
GeoPeer: A Location-Aware Peer-to-Peer
System∗

Filipe Araújo

Faculdade de Ciências

Universidade de Lisboa

filipius@di.fc.ul.pt

Lúıs Rodrigues

Faculdade de Ciências

Universidade de Lisboa

ler@di.fc.ul.pt

July 19, 2004

Abstract

This paper presents a novel peer-to-peer system that is particularly
well suited to support context-aware computing. The system, called
GeoPeer, aims to combine the advantages of peer-to-peer systems that
implement distributed hash tables with the suitability of geographical
routing for supporting location-constrained queries and information
dissemination. GeoPeer is comprised of two fundamental components:
a Delaunay triangulation used to build a connected lattice of nodes
and a mechanism to manage long range contacts that allows good
routing performance, despite unbalanced distribution of nodes.

1 Introduction

The importance of context-aware services has grown significantly in the last
decade. Context-aware computing focus on enriching applications with con-
textual information, like position, user activity, nearby people and devices,

∗Sections of this report will be published in the Proceedings of the 3rd IEEE Inter-
national Symposium on Network Computing and Applications (IEEE NCA04), August,
2004, Cambridge, MA, USA. This work was partially supported by LaSIGE and by the
FCT project INDIQoS POSI/CHS/41473/2001 via POSI and FEDER funds.

1

time of day or weather conditions [5]. In this paper, we are particularly in-
terested in supporting location-aware services, as location is one of the most
important parameters that can be extracted from context information.

Examples of location-aware services include querying for specific resources
available in a geographic area (for instance, looking for a restaurant or a hos-
pital in a given neighborhood), reading and integrating information collected
by sensor nodes in a given region (for security purposes or environmental
monitoring), and disseminating notifications to all nodes in a given region
(to multicast warnings about natural or human-induced hazards, such as
floods, chemical leaks, etc). Several other example applications of context-
aware computing are described in [5].

A significant body of work exists on services and infrastructures for sup-
porting location-aware mobile applications [17] but also on location-aware
sensor-network services [19]. Most of these architectures rely on the existence
of stationary nodes connected to the wired network infrastructure. This pa-
per is mainly concerned with the scalability of the network of stationary
nodes that provide support to very large-scale location-aware services (pos-
sibly, in cooperation with mobile nodes and wireless sensors). To the best
of our knowledge, the scalability, decentralization, and dynamic aspects of
the stationary infrastructure supporting location-aware computing have been
overlooked in the literature.

To address the scalability problem, we propose to use a peer-to-peer sys-
tem, implementing a distributed hash-table, to store context-related informa-
tion in a distributed manner. Unfortunately, as we will discuss in the related
work section, existing peer-to-peer systems such as Pastry [24], Tapestry [29],
Chord [26], D2B [8], Koorde [13] or Viceroy [18], do not own the characteris-
tics required to support location-aware services. Systems such as CAN [22],
TOPLUS [10], eCAN [28], and the Delaunay triangulation proposed by Liebe-
herr et al. [16], are closer in spirit to GeoPeer but, as we will discuss later,
they also lack features which are essential to support location-aware services
in an efficient manner.

Faced with the limitations of previous work, we propose a novel peer-
to-peer architecture that works as an overlay network on top of IP, called
GeoPeer. Nodes of GeoPeer arrange themselves to form a Delaunay trian-
gulation augmented with long range contacts, established by a mechanism
called Hop Level. With the aid of this mechanism, GeoPeer achieves short
path lengths. In particular, our experimental results suggest that the node
degree/path length trade-off of GeoPeer is logarithmic/logarithmic, indepen-

2

dently of node distribution, which is of crucial importance to a location-aware
system.

Unlike most other systems, the use of geographical location is inherent
to GeoPeer. Therefore, GeoPeer owns a number of interesting properties:
it is capable of providing location-awareness in fundamental operations per-
formed by applications, such as reads, writes or queries. For instance, inher-
iting from the techniques used by Liebeherr et al. in [16], we can augment
multicast messages or flooded queries with scope information to limit their
range, e.g., when raising an alarm after some accident. Queries containing
significant regional information can also benefit from our system: the collec-
tion of information may be performed by a local proxy on behalf of the client
that may be located far away from the region of interest to the query. For
instance, someone in Lisbon may be searching for restaurant information in
New York: instead of making all the replies traverse the Atlantic, a proxy in
New York could aggregate all the replies and send back a single message to
the originator of the query.

The remainder of the paper is organized as follows: Section 2 overviews
previous work. The GeoPeer architecture is described in Section 3. The
details of its long range contacts mechanism is described and evaluated in
Section 4. Some applications of GeoPeer are referred in 5. Section 6 concludes
the paper.

2 Related Work

There is a significantly wide body of research which is relevant to the GeoPeer
architecture, including work on context-aware computing [12], work on wire-
less ad hoc networks, namely location-aware routing schemes [27] including
Delaunay triangulations [15, 14], and work on peer-to-peer systems. Given
the nature of our contributions, we limit ourselves in the following para-
graphs to the discussion of previous work on peer-to-peer systems and on its
suitability to support location-aware services.

In recent years, many peer-to-peer systems providing distributed hash
tables holding (key, value) pairs have been proposed [21, 24, 29, 26, 8, 13,
18, 22, 10, 28, 11]. In [21], Ratnasamy et al. proposed a data-centric stor-
age for sensor networks, called Geographic Hash Table (GHT). Values are
stored and retrieved from the storage through a key that is hashed to a
geographical location. Although some similarities exist between GHT and

3

GeoPeer, important differences apply, because energy, memory or processing
effort concerns are of primary importance in GHT, while in wired peer-to-
peer systems, like GeoPeer, routing efficiency is more important. Routing
efficiency is typically characterized by a number of key properties such as
path length, node degree and node congestion, which are, in fact, the most
important aspects in the evaluation of a peer-to-peer system. It is known
that for constant node degree, the best path length that can be achieved is
O(log n), while for O(log n) node degree, the path lengths can be reduced to
O((log n)/(log log n)) [13].

Although optimal or near-optimal in terms of routing efficiency, sys-
tems such as Pastry [24], Tapestry [29], Chord [26], D2B [8], Koorde [13] or
Viceroy [18] are not eligible to efficiently support location-aware services:
they all use unidimensional random addresses that cannot directly represent
a concrete physical location. Furthermore, the use of geographical locations
as node identifiers would break the uniform distribution of the name space on
which these systems rely to offer properties such as limited path lengths. Un-
like these, SkipNet [11] has the ability to organize data by string names (e.g.,
domain names). Hence, a SkipNet is more appropriate to restrict location
of a resource or scope of a query to an organization where nodes share some
common domain name, like “someexistingname.com”. However, it cannot
handle physical locations, which means that searching for a nearby facility
or placing a resource near its users, if these users are not within the same
organization, is not easily addressed by a SikpNet.

On the other hand, systems like CAN [22], TOPLUS [10] or the Delaunay
triangulation proposed by Liebeherr et al. [16] could, in principle, be adapted
to meet our goals. However, adaptation of TOPLUS would require some
mechanism to translate IP addresses into geographical locations, because
TOPLUS organizes peers into groups of IP addresses. CAN would have to
be converted to use real geographical positions instead of virtual ones, which
would, again, break identification and load balancing. But the main problem
with both, CAN and Delaunay triangulations, is the large network diameter,
which is an important drawback. This inconvenience can be mitigated with
the use of long range contacts. This approach has been followed in the design
of eCAN [28], which extends the basic CAN architecture with a complex
Long Range Contacts (LRCs) management scheme (in eCAN LRCs are called
“expressways”). However, the basic CAN is not as efficient as Delaunay
triangulations in the support of multicast, because the average node degree
is smaller. Moreover, eCAN embodies a number of sophisticated mechanisms,

4

not strictly required for location-aware services, that introduce a significant
processing overhead when compared to the LRC scheme we adopt in GeoPeer.
Furthermore, the Hop Level mechanism we use is almost oblivious to node
distribution, which is a central aspect in a system where physical location
dictates the virtual identification of a node.

Given that no straighforward adaptation of previous peer-to-peer systems
is able to provide efficient support to location-aware services, we have opted
to design a new peer-to-peer architecture, called GeoPeer, that captures the
most positive aspects of previous work. This new architecture is described
in the next section.

3 Architecture of GeoPeer

3.1 Overview

In GeoPeer nodes self-organize into a planar Delaunay triangulation aug-
mented with carefully selected long range contacts (LRCs) to significantly
reduce path lengths. A graph based on a Delaunay triangulation has the
following desirable characteristics:

1. expected O(1) node degree;

2. good nearby routing performance; and

3. simple distributed construction.

In GeoPeer, the identification of a node corresponds to its physical loca-
tion. The combination of these features results in a peer-to-peer system with
the following unique advantages:
− by creating a mesh of nodes identified by their physical location, sup-

port for applications that execute location-aware operations, such as queries
or broadcasts, can be provided by very simple mechanisms;
− when compared with a two-dimensional CAN-like network, the node

degree in a Delaunay triangulation should be greater, but still O(1) in expec-
tation (near 6 instead of 4 in perfectly balanced cases) and, therefore, nearby
routing should be improved;
− due to the LRCs that augment the Delaunay triangulation, GeoPeer has

logarithmic path lengths for all network sizes we tested. Moreover, our LRCs

5

management schemes is elegant, but nevertheless, adaptive to unbalanced use
of both physical and identification space.

GeoPeer may also be applied to manage arbitrary objects by using a
one-way hash function to compute keys from some relevant object attribute.
Keys correspond to positions in space and, therefore, hashing some value
representing an object yields the GeoPeer identification of that object. Since
identification and position are equivalent, the hash function returns a pseudo-
arbitrary position in space. Therefore, location information attributes may
be used to carefully position resources in some application dependent way,
e.g., by enforcing the use of a hash function that returns some node near the
clients of a service.

3.2 Main Components

In the following paragraphs, the main components of the GeoPeer architec-
ture are described in detail. These components are:

1. an algorithm that creates and maintains the Delaunay triangulations;

2. an algorithm that ensures that any possible key is held by exactly one
existing node;

3. an algorithm that performs routing of messages in the overlay network;
and

4. a mechanism tho establish LRCs.

We start by describing the first three mechanimsms. The discussion of
the long-range contact mechanism is postponed to Section 4.

3.3 Notation and Definitions

In the remaining of text we will use the following conventions: nodes and
points will be represented by capital letters , e.g., A; edges are represented
by the two nodes that define them, for instance, AB; a triangle defined by
nodes A, B and C is represented as 4ABC; the circumcircle of 4ABC
is represented as ©ABC; an angle (< π) between line segments AB and
AC defined at A is interchangeably represented as 6 BAC or 6 CAB — the

6

Figure 1: Voronoi cells vs Delaunay triangulation

vertex where the angle is measured stays in the middle, while the position of
remaining vertices is arbitrary;

A triangulation of a node set V is called a Delaunay triangulation if the
circumcircle of each of its triangles does not contain any node of V [15, 14].
The Voronoi cell is a dual concept of the Delaunay triangulation, defined
as follows: the Voronoi cell of node P is the set of points in space that are
closer to P than to any other node. If the Voronoi cells of two nodes share a
common border, then a Delaunay edge exists between those two nodes. This
relation is illustrated in Figure 1 where borders of Voronoi cells have dashed
lines, while Delaunay edges have solid lines.

3.4 Creation and Maintenance of Delaunay Triangula-
tions

To create and maintain the Delaunay triangulation, GeoPeer uses a scheme
similar to [16] (note however that, unlike GeoPeer, [16] does not use LRCs,
which we introduce in Section 4). Note that many constructions proposed for
wireless ad hoc networks, such as [15, 9], are not applicable in this context,
since they assume static settings for triangulation and they assume that
nodes are provided with broadcast-capable radios.

7

3.4.1 Messages

To create and maintain the Delaunay triangulations, nodes periodically ex-
change messages with their geographic neighbors. The five message types
exchanged by the algorithm are:
− the beacon message, used by a node to inform its neighbors that it is

still actively participating in the overlay network;
− the join message, used to add new nodes to the network;
− the failure message, used to disseminate information about the failure

or departure of a node;
− the triangulate message, used by a node to propose the setup of a

Delaunay triangle with its neighbors;
− the breaklinks message, used to reconfigure the network in response

to new joins and leaves.
The purpose and function of each of these message types will be detailed

in the following paragraphs. The algorithm does not require channels to be
perfect: all messages that are critical to the convergence are retransmitted
periodically, if no appropriate reply is received.

3.4.2 Steps

The algorithm is decentralized, as it does not rely on any single point of
control. It consists of three logical steps:

1. the neighbor discovery step. Node N initiates this step to enter the
network. To join, node N must use some out-of-band mean to discover one
node already participating in the network, say P . P will then forward a
special join message on behalf of N destined to N . Since N does not yet
belong to the network, the join message will be received by some node X.
This node X will forward the join message to all the Delaunay neighbors
of N that X knows about (to inform them of the existence of N) and will
also reply with another join message to N with the list of those Delaunay
neighbors (note that this step does not establish the triangulations);

2. the neighbor maintenance step. In this step, nodes that belong to
the same triangle periodically exchange beacon messages to inform their
neighbors that they are alive and actively participating in the network;

3. the Delaunay triangulation step. This is naturally, the most complex
step of the algorithm.

Based on the information collected in the previous steps, each node P

8

computes a Delaunay triangulation using its own local knowledge. As a
result, P may find out that there should exist a Delaunay triangle 4PN1N2,
between P , N1 and N2. In this case, for convenience of exposition, we say
that the predicate Delaunay4P (N1, N2) is true at P .

When Delaunay4P (N1, N2) holds at P , P sends a triangulate4PN1N2

message to both N1 and N2. When P receives a triangulate 4PN1N2

from N1, if Delaunay4P (N1, N2) holds then P replies to N1 with another
triangulate message, otherwise, P replies with a breaklinks message
including all nodes that it believes should triangulate with N1.

Therefore, if all neighbors agree on the triangulation, they will exchange
a consistent set of triangulate messages and the corresponding Delaunay
triangles are set-up. Otherwise, they update their local information using
the contents of the breaklinks message and re-execute the local compu-
tation. Note that if there is some node inside ©PN1N2, the predicate De-
launay4P (N1, N2) is immediately switched to false. A very simple way of
checking this condition was presented by Sibson in [25]. Throughout the text
we assume that no four nodes are co-circular (co-circularities can be easily
addressed by slightly perturbing the position of involved nodes).

3.4.3 Dynamic Aspects of the Algorithm

As noted before, to cope with a dynamic topology, the algorithm must take
into account the following aspects:

1. the failure of nodes;

2. the emergence of new nodes and, as a consequence, the possibility of
nodes having a different view of the network topology.

Node failures and departures are detected through the absence of beacon
messages from that node (to simplify the presentation, we do not distinguish
these two events, however departures allow a more gracious way to redis-
tribute the keys). When some neighbor of F detects that node F failed, it
recomputes the Delaunay triangulation and sends a failure message to all
its Delaunay neighbors. All nodes that are neighbors of F should resend
the failure messages of F . This ensures that all Delaunay neighbors of F
become aware of its failure. Since network is asynchronous, nodes must store
information about the failure of F . Therefore, failure and breaklinks
messages include a list of nodes that are known to be failed (possibly empty

9

in the case of a breaklinks message). If after a triangulate message from
P , N replies with a breaklinks message, with indication of some node F
that P knows to be failed, P sends a failure message and later retries the
triangulation.

It is also possible for nodes to enter the graph at any instant. Assume that
P becomes aware of the presence of some new node Q and, as a result of re-
calculating the Delaunay triangulation, some triangles, Delaunay4P (N1, N2)
commute from true to false. In such case P sends a breaklinks message to
the vertices of those triangles. If Delaunay4P (Q,N1) is true for some node
N1, P will again send triangulate messages as described before.

3.4.4 Optimizations

For clarity of exposition, we deferred discussion of the following issue: break-
links and failure messages should not carry indefinitely information about
all nodes that failed in the past, as this could become a considerable over-
head. Therefore, N only resends information that F failed to some peer node
A until A acknowledges. Furthermore, to avoid storing information of some
failed node F forever, nodes discard information of F after the expiration of
a timeout.

3.5 Space Division

For each point in space there is one and only one responsible GeoPeer node.
As depicted in Figure 2a) dividing the space into Voronoi cells might be
complicated, because Voronoi cells may cross triangle borders. Therefore,
the following algorithm is used to divide the space in GeoPeer: nodes must
determine the circumcircle and the perpendicular bisectors for each of its
Delaunay triangles, as depicted in Figure 2b). In “well behaved” triangles,
where the point O lies inside the triangle, division of the space is straight-
forward and is done according to the figure. Areas AA, AB and AC cover the
entire triangle and define the set of points that are, respectively, closer to A,
B and C. If the point O lies outside the triangle, such a division is still possi-
ble. However, in this case, two of the areas will not share a common border.
Trivial tie-breaking mechanisms, not involving any communication, are used
to define to which node belong the points in the perpendicular bisectors and
points dividing two different triangles. In the borders of the plane, where no

10

O

A

B

C
AA

AB

AC

A

B

C

D

Ou t s i d e a r e a s

a) b) c)

Figure 2: a) Voronoi cells (dashed lines) cross triangle boundaries, b) Cir-
cumcircle, c) Outside areas

further triangulations are possible, proximity criterion is used to determine
the areas of responsibility of the nodes, as depicted in Figure 2c).

3.6 Basic Routing

Routing between GeoPeer nodes (not considering LRCs) resumes to rout-
ing in a Delaunay triangulation. A myriad of routing algorithms that are
typically used in the context of wireless ad hoc networks can be used in a
Delaunay triangulation, namely compass, randomized compass, greedy or
Voronoi [27, 3]. In GeoPeer, we have opted to use the greedy algorithm
to route messages. It has the following decisive advantages: i) it ensures
convergence in a Delaunay triangulation [3], ii) it is efficient in most cir-
cumstances [15] (although Bose and Morin [3] showed some cases where
performance is arbitrarily bad, these examples should be rare pathological
cases); and iii) greedy routing algorithm copes with LRCs without any mod-
ification.

If routing in GeoPeer was based exclusively on the use of a greedy algo-
rithm, the resulting network operation would be inefficient due to the large
network diameter of the underlying Delaunay triangulation; namely, commu-
nication in the GeoPeer network would have a very large latency. Therefore,
we need to enhance GeoPeer with a mechanism capable of reducing path
lengths, by creating a series of long range contacts (LRCs). Clearly, LRCs
play a critical role in GeoPeer as they can significantly reduce path lenghts,

11

thus improving performance. In the next section we describe the LRC mech-
anism of GeoPeer and compare its performance with an alternative mecha-
nisms proposed for the CAN network [28].

4 Efficient Routing and Long Range Contacts

(LRCs)

The goal of establishing LRCs is to reduce path lengths, that are typically
O(n1/2) in a two-dimensional CAN or in a Delaunay triangulation. By care-
fully selecting LRCs, it is possible to effectively reduce path lengths while,
at the same time, maintaining a limited expected node degree. If a typical,
near-optimal, node degree/path length trade-off in evenly balanced overlay
networks is logarithmic/logarithmic, if the node distribution in the virtual
space id becomes uneven, these strong path length properties are unlikely to
hold (as discussed in Section 2 one notable exception are the SkipNets [11]).
This issue is particularly relevant in the context of GeoPeer, because distri-
bution of nodes is very likely to be uneven, due to the equivalence between
geographical position and virtual identification. Therefore, in this Section
we will overview the two alternative mechanisms to manage LRCs that fit
best to the bi-dimensional space of GeoPeer: Hop Level presented in [1] and
expressway CAN (eCAN) [28], intended to improve CAN. In both cases,
greedy routing algorithm is used, and the neighbor closest to destination,
which can be either a LRC or a nearby neighbor, is used as the next hop.
Our experimental evaluation shows that Hop Level mechanism is a more
suitable approach for the network sizes we tested.

4.1 Hop Level Mechanism

In the Hop Level mechanism, nodes try to avoid doing more than a predefined
number of hops, say b hops. For instance, if some node A1 is forwarding a
message from N and if A1 is the b-th hop of the message, N should create a
LRC to A1. To do this, A1 sends a message prompting N to create a LRC
to itself. The process is repeated, this time starting at A1: if after b hops,
message reaches A2, A1 will create a LRC to A2, and so on. Now suppose
that the following series of b LRC is created: NA1, A1A2, . . ., Ab−1Ab. In
this case, a new LRC from N to Ab would be created. This new LRC would
be one level above of the others, i.e., while LRC NA1, A1A2, . . ., Ab−1Ab

12

Level 1

Level 2

Level 3

a) b)

Figure 3: LRCs: a) Hop Level, b) eCAN-like

are of level 1, LRC NAb is of level 2. The creation of LRC, possibly with
increasing levels, is recursively repeated until message reaches its destination.
Figure 3a) illustrates the main idea. Hence, b hops at level l − 1, fire the
creation of an LRC at level l, to ensure that an LRC of level l jumps over
bl hops. In practice we used b = 2, but for further implementation details
reader is referred to [1].

Interestingly, it is not necessary to configure some limit to the number of
LRCs admissible per node, because this number is typically limited by the
dimension of the network. In fact, if the distance of the LRCs of a given level
to the origin is correct, the LRCs should spread in a perimeter around the
origin node (this perimeter does not necessarily look like a circle, because
nodes can be unevenly distributed), until no additional LRC of that level is
required. However, there are pathological cases where it might be necessary
to limit the number of LRCs to ensure that this number stays within the
logarithmic boundary. This issue, as well as a background mechanism to
ensure that LRCs have the correct distances to the origin are still ongoing
work. The experiments presented in Section 4.3 were ran in a setting with
no limitation or correction of LRCs. We believe that even without such
mechanisms, results achieved by Hop Level are quite satisfactory and point
to an easy deployment of this mechanism in real scenarios.

13

4.2 eCAN-like Mechanism

To enable a comparison with eCAN, we use a mechanism that builds LRC
in a way that closely resembles the expressways of eCAN. We must empha-
size that this mechanism is an extremely simplified version of the complete
eCAN solution, that only captures the fundamental impact of the expressway
mechanism in routing, and does not attempt to reproduce other features of
eCAN (such as the mechanisms that provide support for complex interaction
schemes like publish/subscribe). In spite of these simplifications, we believe
that our implementation of expressways mimics the eCAN LRC mechanism
with enough accuracy to allow a fair comparison.

Hence, the idea is to make a first level division of the entire space in four
big squares. Each node keeps LRC to two of these four squares: one to some
node that is in the square above/below, the other to some node that is in the
square at right/left. Then, the four big squares are further divided in other
four smaller squares. This time, some of the squares in the middle may have
a total number of four LRC (above, below, right and left). This process is
repeated for as many levels as wanted. Figure 3b) illustrates the eCAN-like
LRC scheme. In our context, we fixed the number of levels to 8, in a total
of 30 LRCs. It should be noticed that, since the center of a given square will
probably not correspond to any existing node, the actual LRC will be the
node responsible for that center point.

4.3 Comparison

In this section we summarize a comparison between Hop Level mechanism
and eCAN. The most important result of such a comparison is the average
path lengths achieved by both mechanisms in balanced and extremely un-
balanced scenarios, for several network sizes. To do this comparison we used
networks with sizes ranging from 100 to 50000 nodes. To unbalance the nodes
we used a truncated Gaussian bivariate distribution with standard deviations
ranging from 1.0 to 0.01 (we only show results for the most unbalanced dis-
tribution). Results depicted in Figure 4 clearly shows that eCAN does not
obtain logarithmic path lengths (which should appear as a straight line) for
unbalanced scenarios. The reason for this is that 8 levels are too many in
zones where node density is small, and too few near the center where node
density is large. This means that the only safe way to configure eCAN is
to use a brute-force approach capable of covering the entire virtual id space.

14

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 100 1000 10000 100000

P
at

h
le

ng
th

Number of nodes

Hop Level - bal.
eCAN-like - bal.

Hop Level - 0.01
eCAN-like - 0.01

Figure 4: Comparison of path lengths

However, this will make the number of LRCs per node grow logarithmic to
the space, not to the number of nodes. On the contrary, Hop Level is not
considerably affected by node density and, as shown in Figure 5, the number
of LRCs grows logarithmically, for the network sizes considered. Therefore,
we believe that in the context of GeoPeer, Hop Level mechanism is the most
adequate mechanism to establish LRCs, because it is oblivious to node den-
sity and thus greatly precludes the need for manually configured parameters
in order to achieve a logarithmic/logarithmic node degree/path length.

5 Applications of GeoPeer

GeoPeer may, as any other decentralized peer-to-peer system, be used to
support any sort of application that benefits from a scalable implementa-
tion of a distributed hash table, such as, for instance, decentralized stor-
age services [6, 7, 23]. However, some of the characteristics of GeoPeer, like
location-awareness and uneven distribution of nodes, make it specially fit
for the support of location-aware services. We now illustrate the benefits of
the architecture by giving some examples of context-aware services that can
be trivially implemented on top of GeoPeer and that can benefit from the
reduced diameter of a GeoPeer network.

15

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000 100000

A
vg

. N
um

be
r o

f L
R

C
s

Number of nodes

Hop Level - bal.
Hop Level - 0.01

Figure 5: Average number of LRCs

Geographically-scoped multicast. This service consists in disseminating a
notification to all nodes located inside a given geographic region (e.g., an
alarm about some natural disaster). The service can be easily implemented
by routing a notification to the GeoPeer nodes responsible for the center
of that area which will, in turn, initiate a scoped-broadcast of the notifi-
cation, using the technique proposed in [16]. It should be noted that, with
the exception of a bi-dimensional CAN (and variations like eCAN) no other
peer-to-peer system would directly support this service. Furthermore, the
use of Delaunay triangulations makes GeoPeer more efficient than CAN or
eCAN.

Geographically-scoped queries. This service is the counterpart of the pre-
vious one. It is used to collect information from nodes located inside a given
geographic region (e.g., environmental or security monitoring of geographical
areas by connection of the relevant sensors to the GeoPeer nodes). It can
also be used to collect more mundane information, such as the location of
cinemas or bars in the vicinity of a given location. The service works by hav-
ing the node responsible for the center of the region of interest acting as an
ambassador of the client. This node can efficiently query all nodes in a given
diameter, collect all the replies, and send the consolidated information back
to the client in a single message (this may involve computation of averages,

16

selection of the lowest or highest values, etc.).
Other location-aware services. GeoPeer also opens new less obvious pos-

sibilities for applications that need to determine location of critical resources,
like a rendezvous point in a core-based multicast tree [2] or in publish-subscribe
applications [20, 4]. A complete exploration and evaluation of such solutions
is beyond the scope of this paper.

All these applications require a routing scheme that allows a message to be
addressed to a given geographical location. GeoPeer offers this functionality
and LRCs allow routing to be achieved with a small number of hops.

6 Conclusions

We have presented a novel peer-to-peer architecture called GeoPeer, intended
to provide services to location-aware applications. These services include
geographically-scoped multicasts or geographically-scoped queries, which can
be used by applications willing to spread some alarm within a limited region
or applications searching for local facilities, like restaurants or cinemas, for
instance. Additionally, location properties offered by GeoPeer can be ex-
plored by other more complex applications, like core-based multicast trees or
publish-subscribe systems, to improve location of critical resources.

The fundamental core that supports location-aware routing in GeoPeer is
a Delaunay triangulation of nodes augmented with a LRC mechanism called
Hop Level. With the help of this mechanism, experimental results suggest
that GeoPeer achieves logarithmic path lengths for logarithmic node degree,
independently of node distribution in the space, a characteristic that is of
crucial importance to build a scalable location-aware peer-to-peer system.

Acknowledgements

The authors are thankful to Patrick Eugster and Rachid Guerraoui for their com-

ments on earlier versions of this paper.

References

[1] Filipe Araújo and Lúıs Rodrigues. Long range contacts in overlay net-
works with unbalanced node distribution. DI/FCUL TR 04–8, Depart-
ment of Informatics, University of Lisbon, July 2004.

17

[2] A. Ballardie. Core based trees (cbt version 2) multicast routing. Request
for Comments 2189, September 1997.

[3] Prosenjit Bose and Pat Morin. Online routing in triangulations. In
10th Annual Internation Symposium on Algorithms and Computation
(ISAAC), 1999.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A
large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in communications (JSAC), 2002.

[5] Guanling Chen and David Kotz. A survey of context-aware mobile
computing research. Technical Report TR2000-381, Dept. of Computer
Science, Dartmouth College, November 2000.

[6] J. Douceur and R. Wattenhofer. Optimizing file availability in a secure
serverless distributed file system. In Proceedings of 20th IEEE SRDS,
pages 4–13, 2001.

[7] P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-
peer storage utility. In HotOS VIII, Schoss Elmau, Germany, May 2001.

[8] P. Fraigniaud and P. Gauron. The content-addressable network D2B.
Technical Report 1349, LRI, Univ. Paris-Sud, France, Jan 2003.

[9] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu.
Geometric spanners for routing in mobile networks. In 2nd ACM Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc 01),
2001.

[10] L. Garcés-Erice, K.W. Ross, E.W. Biersack, P.A. Felber, and G. Urvoy-
Keller. Topology-centric look-up service. In COST264/ACM Fifth Inter-
national Workshop on Networked Group Communications (NGC), Mu-
nich, Germany, 2003.

[11] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer,
and Alec Wolman. Skipnet: A scalable overlay network with practical
locality properties. In Fourth USENIX Symposium on Internet Tech-
nologies and Systems (USITS ’03), Seattle, WA., March 2003.

18

[12] Jeffrey Hightower and Gaetano Borriella. Location systems for ubiqui-
tous computing. IEEE Computer, 34(8):57–66, 2001.

[13] Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal
distributed hash table, 2003.

[14] Luan Lan and Hsu Wen-Jing. Localized delaunay triangulation for topo-
logical construction and routing on manets. In 2nd ACM Workshop on
Principles of Mobile Computing (POMC’02), 2002.

[15] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed con-
struction of a planar spanner and routing for ad hoc wireless networks.
In The 21st Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), 2002.

[16] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with
Delaunay triangulation overlays. Technical Report CS-2001-26, Univer-
sity of Virginia, Department of Computer Science, 5 2001.

[17] Henning Maass. Location-aware mobile applications based on directory
services. Mobile Networks and Applications, 3(2):157–173, 1998.

[18] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In Twenty-First ACM Sympo-
sium on Principles of Distributed Computing (PODC 2002), Monterey,
California, July 2002.

[19] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak, and
Mani B. Srivastava. Coverage problems in wireless ad-hoc sensor net-
works. In INFOCOM, pages 1380–1387, 2001.

[20] P. Pietzuch and J. Bacon. Hermes: A distributed event-based mid-
dleware architecture. In 22nd IEEE International Conference on Dis-
tributed Computing Systems Workshops (DEBS ’02), 2002.

[21] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. Ght: A geographic hash table for data-centric storage in
sensornets. In First ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), Atlanta, Georgia, September 2002.

19

[22] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Schenker. A scalable content-addressable network. In Conference
on applications, technologies, architectures, and protocols for computer
communications, pages 161–172. ACM Press, 2001.

[23] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz. Maintenance-free global data storage. IEEE Internet
Computing, 5(5):40–49, 2001.

[24] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218:329–350, 2001.

[25] R. Sibson. Locally equiangular triangulations. The Computer Journal,
21(3):243–245, 1977.

[26] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. In ACM SIGCOMM, San Diego, August 2001.

[27] Ivan Stojmenovic. Position-based routing in ad hoc networks. IEEE
Communications Magazine, July 2002.

[28] Zhichen Xu and Zheng Zhang. Building low-maintenance expressways
for p2p systems. Technical Report HPL-2002-41, HP, 2002.

[29] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

20

