
Policy-Based Adaptation of Byzantine Fault Tolerant Systems
(extended abstract of the MSc dissertation)

Miguel Neves Pasadinhas
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Malicious attacks, hardware failures or even op-
erator mistakes may cause a system to behave in an arbitrary,
and hard to predict manner. Byzantine fault tolerance (BFT)
encompasses a number of techniques to make a system robust
in face of arbitrary faults. Several BFT algorithms have
been proposed in the literature, each optimized for different
operational conditions. For that reason, adaptive systems able
to adapt BFT systems to the current operational conditions
have been proposed but unfortunately all lack expressive
mechanisms to specify adaptation policies. Other systems
provide expressive mechanisms to specify those policies but
lack important abstractions for BFT systems’ adaptation.

Considering this context, in this thesis we present an
adaptation policy specification language that targets Byzantine
fault tolerant systems. In addition, we present a robust engine
that, given a policy written in the proposed language, is able
to decide the best adaptations to guide a managed system in a
path of accordance with its business goals.

I. INTRODUCTION

Due to the growth of cloud and on-line services, building
dependable, fault tolerant systems is becoming more chal-
lenging. This happens because cloud and on-line services
are more complex and more difficult to protect. Thus, they
are more prone to malicious attacks, software bugs or even
operator mistakes, that may cause the system to behave in an
arbitrary, and hard to predict manner. Faults that may cause
arbitrary behaviour have been named Byzantine faults, after
a famous paper by Lamport, Shostak, and Pease[1]. Due to
their nature, Byzantine faults may cause long system outages
or make the system behave in ways that incur in significant
financial loss.

State-machine replication[2] is a general approach to build
distributed fault-tolerant systems. Implementations of this
abstraction that can tolerate Byzantine faults are said to offer
Byzantine fault tolerance (BFT) and typically reply on some
form of Byzantine fault-tolerant consensus protocol.

The exact number of replicas that are needed to tolerate f
Byzantine faults depends on many system properties, such
as on whether the system is synchronous or asynchronous,
what type of cryptographic primitives are available, etc. In
most practical settings, 3f+1 replicas are needed to tolerate
f faults. Thus, BFT protocols are inherently expensive. It
is therefore no surprise that after the algorithms proposed
in [1], a significant effort has been made to derive solutions

that are more efficient and can operate on a wider range of
operational conditions, such as[3], [4], [5], [6], [7].

Unfortunately, despite the large number of solutions that
exist today, there is not a single protocol that outperforms
all the others for all operational conditions. In fact, each
different solution is optimised for a particular scenario, and
may perform poorly if the operational conditions change.
For instance, Zyzzyva[6] is a BFT protocol that offer very
good performance if the network is stable but that engages
in a lengthy recovery procedure if a node that plays a special
role (the leader) is suspected to have failed.

Given this fact, researchers have also started to design
adaptive BFT systems, that can switch among different
protocols according to the observed operational conditions.
One of the first systems of this kind is Aliph[8]. An impor-
tant contribution of Aliph was that it introduced a precise
property that BFT protocols must exhibit in order to support
dynamic adaptation, named abortability. On the other hand,
the number of possible adaptations, and the sequencing of
those adaptations, is very limited in Aliph: the system is only
able to switch among a small set of pre-defined protocols in
a sequence that is hardcoded in the implementation. Other
authors have extended the approach in an attempt to support
a richer set of adaptations, and to provide the user more
control on how the system adapts, depending on the specific
business goals of a given deployment[9]. Still, even those
approaches suffer from several limitations.

An adaptation policy is a specification that captures the
goals that the system aims at achieving and that guides
the selection of the adaptations that are better suited to
achieve those goals under different conditions. This thesis
describes a new language to specify adaptation policies
alongside an implementation of a robust engine able to parse
that language and make informed decisions on which set
of adaptations better suit the current executional envelope.
In addition, it provides an experimental evaluation of the
engine’s performance.

II. RELATED WORK

After the initial BFT protocols initially proposed in [1],
several more efficient and able to work in a wider range
of conditions were derived [3], [6], [7], [4]. Unfortunatly,
each protocol is designed to show better performance under
certain execution conditions, reveeling poor performance

1



outside those conditions. To the best of our knowledge, there
is no single BFT protocol able to outperform all other under
every conditions. For that reason, adaptive BFT systems
able to change their behaviour according to the execution
conditions have been designed.

One of the first systems able to switch the BFT protocol
due to variations in the executional envelope was Aliph [8].
Unfortunatly, this system has a single adaptation policy,
consisting in replacing the BFT protocol whenever certain
conditions are met. The available protocols are ordered in a
ring and the protocol switching always follows that order,
i.e. when a protocol is deactivated, the one that follows it
in the ring is activated. The conditions defining when each
protocol should be deactivated are hardcoded in the system
and capture the programmers knowledge of the protocols
performance. There is no support for defining new policies
in Aliph. Another downside is that Aliph is a monolithic
system, meaning that the system itself decided its own
adaptations.

Adapt[9] is a BFT system with a three sub-systems
architecture, namely: the target system which will be adapted
(BFTS), an event system (ES) responsible for monitoring
the BFTS and a quality control system (QCS) that uses
the data gathered by the ES and decided adaptations. This
architecture is inspired by the control sequence MAPE-
K [10], frequently used in non-monolithic adaptive systems.
Despite the BFTS being BFT, neither the ES nor the QCS
are. Like Alpih, the only available adaptations are protocol
switching. Adapt however, introduced an intermediate step to
decide which protocol should be the next to execute. Adapt
uses machine learning techniques to predict the value of key
metrics if each protocol was executing under the current
executional conditions. The user must specify a weight to
each of those key metrics and the protocol with the best
weighted average will be chosen for execution. Although
slightly configurable, the adaptation policy of Adapt is still
very simple. It is hard to map the business goals of the
BFTS into a simple weight vector, making this configuration
mechanism very hard to tune.

ByTAM [11] was a prototype that followed a three sub-
system architecture, similar to Adapt, with a managed sys-
tem, a monitoring system (MS) and an adaptation manager
(AM). Unlike Adapt, all three subsystems were BFT. By-
TAM allows the specification of generic adaptations, being
the only of the three not limited to protocol switching.
Adaptations are specified in event-condition-action form and
the policy goals are implicitly encoded in those rules. Adap-
tations require the user to implement a Java interface, using
Java code. Although very flexible, this approach lacks good
abstracts to facilitate writing adaptation policies, therefore
loosing expressiveness.

More expressive and flexible techniques to specify adap-
tation policies can be found in the literature. For instance,
Stitch [12], [13] allows the specification of tactics (adaptive
primitives with actions and expected impacts) that cope with
the non-determinism associated with adaptations. The non-

determinism is captured by specifying the tactics impacts
using discrete time Markov chains. Tactics can be grouped
in strategies, tree structures that define complex operations
that can be executed on the system. The best strategies
are selected by the system, recurring at the expect impacts
of their tactics in key metrics. Key metrics have a weight
associated and the system tries to maximize the weighted
average of the key metrics. Liliana et al. [14] proposed a
novel way of specifying the managed system’s goals. Instead
of maximizing a single expression that typically involves
key metrics and weights associated with them, their system
allows the specification of several, ordered goals. Goals
function as filters, and the possible adaptations are tested
(in order) against every goal, until the best one is selected.
If an adaptation fails to pass a goal, it is removed from the
set of possible adaptations to be executed. Although these
two languages provide expressive mechanisms to specify
adaptation policies, they lack crucial abstracts for BFT
adaptation. As an example, none of these languages is able
to specify an adaptation that selects the fittest replica to be
the leader of the BFT protocol.

III. POLICABY

This section presents Policaby, a reliable adaptation man-
ager with a novel language for adaptation policy specifica-
tion. Section III-A presents the system architecture assumed
by Policaby, Section III-B details the novel adaptation policy
specification language made for Policaby and finally Sec-
tion III-C describes important protocols and algorithms used
by Policaby during execution.

A. System Architecture

Policaby is an adaptation manager designed to decide
adaptations that guide a BFT managed system in a path
of accordance with its business goals. Policaby is itself
designed to be able to tolerate Byzantine faults. In order to
decide which adaptations better suit the managed system at
each moment, it is necessary to have metrics that character-
ize the execution environment. For that, Policaby relies on
metrics gathered by a monitoring system. The monitoring
system is responsible for managing a set of sensors able
to collect data about the managed system and aggregating
the sensor data into useful metrics. The metrics are then
used by the Policaby’s engine to make an informed decision
about which adaptations better suit the current executional
envelope.

Policaby makes the following assumptions regarding the
monitoring system:

• It provides a Byzantine fault tolerant service that ex-
poses metrics’ values.

• It provides a Byzantine fault tolerant timer service that,
upon a request from Policaby, notifies it when the
requested timer expires.

Since we are building a reliable, Byzantine fault tolerant
adaptation manager, all Policaby’s replicas must execute
using the same data, however the monitoring system is

2



constantly gathering data. We need to ensure that all Poli-
caby’s replicas have access to the exact same values for each
metric. For that reason, the metrics’ values service should
be versioned and, if all Policaby’s replicas use the same
version id, then all can make the same decision (given that
Policaby’s decision algorithm is deterministic, which it is).
We now reduced the problem of all replicas using the same
data to to the problem of all replicas using the same version
id to query metrics. This is solvable using the timer service.

Policaby’s execution is triggered by the reception of a
timer event by the monitoring system’s timer service. That
timer message must have the id to be used to query the
metrics.

As an optimization, Policaby’s replicas were designed to
execute on the same process as the monitoring system’s
replicas. This prevents consensus executions and reduces
the latency of metrics requests. Each Policaby’s replica
communicates only with the monitoring system’s replica
hosted by the same process. If monitoring system’s replica
is not correct, than Policaby’s replica won’t be correct as
it will trust the data provided by it. On the other hand, if
the monitoring system’s replica is correct, it will provide
correct data to Policaby and all correct Policaby’s replicas
will produce the same results. This means that Policaby’s
replicas do not need to coordinate with each other, avoiding
the usage of consensus protocols (however the monitoring
system still needs to use consensus before sending messages
to Policaby’s replica, to agree on a version id, for instance).
Since faulty replicas can produce incorrect results, the man-
aged system must ensure that it only executes an adaptation
if it received that request from a big enough quorum of
Policaby’s replicas.

B. Policaby’s Language

One of the main goals of Policaby was the design of
an expressive language to specify adaptation policies. This
section details the novel language designed for Policaby,
firstly by giving an overview example of the language and
then by detailing each construct available.

1) Overview: Most BFT protocols resort to a leader
replica and typically the leader’s performance has a signifi-
cant impact on the overall system’s performance. Therefore
a relevant adaptation would be to choose a better leader for
the protocol. For instance, if a BFT system is using Zyzzyva,
in the fast case, the replicas’ communication always involves
the leader (i.e. there are no backup replicas communicating
with one another). Selecting the replica with the least latency
to the remaining replicas to be leader would therefore have a
positive impact on the time taken to coordinate the processes.
Let’s name that time t coord and assume it is inversely
proportional to the leader’s latency to the other replicas
(a simplification made for ease of exposition). Let’s also
assume that the leader changing algorithm has a 10% chance
of failing, resulting in no changes in the system.

A complete specification of the case above in Policaby’s
language could be:

1 System:
2 Params:
3 leader: Replica
4 protocol: Protocol
5 t_coord: number
6

7 Enum Protocol Instances Zyzzyva, PBFT
8

9 Component Replica:
10 Params:
11 mensurable latency: number
12

13 Adaptation changeLeader:
14 Input:
15 r: Replica
16 Requires:
17 leader != r
18 protocol = Zyzzyva
19 Impacts:
20 [0.90]:
21 t_coord *= r.latency / ledaer.latency
22 leader = r
23 [0.10]:
24 leader = leader
25

26 Goal Minimize t_coord

Listing 1. An example of a policy file.

In this specification, concepts such components, adapta-
tions and goals can be spotted. This section gives a brief
explanation of each but in depth details will be given in
dedicated sections. The specification starts with a System
construct. That construct allows the specification of global
system parameters. For instance, in the example, the system
has a parameter leader of type Replica, another named
protocol of type Protocol and a number t coord.

The types Replica and Protocol are defined immediately
below. In this language, types are defined as Components
which can have Instances and parameters associated with
each instance. If we draw a parallel with object oriented
programming languages, components would be classes. The
Enum construct is just syntactic sugar for defining a Com-
ponent with no parameters and the specified instances.
Instances of components can be created and destructed as
the result of executing an adaptation.

An Adaptation encapsulates an operation and its expected
effects in the system. Adaptations can be parameterized
with components using the Input construct. During runtime,
each combination of inputs will be associated with that
adaptation. We call this process adaptation instantiation.
This means that a single adaptation specification can be
instantiated several times, resulting in multiple adaptation
instances. In this example, the changeLeader adaptation
receives a Replica as parameter. When Policaby instantiates
this adaptation, there will be an adaptation instance for each
Replica instance in the system. Each adaptation instance
would therefore represent changing the leader to a specific
replica. The adaptations must specify its Impacts. This are
predicted changes in some key metrics of the system. This
impacts can have associated probabilities, allowing us to
deal with the non-determinism associated with adaptations’
impacts.

Lastly a single goal is defined for the system: minimizing
the coordination time. As we can see the specified adaptation
is said to have impact in t coord, therefore the adaptation

3



which gives the lowest value for t coord would be selected.
Note that in this case there is a single and simple goal,
making it easy to identify which adaptation instance would
be selected. However, in the general case, there can be
multiple goals, adaptations and components involved. The
algorithms used by Policaby to decide which adaptation
instances better suit the goals will be studied in Section
III-C.

2) Adaptations: Adaptations represent operations that can
be executed over the managed system, resulting in changes
on the operational envelope. Examples of adaptations can be
changing the BFT protocol being used, changing the BFT
protocol leader, adding a replica to the system, removing a
replica from the system, etc.

Each adaptation must have a name that, by good prac-
tices, should identify what the adaptation does. As men-
tioned in the overview, the adaptations are parameterized
by component types. There are no conceptual restrictions
on the number nor the types of the parameters. During the
instantiation of an adaptation, each combination of inputs
is generated resulting in that many adaptation instances. For
instance, if an adaptation specifies two parameters r1 and r2
of type Replica and there are 4 Replica instances during the
instantiation process, 4∗4 = 16 adaptation instances will be
created, one for each pair of Replicas.

Some adaptations may only work in certain conditions
and it is possible that not all combinations of input are valid.
For that reason, adaptations can specify requirements in the
form of conditions. For instance, in the example of having
two parameters of type Replica, maybe the user needs to
ensure that both parameters are distinct. In that case, she can
specify a requirement (under the Requires construct): r1 !=

r2. This prevents having an adaptation instance in which
both Replica parameters are the same. In the example in
Listing 1, our adaptation assumed that the current protocol
in use was Zyzzyva therefore we stated as a requirement:
protocol = Zyzzyva. In that example we also made sure that
we don’t switch the leader to a replica that is already the
leader: leader != r.

Adaptations must detail the expected changes in the
operational envelop. However, as defended in [12], there
is uncertainty in the effects produced by an adaptation. In
order to cope with that non-determinism of the predicted
impacts, several branches of impacts can be defined. A
branch simply aggregates a collection of impacts with its
expected probability. The sum of the probabilities of all
branches must be equal to 1. This allows the specification of
impacts that depend on unknown variables. As an example,
let’s assume that changing from PBFT to Zyzzyva when the
leader latency is low results in twice the throughput 90% of
the cases but the remaining 10% don’t affect the throughput
at all. This may occur due to a variable that we are not
capturing. Specifying the impacts in these non-deterministic
branches, it can be stated that only 90% of the times
we expect the throughput to double: [0.9]: throughput =

throughput * 2. In Section III-C we will discuss how these

probabilities affect the choice of which adaptation should
be selected. An adaptation can only specify impacts on
objects in its scope (namely, global parameters and instances
passed as input). In addition, it can also specify the creation
and destruction of component instances. To give a practical
example, let’s assume that a Replica component has a cost
parameter. We can specify the creation of a new Replica
with cost 2.57 as: new Replica [cost: 2.57].

Frequently, after executing an adaptation, the managed
system may take some time to stabilize. During that period,
the metrics gathered by the monitoring system are most
likely very temporary. Decisions based on those transient
values should be discouraged. For that reason, the language
allows the specification on a stabilization period for each
adaptation: the expected time, after executing that adapta-
tion, that it takes for the managed system to stabilize its
operation and the monitoring system data to be reliable
again.

Finally, an adaptation may have an adaptation script
associated. This script is written in Groovy, a dynamic
programming language for the Java platform. We chose
Groovy due to its synergy with the Java, the language used in
Policaby’s implementation. This means that Groovy scripts
can access all the libraries and APIs provided by Policaby,
making it easier to write adaptation scripts. For instance,
Policaby provides easy to use APIs to create and remove
component instances as well as multicast signed messages
to all managed system’s replicas. If no adaptation script
is provided, the default action of executing an adaptation
instance is to multicast the adaptation name and its concrete
input instances to each replica of the managed system.

3) Components and Instances: As discussed above, adap-
tations can be parametrized by formal parameters whose
types are components. Components were introduced in the
language to solve two fundamental problems:

1) Specifying instantiable types whose instances can
change overtime.

2) Specifying enumerated types.
One example of an instantiable type is Replica. The

number of replicas in the system may vary overtime (as
a result of adaptations that change the replica set) and each
replica may have its configuration changed overtime. An
example of a useful enumerated type in the context of BFT
systems is the BFT protocols themselves. Protocol can be a
type whose instances represent the specific BFT protocols.
Although no changes to those instances are expected, it is
useful to represent them as a type so that the user can specify
a system property representing the protocol being used, for
instance.

Components must have a name and can have parameters
associated. Instances are concrete occurrences of a compo-
nent. Each instance has an set of values associated with its
component parameters independent from the other instances,
i.e. given two instances i1 and i2 from the same component
C with a parameter p, i1.p is an independent value from
i2.p. Despite mentioning that components were introduced

4



to specify instantiable and enumerated types, the language
does not distinguish between them. The Enum construct is
syntactic sugar for specifying a component with the Enum’s
name, no parameters and creating instances with the given
names.

Component parameters can be either monitored or non-
monitored. A parameter is considered to be non-monitored
unless stated otherwise with the keyword monitored. Mon-
itored parameters have values provided by the monitoring
system. For instance, the average latency of a replica to the
other replicas should be a monitored parameter as its value
does not depend solely on Policaby’s decisions. For that
reason, Policaby can only know the value of those parame-
ters if the monitoring system provides a value for them. On
the other hand, the value non-monitored parameters depend
solely on Policaby’s decisions. For instance, if we assume
the cost of a replica is defined by the replica type (e.g. micro,
small, medium, etc.) then its value is defined the moment
the replica is added to the system and only changes by
Policaby’s order. In that case, the replica’s cost does not
need a value provided by the monitoring system and should
be a non-monitored system. If the replicas’ cost is instead
determined and updated by a cloud provider each hour (as
an example), Policaby has no way of knowing the current
value unless it is a monitored parameter.

4) System Construct: Global parameters and configura-
tions can be specified in a special System construct. The
purpose of this construct is to allow the characterization
of the current system configuration (for instance, the BFT
protocol being used) and hold system wide metrics as the
number of replicas in the system. Due to their nature,
system parameters are always in scope when evaluating
adaptation’s requirements, adaptation’s impacts or other any
other expressions. This fact is used in the example given in
Listing 1, where the adaptation changes a system parameter
leader and uses another system parameter, namely protocol,
in its requirements.

Besides specifying global parameters of the system, in-
ternal configuration options of Policaby can be set within
this language construct. To give a couple of examples, it
is possible to configure the adaptation selection algorithm
(as will be discussed in Section III-C) and the minimum
period before selecting adaptations. As discussed above,
adaptations can specify a stabilization period. The time
specified is in the system configuration is considered to
be the minimum time between selections because Policaby
executes after the maximum between the configuration time
and the stabilization period of the selected adaptation passes.

5) Key Performance Indicators: As surveyed in Chapter
II, configurable adaptive systems base their decisions on key
performance indicators (KPIs). In the scope of Policaby, all
global parameters and instance parameters are considered
KPIs. There are, however, some relevant indicators that
are not easily captured by those KPIs. To support with an
example, suppose that each replica has an associated cost.
Despite each individual cost being a KPI, the total cost
of all replicas could not be retrieved. To solve that issue,

compound KPIs were introduced.
Compound KPIs can either be an expression or an ag-

gregation of component instance’s parameters. There are
four functions available to aggregate component instance’s
parameters, namely the sum, average, minimum and max-
imum of those values. Compound KPIs do not depend on
any specific component instance therefore their scope can
be global just like system parameters. Examples of the
usage of compound KPIs can be seen in Listing 2. As a
note, the fifth KPI in the example is just an expression: the
invocation of a function that will return the bigger of its two
arguments. Expressions in Policaby are very expressive and
What constitutes an expression will be detailed in Section
III-B6

1 KPI total_cost Is Sum Replica.cost
2 KPI max_latency Is Max Replica.latency
3 KPI min_latency Is Min Replica.latency
4 KPI avg_latency Is Avg Replica.latency
5 KPI max_latency_deviation Is MAX(max_latency - avg_latency

, avg_latency - min_latency)

Listing 2. Example of compound KPIs.

6) Expressions: Expressions are used across the lan-
guage, for instance in the specification of adaptation require-
ments and impacts, compound KPIs and goals. Expressions
represent numeric and boolean values, however their value
is always a number. The number 0 is considered to be
false value and all other numbers are considered to be true.
Although all non-zero numbers are considered to be true, the
language guarantees that boolean expressions always have
the value 1 if they are true. For instance, (3 > 2) == 2 is
guaranteed to be zero (i.e. false) as (3 > 2) would evaluate
to 1 and 1 == 2 is false. The bellow described exactly what
is considered an expression.

The grammar details the available operators. The language
provides the typical operators any programmer as grown
to expect (== and = are alias, as are ! = and <>).
However, all operators are binary and due to that fact, there
are a couple frequent operators missing from this language,
namely the boolean not operator and the unary minus oper-
ator. This is an unfortunate consequence of only supporting
binary operators. The unary minus operator problem can
be overcome by the use of (0 − x), being the same as
−x, and the not operator by the use of a function. There
are several functions implemented, for instance the NEG
function which operates as a logical not of its single ar-
gument. Other implemented functions include mathematical
functions (e.g. trigonometric functions, rounding functions,
logarithms, square root, absolute value, etc.), minimum
and maximum functions (which take an unbound number
of parameters and return the minimum or the maximum,
respectively) and an IF function. The IF function has a
behaviour similar to the conditional ternary operator found
in many programming languages: it takes an expression as
the first argument and if its value is true (i.e. not zero) then it
returns the second argument; otherwise the third argument is
returned. Listing 3 provides examples of valid expressions.

1 MAX(100, MIN(avg_latency, 0.6 * max_latency))

5



2 IF(replica.isActive, replica.cost, 0)
3 ROUND(avg_latency, 2)
4 NEG(TRUE) == NEG(NEG(FALSE))

Listing 3. Example of valid expressions.

7) Goals: Policaby’s objective is to select adaptations
that guide a managed system in path of accordance with its
business goals. In order to that it is fundamental to capture
what those business goals are. Policaby improves on the
techniques used in [14], by using an order list of goals able
to cope with the non-determinism of adaptations.

The techniques proposed by Liliana et al. [14] generalizes
the typical single goal of maximizing an expression by
allowing the definition of several ordered goals. Policaby
extends the ordered-goal based approach of defining intro-
ducing mechanisms able to deal with the non-determinism
(absent from Liliana’s et al. work).

There are two types of goals: exact and optimization.
Exact goals consist of an expression. They clearly define
states of conformity and nonconformity. If evaluating the
goal expression results in a false value then the state is
not in conformity; otherwise it is. This type of goals are
very useful to express bounds to certain KPIs. For instance
we may place an upper bound on the replica’s cost, Goal

total_cost <= 3, the cost cannot be bigger than 3 Euro per
hour. An important note to make is that units of the KPIs
are responsibility of the user – to Policaby they are just
numbers.

Optimization goals on the other hand do not define states
of conformity and nonconformity but an order on those
states. Which adaptation instances are selected depend on
the value of all other adaptation instances being tested. For
instance, if we are minimizing the cost we must first order
all adaptation instances by the value of total cost and only
then we know which one minimizes the value. If nothing
else is specified, these goals select the all the adaptation
instances that maximize or minimize (depending on the
goal type) the expression. Using the cost example, if the
minimum value for total cost is 2.2, all adaptations with
total cost > 2.2 will be excluded. In certain situations
this can be seen as unwanted behaviour as for instance an
adaptation instance with total cost equal to 2.21 would be
excluded and its value is not that worse than the minimum.
For that reason, optimization goals can specify an equiva-
lence range, a number denoting a radius in which values
for the expression are considered equivalent and therefore
accepted. If the equivalence range of the cost goal is 1 and
the minimum value 2, then all adaptations instances that
evaluate total cost to a value in the interval [2, 2+1] would
be accepted, mitigating the problem mentioned above.

It has been mentioned that Policaby uses adaptation
instances’ impacts to evaluate the goals expressions, how-
ever the impacts are non-deterministic. As we’ve seen in
Section III-B2, adaptations state their impacts in branches
with associated probabilities. In order to cope with that
non-determinism, exact goals can specify a confidence value
c ∈]0, 1], meaning we want Policaby to guarantee that goal

with probability greater than or equal to c. In order to pass
an exact goal, the probability of the branches that pass that
goal must be greater than or equal to c. If no confidence
value is specified, it is assumed to be 1. Optimization goals
on the other hand use the average of the expression value on
each branch, weighted by its probability. Listing 4 provides
examples of goals.

1 Goal total_cost < 3 Confidence 0.9
2 Goal total_cost < 5
3 Goal Minimize total_cost EquivalenceRange 2
4 Goal Maximize 0.4 * throughput + 0.6 * latency

Listing 4. Example of goals.

8) Strategies: The decision algorithm of Policaby
chooses a single adaptation instance to be performed. This
method however prevents Policaby from detecting sequences
of adaptations that may improve the managed more than a
single adaptation. As a practical example, suppose there are
two adaptations: (1) adding a new replica to the managed
system and (2) switching the BFT protocol’s leader replica.
Using the constructs described so far and given that Policaby
selects a single adaptation, each time Policaby executed its
decision algorithm with would check whether or adding a
new replica or switching the BFT protocol leader (either
one or the other, exclusively) would improve the managed
system, in terms of its goals. Let’s assume that, in this
scenario, adding a new replica do the system would violate
the most important goal and, as a consequence, would not
be selected. However, adding that replica and changing the
leader to it would pass all goals. Despite that possibility,
Policaby would fail to add the replica as it would only look
for the local maximum, and adding a new replica is not the
action with the most immediate return.

To overcome this problem we introduced strategies. A
strategy is a tree defining possible adaptations that may
be benefic to perform in sequence. In the example below
the tree would degenerate in a simple sequence, but in the
general case we could express several alternative adaptations
to execute after adding the new replica.

Every strategy has a root node and other following nodes,
connected by edges. Each node has an associated adaptation
and edges have guard expressions. An edge is only consid-
ered to be a possible path if its guard expression evaluates to
true. A possible specification of the strategy used to motivate
this construct can be found in Listing 5.

1 Strategy NewReplicaThenSwitchLeader:
2 root: newReplica -> [true, leaderNode]
3 leaderNode: switchLeader -> done

Listing 5. Example of Strategy in Policaby.

Strategies do not represent binding contracts for Poli-
caby. This means that if Policaby selects the newReplica
adaptation due to this strategy, it is not guaranteed that
the switchLeader adaptation would be performed next. The
strategies only prevent the root adaptation from being ex-
cluded as the result of failing some goal, if the strategy itself
can pass the goal (in Section III-C3 we will study what it
means for a strategy to pass a goal). The reason supporting

6



this decision of strategies not being binding contracts is
simple: Policaby has a decision algorithm able to select
the best adaptations under the current system conditions. If
strategies were binding contracts, some of the power of that
algorithm would be lost. In the example if, after adding a
new replica, switching the leader is still the best adaptation
to perform, then it will, for sure, be chosen. However, if the
algorithm detects a better adaptation to be executed, then it
will be chosen instead. If Policaby were to be bound to the
strategies, less favourable paths could be taken.

C. Policaby’s Engine
In addition to creating this new language for adaptation

policies specification, an engine able to read a policy file
written in that language and select the best adaptations based
on that information was developed. This section details the
implementation of the decision algorithm used by the engine
to select adaptation instances and some of the protocols
supporting that algorithm.

1) Decision Algorithm: Policaby’s ultimate goal is to
decide (and then execute) adaptations. This decision process
is made in accordance with the managed system goals,
as described in Section III-B. An high level view of the
decision algorithm is as follows: (1) Adaptations are in-
stantiated into a Candidates collections; (2) a special φ
adaptation instance is added to the Candidates collection;
(3) Candidates are filtered based on their requirements; (4)
the expected states of the Candidates is computed; (5) the
goals are used as filters to select the best candidates.

In more detail, the decision protocol starts by instantiating
all adaptations into their respective adaptation instances.
A special φ adaptation instance is added to the list of
candidate adaptation instances. That instance corresponds to
an adaptation that performs no action and has no impacts. Its
presence guarantees that Policaby only selects an adaptation
instance if it improves over not executing one at all. All
adaptation instances that fail to pass their requirements are
then removed from the set of candidates. After that selection,
all the candidate adaptation instances have their impacts
computed. This process iterates over the impact functions
of each candidate, computes the expected state after ex-
ecution and stores those predictions within the adaptation
instance object. Predicting the impacts after validating the
requirements guarantees that computational power will not
be spent computing the predicted state of adaptations are not
available for selection.

The remaining part of the algorithm consists in choosing
which adaptations provide a better predicted state according
to the goals. The goals are in the same order as specified
in the policy file. Starting from the first (and therefore most
relevant) goal, Policaby tests which adaptation instances pass
that goal and filter out the ones which fail. If no candidate
can pass a goal, then it is ignored and all candidates proceed
to the next one. If a single adaptation instance can pass
some goal, then it is the better one and the algorithm can
terminate. If all goals are tested and there are still more
than one adaptation instances in the candidates collection,

then they all are considered equivalent and a deterministic
function chooses one amongst them to be executed.

As Policaby is intended to execute in a BFT system,
all functions must be deterministic. This means that if we
execute this algorithm in different replicas, the outcome
must be exactly the same. For that reason, only deterministic
data structures and functions were used to implement this
algorithm.

As hinted in Section III-B2, instantiating an adaptation
is the process of associating each combination of concrete
component instances with the formal input parameters of the
adaptation. An adaptation with no formal parameters results
in a single adaptation instance. For instance, an adaptation
with two formal parameters p1 and p2 of a type T that
has 5 instances results in 5 ∗ 5 = 25 adaptation instances.
It is important to note that since p1 and p2 are of the
same type, 5 of the 25 instances will have p1 = p2. In
order to achieve only distinct pairs of T , a requirement
specifying p1 6= p2 should be specified. Testing if an
adaptation instance fails to meet its requirements is very
straightforward. Since requirements are expressions, we can
just evaluate each one, and if any requirement expression
evaluates to zero (i.e. false), then that adaptation instance
fails its requirements. Computing the the adaptation instance
is the process of evaluating each expression specified on its
impacts and saving the result. This prevents evaluating the
same expression over and over, saving computing power.
Testing whether or not an adaptation instance passes a goal
is a far more complex protocol, worthy of its own section,
but in order to understand it we need first to study how
strategies work.

2) Strategy Instantiation Protocol: As studied in Section
III-B8, strategies allow the user to represent sequences of
adaptations in the form a tree. It was also mentioned that
strategies are used to prevent the root node’s adaptation
instance from being excluded due to failing to pass a goal. It
is therefore fundamental to understand how strategies work
before detailing the goal testing protocol. The definition of a
strategy is a tree whose nodes are adaptations and the edges
may have associated guard conditions.

Figure 1. Visual representation of a Strategy S

Just like adaptations, strategies must be instantiated: its

7



nodes are adaptations and adaptations must be instantiated,
resulting in strategies needing to be instantiated as well.
In order to describe the strategy instantiation protocol, the
abstract strategy S represented in Figure 1 will be used.
A, B, C and D are adaptations and B, C and D result
in 3, 3 and 2 adaptation instances, respectively. Note that
the number of A instances is not relevant as the root node
will be associated with an instance from the Candidates
collection from the decision algorithm. In order to instantiate
the strategy, Policaby needs to instantiate all possible paths
of adaptation instances.

Figure 2. Visual representation of a Strategy S’s instance.

The resulting strategy instance can be seen in Figure 2,
where Xi denotes instance i of adaptation X . Adaptation
D had to be instantiated three times, one for each instance
of B. This combinational explosion is however needed as
the expected impacts of A0 → B1 → D1 may differ from
A0 → B2 → D1, for instance. The expected impact of any
adaptation instance in the strategy instance tree is computed
by merging the expected state of its predecessor with the
evaluation of its impact functions in the context of the
predecessor predicted state. For instance, if A0 states that
some KPI k would decrease to half, B1 that k would become
k + 10 and D1 that k doubles, the predicted value for k at
A0 → B1 → D1 would be k = ((k/2) + 10) ∗ 2.

This instantiation becomes more complex due to the
fact that impacts are split in branches. We need to predict
each branch as many times as the number of branches
of the predecessor adaptation instance and multiply their
probabilities. For example, if A has two branches with
probabilities 0.4 and 0.6 and B has also two branches with
probabilities 0.1 and 0.9, each Bi, i ∈ {1, 2, 3} will have 4
branches with probabilities 0.4∗0.1 = 0.04, 0.4∗0.9 = 0.36,
0.6 ∗ 0.1 = 0.06 and 0.6 ∗ 0.9 = 0.54. If D has 3 branches,
each Di, i ∈ {1, 2} will have 4 ∗ 3 = 12 branches.

Strategies are the most computational intensive constructs
of Policaby due to this combinatorial explosion of both
adaptation instances and branches and should therefore be
used conscientiously.

3) Goal Testing Protocol: The last step of the selection
algorithm presented in Section III-C1 is to filter the can-
didate adaptation instances using the goals. The protocol

for deciding whether an adaptation instance passes a goal
depends on the type of goal: exact or optimization.

Since exact goals have an associated confidence value c,
Policaby needs to ensure that the adaptation instance passes
satisfies the goal’s expression with a probability greater than
or equal to c. In practice, an adaptation instance will pass an
exact goal if the sum of the probabilities of the branches that
pass the goal are greater or equal to the confidence value of
the goal. A branch is said to pass a goal if evaluating the
goal’s expression in the context of the predicted state of that
branch gives a non-zero value (i.e. true).

If an adaptation instance ai fails to pass an exact goal, it is
possible its strategies may still be able to pass it. Therefore,
if they have not been instantiated yet, all strategies whose
root is the adaptation associated with ai are instantiated with
ai as the root (as described in Section III-C2). There are
two methods available for dealing with strategies and exact
goals – Prune and MatchAll – configurable using the System
construct described in Section III-B4.

Using the Prune configuration and starting from the root
node, nodes are pruned from the strategy instance tree if
they (1) do not pass the goal and (2) all child nodes are
recursively pruned. Basically, this method ensures that if an
adaptation instance does not pass itself the goal, there is a
child adaptation instance that does – meaning there is always
a path from the root to a node that passes the goal. The
pruned nodes are permanently removed from the strategy
instance tree to ensure they are not taken into account in
future goals. Using this method, Policaby assumes that a
strategy passes a goal if, after pruning process, the strategy
instance tree still has nodes. This is considered to be an
optimistic approach to strategies as a single path to success
implies the success of the strategy.

A more conservative method of dealing with strategies
and exact goals is to require that all edges starting in the
root node have a path to success. This corresponds to the
MatchAll configuration. Using this configuration and starting
from the root node, nodes are kept in the strategy instance
tree if (1) they pass the goal or (2) after recursively applying
this MatchAll method to child nodes there is still at least
one adaptation instance associated with each edge of the
strategy tree. Again, the strategy is said to pass the goal if
after applying this method the strategy instance tree still has
nodes. Using the strategy instance tree from Figure 2, at least
one of B1, B2, B3 and one of C1, C2, C3 must be present in
the tree in order to keep A0 in the tree. Using the previous
described Prune method, if one of B1, B2, B3, C1, C2, C3

would be kept in the tree, the strategy instance would be
said to pass the goal. For that reason MatchAll is considered
a more pessimistic approach to dealing with strategies and
exact goals.

Optimization goals try to maximize or minimize expres-
sions. Unlike exact goals, whether a candidate adaptation
instance passes an optimization goal depends on the pre-
dicted states of all other candidates. This happens because
the maximum and minimum depend on the values of all

8



candidates. For that reason, strategies are used from the
beginning when dealing with optimization goals, instead of
just being used whenever a candidate adaptation instance
fails the goal. The algorithm used to decide which of the
candidates pass an optimization goal is described in as
follows: (1) each candidate is associated with a value; (2) the
best value amongst all candidates is found; (3) the candidate
with the best value and all whose values are within the
equivalence range of the best value are selected.

Each candidate is associated with a value. How this value
is calculated depends on how Policaby is configured to deal
with strategies and optimization goals. These options will be
explored below. Once each candidate has a value associated,
the best value is determined (this obviously depends on
whether it is an optimization or a minimization goal) and
all candidates whose value is within the equivalence range
of the best value are selected to pass the goal.

As mentioned, there are several methods to associate
a value with each candidate. One method is to not use
strategies at all. In that case, the value for an adaptation
instance is simply given by the average of evaluating the
goal’s expression using each branch predictions, weighted by
their probability. More formally, if an adaptation instance ai
has n branches, the value of evaluating the goals’ expression
in the predicted state of a branch i is vi and the probability
associated with branch i is pi, then the value attributed to
ai is

∑n
i=1 vi ∗ pi.

The remaining three methods all use strategies to compute
the value that will be associated with the candidates. The
value of leaf nodes of the strategy instance tree is computed
using the method of not using strategies. It is important to
note that edges in the strategy instance tree connect nodes to
lists of nodes (this can be noted in Figure 2). Nodes in the
same list are instances of the same adaptation. That means
that if the path leading to a specific list of nodes is taken,
any of the nodes in the list can be chosen by the selection
algorithm. Due to this fact, we say that the value associated
with a list of nodes is the best value of all nodes in the
list. The remaining available methods correspond to different
functions to aggregate the value of child node lists. The value
of each non-leaf node i is given Best(valuei, childreni),
where valuei is the value associated with the adaptation
instance associated with node i and childreni is some
aggregation of the values of the node lists connected to ni by
an edge. There are two functions available to aggregate node
lists values: Best and Average. The Best method is the more
optimistic of the two, resulting in the best value amongst all
nodes as the value for the root node. The Average method
is less optimistic as by making the average of the node lists
values it takes into account all strategy scenarios.

IV. EVALUATION

In order to evaluate Policaby’s performance, several ex-
periments with different settings were conducted. All ex-
periments times and metrics were measured in a single
Policaby replica, with 8GB of RAM and an Intel Core i7

860 (2.80GHz) CPU. Each presented time correspond to the
average of 100 experiences, as a tentative of diluting outliers.

The time taken by Policaby to run the decision algorithm
was measured. The number of adaptation instances varied
with the experiences, and so did the number of goals.
All adaptation instances had two branches of impacts with
3 impacts functions each. All adaptation instances passed
every goal. This scenario corresponds to the worst case for
Policaby, as every adaptation instance must be tested against
every goal.

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000 30000 35000

Ti
m
e	
(m

s)

Adaptation	Instances

0	Goals 4	Goals 16	Goals 32	Goals

Figure 3. Policaby’s execution time under different settings.

As we can see from Figure 3, the execution time grows
linearly with the increase of goals (given constant number
adaptation instance) and adaptation instances (given constant
number of goals). We can see that Policaby took approxi-
mately 1.3 seconds to execute its decision algorithm with
more than 32500 adaptation instances and 32 goals. A sce-
nario closer to reality would be if not all adaptations passed
all goals. For that we tested the 32 goals with approximately
32500 adaptation instances with different success rates of
the goals. The success rate defines the average percentage
of adaptation instances that pass the goals.

0

200

400

600

800

1000

1200

1400

100% 95% 90% 85% 80% 

Ti
m
e	
(s
)

Goal's	success	rate

Figure 4. Policaby’s execution with different goal success rates.

Figure 4 depicts those experiments. With a still very
high success rate of 90%, the execution time dropped
to half. Strategies are the most expensive constructs of
the language. To access their impact on the number of
computations Policaby needs to perform, we measured the
number of expressions evaluated under different scenarios.
All three scenarios had three adaptations, A, B and C that
were instantiated into 8 instances each. The system had 4
maximization goals, using the Best method for dealing with
strategies. The first test case had no strategy and 210 expres-
sions were computed. Adding a strategy A → B increased

9



the number of computed expressions to 1246. Adding an
extra edge to the strategy, becoming A→ B → C, increased
the number of computed expressions even further to 14966.
From these results we conclude that strategies should be
used mindfully.

V. CONCLUSIONS

Despite several BFT protocols having been proposed in
the literature, each one is optimized for specific operational
conditions. This motivated the design of adaptive BFT
systems, able to adapt to the current executional envelope.
Unfortunately, the existing adaptive systems fail to provide
expressive mechanisms for adaptation policy specification.

This thesis presented Policaby, a robust adaptation man-
ager whose objective is to guide a BFT managed system
in a path of accordance with its business goals. A novel
language was designed to allow the specification of adapta-
tion policies targeting Byzantine fault tolerant systems. This
language provides several mechanisms such as adaptation
parametrization, the ability to cope with non-determinism
and goal based objectives, allowing the user to write easy to
understand and expressive adaptation policies. In addition,
an engine able to read an adaptation policy file in this novel
language and decide which are the best adaptations under
the current conditions was developed.

ACKNOWLEDGMENTS

This work was performed at INESC-ID and was partially
supported by Fundação para a Ciência e Tecnologia (FCT)
through projects with references PTDC/ EEI-SCR/ 1741/
2014 (Abyss) and UID/ CEC/ 50021/ 2013. Parts of this
work have been performed in collaboration with other mem-
bers of the Distributed Systems Group at INESC-ID, namely
Carlos Carvalho, Bernardo Palma and Daniel Porto.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Trans. Program. Lang. Syst.,
vol. 4, no. 3, pp. 382–401, Jul. 1982. [Online]. Available:
http://doi.acm.org/10.1145/357172.357176

[2] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Commun. ACM, vol. 21,
no. 7, pp. 558–565, Jul. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359545.359563

[3] M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,” ACM Trans. Comput. Syst., vol. 20,
no. 4, pp. 398–461, Nov. 2002. [Online]. Available:
http://doi.acm.org/10.1145/571637.571640

[4] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie, “Fault-scalable byzantine fault-
tolerant services,” SIGOPS Oper. Syst. Rev., vol. 39,
no. 5, pp. 59–74, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1095809.1095817

[5] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira,
“Hq replication: A hybrid quorum protocol for byzantine
fault tolerance,” in Proceedings of the 7th Symposium
on Operating Systems Design and Implementation,
ser. OSDI ’06. Seattle, Washington: USENIX
Association, 2006, pp. 177–190. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298473

[6] R. Kotla, L. Alvisi, M. Dahlin, A. Clement,
and E. Wong, “Zyzzyva: Speculative byzantine fault
tolerance,” ACM Trans. Comput. Syst., vol. 27,
no. 4, pp. 7:1–7:39, Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1658357.1658358

[7] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti, “Making byzantine fault tolerant systems
tolerate byzantine faults,” in Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI’09. Boston, Massachusetts:
USENIX Association, 2009, pp. 153–168. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1558977.1558988

[8] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and
M. Vukolić, “The next 700 bft protocols,” ACM Trans.
Comput. Syst., vol. 32, no. 4, pp. 12:1–12:45, Jan. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2658994

[9] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making bft
protocols really adaptive,” in Proceedings of the 2015
IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS ’15. Hyderabad, India: IEEE
Computer Society, 2015, pp. 904–913. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.21

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[11] F. Sabino, “Bytam: a byzantine fault tolerant adaptation
manager,” Master’s thesis, Instituto Superior Técnico, Uni-
versidade de Lisboa, Sep. 2016.

[12] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl,
“Adaptation impact and environment models for architecture-
based self-adaptive systems,” Sci. Comput. Program., vol.
127, no. C, pp. 50–75, Oct. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2015.12.006

[13] S.-W. Cheng and D. Garlan, “Stitch: A language for
architecture-based self-adaptation,” J. Syst. Softw., vol. 85,
no. 12, pp. 2860–2875, Dec. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2012.02.060

[14] L. Rosa, L. Rodrigues, and A. Lopes, “Goal-oriented self-
management of in-memory distributed data grid platforms,”
in Proceedings of the 3rd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom 2011),
Athens, Greece, Nov. 2011, (short paper).

10


