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Abstract

In publish-subscribe systems, multicast is an efficient way to prop-
agate information from the publishers to a group of subscribers. This
paper studies the problem of mapping a large set of subscriptions into a
fixed, smaller, set of multicast groups in order to support efficiently the
dissemination of events. Given the large search space for this problem, it
is infeasible to obtain the optimal solution in reasonable time. To address
this difficulty, the paper proposes and evaluates a genetic search solution
for the mapping problem.

1 Introduction

The publish-subscribe communication paradigm has been recognized as an use-
ful alternative to the client-server model for building flexible and extensible
distributed information systems [1, 2]. This paradigm supports distributed and
anonymous communication among several processes. Participants have no ex-
plicit knowledge of each other and are only required to agree on the format
of the data being exchanged. Participants can be classified in two categories:
publishers, which produce data as a sequence of notifications, and subscribers,
which inform about the characteristics of the data they are interested in receiv-
ing. It is the responsibility of the publish-subscribe middleware[3, 4, 5, 6] to
ensure that the published information is delivered to all interested subscribers.

When many subscribers are interested in the same information, the use of a
multicast group to disseminate the data is much more efficient than the use of
multiple point-to-point connections. However, there is also cost associated to
the maintenance of a multicast group. Firstly, the number of available multicast
addresses may be limited. Secondly, each multicast group consumes resources
at network routers. Therefore, it is likely that only a limited set of multicast
groups is available to the publish-subscribe middleware. In this case, one of the
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roles of the publish-subscribe middleware is to map the existing subscriptions
into the available multicast groups[7, 8]. We call this problem, the multicast
mapping problem.

To optimize the use of network resources, a mapping algorithm may cluster
in the same multicast group subscriptions which are similar but not exactly
equal. This means that subscribers may receive some amount of undesired
notifications that have to be filtered locally. The goal of a mapping algorithm
is to reduce the amount of undesired information that is received and filtered
at subscribers, as a result of the subscription clustering. Since this is an NP-
complex problem with a huge search space, it is infeasible to obtain the optimal
solution in reasonable time. To address this difficulty, the paper proposes and
evaluates a genetic search solution for the mapping problem. The algorithm
applies a cost function to each mapping solution, and returns the best one
seen after applying a number of genetic transformations to a set of mapping
candidates over a number of predefined search iterations.

The rest of the paper is organized as follows. Section 2 makes a brief in-
troduction to publish-subscribe systems and to the several subscription models
available. Section 3 introduces the mapping problem and the metrics used to
assess the quality of the solution. Our genetic algorithm is presented in Sec-
tion 4 and its evaluation presented in Section 5. Finally, section 6 concludes the

paper.

2 Publish-Subscribe Systems

The publish-subscribe interaction paradigm is an anonymous and general style
of one-to-many interaction between producers and consumers of events or mes-
sages. One of the most important features of the paradigm is the strong decou-
pling between publishers and subscribers. Publishers send information as packet
notifications and subscribers provide information about the data they are in-
terested in receiving. The exchange of information between the publisher and
the subscribers is performed by an underline middleware layer, usually named a
message broker. Typically, the message broker is a distributed entity, composed
of proxies that are executed at the publisher and subscriber nodes plus one or
more cooperating servers. Publish-subscribe systems differ on the supported
subscription models and on the underlying broker architecture.

2.1 Subscription Models

In publish-subscribe communication, a subscriber references data from the in-
formation space according to some addressing scheme, usually based on an
hierarchical name-space. In channel-based systems[9], subscriptions simply
use the name of a communication channel where the information is dissemi-
nated (for instance, ” /stocks/mycompany” ), which behaves like a pipe of mes-
sage notifications. The addressing scheme is more flexible in subject-based
systems[3, 4, 10, 11], where the support of wildcard characters in the ref-
erence to subject names, permits the mapping to multiple subjects at once
(i.e. ”/sports/football/teams/*” maps to all football teams). More recently,
subject-based systems were extended with typed information spaces, introduc-
ing the support to content-based selection of notifications [5, 6, 12, 13, 14, 15].



In content-based publish-subscribe, information space has multiple dimensions
corresponding to each notification attribute. When a notification is published,
the system inspects its attributes against each known subscription, and only if
there is a match, the notification is delivered to the corresponding subscribers.
For example, a subscription like ” (title=[/stocks/mycompany]; value > $5)” will
match a stock notification of ”mycompany” when its value is greater than $5.
In this work, we tackle content-based systems.

2.2 Broker Architectures

Basically, there are two main distinct broker architecture solutions when imple-
menting a publish-subscribe network: server-based architectures and serverless
architectures.

The first approach consists of using one or more server nodes organized ac-
cording to some overlay topology. Each server can have any combination of
publishers and subscribers directly connected [5, 6, 8, 10, 13]. All messages flow
through the overlay network of servers according to some routing mechanism,
and publisher and subscriber nodes do not exchange data directly. Typically,
routing of messages in the overlay network takes into account the existing sub-
scriptions, such that data is only disseminated to the servers that have interested
subscribers connected. The knowledge required to build the routing tables may
be disseminated by broadcasting the subscriptions in the overlay network. Some
systems also support the dissemination of publisher advertisements to avoid the
broadcast of subscriptions, under the assumption that subscriptions are more
frequent than changes in the advertisements [6]. Finally, servers can inspect
notification attributes, and therefore, support content-based routing.

In the second model, dissemination of messages is not based on the avail-
ability of specialized servers [3]. Instead, the message broker is made exclusively
of proxies that run on the publisher and subscriber nodes. These proxies ex-
change notifications using low level network broadcast or multicast. In the
multicast case, this approach requires the use of some algorithm to map sub-
jects into group addresses. Because of the lack of a network of servers capable
to filter and route notifications efficiently, systems like these generally support
subject-based addressing. However, content-based filtering can be done by the
application.

2.3 On the Role of Multicast

The discussion of the advantages and disadvantages of each of the previous
architectures is outside the scope of this paper (a proposal of an architecture
that combines the positive aspects of both architectures can be found in [16]).
However, it can be observed that the use of multicast groups to optimize the
dissemination of information can be applied to both architectures.

On server-based architectures, multicast groups can be used between servers
and their locally connected subscribers. In the serverless architectures, multi-
cast groups can be used to disseminate information from publishers directly to
subscribers. In both cases, multicast groups can save significant processing and
network resources by preventing the same message from being sent several times
to each of the subscribers (most likely, over the same physical link).
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Table 1: Subscription set S.

The importance of the use of multicast has been recognized before in the
literature. Levine et. al. [7] argue that content that is broadcast without regard
to receiver interest is inefficient, and so, suggest the partitioning of receivers into
groups based on interests in application content. They conclude that a mixture
of group addressing and filtering are an advantage when multicast addresses are
scarce and an efficient mapping algorithm is used. The solution in this paper
can be seen as a way to make efficient use of multicast groups. T. Wong et
al. [17], present a clustering algorithm to group data sources and receivers, but
show only the applicability to subject-based.

In the following section, the problem of mapping subscriptions into multicast
groups is addressed.

3 The Multicast Mapping Problem

This section addresses the mapping problem. First, we introduce the problem
using some simple example. Then we introduce a number of concepts that are
necessary to define a metric to assess the quality of a given mapping solution.

3.1 Overview

Although the use of multicast groups can save significant network resources, its
use does not come for free. Firstly, in practical settings, the number of available
multicast addresses may be limited. More important however, is that each
multicast group requires state to be maintained at networks routers. Therefore,
it is likely that any practical implementation of a message broker can only
rely on a limited number of multicast groups to support the dissemination of
notifications. The multicast mapping problem consists of finding an appropriate
mapping between the existing subscriptions and the set of available multicast
groups. This mapping can be denoted by the relation R C {(s,g): s € SAg €
G}, where S is the set of all subscriptions, and G the set of all available multicast
groups.

To illustrate the problem, we use an example based on subject-based sub-
scriptions (in the remaining of the paper we address the more general case of
content-based subscriptions). Table 1 depicts a set of thirteen different subjects
and the identifiers of the subscribers for each of these subjects (for instance,
subject a is subscribed by A, B, and G). Naturally, if a multicast group is used
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Table 2: Mapping examples.

for each subject, thirteen multicast groups would be required to support the
message dissemination.

However, it is possible to save resources by clustering similar subscriptions.
For instance, since subjects ¢ and z are only subscribed by nodes E, H, and I,
the same multicast group can be used to disseminate the messages from these
two subjects. The same reasoning can be easily applied to subjects u and =z.
However, some mappings are not so obvious: Subjects a, ¢, and v are subscribed
by both B and G; However, a is also subscribed by node A which is not interested
in ¢ or v. Different mapping solutions, using less multicast groups are illustrated
in Table 2. These mappings illustrate a significant (potential) shortcoming of
the mapping process: As a result of the mapping, some nodes may receive, and
be forced to filter, unwanted subscriptions. For instance, in the mapping of
Table 2a, node C receives notifications from topic e which it is not subscribing.
Therefore, the role of a mapping algorithm is to find a ”good” mapping that
minimizes this effect.

Table 2 also illustrates another disadvantage of the mapping process: some
notifications may have to be sent on different groups. For instance, in the map-
ping of Table 2b, notifications from subject a need to be disseminated in groups
g1 and g». This is a minor cost compared with the problem identified above,
therefore in this paper we consider only algorithms to minimize the reception
of unwanted information. However, before we introduce such algorithm, it is
important to derive a precise metric to measure the quality of each mapping.
In order to define this metric, we need to introduce a number of auxiliary defi-
nitions.

3.2 Covering Relations

Content-based subscription can be correlated using covering relations, in a sim-
ilar way as described in [6]:

® ¢C’ta: the covering relation between an attribute filter ¢ and the corre-
sponding notification attribute . This relation is true if

¢.name = a.name A\ ¢.type = a.type A ¢.operator(a.value, p.value), is
true;

e sCIn: the covering relation of a notification n by a subscription s. This
relation is true for notifications Ng(s) = {n € N, : V¢ € s,3a € n :
¢C?a}, where N, is the set of all notifications of subject a;



e sCIs': the covering relation between two subscriptions is true for Ng(s)DNg(s').
This relation is transitive Vs, s’,s" : sC3s' A s'Cis" = sC3s"';
3.3 Subscription Volume

A subscription s, issued by m is represented by the pair (f(a), m), where f(a)
defines a filter condition on the notifications of subject a. Also, any filter can
be decomposed as

f(sa) = fila) V...V fi(a)

where fr(a) = lp1(a1) A ... A lgn(an), lkn(ay) is a logical condition on the
attribute a, of a, and Vj,k : fj(a) A fr(a) = false. After this, s, can be
expressed and substituted by the reunion of disjoint subscriptions, s, = (Jj, Sax,

where f(sq,) = fr(a).

We can now introduce the notion of the subscription volume of s,, denoted
by V(s.), as the subset of the information space of a defined by s,. We also
denote its measure by

IV (sa)ll =Y V(@) = DIV Uk (@A Al (@)l = D T Mk (an)ll
k k k n

where V(f(a)) represents the n-dimensional volume of a limited on axis a; by
lk,i, and ||l.i(a;)|| is the size of subset Iy ;(a;) of a;.
As an example, if we consider

class(a) = (string symbol € {ibm, msft, sun}, float price € [0.0;1000.0])
and the filter
f(a) = (symbol = ibm V symbol = sun) A price > $50.0
we have
1V (f(a)|| = ||symbol = ibmVsymbol = sun||-||price > $50.0|| = 2-(1000.0—50.0) = 1900
Then, the volume of subject a is given by,

[V (a)]] = ||symbol = anyl| - ||price = any|| = 3 - 1000.0 = 3000

3.4 Notification Probability

The notification probability of a subscription, denoted by P(s,), is a measure
of the relation between the number of received notifications after s,, to the
number of all notifications received for subject a, at a server node. A simplified
formulation of the relation could be:

P(a) =1
sl
Plsa) = 7]



Note that for the example introduced in the previous section, we would have
P(s,) = 0.63.

However, the previous definition is only accurate when notifications are uni-
formly distributed in the notification space. In practice, this distribution de-
pends heavily on the nature of each subject and may change along time. There-
fore, subject behavior must be considered when computing a more accurate
value for P(). It is possible to estimate P() based on the notifications received
in the past. This can be done as follows.

When a notification n is received, the hit counter of every subscription is
incremented where s C? n is true. From this statistical information, a better
approximation for P(s,) can be computed as the quotient between s,’s hit
counter and the total number of received notifications for a. So, for a new
subscription s, a search is made for earlier subscriptions s, e s§ such that,

Sq C5 s, N(VsES,: 84 C§ s = hits(s, ) > hits(s))

st C8sq A(VsESa: 5 CP s, = hits(s]) < hits(s))
By definition of s, and s} the following is always true,
P(s;) < P(sa) < P(s}).

Being the probability a function of the hits between notifications and subscrip-
tions,

hits(s;) < hits(s,) < hits(s)).

Since the values of hits(s, ) and hits(s]) limit the value for hits(s,), they serve

as a good basis for computing hits(s,),

MVl = Vs
VG

hits(s,) = {hits(sj) + hits(sa)J .

Eventually, when searching for s, and s} the following can occur:
o if sT =0 (s; doesn’t exist): hits(s;) =0 and ||V (s;)] = 0;
o if sT =0 (sF doesn’t exist) we can have:

— if s, is the first subscription: hits(s,) = 0;

— if 5, C% s7°°t s, is the new root as defined by C%: hits(s,) =
hits(s"o%);

— if 879 ¢ 5,, s7°° (the smallest cover of s, and s7°°!) is the new
root?:

!In this case there are no subscribers for the root.



hits(smo°t") = hits(s"°°t)

a a

0 if V(sa) NV (s00%) = )
0

h”s(s"):{ [hits(s;eot) - LGOI ig v (s,) 1V (50°)

RN

Finally P(s,) can be formulated as

P(Sroot) =1

a

1V (sgeof)ll

hit a . .
W(;oo)t) if hits(s7°°t) > n

Pls,) = { Vo)l g hits(sto%) < n

where n is the minimal number of notifications in a sample. It is important to
note that P(s,) is computed at each access server and depends on locally issued
subscriptions and received notifications. The time cost of P() is negligible, and
its quality is heavily dependent on the sample taken. If necessary, state can be
kept between server restarts for quality improvement.

3.5 Subject Weight

Notification probability P() describes notification density across subject infor-
mation space. However, to address different notification rates between subjects,
we introduce the notion of subject weight, W (a), expressed as bytes or notifi-
cations per unit time. After W (a), the notion of subscription weight can be
formulated as,

W (sq) = W(a) - P(s4).

Note that W (a) can be statically defined or computed dynamically as noti-
fications are received by an access server for a, and it is locally defined.

3.6 A Quality Metric

We use the subject weight as a basis for our quality metric. Our quality metric
captures the aggregate cost of delivering unwanted notifications using a given
map. This function is formulated as,

G
C(map) = C,(map),

9=1

where G is the number of used groups in map and C,(map) is the total cost for
group g,

Cy(map) = Z GW(g,mg ).

mg,xrEMg

In Cy(map), M, is the set of subscribers joined at g, and GW (g, mg ) is the
cost taken by mg ;, for being member of g, and is given by
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Table 3: Mapping examples (with metric).

GW(gym) = Z W(Sa,g \Sa,m)a
a€A,

where A, is the set of all subjects that have subscriptions mapped in g, sq,4 is
the union of all subscriptions s, , issued by p and mapped in g, and s, ,, the
subscription of a issued by m.

Table 3 illustrates the results of applying our quality metric to the mappings
of Table 2. It is interesting to observe that map (b) not only uses less groups
but also exhibits no cost.

Since C,y(map) is a cost function, the lower its value the better the mapping.
The purpose of the genetic mapping algorithm described in this paper is to
find low cost mappings for a given set of subscription and number of available
multicast groups.

4 A Genetic Algorithm

As we have noted before, a mapping is a relation R in S x G, where S is
the set of all subscriptions and G the list of available groups. Observing the
possible huge dimension of S x GG, an algorithm is necessary to find not the best
solution, but a good one in useful response time. Our algorithm uses a genetic
search approach[18, 19]. Genetic algorithms use selection techniques inspired
in the biological evolution: starting from an initial population of candidate
solutions, each successive generation inherits the best features from the previous
generation, by applying selection, crossover and mutation between candidate
solutions.

The algorithm tries to aggregate on a same group subscriptions from different
subscribers, that have close subscription volumes. For each candidate mapping
solution found during the search process, a fitness function is evaluated as the
cost of delivering unwanted notifications. In our case, the fitness function is the
quality cost function introduced in Section 3.6.

The structure of the genetic algorithm is depicted in Figure 1. Note that
what differentiates most genetic algorithms is the particular set of genetic op-
erators for each problem domain. The algorithm starts from an initial set of
solutions (11), and evaluates the fitness function for each of them (12). Next, by
applying at each generation, selection, crossover and mutation operators, new



11: [Start]
Generate a first population of n candidate solutions.
12: [Fitness]
Evaluate fitness function for each candidate solution.
13: [Acceptance]
Place candidate solutions in population.
14: [Test]
If stop condition is true, terminate and return best candidate solution found.
15: [Generate new population]
Create next generation of solutions by applying the :
following steps till new population is filled:
15.1: [Selection]
Select two solutions from current population according to its fitness
(the better the fitness is, the more chances a solution has to be chosen).
15.2: [Crossover]
If some probability is meet,
create new candidates by exchanging parts of the two solutions above.
If probability is not meet, the new candidates are copies of the solutions.
15.3: [Mutation]
Change each new candidate if some probability is meet.
16: Return to 12.

Figure 1: General structure of a genetic algorithm.

solution K

gl sl s5 s7

g2 s3 s6 s8

o | 2| Jef [ | |

Figure 2: Mapping solution representation.

solutions are derived from each population and the best are retained. At the
end, a solution is chosen that more reduces the chances of delivering unwanted
notifications to local subscribers.

Solution Encoding In any genetic algorithm each individual in a popula-
tion must contain necessary information respecting to the solution it represents
(commonly known as the genetic material). Considering our problem nature,
each individual must list subscriptions for each group, as shown in the Figure 2.
In this figure, each line represents a group and lists subscriptions mapped into it.
Here, blank spaces stand for subscriptions mapped into other groups. Crossover
is made easier after this encoding and by orderly listing subscriptions in groups.

Initial population The choice of good mapping candidates to constitute the
initial population can speed up the search process. The idea consists in starting
with candidate solutions closer to the final map. One immediate possibility is
to aggregate on the same group all subscriptions of a common subject. This
explores subscription volume proximity. Other possibility is to group subscrip-
tions based on subscriber geographical neighborhood. This has applications in

10



collaborative systems, distributed games, and generally on geographical based
applications. The initial population must be selected according to the applica-
tion problem domain and expected subscription patterns.

Selection During selection, a pair of candidate solutions is taken from the
current population, according to their better fitness value when compared to
other candidates. However, choosing only the best individuals can lead to a
quicker population specialization, and soon throw the search into a local min-
imum of the cost function C'(map). That’s why selection should give a chance
for weaker solutions to be chosen, at least in the initial stages of the search.
Here, the algorithm tries to improve population diversity on initial generations,
which conduces to a greater scope search of the solution space. Considering
these facts, the algorithm initially selects solutions by tournament, and on later
iterations, roulette-wheel selection is used to promote candidate population spe-
cialization [18].

Crossover This operation consists in exchanging solution parts between two
individuals in a population, hoping that the new candidates are better than
their parents. Crossover is accomplished by exchanging subscription sequences
between groups of each parent. Finding sequences is made easier by the en-
coding. Before crossover, a pair of subscriptions is chosen as crossover points.
Since subscriptions are ordered by their identifier inside each encoded group, the
crossover points establish the limits of the sequences to exchange. So, as shown
in Figure 3, each new solution is obtained from two parents in the following way:
a new solution inherits the subscriptions at the left of the first crossover point
and at the right of the second crossover point from one parent, and the middle
subscriptions from a random permutation of the correspondent subscriptions
of the other parent. Note that, from a pair of initial solutions, a new pair is
created. It is useful to note an important property of the used encoding: the
crossover of a valid pair of solutions results in another valid pair of solutions,
without lost or repetition of subscriptions. Also, this encoding easily supports
multiple crossover points.

Mutation Mutation changes a particular solution, hoping that it jumps from
a local fitness optimum to a more promising position in the search space. Muta-
tion promotes changes to avoid population stagnation in successive generations.
As Figure 4 shows, mutation happens by exchanging subscriptions between a
pair of groups in a solution. In each group, subscriptions are chosen by a random
selection mask. This operation always produces a new valid candidate.

Acceptance During acceptance, created candidates are selected according to
their fitness, to form the next population. Eventually, this process can drop
some good solutions if care is not taken. To avoid this, generally an elitist
decision is made, and the best solutions from the current population are also
kept in the new population.

Test The algorithm must stop after a predefined number of iterations without
any improvement, or when a significant improvement over the current mapping

11
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Figure 3: Crossover between solutions 1 and 2.

solution k 1 ‘ 1 ‘ 1 ‘ 0 solution k (after mutation)
gl sl s5 s7 gl sl | s2 s4 s7
g2 s3 s6 s8 g2 s3 s6 s8
g3 s2 s4 g3 s5
1 ‘ 0 ‘ 1 ‘ 0 Mutation!

Figure 4: Mutation of a solution.

has been achieved. At the end, the best solution seen is made the new map. If
a tie happens, the solution with fewer groups is chosen.

5 Evaluation

The algorithm evaluation was done in Mathlab 6.0, using scripts and a C ex-
tension for quicker computation of the fitness function. This tool was chosen
because it provides an interpreter for rapid algorithm writing, refinement and
test. We have evaluated the efficiency of the mapping solutions, measured as the
ratio between desired and total received notifications by all subscribers. We ran
an initial set of tests to find good values for the genetic parameters. Afterwards,
these parameters were used to configure the algorithm used to run the remaining
tests. Subsequent tests evaluate the efficiency of the solutions in subject-based
and content-based scenarios. We also compare our solution with the two most
common approaches in current publish-subscribe systems: i) broadcast [3] and;
ii) round-robin [4] (where subscriptions are distributed to groups by order of
arrival).

12
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Figure 5: Atomic volumes for a subject and a subscription.

5.1 Modelling Content-Based Subscriptions

Content-based subscriptions are modelled by dividing the information space of
each subject in a set of indivisible disjoint volumes of different sizes, which we
call atomic volumes. Figure 5 illustrates a possible division of the information
space, where the number in each block indicates the size of the correspondent
volume. The size of each volume is randomly chosen between 1 and 255. Each
individual subscription corresponds to a subset of consecutive atomic volumes,
formed by the r volumes at the left and the right of a randomly selected volume,
where 7 is the subscription radius. A subscriber is simulated by generating a
total of k subscriptions, between its selected subjects. This strategy allows us to
model in a generic way a wide range of subscription patterns (note that subjects
can be decomposed in any required number of atomic volumes). In our tests,
there were 64 atomic volumes on each subject, with sizes from 1 to 255. The
subscription radius varied between 10 and 20.

5.2 Common Simulation Parameters

In all tests, subjects were grouped into one or five categories, and each sub-
scriber randomly selected one category for issuing all subscriptions. Subjects
were chosen by an uniform distribution, and all subscribers selected an equal
number of subjects. All subject-based subscriptions were selected for multi-
cast distribution because of their small number. Since there were a lot more
of content-based subscriptions, only 70% of the heavier ones (as of W(s,))
were selected for group mapping, and the remaining 30% were considered for
point-to-point delivery. Initial populations were formed by a flooding candidate
mapping (one group only), many of round-robin subject to group mapping, and
those of randomly mapped subscriptions. The number of genetic search iter-
ations was set to 500. Before evaluating the quality of the solutions returned
by our algorithm, we conduced some tests to find out a good combination of
genetic parameters. These tests revealed good results for a population of 20 in-
dividuals, a crossover probability of 90%, a mutation probability of 20%, and an
elitism of 5 individuals. Finally, the quality of every returned mapping solution
was determined by simulating the emission of 1000 notifications, according to
subject throughput.
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5.3 Efficiency Tests

We now present the efficiency of the different mapping algorithms under differ-
ent conditions. In all figures, the caption at the bottom of the figure indicates
the following simulation parameters: number of categories (c), relative traf-
fic throughput, measured as the maximum ratio between any subjects’s traffic
throughput, stated as a power of 10 (p) and number of available groups (g). For
instance, the graph in Figure 6(a) was obtained using 1 category (cl), a relative
traffic throughput of 1 (p0) and 16 available groups (g16). In all graphs, the zx
axis represents the number of subscribers, and the yy axis represents solution
efficiency, expressed as the ratio between desired and total received notifications
by all subscribers. In a system with no restrictions on the number of available
groups, this value would be 1 (i.e., all received notifications would correspond
to subscribed notifications).

Efficiency of broadcast, round-robin, and genetic solutions in subject-
based. We compare, for different subject-based scenarios, the efficiency of the
solutions returned by the broadcast, round-robin, and genetic algorithms. The
number of subscribers (zx axis) were varied from 20 to 160. A set of 100
subjects has been defined, and each client subscribed for 10 subjects from a
chosen subject category. All mappings were done with 16 groups. The results
are depicted in Figure 6.

1 1
flood flood
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0.8 — genetic 0.8 — genetic
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Figure 6: Efficiency of different solutions in subject-based.

As expected, broadcast provides the the worst results in all scenarios. From
(a) to (b), we increased the number of subject categories from 1 to 5, and the
genetic algorithm returned approximately 3 times the quality of round-robin.
From (a) to (c), we increased the maximum relative traffic throughput from 0 to
10P, and again, genetic mappings were 2 times better than round-robin. It can
be observed that the genetic algorithm clearly outperforms the broadcast and
the round-robin approaches when subjects are more correlated, subscribers have
closer interests, and subject relative throughput is preponderant. An example of
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such applications are those where geographic factors are determinant in subject
selection.

Efficiency of broadcast, round-robin, and genetic solutions in content-
based. We compare the efficiency of the solutions returned by the broadcast,
round-robin, and genetic algorithms, for different content-based scenarios. We
took the same subject-based scenario configurations, but in this case, we set the
subscription radius from 10 to 20 volumes of a 64 atomic volume information
space. FEach client issued between 4 and 8 subscriptions from each subject
selected.
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Figure 7: Efficiency of different solutions in content-based.

From the results depicted in Figure 7, we conclude that only the combined
effect of subject correlation and relative throughput (d), contribute for the ge-
netic algorithm to return better mappings than round-robin. Since in these
tests there were about 450 subscriptions instead of 100 in subject-based ones,
the results show that in the presence of a large number of diverse subscrip-
tion patterns, the efficiency of the mapping is limited if only a small number of
groups is available. This fact is confirmed by the tests presented in the following
paragraphs.

Number of groups. We evaluate the influence of the number of available
groups on the genetic algorithm’s efficiency. For this, we reused some of the
subject-based and content-based configurations, and changed the number of
available groups. As it would be expected, a larger number of groups improves
the genetic solutions’s efficiency in both subject-based (Figure 8a) and content-
based (Figure 8b) subscriptions.

Figure 9 compares the impact of the number of available groups in the broad-
cast, round-robin, and genetic algorithms, for a content-based scenario. It can
be observed that an increase on group quantity produces better mappings for
the genetic case than for round-robin.
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Figure 9: Comparison of group availability influence between various algorithms.

Number of subscribers. We measure the impact of the number of sub-
scribers in genetic solutions’s efficiency. Tests were done for both subject-based
(Figure 10a) and content-based (Figure 10b), and only the number of subscribers
changed. After an increase on the number of subscribers, solution efficiency tend
to be constant when other parameters remain constant, even with an increase
on notification misdeliveries. This happens because, the greater the number of
subscribers is, the greater is the probability of issuing similar subscriptions.

Number of subjects. We evaluate the impact of the number of subjects
subscribed by each client in genetic solutions’s efficiency. In both subject-based
(Figure 11a) and content-based (Figure 11b) scenarios, clients subscribed from
the same category, the equivalent of a percentage of all available subjects. We
conclude that, either if we only increase the number of total subjects (lines 10%—
100 and 10% — 200), or we only reduce the percentage of subscribed subjects
(lines 10% — 200 and 5% — 200), we observe a decrease on solution efficiency.
This is related to the reduction in similarities between issued subscriptions, in
the first case because subscriptions are more dispersed in information space, and
in the second case because there are less subscriptions and so these tend to be
more dispersed.
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Figure 10: Efficiency stability.
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Figure 11: Influence of subject quantity on genetic solution efficiency.

Other tests. We also found that tournament selection should be used be-
tween the first 40% ~ 50% iterations, and the best solution probability should
be between 70% and 90%. In the subsequent iterations, roulette-wheel selection
permits a quicker population specialization, converging into a good local solu-
tion. Random permutation at crossover can be used in the first 5% iterations to
promote a breather search of the solutions space. In subsequent iterations, when
search convergence is required, the permutation technique should be avoided.

5.4 Execution Time

This evaluation was run on an Intel Pentium IIT 600 Mhz with 128 MB RAM.
All Mathlab 6.0 scripts were compiled by MCC (the Mathlab compiler), and the
fitness function was written as a C MEX-file extension for quicker execution.

From the population’s fitness computation time records shown in the table,
if search iterates 250 times, which by our experiments is sufficient, total time
for the first line is approximately 28.25s. An optimized implementation of the
algorithm, detached from the Mathlab simulation environment, would perform
significantly faster.
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P|G|R S T (sec)
20 | 16 | 160 | 100 | 0.113
20 | 32 | 160 | 100 | 0.106
20 | 16 | 320 | 100 | 0.220
20 | 16 | 160 | 300 | 0.640
40 | 16 | 160 | 100 | 0.251

Table 4: Population’s fitness computation times (Population, Groups,
Receivers and Subscriptions).

5.5 Discussion

Generally, results show that the genetic search algorithm finds better maps than
round-robin, specially when subscriptions are similar and traffic throughput is
different between subjects. Also, even a simple algorithm such as round-robin
offer better performance than the use of broadcast, confirming the usefulness
of multicast in publish-subscribe systems. As observed in Figure 7, the greater
the number of subscriptions, the greater is the difficulty to return good maps.
Nevertheless, as shown in Figure 9, the genetic algorithm makes a better use
of an increase in the number of available groups. The evaluation suggests that
it is important to reduce the number of subscriptions used as an input to the
algorithm. One way to achieve this goal is to decompose each subject’s subscrip-
tions into a disjoint set, and then, use unicast to disseminate low-throughput
subscriptions and notification with a small number of subscribers.

6 Conclusions

This paper presents a novel algorithm to map subscriptions into a limited num-
ber of multicast groups. The algorithm increases the efficiency of data dissem-
ination in publish-subscribe systems. The large space dimension of this search
problem makes infeasible to find optimal solutions in due time. We address
this issue by proposing a genetic search algorithm to derive efficient mapping
solutions. The paper proposes the fitness, encoding, selection, crossover, muta-
tion and acceptance functions for this algorithm. The efficiency of the proposed
solution has been extensively evaluated using simulations and its results com-
pared with simpler approaches such as broadcast and round-robing. Results
have show that the genetic search algorithm clearly outperforms round-robin or
broadcast in many scenarios, namely when subscriptions are similar and traffic
throughput is different between subjects.
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