each backup i, let vi be the value that it received from the primary;
backup i acts as the primary in OM(m− 1), sending vi to the other n− 2 back-
ups; finally (3) backup i uses majority(v1, ..., vn), where vj , j 6= i is the value
received from backup j in step (2). majority is a deterministic function that
necessarily chooses a majority value if one exists, for instance, the median of the
set of values. Note that as m increases, the number of messages sent by the this
protocol will also increase due to the recursive nature.

The second protocol makes the same assumptions about messages with two
extra ones: (1) signatures from correct nodes cannot be forged, changes made to
the content of their signed messages can be detected and (2) anyone can verify the
authenticity of signatures. This removes complexity to the problem, as a node
can no longer lie about values received by other nodes. Before the algorithm
begins, each node i has an empty set Vi. Initially, the primary signs and sends
its value to all backups. Each backup, upon receiving a signed message m from
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the primary, if no message as been received yet, sets V as the set containing the
received value v and then signs m and sends it to all other backups. If a backup
i receives a message m from another backup containing a value v 6∈ V , it adds
v to V ; if m is not signed by all backups, then backup i signs it and sends it
to all backups that did not sign m. Eventually, backup i will no longer receive
messages as all values are signed by all nodes. At that point, it uses a function
choice(V ) that deterministically chooses a value from V (or a default value if
V = ∅). All correct nodes use the same choice(V ) (for instance the median value)
and all correct nodes end up with the same set V , therefore choose the same
value.

Both protocols are very simple but rely on assumptions that are not usually
true in distributed systems. In particular, these algorithms require synchronous
systems where we can set an upper bound to messages delay and clocks are
synchronized. These assumptions do not hold on an asynchronous distributed
system like the Internet. Next, we will discuss BFT algorithms that can operate
on asynchronous systems.

3.1.2 PBFT The Practical Byzantine Fault Tolerant protocol[3] (PBFT),
proposed by Castro and Liskov, was one of the first BFT algorithms to exhibit
an acceptable performance and to operate on asynchronous systems. This algo-
rithm tolerates at most f = bn−13 c faults from a total n replicas. It assumes
an asynchronous network which may omit, duplicate, delay, or re-order mes-
sages. Nodes may fail arbitrarily but independently from one another. In order
to guarantee that the nodes fail independently, the authors suggest that each
node should run different implementations of the service and of the operating
system.

The protocol works as follows. The client sends a request to all replicas.
Replicas exchange several rounds of messages among them to ensure coordi-
nation, even in the presence of corrupted replicas. When agreement is reached
among replicas, a reply is sent back to the client. Coordination among replicas is
achieved using a distributed algorithm where one of the replicas plays a special
role, known as the primary (if the primary is faulty, the protocols is able to
make progress by forcing the change of the primary). A failure free run of the
coordination protocol, depicted in Figure 1, includes the following steps:

1. The primary replica multicasts a PRE-PREPARE message
2. When a replica receives a PRE-PREPARE message it multicasts a PRE-

PARE message
3. When a replica receives 2f+1 PREPARE and/or PRE-PREPARE messages

it multicasts a COMMIT message
4. When a replica receives 2f + 1 COMMIT messages it executes the client

request and sends a REPLY message to the client

When the client receives f + 1 REPLY messages with the same result, from
different replicas, accepts the result. A sketch for the proof that the thresholds
above guarantee safety can be found in [3] and a detailed proof is given in [11].
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Fig. 1: PBFT failure free run. replica 0 is the primary replica. Taken from [3].

If the primary replica fails, an algorithm to select a new primary must be
executed. That will allow the system to make progress, guaranteeing liveness.
According to the terminology used in the PBFT paper, a view defines a set
of replicas where one is designated the primary and the others are designed
as backups. Therefore, selecting a new primary involves running a procedure
that is called a view change. The procedure is triggered as follows. Let v be the
current view. When a backup is waiting for a request in view v (i.e. it received
a valid request but has not executed it) it starts a timer. If the timer expires
the backup stops accepting messages (except view change related messages) and
will multicast a VIEW-CHANGE message for view v+1, containing information
about its state. When the primary replica of view v + 1 receives 2f VIEW-
CHANGE messages for view v + 1 from other replicas, it sends a NEW-VIEW
message to all replicas, making sure every replica starts the new view at the
same time and with the same state.

3.1.3 Zyzzyva Zyzzyva[6] is a BFT protocol that uses speculation as a means
to reduce the cost of BFT. In this protocol, the client sends a request to the
primary which assigns a sequence number and forwards the ordered request
to the replicas. Upon receiving an ordered request, the replicas speculatively
execute the request and respond to the client. The idea of the protocol is that
consistency only matters to the client, therefore it is the client’s responsibility
to verify if the responses are consistent. The responses consist of an application
response and an history. This history allows the client to detect inconsistencies
in the request ordering.

When waiting for responses, the client sets a timer and the protocol’s path
will be dictated by the number and consistency of replies it receives before the
timer runs out. Two replies are considered consistent if the application response
is the same and the history is compatible. We will overview the possible scenarios
in the next paragraphs.

The first case, whose message pattern is illustrated in Figure 2, is known
as the fast case. If the client receives 3f + 1 consistent replies then the request
is considered complete and the response is delivered to the application. At this
point there is a guarantee that, even in the presence of a view change, all correct
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replicas will execute the request in the same order, producing the same result.
Sketches of the proofs can be found in the paper[6].

Fig. 2: Message pattern of Zyzzyva’s fast case. Taken from [6].

If some replicas are faulty or slow, it can happen that the client does not
receive 3f+1 consistent replies. However, if the client still manages to receive at
least 2f + 1, it is still possible to make progress without forcing a view change,
by execution one more step; this is known as the two-phase case. In this case, de-
picted in Figure 3, the client has a proof that a majority of the replicas executed
the request consistently. The replicas, however, may not have that proof. There-
fore, the client assembles a commit certificate that sends to all replicas. The
commit certificate is a cryptographic proof that a majority of correct servers
agree on the ordering of all the requests up to this request inclusive. Upon re-
ceiving the commit certificate, the servers send an acknowledge message. If the
client receives 2f + 1 (a majority) of acknowledgements, it delivers the response
to the application. Otherwise the case described in the next paragraph is trig-
gered.

Fig. 3: Message pattern of Zyzzyva’s two-phase case. Taken from [6].

The last case is known as the view change case. This case is more complex. If
the client receives less than 2f+1 consistent responses, it retransmits the request,
this time to all replicas, which in turn forward the request to the primary for
sequencing. After sending the ordering request to the primary, replicas set a
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timer. If the timer expires without a response from the primary, replicas start
a view change. If a replica receives a sequence number for the request, it will
speculatively execute it and send the response to the client. If the client detects
valid responses in the same view with different sequence numbers it will send
them as a Proof of Misbehaviour to all replicas. Upon receiving the Proof of
Misbehaviour, replicas start the view change protocol.

The speculative execution of Zyzzyva performs better than PBFT when the
primary is not faulty. However, when the primary is faulty, some of the work per-
formed optimistically is lost and has to be re-executed in a conservative manner,
yielding a longer worst-case execution.

3.1.4 Aardvark The BFT protocols discussed above follow a different flow of
execution in the non-faulty and faulty-scenarios. The optimizations made for the
fault-free scenarios often introduce extra complexity when faults occur or even
open the door for the existence of runs where a single Byzantine fault may cause
the system to become unavailable. The authors of Aardvark[7] advocate that a
BFT protocol should provide an acceptable performance even in the presence of
at most f Byzantine replicas and an unbounded number of Byzantine clients.
With the aim of achieving the desired performance even under faults, the design
of Aardvark follows a number of principles that, according to the authors, go
against the “conventional wisdom”.

The first principle is the usage of signed messages. Signing a message is a
computationally expensive process, therefore not used in most BFT protocols.
Instead, the protocols tend to use a Message Authentication Code (MAC) to au-
thenticate messages. This technique is based on shared symmetric key therefore
less expensive than signed messages that require asymmetric keys. As a conse-
quence of the usage of symmetric keys, MACs do not provide non-repudiation
of messages. The absence of non-repudiation causes extra complexity on BFT
systems. Aardvark’s approach is to require clients to sign their requests. This
allows the replicas to trust that a request was indeed issued by some client,
making the BFT protocol more robust.

The second principle is to use view changes as a normal operation, and not
only as a last resort. Aardvark performs view changes on a regular basis. The
performance of the primary replica is monitored by other replicas, and compared
with a threshold of minimal acceptable throughput (that is adjusted dynami-
cally). If the primary fails to meet that throughput requirement, the other repli-
cas start a view change. This limits the throughput degradation of the system
in the presence of a faulty primary, as it will need to be fast enough, otherwise
it will be replaced by a new primary.

The last principle is related to resource isolation. Aardvark uses a set of net-
work interface controllers (NIC) which connect each pair of replicas. As a conse-
quence, each communication channel becomes independent from each other, and
faulty replicas cannot interfere with the timely delivery of messages from correct
servers. This also allows replicas to disable specific NIC, protecting themselves
from attacks. Other protocols do not adopt this technique as it would decrease
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their performance due to the loss of hardware-supported multicast. Aardvark
also uses distinct queues for client and replica messages, so that client requests
cannot prevent replicas from making progress.

The message pattern of Aardvark is very similar to PBFT, as it also uses
a three-phase commit protocol. The main differences are the three aspects dis-
cussed above, which make Aardvark the protocol (of the ones discussed in this
Section) with worst performance in a fault-free environment but more robust in
the presence of faults.

3.2 Adaptable Byzantine Fault Tolerant Systems

As we have seen from the three practical protocols discussed above, each one
is tuned for different system conditions. To the best of our knowledge, there is no
single BFT protocol able to outperform all others under each system conditions.
It is therefore fundamental to be able to adapt the system.

When reasoning about system adaptations there are three fundamental ques-
tions that should be answered: what to adapt, when to adapt, and how to adapt.
We will discuss each of these individually.

What to adapt refers to the set of possible adaptations that the system can
perform. In the adaptation of BFT systems there are two main classes of possible
adaptations – changes to the replica set and changes to the replicas’ configura-
tion. When adapting the replica set it is possible to, at least, change the total
number of replicas or replace replicas for newer ones (for instance, to replace
faulty or old replicas). When adapting the configuration of a given replica, there
are two main categories of adaptations:

– Changing the configuration of an internal module: this allows to tweak in-
ternal parameters of some module of the system, for instance, change the
quorum size of the consensus algorithm[10].

– Replace a module: allowing for changing the implementations of a given
module. One example is switching the BFT protocol that the system is
using[8, 9].

When to adapt is the problem of choosing the instant in which the system
should perform an adaptation. There are two main approaches:

– Periodically. In this case the system sets a timer. When the timer expires
the system verifies its policies and tries to find an adaptation (or set of
adaptations) that can improve the system, i.e. makes the system closer to
some business goals.

– Based on predefined thresholds. This approach triggers the adaptation pro-
cess when some threshold or condition is violated or met.

Despite being conceptually different approaches, both are usually triggered
by some kind of event – either the expiration of the timer or a change in the
system conditions. Most of the systems we will study in this report tend to
adapt based on predefined thresholds and conditions. Such conditions may be
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as simple as latency > 10ms or more complex conditions for instance: a server
failed[10], there is contention[8] or even some protocol will have at least a 10%
better performance than the current one[9]. The techniques proposed in [12] also
contemplate the approach of periodically trying to improve some chosen business
goals.

The problem of how to adapt consists of selecting the techniques that allow
the system to change some configuration with minimal performance loss during
the transition. This issue is being addressed by other members of our research
group and is considered to be out of the scope of this report. Changes to the
replica set will probably involve some sort of view change protocol. Changing
the BFT protocol can be done multiple ways, for instance, (1) stopping one
and starting the other[8] or (2) having both running at the same time during
a transition period until the older is definitely removed[13]. It is possible that
some adaptations can be done without coordination, for instance, changing the
batch size of the Consensus protocol may only require a change in the primary
replica.

3.3 The Next 700 BFT Protocols

The observation that different protocols perform better in different conditions
has motivated the authors of [8] to study techniques that allow to replace a
protocol in runtime in a safe manner. In this work, the authors propose: i) a novel
abstraction to model a SMR protocol that can abort its execution to support
reconfiguration; ii) several instances of protocols that support such abstraction,
and; iii) some simple policies to dynamically commute among these protocols.
We briefly discuss each of these contributions in the next paragraphs. In the
remainder of this report we will cover several systems and techniques focused on
the adaptation of systems.

3.3.1 Abstract In their work, the authors of [8] have identified a set of prop-
erties and interfaces that allow one protocol to be aborted during its execution
and to retrieve from the aborted protocol enough information to allow operation
to resume using a different protocol. A protocol that owns this set of features
is denoted to be an instance of a generic protocol simply called Abstract. An
adaptive BFT protocol may support several of these instances, although only
one should be active at a given point in time. When a reconfiguration takes
place, the active instance is aborted and a new instance is activated. State is
transferred from the old instance to the new instance through a request history
that is handed to the client when the instance is aborted.

3.3.2 Instances The authors consider different protocol instances that are
compliant with Abstract, namely Backup, ZLight, Quorum, and Chain.

Backup is an Abstract instance that guarantees exactly k requests to be com-
mitted. k is a configurable parameter and must be greater or equal to 1. Backup
is described as a wrapper that can use any other full-fledged BFT protocol as
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a black-box. In this paper, the authors used PBFT as the Backup protocol due
to its robustness and extensive usage. This means that Backup will ensure that
exactly k requests will be committed and then abort to the next instance.

ZLight is an instance that mimics Zyzzyva’s fast case. This means that ZLight
makes progress when there are no server or link failures and no client is Byzan-
tine. When those progress conditions are not met, meaning the client will not
receive 3f + 1 consistent replies, the client will send a PANIC message to the
replicas, triggering the abortion of this instance.

Fig. 4: Message pattern of (a) Quorum and (b) Chain. Taken from [8].

Quorum is a protocol with a very simple message pattern, depicted in Fig-
ure 4(a). It has the same progress conditions as ZLight (there are no server nor
link failure and no Byzantine clients) plus an additional one: there must be no
contention. This one round-trip message pattern gives Quorum a low latency
but at the cost of not relying on total order of the requests (therefore the need
for the extra progress condition). In this protocol, the client sends the request
to all replicas that speculatively execute it and then send the reply to the client.
If the client does not receive 3f + 1 consistent messages it starts the panicking
mechanism (just like in ZLight) causing the current instance to abort.

Chain is a new protocol based on the one proposed in [14] (which only toler-
ated crash), adapted to tolerate Byzantine faults. As can be seen in Figure 4(b),
Chain organizes the replicas in a pipeline and every replica knows the fixed or-
dering of the replicas. The first replica in the pipeline is the head and the last
one is the tail. Replicas only accept requests from their predecessor (except the
head which accepts requests from the client) and only send messages to their
successor (except the tail which sends the reply to the client). Due to their novel
authentication method, chain authentication, they are able to tolerate Byzantine
faults. This instance has the same progress conditions as ZLight (no server nor
link failures and no Byzantine client). If the client does not receive a reply or
verifies the reply is not correct (by using the chain authentication mechanisms)
it starts panicking, triggering the abortion of the instance.

3.3.3 Policies The authors have experimented to build adaptive BFT pro-
tocols based on the instances above. Two variants of the system have been de-
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veloped, namely AZyzzyva (that only uses ZLight and Backup) and Aliph (that
uses Quorum, Chain, and Backup). In both cases, they use very simple policies to
switch among protocols. The available instances are totally ordered in a directed
ring and an adaptation always replaces one instance by its successor in the ring.
Each instance is characterized by a set of conditions required for progress; when
these conditions are not met, an adaptation is triggered.

3.3.4 Discussion Abstract allows the creation protocols that make progress
under very specific conditions. This allows for very simple protocols able to have
very good performance under those conditions. For instance, Quorum allows
Aliph to have a very low latency, due to its one round-trip message pattern, if
there are no faults and no contention. Under contention but still with no faults,
Chain has a good throughput, allowing Aliph to handle periods where multiple
clients send many requests to the system. As a fall-back, Backup will ensure
progress under faulty environments. Despite those advantages, Aliph lacks a
mechanism to express the adaptation policies. The policies are hardcoded in the
Abstract instances in the form of the progress conditions, making it very hard
to configure. Also, usage of a static ordering for the protocols is a downside of
their approach.

3.4 Adapt

Adapt is an abortable adaptive BFT system. It monitors the system condi-
tions in order to decide – with the help of mathematical formulas and machine
learning – which protocol would have the best performance. It is composed by
three sub-systems: BFT System (BFTS), Event System (ES) and Quality Con-
trol System (QCS). BFTS is the actual system to be adapted and includes the
abortable BFT protocols implementations. The Event System is responsible for
monitoring the BFTS, collecting Impact Factors – chosen metrics which have
a significant impact on the system. The authors chose the number of clients,
request size, response size, and faulty replicas as the impact factors. The ES
sends periodic information to the QCS with changes in the impact factors. The
QCS is the decision maker in Adapt, and therefore the sub-system in which we
are more interested in.

The Quality Control System (QCS) algorithm works as follows. Let’s assume
that we have a set of n BFT protocols to chose from (implemented in BFTS)
and some protocol pi, i ∈ [1, n] is currently running. The QCS is triggered by the
reception of an event from the ES, stating some change in the impact factors.
Such event starts the evaluation process, that selects a protocol pj , j ∈ [1, n],
which is the best protocol for current system conditions. If j 6= i and pj offers
a significant improvement over pi then the QCS orders the BFTS to switch the
protocol to pj .

Most of the logic in the QCS is in the evaluation process. Before we can study
the evaluation process in detail, we must define two types of metrics, namely Key
Characteristic Indicators (KCIs) and Key Performance Indicators (KPIs). KCIs
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encode the static characteristics of a protocol (e.g whether it tolerates faulty
clients or requires IP multicast); KCI values are defined before the system starts
and are static during its execution. KPIs are dynamically computed metrics that
evaluate the performance of a protocol (e.g. latency and throughput); KPI values
are computed several times in runtime, using prediction functions, as described
below.

The evaluation process consists of a static part and a dynamic part, using
the KCIs and KPIs respectively. The static part consists in excluding from the
adaptation process all protocols that are considered not suitable by the user.
For this purpose the user is required to input her user preferences, in the form
a vector that states which KCIs a protocol must have in order to be eligible as
a valid adaptation target. All protocols that do not match the user preferences
vector will be excluded from the final result. Remember that the KCIs for each
protocol are manually defined before the system starts. In the dynamic part,
Adapt uses the KPIs values to predict which of the protocols will have the
better performance among them. Because KPIs can have different natures, they
are divided into type β+ and type β−. β+ KPIs are said to have an high tendency,
meaning an higher value means a better evaluation, for instance throughput. On
the other hand, β− KPIs are said to have a low tendency therefore lower values
mean a better evaluation. Latency is an example of a β− KPI. Despite that, KPIs
can have very different values, possibly by many orders of magnitude. To solve
that problem the KPI values for each KPI are normalized to the interval [0, 1].
This normalization will result in a value of 1 to the best value of a given KPI,
0 to the worst one and the remaining values are linearly interpolated. Which
are the best/worst values depend on whether the KPI is of type B− or B+. For
B− KPIs the best value will be the minimum value and the worst will be the
maximum value. For the B+ KPIs will be the opposite.

At this point in the evaluation process, each protocol has a value for each
KPI in the range [0, 1]. As a result of normalizing, the values lost some meaning
and can now only be used as a ranking between the protocols. A value of 1 does
not mean that the KPI is at its maximum value, it just means that the protocol
which has that value is the best among the evaluated ones. The final evaluation
of a protocol corresponds to the sum of each associated KPI value multiplied by
a weight. A weights vector – assigning a weight to each KPI – must be specified
by the user before the system starts. The selected protocol will be the one, not
excluded by the KCIs, having the biggest evaluation score.

Adapt supports a form of heuristics. In Adapt, an heuristic is a vector just like
the weight vector. If an heuristic is present, each component of the weight vector
is multiplied by the corresponding component of the heuristic vector resulting
in a new weight vector. This could be used, for example, to give more weight to
throughput and less weight to latency under high contention.

We will now explain how Adapt tries to predict the KPI values used in the
evaluation process. The KPI values are computed in runtime using prediction
mechanisms, in this case Support Vector Machines for Regression[15]. The de-
scribed process of predicting a single KPI is a very generic Machine Learning
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process. First, the protocol runs for a period of time and the KPIs under each
state are recorded. After a sufficient number of records are gathered, called a
training set, a prediction function is trained with it. The prediction function
takes impact factors as inputs and outputs a KPI value. The objective of the
training phase is to tune the prediction function parameters so that it gives the
most accurate predictions. Once the prediction function is trained, when the ES
sends new values for the impact factors, it is executed to predict the values used
for KPIs in the evaluation process.

The authors of Adapt also mention that in order to have the most accurate
predictions the training set must be updated by the ES so that the prediction
function improves itself periodically.

We mentioned above that Adapt only switches protocol if the new protocol
has a significant improvement over the previous one. Switching protocol comes
with a cost so if the gain is small maybe switching is not the best solution.
They define Sthr, a minimum improvement threshold required for the protocol
to be switched. So the protocol switching is bounded to the following restriction:
pmax

pcurr
≥ Sthr, where pmax is the evaluation value of the best (selected) protocol

and pcurr the evaluation value of the current protocol.
We conclude this analysis of Adapt with a discussion of its strong and weak

points. Adapt was a good step forward in the adaptation of BFT systems. It
introduced several improvements over Aliph, for example:

– The new protocol is chosen by analysing system conditions instead of a
predefined hardcoded order

– It can change protocol based on KPIs
– It uses Machine Learning to improve the prediction of the best protocol

under each system conditions

Despite those improvements, Adapt still lacks a good way to specify policies.
We can specify policies using the user preferences vector, which excludes some
protocols from being selectable, the weights vector and heuristics.

The user preferences vector does not focus the business goals of the system
and only an expert in BFT can configure it. A better approach could be to have
some way of letting the system decide that some protocol x could not be chosen
because it violated some business rule.

When populating the weights vector, it is not obvious what weights to give to
each KPI. This problem is aggravated by the fact that the values are normalized,
therefore lost some meaning. As mentioned above, a protocol with a value 1 for
some KPI only means that it is the better value among the evaluated ones –
it can still be a bad value overall. It is not clear what giving a 0.7 weight to
throughput and 0.3 to latency would mean, as the normalized values do not
represent the actual value. It is therefore really hard to come up with a good
weights vector.

The heuristics are not described in great detail. It is not clear how we can
specify when they trigger, therefore we cannot discuss that part. Despite that,
they have the same problems as the weights vector, as they have similar impact.
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The need for this kind of heuristics in Adapt might be product of poor policy
specification methods used, as the authors felt the need of changing the system
objective under different conditions.

3.5 BFT-SMaRt

BFT-SMaRt[16] is an open-source library for creating BFT SMR systems
and will be used in the development of our system. It implements a protocol
similar to PBFT and is, according to the authors, the first of its kind to sup-
port reconfigurations of the replica set. During its development, simplicity and
modularity were big concerns. Optimizations that could create unnecessary com-
plexity in the code by introducing new corner cases were avoided. Unlike PBFT
which implements a monolithic protocol with the consensus algorithm embedded
in the SMR protocol, BFT-SMaRt has a clear separation of both modules. As
a consequence, this system is easier to implement and reason about. There are
also modules for state transfer and reconfiguration.

The API is very simple and due to the modular approach it is also ex-
tensible. In order to implement deterministic services the server must imple-
ment an execute(command) method and the client simply invokes it with an
invoke(command) call. All of the BFT complexity is encapsulated between those
method calls.

As hinted above, BFT-SMaRt has a reconfiguration module. Currently, it
only supports adding and removing replicas. Other members of our research
group are studying ways of allowing BFT-SMaRt to make other adaptations, for
instance changing the BFT protocol. That, combined with the fact that there is
significant knowledge of this system in our research group, makes BFT-SMaRt
a good choice for implementing our system.

3.5.1 ByTAM ByTAM[10] is an early prototype of a BFT Adaptation Man-
ager built using BFT-SMaRt. As we mentioned before in this report, our work
will build on this system. ByTAM assumes an architecture similar to Adapt, hav-
ing a monitoring system, a managed system and an adaptation manager (AM).
Our biggest interest is in the AM, which is responsible for the policies.

The AM stores the data collected from the monitoring system. The policies
can then consume that data. Storing all of the sensors data could allow for
complex policies that use the historical data to predict the system’s behaviour
or whether the current conditions are just transient fluctuations. Despite that
potential, the implemented policies in ByTAM do not explore that path.

The AM is also responsible for managing the policies and checking when
an adaptation should be triggered. Policies are defined in the Event-Condition-
Action form. The event can either be periodic or some message from the mon-
itoring system. When an event triggers a policy, its condition is checked. If it
passes, the system executes the action. Typically, the action consists in sending
a message to the managed system, telling it what to adapt, but it could also be
tuning an internal prediction engine model, for instance.
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The policies are Java classes which implement a specific interface. As all
Java code is accepted in the policy, the potential of this form of policies is
tremendous. However the low level expressiveness also makes the policies much
harder to write and more error prone. The policy specifier will have to handle
Java’s complexity instead of being focused on the business goals of the system.
Despite that potential for creating very complex policies, only a very simple
policy was implemented (upon a failure, it integrated a new replica in the system
or adjusted the quorum size, if there was no spare replica). This could be a result
of the difficulty in expressing policies. As mentioned in Section 2, our goal is to
improve the expressiveness of the policies, so that the writer can focus on the
business goals of the system.

3.6 Some Relevant Techniques used in Adaptive Systems

In this Section we will survey some techniques used adaptive systems that
do not target BFT specifically. Although these systems and techniques were not
designed with BFT in mind, their ideas may be useful when designing a new BFT
Adaptation Manager. We will overview a new language able to describe impact
models which can cope with non-determinism. Next we will study a work related
with learning and refining impact functions. Finally, we conclude this Section
by discussing a technique which looks at policies as a set of ordered goals the
system should fulfil.

3.6.1 Impact Models Under Uncertainty Cámara et al. defend in [17]
that fully deterministic models of the system behaviour are not attainable in
many cases, so it is crucial to have models able to handle the uncertainty. They
propose a language to define impact models which can handle uncertainty. Fur-
thermore, they explain how those impact models can be used to formulate adap-
tation strategies and how to predict the expected utility of those strategies.

The approach relies on the availability of an architectural model of the sys-
tem, defined as a set of components and connectors (with associated properties).
For instance, components can be nodes (servers and clients) and connectors the
links among them (for instance a TCP connector). Those components and con-
nectors can have associated managed and monitored properties. For instance,
a server can have a managed property that captures which BFT protocol it is
currently executing and a monitored property load representing the server load.

Adaptation actions are the adaptive primitives implemented in the system.
For each adaptation action, an impact model should be defined. The language
proposed in this paper uses Discrete Time Markov Chains in order to define
impact models able to handle different outcomes. Each impact model is defined
as a set of expressions in the form φ → α, where φ is a guard condition and α
is a probabilistic expression. At any time, at most one guard condition can be
true for each impact model.

The probabilistic expressions are the ones responsible for handling the un-
certainty. They can define different outcomes with different probabilities. For
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instance, if some expression α is of form {[0.7]{α1} + [0.3]{α2}}, then α1 is
estimated to occur 70% of the times and α2 only 30%. α expressions can be sim-
pler, for example, forall s:Servers | s.load’ = s.load / 2 would mean
the load of each server would drop to half of the current one. Note that the
symbol ’ is used to denoted the new value of the property.

An adaptation strategy is a composition of several adaptation actions. Each
strategy has a applicability condition and a body. The applicability condition
dictates whether the strategy can be applied and the body is a tree. Each edge
has a guard condition, an adaptation action and a success condition. The success
condition is used to evaluate whether the adaptation action succeeded and its
value can be used in edges that leave the achieved node. This allows the definition
of complex policies in the form of adaptation strategies, which are specified in
Stitch[18].

When a system needs to adapt, there may be several applicable strategies. In
order to chose which one to execute, the system must have a goal to achieve. The
goal must be defined in such a way that it can be related to runtime conditions,
such as response time and cost. To each of those we must specify:

– An utility function, that assigns a value in the range [0, 1] to the runtime
condition in question, being 1 the better value.

– A utility preference which is a weight given to the runtime condition in
question. The sum of all the weights must be 1.

In order to assess the utility of a strategy, the system creates a probability
tree of each possible outcome. When compared to the strategy tree, this prob-
ability tree has more branches because of the non-determinism – anywhere an
adaptation strategy would be used we have a branch for each possible outcome.
The utility of the strategy is said to be the sum of the utility of each possible
state multiplied by its probability.

The techniques presented in this paper provide a solution for handling non-
determinism when specifying impact functions of adaptations. This helps coping
with the uncertainty of the outcome of an adaptation. Despite that, it is still
difficult to discover and give a probability to all impact functions. In Section
3.6.2 we will study machine learning techniques that help mitigate this problem.

3.6.2 Learning Adaptation Models Under Non-Determinism Fran-
cisco Duarte proposed in his master’s thesis a system able to revise impact func-
tions using machine learning techniques – Ramun[19]. It supports impact models
that include non-determinism, like the ones presented above. Ramun works as
follows:

1. Initial impact models are collected from system experts
2. A synthetic dataset is created with fabricated samples that reflect the initial

impact models
3. New samples are added to the dataset by monitoring the effect of adapta-

tions, with the system running
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4. The extended dataset is analysed by the K-Plane[20] algorithm
5. The result is processed and written to a text file

The resulting text file is compliant with the language proposed in [17]. The
K-Plane algorithm returns k planes, each mapping to an impact function. The
larger the k value is, the more impact functions the algorithm will output and
more accurate the model will be. In order to achieve a balance between the
number of impact functions and the model’s accuracy, Ramun iteratively runs
the algorithm with an increasing k. The initial k is 1 and the final k will be the
one that provides a model with an error inferior to a configurable threshold T .

After the final k planes are computed, their valid input ranges are defined.
Each plane – and therefore each impact function – is only valid in the range
where it has samples. Non-determinism comes into play whenever multiple planes
share the same input region for every variable. Geometrically, this means that
the hypercubes formed by their input regions intersects. Although this is hard
to imagine for n-dimensions, it is easy in two dimensions. Imagine two impact
function that take x as input and return x′, the new value for x. If for the same
x we have two possible x′ values (one given by each impact function), then we
have non-determinism. The probability of each case is calculated as the number
of samples that that case has in the region, over the total number of samples in
the region.

The techniques presented in Duarte’s thesis help minimizing one of the prob-
lems in choosing the right adaptation – predicting its impact. This work provides
a solution for learning even in the presence of non-determinism. Another great
feature is that its output can be translated into a language able to be read by
humans, making it easier for a system administrator to understand what the
algorithms are learning.

3.6.3 Rank-based Policies and Adaptations Rosa et al. proposed a lan-
guage to specify policies as set of goals, that are ordered in decreasing degree of
relevance. The system strives to satisfy as many goals as possible, starting from
the most relevant, i.e., the system sees if there is a set of adaptations that can
satisfy the most important goal; if yes, it then, among these adaptations, selects
those that can also satisfy the next goal, and so forth.

The goals are specified in terms of key performance indicators (KPIs) such
as cpu usage or latency, for instance. Two types of goals can be defined relative
to the KPIs, namely exact goals and optimization goals. Exact goals specify
acceptable ranges for the KPIs. The ranges are specified with either of three
primitives – Above, Below and Between, meaning the KPI value should be above
some threshold, below some threshold and between two thresholds, respectively.
Optimization goals specify desirable values for the KPIs. Those goals can state
that a KPI should be maximized, minimized, or approach some target value.
Each optimization goal has an assessment period, and every period the system
will try to optimize that goal.

The system is able to select the set of adaptations that match a given policy.
For that purpose, adaptations have a number of attributes such as, among others,
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a guard condition (stating under which conditions it can be executed) and impact
functions (stating the expected changes in the KPIs).

The system has an offline phase and an online phase. During the offline
phase, adaptation rules are generated. This rules are inferred from the goals and
adaptations already defined. For instance, given a goal stating that cpu usage
should be below 0.45 (and assuming we are interested in 0.01 granularity), the
associated rule is triggered when an event stating the cpu usage KPI is at least
0.46 is received. The goal of a rule is always to increase or decrease the value of
a KPI. Adaptations that drive the KPI in a direction contrary to the intended
one are excluded from the set of possible adaptations of that rule.

During the online phase, when a rule is triggered, the system evaluates which
of the valid adaptations better suits the situation. It is in this phase that the
ranking of the goals is relevant. Each goal has a rank associated with the order
in which it is defined. The first goal is the most important and the last one
is the least important. Each goal will work as a filter of adaptations. Given a
set S of possible adaptations, each adaptation is evaluated against the most
important goal. Adaptations that violate that goal are excluded from S. The
chosen adaptation will be the last to violate a goal. If all adaptations violate
some goal k, all remaining goals are still used for tie-breaking.

This approach provides an elegant way of specifying objective goals that the
system should fulfil. The usage of a ranking based goal specification allows for
a graceful degradation of the system, allowing us to ensure maximum effort to
preserve certain properties. This can be useful when adapting a BFT system as
we may want to guarantee, for instance, that we can tolerate Byzantine faults as
a primary goal. Also, this approach does not force the system manager to give
unnatural weights to KPIs.

4 Architecture

We plan to build a robust Adaptation Manager, able to choose adaptations
based on user specified policies. As a requirement for our system to work prop-
erly, a Monitoring System should exist and provide the Adaptation Manager
with insightful metrics about the Managed System, i.e. the target system of the
adaptations. Both, the Monitoring System and the Managed System must have
APIs compatible with our system.

Since we are focused on the adaptation of BFT systems, our system will
be itself tolerant to Byzantine faults. In order to achieve that, we will leverage
BFT-SMaRt[16] and our system will be a service implemented with that library.
As a result, our Adaptation Manager will inherit BFT-SMaRt’s architecture and
machinery.

4.1 Overview

The proposed architecture for the Adaptation Manager service is depicted in
Figure 5. The Metrics Storage Service is responsible for storing metric values sent
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by the Monitoring System. It is, therefore, the bridge between our system and the
Monitoring System. On the other hand, the Adaptation Coordinator makes the
bridge between our system and the Managed System. It will be responsible for
communicating with the Managed System and coordinate the adaptations. The
Policy Manager is responsible for managing the policies life-cycle and execution,
and the Model Reviser has the task of refining the policies models. We will now
look further into each of those modules.

Fig. 5: Architecture of the proposed Adaptation Manager and its interactions
with the Monitoring and Managed Systems.

The Metrics Storage Service can be seen as the entry point of the service, as
the other modules will execute in reaction to the arrival of new metric values
(which we will refer to as just values, from now on). When new values arrive
from the Monitoring System, they are stored in the Metrics Storage Service. The
Policy Manager and Model Reviser modules are notified and can act upon those
values. To prevent the Metrics Storage Service from growing indefinitely, older
values should be removed. This process will be triggered by the Model Reviser
and discussed below.

The Policy Manager is responsible for handling the policies and is divided
in two big modules. The Policy Lifecycle Manager provides the system with
the ability of having a dynamic set of policies as it allows the installation and
removal of policies. This provides the system with great flexibility as an operator
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can change the policies in runtime, without the need of restarting the system.
The Policy Execution Engine is responsible for enforcing the policies. Given a set
of policies, this module will strive to satisfy them by ordering adaptations. This
module is highly dependent on the type of policies supported by our system – it
is very different to satisfy Event-Condition-Action rules compared to enforcing a
limit on some key metric, for instance. This module must implement an algorithm
able to cope with all the features of our policy specification language. Although
an exact specification of such language is still not defined, we present some key
features we strive for in Section 4.2.

Once the Policy Manager orders an adaptation, the Adaptation Coordinator
is responsible for communicating the decision to the Managed System. It is
this module’s job to prepare the messages and mediate the communication with
the Managed System. After sending the necessary messages, this module will
expect responses from the Managed System so it can be sure the adaptation
succeeded. In order to handle any arbitrary adaptation, it is possible to associate
an user defined function to each adaptation. That function will be called by the
Adaptation Coordinator when the associated adaptation is triggered, allowing
for a complex coordination process.

With the three modules described above, the Adaptation Manager is able
to work properly. The Model Reviser works orthogonally to the other modules
and uses the values stored in the Metrics Storage Service to refine the prediction
models used by the policies. Its responsibility is highly dependent on the models
used by the policy specification language. To illustrate a possible responsibility of
this module, lets assume the policies were specified using the techniques proposed
by Rosa et al. in [12]. In that language, the models correspond to the impact
functions associated with the adaptations. The Model Reviser module would
therefore use the knowledge gathered in the Metrics Storage Service to refine the
impact functions – it is notified when an adaptation is made and uses the changes
in the metrics, before and after the adaptation, to refine the impact functions.
With this method, the impact functions would become more accurate as they
are refined using real data, allowing the system to decide better adaptations.
When this module uses data from the Metrics Storage Service and detects it will
not longer use that data for other revisions, it orders that service to delete the
unneeded data, so it does not grow indefinitely.

4.2 Policies Specification

Although the exact specification of the language used to express policies is
still not defined, there are some key characteristics we would like it to have.
Most of these characteristics are based on the systems and techniques discussed
in Section 3 and are as follow:

– Focus on business goals. We want the language to allow the user to focus on
the business goals intended for the system.

– Event-Condition-Action. In some cases, the user may want to decide exactly
what the system should do, therefore supporting this kind of policies is an
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interesting feature. For instance, a system expert may want to decide what
adaptation should be executed when a replica is faulty instead of trusting a
complex decision process to decide what adaptation should be done.

– Boundaries for key metrics. Allowing the user to specify ranges of acceptable
values for some key metrics. The system should then try to keep this metrics
in the given range.

– Optimization policies. The objective is to inform the system of what is the
optimal value for a given metric, so it can find adaptations that make the
metric approach the given value.

– Graceful Degradation. Specifying an order on the policies allows the Adap-
tation Manager to ensure maximum effort in fulfilling those more important
business goals.

– Non-determinism. As Cámara et al. discussed[17], sometimes we do not have
all the variables to predict the impact of an adaptation. Being able to cope
with that uncertainty would be a desired feature for our language. One ex-
ample might by moving a replica to a different machine (while keeping its
IP) – if that replica happens to be the leader the system will need to perform
a view change; otherwise if there are less than f faulty replicas, the system
can cope with that transition period without a view change. With the work
of [19], new non-determinism cases can be learnt even if the operator does
not think of them.

Most of the desired characteristics for our language are covered by the lan-
guage proposed by Rosa et al. in [12], making it a good candidate to be extended
in order to support non-determinism and event-condition-action policies.

5 Evaluation

In order to evaluate our system, we will need a managed system able to
adapt and a monitoring system. Fortunately, other members of our research
group are developing such systems. The managed system will be able to perform
replica set reconfigurations (as it will also be developed using BFT-SMaRt)
and protocol switching adaptations. The monitoring system will provide several
metrics including latency, throughput, number of concurrent clients, request size,
faults, among others.

To evaluate our proposal we will implement the Adaptation Manager de-
scribed in Section 4 and develop a set of policies. We will then use the managed
system and monitoring system described above. The managed system will be
subjected to heterogeneous execution environments (including faulty ones). This
allows our Adaptation Manager to have trigger various adaptations, based on
what it thinks is the best for the current conditions. We will measure:

– The time needed between receiving the data and deciding on a adaptation.
This will determine how fast the managed system can react to changes in
the execution envelope.
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– The quality of the chosen adaptations. This will be measured by evaluating
changes in key metrics, such as latency and throughput. It will reflect the
quality of the method used for choosing adaptations, the quality of the model
reviser and the quality of the developed policies set.

As we are interested in a robust Adaptation Manager we will also test how
it performs under faults – either faults of own replicas or faults in the managed
system or monitoring system.

6 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

7 Conclusions

Since the Byzantine Generals Problem was introduced, several BFT Proto-
cols were proposed. PBFT was one of the first protocols exhibiting an acceptable
performance operating on asynchronous systems. After it was proposed, several
variations emerged, each one with better performance in specific system con-
ditions. Due to the fact that each protocol is tuned to be optimal in different
system conditions, it is fundamental to be able to adapt BFT systems.

The techniques introduced in [8] allowed for the creation of Aliph – a BFT
system able to switch the BFT protocol in runtime. Unfortunatly, Aliph only
switched protocol based on predefined static conditions. Adapt[9] further ex-
plored the ideas introduced in Aliph, being able to switch the BFT protocol
based on the predicted performance of other protocols under the current system
conditions. Despite that, Adapt lacks a good and expressive policy specification
system.

There are several techniques used in non-BFT adaptive systems that may
improve the quality of a BFT Adaptation Manager. Cámara et al. proposed
a language to specify policies, based on impact functions, able to handle non-
determinism[17]. Using machine learning techniques, the impact functions can
be refined, allowing for more accurate models of the adaptations[19]. Rosa et al.
proposed a language to specify policies as an ordered set of goals. This allows the
system to degrade gracefully as it will ensure maximum effort satisfying goals in
the given order.
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We propose the construction of a BFT Adaptation Manager. Our work will
build on an early prototype[10] built using BFT-SMaRt[16] – a BFT library to
create BFT systems. We aim at improving the policies expressiveness by taking
inspiration in the techniques discussed in this report.
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Instituto Superior Técnico, Universidade de Lisboa (November 2016)

20. Bradley, P.S., Mangasarian, O.L.: k-plane clustering. J. of Global Optimization
16(1) (January 2000) 23–32

25


