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Abstract—Key-value stores are widely recognized as scalable
systems with good performance, and are the backbone of sev-
eral large-scale storage deployments. However, their interface is
rather restrictive since it only allows to access objects through
their keys. To address this problem, recently proposed systems
have developed mechanisms for storing data by mapping it
into multiple dimensions, in order to allow searching for objects
using their secondary attributes. These solutions, however, pose
another serious problem: that of configuring the system such
that it may take the best advantage of these multi-dimensional
mappings.

This work makes two main contributions on configuring such
multi-dimensional key-value stores: First, from a detailed de-
scription of the inner workings of how operations are mapped
to multiple dimensions, we derive a model which describes the
behaviour of operations in these systems. We then use this
model to predict real throughputs of the system for complex
workloads. We also contribute with a generic architecture
which allows to automatically adapt the configuration of the
multiple dimensions in order to obtain the maximum possible
throughput for a given workload.

I. INTRODUCTION

The ongoing trend towards key-value stores has been
driven mostly by a concern with scalability and performance.
These systems typically adopt simplistic interfaces, allowing
objects to be accessed only by a given key. This simplifi-
cation has led to a new generation of systems significantly
faster and more scalable than classic distributed databases.
This generation has been materialized in known systems
such as BigTable [1], Dynamo [2], and Cassandra [3].

Yet, accessing an object solely by a single key is rather
restrictive. Consider a website for booking hotel rooms to
understand the limitation. It is easy to conceive that the
system must support searches for hotels in a given location
and within a reasonable price that the customer is willing
to pay. Therefore, it is imperative to obtain the objects,
which represent the hotels, by other attributes rather than
their primary keys.

Solutions to this problem have mostly suggested creating
indexes on top of the underlying key-value store [4], [5], [6].
This naturally entails some overheads in the normal execu-
tion of the system, which remains agnostic of the concern
to locate objects through secondary attributes. Alternatively,
other approaches have explored multi-dimensional mappings

built-in the key-value stores and peer-to-peer systems [7],
[8], [9], [10]. Among these, HyperDex [8] has gathered a
unique set of characteristics that makes it a very appealing
solution to the problem.

The main idea of HyperDex is hyperspace hashing, which
behaves similarly to consistent hashing techniques [11], [12],
[13]. Briefly, an object with a set of attributes A can be
mapped to an Euclidean space with |A| dimensions (i.e.,
its cardinality). By hashing the values the attributes of an
object, one can find the coordinates in that space where the
object lies. Then sets of points in the space can be assigned
to servers, effectively sharding the data.

Using the idea, HyperDex provides a rich API with
support for range queries and partial searches on any set
of attributes composing objects. This promising system is
meant to solve the long-existing trade-off between efficiency
of partial searches without exacerbating the cost of insertions
and modifications. However, it is still up to the programmer
to define the configuration of subspaces that best suits
his application. This poses a limitation on the throughput
of HyperDex, since, as we shall see in this thesis, this
configuration has a strong effect in the performance of
the system. In our experiments, differences in configuration
result in differences of up to 47 times in throughput.

The task of selecting the optimal configuration is far
from trivial. On one hand, the number of possible config-
urations grows exponentially with the number of attributes
considered, making exhaustive testing a tedious or possibly
impossible task. On the other hand, to the best of our
knowledge, there exists no method for off-line predicting
how different configurations affect the performance of the
system in order to avoid such testing. Hence, selecting
the best configuration requires the programmer to have a
strong knowledge of the inner workings of HyperDex and
hyperspace hashing.

In this work we study hyperspace hashing in detail,
and in particular HyperDex, both from an analytical and
experimental perspectives. The objective is to predict the
performance of HyperDex in a given application and running
environment. As a result, we can then assist the programmer
in optimizing the configuration of hyperspaces to improve
the performance of the system. To achieve this goal, this
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work makes two main contributions: a) a predictive model
of the performance of HyperDex, which allows to rank
configurations for a given workload with up to 92% of
accuracy; and b) a generic architecture for automatically
configuring HyperDex to adapt to any given workload in
order to maximize throughput.

The remaining of the document is structured as follows. In
Section II, we briefly overview the related work. Section III
presents an in-depth description of HyperDex and the trade-
offs tied to its different possible configurations. Using this
knowledge, in Section IV we derive a model of HyperDex,
which is then validated in Section V. In Section VI, we
present the architecture of our solution for automatically
configure HyperDex and evaluate its performance against
that of static heuristics. Finally, Section VII concludes the
document.

II. RELATED WORK

Key-Value stores [1], [2], [3] provide high-performance
alternatives to store data. As shown in [14], [15], [1],
their throughput can scale linearly with the deployment
size, making them particularly well suited for large-scale
deployments. To achieve this scalability, these systems are
typically based on consistent hashing [11], [12], [13], which
can efficiently partition data by the system nodes, simply by
hashing the objects’ keys and node identifiers.

To provide richer semantics than simply operations based
on the key of the object, some approaches either flood
the network with queries [16], [17], or insert the object
multiple times in the system, one for each attribute (or
keyword) of the object [18], [19], [20]. Both strategies are
particularly inefficient either due to the network usage or
redundancy involved. To be able to deterministically de-
termine which nodes own a given object and contact as
few nodes as possible, other approaches make use of space
filling curves [7], [21], [22], [10]. This technique consists
in mapping a multi-dimensional space to a uni-dimensional
line which is then used as a ring in consistent hashing
while preserving the locality of the multi-dimensional space.
However, unlike HyperDex [8], this approach suffers from
the curse of dimensionality: the curve becomes increasingly
meaningless (hence preserving less and less locality), the
more attributes the space has. HyperDex, on the other hand,
avoids this problem by creating multiple subspaces, which,
as we argue on this work, must be configured correctly to
be taken advantage of.

The idea of generating a predictive model of a key-value
store in order to decide on its best configuration is not a
new one. Works such as [23], [24], [25] apply this concept
to control elastic scaling to adapt to dynamic workloads
while avoiding manual configuration. In fact, similarly to
our solution, the work by Cruz et.al. [24] also considers
how the data partitioning by nodes affects the throughput
of the system. All these works are however directed at auto-
configuring elastic scaling on “traditional” key-value stores,
whereas ours is aimed at configuring the dimensions on a
multi-dimensional one.

III. THE HYPERDEX SYSTEM

One of the main goals of HyperDex is to search by items
using their secondary attributes without building secondary
indexes or contacting all system nodes. The main idea is that
using Hyperspace Hashing, the system can deterministically
determine the smallest set of nodes which may contain data
matching a given query. This allows the client to send the
query only to the relevant nodes, which process it locally
and return the matched objects.

A. Hyperspace Hashing

Hyperspaces are the building block of hyperspace hashing,
which in its turn is at the core of HyperDex. Generally,
an hyperspace is an N -dimensional Euclidean space where
each dimension encompasses any possible value output by
a hashing function. A particular case of such a space is the
widely known Distributed Hash Table (DHT), which is a 1-
dimension space and objects are placed in it by computing a
hash function over some attribute associated with the object
(normally, its key).

Hyperspace hashing is a technique that uses such hyper-
spaces, by associating an attribute of an object with each
dimension (of an hyperspace). Consider a set of attributes
A such that |A| = N . Consider also an N -dimensional
space, such that each dimension i of the space is associated
with attribute Ai ∈ {A1, ...,AN}. Then hyperspace hashing
locates an object in the space by hashing each attribute Ai

of the desired object and assigning the result to the value
of dimension i. This creates a set of N coordinates that
correspond to a point in the space. Finally, the technique
works by partitioning the space in non-overlapping regions
that are distributed to servers. Therefore an object is known
to belong to a given server simply when the corresponding
coordinates in the space are within a region owned by the
server. Conversely, to determine which nodes match a given
query, the system can simply determine which regions are
matched by the query, and contact their corresponding nodes
to request the objects.

B. Subspace Partitioning

So far we have assumed a single hyperspace with as
many dimensions as searchable attributes. However, creating
one hyperspace with all attributes of an object suffers
from the ”curse of dimensionality” [26]: the volume of the
space increases exponentially with each additional attribute.
Hence, data will be scattered by the hyperspace in a sparse
way. Should this large volume be partitioned into a small
number of regions, such as the number of servers, this would
very likely result in an unbalanced partitioning of data as
some regions of this volume would be sparse and other more
populated. Consequently, it becomes extremely difficult to
partition the volume in a small number of regions, equal to
the number of available servers, such that each server gets a
similar load. Therefore, the strategy that is typically followed
(and that is also used in HyperDex) consists in dividing the
volume in many “small” logical regions, and then assign
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these logical regions among the available servers. If the size
of each region is small, and the number of regions is large,
when these regions are shuffled among the physical servers,
each server statistically gets a similar load.

The solution for this problem is instead to resort to
partitioning a hyperspace into several lower-dimensional
hyperspaces called subspaces such that each subspace refers
only to a subset of all the attributes of the object. The intro-
duction of subspaces accounts for a considerable complexity
increase in the configuration of HyperDex. This means that
the programmer of an application must configure the set of
subspaces to be used in HyperDex, which we denote by S.
We represent each subspace Si ∈ S by 〈A1, ...,Ak〉, where
Ai are attributes of the object of that subspace. Notice that
while the number of regions in a single hyperspace would be
proportional to O(2|A|), when using subspaces they become
proportional to O(|S| × 2|Si|).

Herein we shall use as examples a data set of hotels
characterized by: a primary key; state; city; address; postal
code; price; telephone (and others). We show two possible
subspaces, their regions (possibly distributed to different
servers), and some hotels corresponding to the result of a
query. Consider a query where we search for hotels in Paris:
using the subspace in Fig. 1a we only need to contact one
region, whereas in Fig. 1b we need to contact three regions.
If we instead search for hotels in Paris costing 120 euros we
need only to contact one region regardless of which subspace
we have.

Note that it is important that the number of regions
remains reasonable, regardless of how many dimensions
we define a subspace to have. Therefore, as we shall see,
HyperDex partitions each dimension of a subspace Si in
a way such that the resulting number of regions Ri is as
close as possible to some default configured value Rdef .
Ideally Ri should be close to the number of servers in the
cluster to be used. Assuming that Rdef = 8, we can see
that subspace 〈city〉 is partitioned such that it has 8 regions.
However, subspace 〈city, price〉 is partitioned into 9 regions
because there is no combination of integer partitions for the
two dimensions that results in 8 regions.

In Fig. 2 we present an experiment that illustrates how
much the performance of HyperDex can vary according to its
configuration. The difference in throughput ranges from 8×
to 47× when changing the dominance of search queries and
modifications (Ready Heavy, Balanced and Write Heavy).
The low throughput configuration was simply chosen as
an hyperspace with all the attributes of the objects being
mapped to dimensions. The best configuration, instead, is
a complex configuration of subspaces with different dimen-
sions and sizes.

In fact, as we shall see in the evaluation of our work, it
is non trivial to understand the peculiarities of hyperspace
hashing that affect performance. This strongly motivates the
need understand the inner-workings of HyperDex to be able
to predict its performance in an automatic fashion.
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(a) Subspace 〈city〉.

price

city

120

Paris h2
h1 h4

h5

h6

(b) Subspace 〈city, price〉.

Figure 1: Two subspaces with different configurations to
index hotels.
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Figure 2: Performance of HyperDex when using a single
hyperspace against a more complex configuration with sub-
spaces. The results are shown for three variants of the same
workload.

C. Description of Operations

In this section we describe in more detail the operations
for accessing data in HyperDex. Throughout our presenta-
tion we shall use examples from a data and query sets of
a hotel booking website, which we use in the evaluation of
our solution in Section VI-B.
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1) Search Operation: We consider queries defined in a
similar fashion as subspaces, i.e., query Qi is the set of
attributes that the query accesses. Using as example Fig. 1b,
a search query Qi = 〈city, price〉 results in contacting only
one region — for instance the yellow region is contacted
if querying for Paris and 120. For this, the client begins
by choosing which subspace to use, from those configured.
The configuration of the system, along with the mapping
of regions to servers, is provided by a centralized fault-
tolerant coordinator. Assuming the client logic chooses the
subspace 〈city, price〉, it then hashes the values Paris and
120. This obtains the coordinates in both dimensions of the
space, resulting in the decision to contact only the yellow
region. Conversely, if Qi = 〈city〉, then the client can
locally determine that it must contact the blue, yellow and
red regions.

Contacting a region for a search implies sending a mes-
sage to the server responsible for that region (by using the
configuration provided by the coordinator). The contacted
server filters the local data and returns only the results that
are relevant to the search. The number of servers contacted
(analogously, number of regions) varies as the queries are
fully or only partially defined; for instance, when searching
only by Paris in the subspace 〈city, price〉 all three coloured
regions are contacted. Note that HyperDex maintains a full
copy of each objects in every configured subspace.

Since the client has access to the configuration provided
by the coordinator, it can make sure that it will contact the
subspace Si ∈ S that is most suitable for a given query.
This is achieved by iterating through S and selecting the
subspace which yields the smallest number of regions.

2) Modification Operation: In this section we analyse
the modification of existing objects in the Key-Value Store.
For this we assume that the object is fetched (a simple get
operation) through the primary key, and later inserted with
attributes having their corresponding values modified. Con-
sequently, a read operation only uses the (always existing)
primary key subspace (that only has one dimension), and
is unaffected by the subspace configurations. An insertion
can thus be seen as a particular case of the modify: the
insert does not require fetching first, and every attribute is
modified, albeit no server previously owned it.

So far we have seen that a given search operation is
conducted by resorting to a single subspace Si, i.e., the one
among those in S that best suits the search query. When
considering modifications instead, HyperDex must ensure
that the modified object is updated in every subspace. This
is because each subspace has a full copy of every object,
and thus can be seen as an extra replication degree of data.
Note that the primary key subspace counts as a subspace on
its own. In addition to this, HyperDex can be configured
to have a given fault tolerance level K = f + 1 where
f failures are tolerated. This guarantees that a subspace is
always available (up to f faults) because the corresponding
K replicas are guaranteed to be assigned to different servers.
So, each object is replicated (|S|+ 1)×K times.

In fact, HyperDex organizes these replicas using chain

replication [27] to ensure strong consistency of concurrent
searches and modifications across the different subspaces.
As in typical chain replication, servers are organized in
a linear chain and forward requests to their successor.
When the tail is reached, the inverse path is used to send
acknowledgements that confirm the operation. Since the
coordinates of the object in the subspaces depend on their
content, HyperDex makes use of value-dependent chaining,
the object’s chain membership depends on its attributes’
values. Consequently, when an attribute is modified, the
object’s position in all subspaces that contain that attribute
must be changed to reflect this modification. Hence, new
nodes may be required to enter the chain to reflect this
change in position. Fig. 3 shows two examples of the
resulting chain for different modifications. In both cases the
configuration is the same, with the primary key subspace,
two additional subspaces, and K = 3.

Consider the modification Q = 〈tel〉, meaning that it
changes the telephone of a given hotel, shown in Fig. 3a.
In this case the copies of that hotel have to be updated with
the new telephone, which implies contacting the 3 replicas
in each subspace. Fig. 3b a modification Q = 〈stars, tel〉
that also changes the stars of the given hotel. This results
in a more complex chain because the attribute stars is
in a dimension of one subspace. By changing the value
of the stars, the given hotel changes its position in the
subspace 〈city, stars〉, which is very likely to belong to
a different region than the one it previously belonged to.
This is why we label the two sub-chains of that subspace as
old and new: to move the hotel to the correct region, the
old servers delete it from their storage and the new servers
insert it. Conversely, the servers in the sub-chain of the
primary key and 〈city, price〉 merely update the values of
the attributes of the hotel, and remain as owners of the hotel
for those corresponding subspaces. Notice that in subsequent
operations involving the modified objects, its chain will not
include the nodes in the old part of the chain, they are only
included in the chain operation which moves the object in
the subspace.

IV. MODELLING HYPERDEX PERFORMANCE

In the following we use the insights of the previous
section on the inner workings of HyperDex to derive an
analytical model that captures its performance. For this, we
individually study the search and modification operations,
and assess the validity of the corresponding model. In
the following analyses we always assume scenarios with
peak throughput, meaning the servers’ processors are fully
utilized and the network resources are not restraining the
performance 1. We also assume the objects in the data-set are
uniformly distributed by the regions of subspaces, a factor
that only depends on the hashing function.

1In deployments where the network is the bottleneck, such a solution
cannot fully exploit the benefits of distribution, and thereof the optimal
solution may converge to use as few servers as possible.
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Primary
Key

K = 1

K = 2

K = 3

<city, price> <city, stars>

old new

(b) Modification of 〈stars, tel〉.

Figure 3: The chain of servers resulting from two different
modification operations in the same configuration of Hyper-
Dex.

A. Modelling Searches

Under the assumptions of our analysis, i.e. that the ap-
plication is saturated for obtaining peak throughput, then
the performance of searching in HyperDex is a function of
the number of regions contacted by the query. Herein we
consider a generic search query Qi.

Hypothesis 1: The worst possible performance for a
search Qi happens whenever @Si∈S : Qi ∩ Si 6= ∅.

Proof: Since no subspace contains (at least) one at-
tribute being searched, then the query must contact Ri

regions (i.e., all) in some subspace. The subspace chosen is
irrelevant, because all regions should be evenly split among
servers in all subspaces. Hence, Qi will be received and
processed by all nodes, over all data stored locally, leading
to the worst possible performance.

Hypothesis 2: Every configuration where ∃Si∈S : Si ⊆
Qi leads to the optimal performance when searching for
Qi.

Proof: Since there are O objects scattered uniformly
among Ri regions, then each region contains O

Ri
objects.

Additionally, each attribute in Si is also contained in Qi,
meaning that the search defines coordinates for all dimen-
sions of Si. Consequently, the set of coordinates results in
a point in the subspace, which is only contained in a single
region. Thus the search only contacts one region, whose
server processes ORi

objects.
Hypothesis 3: For any subspace Si ∈ S and search query

Qi, the expected number of contacted regions by the query
is:

CRexp(Qi) =
|Si|
√
Ri

|E|
such that: E = Si \ Qi (1)

Proof: The set E represents all the attributes present in
subspace Si but not defined by the partial search Qi. For
each of those undefined attributes, all the regions along that
dimension will be contacted. Generally, to ensure a total
number of regions Ri, each subspace dimension is split in
|Si|
√
Ri partitions (as previously explained in Section III-B,

this value is an approximation). As a result, the number of
regions contacted is the product of this number of partitions
|E| times, because that is the number of dimensions not
defined by the query — they can be seen as extra, or
unnecessary for the query.

We can now estimate the throughput obtained for a given
search. For this, we define the cost of a single query to
be proportional to the product of the estimated number of
regions contacted (given by Equation (1)) by the number of
objects in each region. To obtain an absolute estimation of
throughput we consider a factor β, which is a constant cost
associated with processing a single item and dependant on
the hardware configuration of the evaluated system. Then,
the expected throughput of a search query Qi that uses some
subspace Si is obtained by:

T exp(Qi) =
1

cost(Qi)

where: cost(Qi) =
|Si|
√
Ri

|E|
× O
Ri
× β

(2)

We note that Equation 1 is consistent with the results
stated in Hypotheses 1 and 2. For this, consider the two
following extreme cases:
• When Si ∩ Qi = ∅, then E = Si \ Qi = Si. So, the

number of regions contacted is |Si|
√
Ri
|Si|

= Ri

• When Si ⊆ Qi, then E = Si \Qi = ∅. So, the number
of regions contacted is |Si|

√
Ri
|∅|

= 1

Finally, we consider more complex workloads where there
may exist several search queries Q, and each query Qi

occurs with some likelihood pi. Naturally, the sum of all
probabilities adds to 1. We can then define the query set
QS as composed by all Qi. This way we can predict the
throughput of the system through the weighted combination
of costs (Equation (2)) of each search query as in the
following equation:

T exp(Qi) =
1

|QS |∑
i=0

(cost(Qi)× pi)

(3)

B. Modelling Modifications

From the description of modifications in HyperDex the
intuition is that the cost of those operations is proportional
to the length of the chain. In this section we use that intuition
to model the cost of a modification.

Hypothesis 4: The cost of a modification is proportional
to the length of the chain replication involved in the opera-
tion, i.e., length(Qi) = K(1 + |N |+ 2|M|).
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Proof: There is always a part of the chain proportional
to the product of the number of subspaces (|S|) and the
replication degree (K). Recall that we always have to ac-
count for the primary key subspace (not included in S). For
instance, the length of chain in Fig. 3a is (1 + |S|) × K =
(1 + 2)× 3 = 9.

In the general case we have to admit that attributes of
subspaces are modified, as shown in Fig. 3b. There, we can
see that there are some additional servers in the chain — the
subspaces that are modified lead to two sub-chains instead of
just one. We now capture more formally the number of these
additional servers. We define S = N ∪M, where N is the
set of not modified subspaces, andM is the set of subspaces
that have at least one dimension whose attribute is modified
by modification Qi, i.e., N = {∀Si∈S : Qi ∩ Si = ∅} and
M = {∀Si∈S : Qi ∩ Si 6= ∅}. Then the proposed length
function follows from these observations.

Yet, this approach to model the modifications is consid-
ering that every server performs a similar effort. As pointed
out earlier, we assume the bottleneck of the system to be the
servers’ local processing. Due to this, we need to carefully
assess any difference between processing a modification
operation in the servers.

Hypothesis 5: The cost of a modification has to be
weighted by a corrective factor α.

Proof: Such a differences in processing effort may exist
depending on whether a modificationQi changes an attribute
that is mapped to a dimension of some subspace. Using the
previous example in Fig. 3b, a subspace that is not modified
merely needs to update the local copy of the object, by using
a local OVERWRITE operation. Conversely, a subspace that is
modified creates two sub-chains, where the old servers must
locally invoke a DELETE operation and the new servers must
invoke a WRITE operation.

We experimentally assessed considerable differences in
the costs of those operations. The conclusion is that DELETE
and WRITE have the same cost on average, which is ap-
proximately 50% more expensive than that of OVERWRITE.
Consequently, we introduce a correction factor α to account
for that difference. This factor is proportional to the num-
ber of subspaces that are modified, i.e., |M|. This factor,
similarly to β, is dependant on the hardware configuration
and HyperDex implementation, and must be estimated from
a running system.

Finally, as pointed out earlier, the modification always
conveys a fetch operation to obtain the object (by its primary
key). Therefore we model this by adding one server to the
output of the length function. We additionally consider a
parameter Tmax to capture the maximum throughput achiev-
able by the hardware deployment in study. This parameter
depends on the hardware configuration and can be obtained
with a simple scenario such as when length(Qi) = 1,
e.g. by modifying an object in an hyperspace configured
only with the key subspace. We then obtain the following
estimation for the throughput of a modification query Qi:

T exp(Qi) =
Tmax

1 +K(1 + |N |+ 2α|M|)
(4)

V. ASSESSING THE MODEL ACCURACY

Predicting the throughput of query sets which combine
search and modify operations can be obtained by combining
the costs of each query in weighted average, similar to that
used for predicting the combined throughput of different
types of search queries (Equation (3)).

To assess the viability of combining the queries in such
way, we have tested the system using a data-set with in-
formation about hotels in the USA that is updated regularly.
We used a synthetic benchmark, where we performed queries
according to two workloads. Each workload is composed by
two parts: the Searches and the Modifications. In order to test
different ratios of searches and modifications, for each of the
workloads we derive three configurations: a read-heavy con-
figuration (RH), with 90% searches and 10% modifications;
a balanced configuration (BAL), with 50% searches and 50%
modifications; and finally a write-heavy configuration (WH)
with 10% searches and 90% modifications. The following
paragraphs describe workloads A and B:

Workload A: This workload simulates situations where
users frequently perform very specific searches. So, the
Searches of the workload are composed by 4 classes of
searches, with increasing probability and with increasing
number of attributes specified. The Modifications of the
workload are composed by two modification queries with
equal probability, which modify two attributes which are
nor the most frequent nor the least frequent in the Searches
part of the workload.

Workload B: This workload simulates situations where
users most frequently perform very broad searches. So, the
Searches of the workload are composed by the same 4
classes of searches as workload A, but with the inverse
order of likelihoods, such that the query with a single
attribute is now the most common one. The Modifications
of the workload simulate an environment where one of the
attributes is frequently updated (e.g. the “price” attribute of a
hotel), and a set of other attributes is less frequently updated
in the same query (e.g. the address, telephone number and
zip code for an hotel).

A. Parameter estimation and Hardware Environment
Recall that we used three parameters in our models that

are dependent on the hardware configuration. They have to
be estimated for a given system deployment as they are
affected by the network and hardware conditions. Then these
parameters can be used as inputs to our model, and remain
the same independently of the workload.

We propose to use simple scenarios to experimentally
assess these hardware-dependent parameters. For space con-
straints, we give an example of estimating the α parameter
required for the modifications; the following conclusions
were similarly obtained for the other parameters. This pa-
rameter can be assessed with a micro-application configured
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with different (yet simple) subspaces and a workload that
repeatedly invokes modifications. These workloads can be
synthetically created in development time and executed on
the target hardware deployment. Then this data can be used
to estimate α through Equation (4). We used 24 such simple
executions to derive α in our environment. The value that
minimized the error in those tests was 2.3, which we shall
use in the following experiments. In fact, our estimation is
not the best one, as using an extensive array of hundreds
of complex workloads reveals that we could lower our final
error in 6.5% if α was precisely estimated. As we shall see
in the following section, this gross (and easy) estimations
have a reduced impact in the final goal of our work to
automatically devise the best configuration of HyperDex.

Our hardware deployment consists of 9 servers in a private
cluster connected through 1GB ethernet links. HyperDex
coordinator was used in a dedicated machine, whereas the
other 8 servers executed the daemon that serves requests.
We followed the same testing environment of the authors
of HyperDex by deploying 1 client process in each of the
8 servers, with each client executing 32 threads performing
requests without think time.
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Figure 4: Estimation vs measured throughput in different
configurations for each workload.

workload τ coef avg τ dist max τ dist
A-RH 0.83 0.012 0.112

A-BAL 0.94 0.002 0.017
A-WH 0.88 0.017 0.139
B-RH 0.72 0.016 0.105

B-BAL 0.94 0.001 0.012
B-WH 0.88 0.008 0.049

Figure 5: τ coefficient, average and maximum τ distance
between estimated and real ranking of configurations.

B. Throughput Estimation
To assess the accuracy of our model, we tested workloads

A and B with a sample of all possible configurations
given the 4 attributes that are queried and modified. This
sample was obtained by ordering all possible configurations
according to throughput estimation of our model, selecting
the 5 top configurations, and selecting 5 other configurations
randomly from the remaining ones. In Figure 4, we present
the estimated throughput against the measured throughput
for the sampled configurations and for all workloads.

Ideally, if the throughputs were all estimated perfectly, all
points in the graph would be placed on the diagonal grey
line. In fact, these results show that our model is able to
predict fairly accurately the real throughput obtained by the
system, given that the average error is 9% with a standard
deviation of 7%.

VI. AUTO-CONFIGURING HYPERDEX

In the following we use the previous models to estimate
the best possible configuration for a given workload. This
way we can automatically configure HyperDex without
burdening the programmer with this concern. For this, we
present the architecture of our solution in Section VI-A. We
then assess its accuracy in Section VI-B by comparing our
predictions with extensive measurements.

A. Architecture
Our system is composed of three main modules: the

query analyzer, optimizer, and configuration deployment.
The query analyzer is responsible for monitoring the system
to generate a profile of the queries performed. This profile is
then fed to the optimizer, which will use the predictive model
to determine which configuration best suits the profile.
Finally, the configuration deployment module will redeploy
the system using the selected configuration.

The query analyzer monitors the servers, in order to
generate a log of the queries performed in each of them.
These partial logs are then compressed by types of queries,
and aggregated into a single log. Then, the query analyzer
calculates the probabilities pi of each type of query Qi and
produces the set of searchable attributes. Afterwards it pipes
this profile to the optimizer.

The main goal of optimizer is to derive most efficient
configuration of HyperDex. To achieve this it first reads
the system constraints: replication degree K, the number of
expected objects O in the system, the number of regions R
each subspace is to be partitioned, and the correction factors
α and β for the current deployment. The optimizer works in
three phases. The first phase of the algorithm is to generate
all possible combinations using the set of attributes which
was provided by the query analyzer. Then it proceeds to the
second phase where the prediction model is queried to obtain
a throughput estimation for every possible configuration. In
the final phase, all configurations are ranked in decreasing
order, and the optimizer returns a random configuration from
those which were ranked in first place. In order to update
HyperDex’s configuration to match the current workload, the
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best configuration is piped to the configuration deployment
module which re-deploys HyperDex accordingly.

B. Evaluation
In this section, we evaluate the proposed system. We begin

by evaluating the accuracy of the configuration rankings
predicted by our system. In fact, even though the accuracy
of the throughput estimation may not be perfect, it can still
be the case that the ranking of configurations is correctly
assessed. We then compare the best configuration chosen by
our system against several baselines.

1) Ranking Configurations: More importantly than pre-
dicting the real throughputs, our tool is useful as long as
it accurately predicts the configuration which leads to the
best performance. So, it should correctly rank different con-
figurations according to their throughput. Figure 5 presents
Kendall’s τ coefficient [28] for the configuration rankings
predicted by our model against the rankings experimentally
obtained for each workload. The τ coefficient is an indica-
tion of how two rankings differ; it varies in the interval [0, 1]
where 1 indicates complete concordance and 0 indicates
complete discordance. Hence, the ranking accuracy of our
system is better when τ is close to 1. The results presented
indicate that, for all workloads, there is a high correlation
between the throughput rankings predicted by our system
and the real rankings.

Kendall’s τ coefficient is not expressive enough to capture
a subtlety of the rankings produced by our system: In fact,
while our system may render a ranking different from that
of the real measurements, this is caused by the values
predicted being close to each other. To illustrate this matter,
we have applied Kendall’s τ distance to our predicted and
real rankings. This distance measures the number of pairs of
rankings which have a different relative position in the two
distributions. We then multiplied this distance by the relative
difference in throughput between the out of order pairs, to
convey how relevant these ranking errors are. We represent
this adjusted distance by τ . In this case it is better to have
a 0 distance (i.e., the ranking was correctly predicted) or as
close to it as possible.

The average and maximum τ of the configurations in
each workload are also shown in Figure 5. We note that
most ranks have distance zero, only 4 ranks out of the
60 ranked configurations have a value greater than 2%
for this metric, and none of them are larger than 14%.
This indicates that even though our system may perform

Query Analyzer Optimizer Configuration
Deployment

workload parameters

attributes set

query list

attributes set

k configurations

Figure 6: Architecture of the system
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Figure 7: Throughput of configurations selected by our
solution and by the baselines

some errors while ranking configurations, these errors do
not significantly affect the final throughput. Furthermore,
we observe that for 5 out of 6 workloads, our system was
indeed able to select the best configuration, while for the
remaining one (workload B-RH) it selected the second best
configuration, which generated a throughput 6% lower than
that of the best configuration sampled.

2) Comparison with baselines:: In this section, we
choose the best configuration predicted by our tool and
compare it with baselines relying on heuristics to select the
best configuration: No-subspace as equivalent to a regular
key-value store; Hyperspace using only a single subspace
containing all attributes in the queries; Subspaces-all where
a subspace is configured with one dimension and for each
attribute; and Dominant where a single subspace us used,
containing the most common attribute in the queries.

In Figure 7, we present the throughput results obtained
using the configuration selected by our system (denoted
by “automatic”) and that obtained by the baselines. The
results show how our models consistently capture the best
configuration; even when comparing with the baseline which
achieves the best results, our system achieves throughputs
up to 31% larger. Note that the Subspaces-all strategy can
achieve results close to that of our solution. Yet, its predic-
tion is hampered by the increase in modification likelihood
in the system, which is a straightforward consequence of
the heuristic being focused only on favouring the search
operations: when using a subspace per attribute, all search
queries will match a single region on any subspace, leading
to a good performance. Optimizing for every possible case is
non obvious, for which reason the automatization provided
by our tool becomes important and useful. Finally, we also
highlight that unlike the presented baselines, our strategy
can adapt to workload changes in order to maximize the
throughput while the remaining strategies are mostly static
approaches.
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VII. CONCLUSIONS

In this work, we presented a solution for auto-configuring
a multi-dimensional NOSQL data store, using a predictive
model to predict throughputs and then decide on which
configuration generates the highest system throughput.

We have shown that our approach can predict the system
throughput with up to 92% of accuracy, can select the best
configuration on most cases (and when it does not, the error
has a small impact on the system), and can outperform static
heuristics for configuring the system.

As future work, we intend to improve the accuracy of
our throughput estimations by employing more complex
techniques such as queue theory to model the effect of
concurrent operations in the servers and dynamically change
HyperDex according to changes in the workload and the
prediction of our tool.
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