
Scalable QoS-Based Event Routing in

Publish-Subscribe Systems∗

Nuno Carvalho
University of Lisbon
nunomrc@di.fc.ul.pt

Filipe Araújo
University of Lisbon
filipius@di.fc.ul.pt

Lúıs Rodrigues
University of Lisbon

ler@di.fc.ul.pt

August 9, 2005

Abstract

This paper proposes a distributed and scalable publish-subscribe bro-
ker with support for QoS. The broker, called “IndiQoS”, leverages on
existing mechanisms to reserve resources in the underlying network and
on an overlay network of peer-to-peer rendezvous nodes, to automatically
select QoS-capable paths. By avoiding flooding of either QoS reservations
or link-state information, IndiQoS is able to scale with respect to network
size and number of reservations. Experimental results show the validity
of our approach.

1 Introduction

The indirect communication, in particular the publish-subscribe communication
model, is gaining increasing acceptance as a useful alternative to direct com-
munication models, such as the ones based on remote invocations. The main
advantage of this paradigm is the support for a weak coupling among partici-
pants, which do not need to be aware of the location or number of their peers.
This simplifies the reconfiguration of the applications and eases the re-use of
the same components in different applications.

A limitation of most existing architectures that support the publish-subscribe
communication is their limited support for the negotiation or enforcement of
Quality of Service (QoS) parameters (such as required bandwidth or latency).

∗Selected sections of this report were published in the Proceedings of the 4th IEEE In-
ternational Symposium on Network Computing and Applications (IEEE NCA05), July, 2005,
Cambridge, MA, USA. This work was partially supported by the LaSIGE and by the FCT
project INDIQoS POSI/CHS/41473/2001 via POSI and FEDER funds.



This observation applies both to models, such as the CORBA Event Service [13],
CORBA Notification Service [14], Java Message Service [21] and to systems, such
as CEA (Cambridge Event Architecture) [3], Distributed Asynchronous Col-
lections [10] or SIENA (Scalable Internet Event Notification Architectures) [8].
This is a significant drawback, since QoS features are an important component
of applications, and its use and support has been widely studied in the context
of direct communication [5, 6, 22, 4].

There is a fundamental reason for the current state of the art: traditional
approaches to QoS provision are based on the establishment of channels or con-
nections that reserve the necessary resources. This mode of operation has an
inherent mismatch with the decoupled nature of event based systems, where
peers do not explicitly set up connections. Therefore, a new system model has
to be designed to allow the seamless integration of QoS features in indirect com-
munication systems. This model should: i) allow the application to indirectly
negotiate QoS parameters, by allowing it to express QoS properties as a charac-
terization of the information being produced or subscribed; ii) delegate on the
message broker the task of establishing the required low-level connections.

Ensuring QoS to applications is a challenging problem, because QoS routing
requires up to date QoS link state information [1]. On the other hand, updating
link state can clog the network, specially if the system updates this information
too often to keep accurate routing decisions. To overcome this problem some sys-
tems do not update QoS link state periodically and only gather this information
at reservation time [17]. This has a big signaling cost. Hence, the contribution
of this paper is a QoS-aware event router based on the Bamboo DHT [18], called
“IndiQoS”, that avoids the problems that are common to the aforementioned
solutions. IndiQoS does not flood any QoS link state information. Instead, it
makes a constant number of deterministic attempts to find a path capable of
ensuring the QoS requirements. IndiQoS allows QoS parameters to be treated
in a uniform way with regard to other event attributes in publish-subscribe sys-
tems. Additionally, IndiQoS automatically performs the QoS reservations on
behalf of publishers and subscribers and uses network-level QoS architectures,
such as the Integrated services [5] and the Differentiated Services [4] to enforce
the reservations. For these reasons, IndiQoS should be fault tolerant, scalable,
both as an event router and as a QoS-aware system and should fit transpar-
ently in publish-subscribe applications. In fact, experimental results show that
the IndiQoS architecture provides a favorable trade-off between the resulting
network utilization, the end-to-end latency between publishers and subscribers,
and the required signaling cost.

The rest of the paper is organized as follows. Section 2 introduces the QoS-
aware publish-subscribe model used in IndiQoS and Section 3 the requirements
of a QoS-aware distributed message broker. An overview of previous work in
presented in Section 4. The IndiQoS architecture is described in Section 5 and
evaluated in Section 6. Finally, Section 7 concludes the paper.

2



2 QoS-Aware Publishing and Subscribing

One of the main advantages of the publish-subscribe model is that it decouples
publishers and subscribers in several dimensions [9]: space decoupling (interact-
ing parties do not need to known each other); time decoupling (parties do not
need to be actively participating in the interaction at the same time); and flow
decoupling (asynchrony of the model). In this paper1, we address a fourth di-
mension of decoupling, QoS decoupling, that captures the separation of QoS pa-
rameters from the type or content of events. Publishers and subscribers should
be able to express QoS constraints using the same type of constructs they use
to express other sort of constraints (such as content-based constraints). It is up
to the message broker to match the advertisements with the subscriptions and
to ensure the QoS requirements.

We propose an architecture where publications and subscriptions are aug-
mented with QoS attributes that define filtering conditions in a similar way to
that of content-based filtering. To do so, the subscriber must include a profile
of the events that it wants to receive (the purpose of the bandwidth will be
seen ahead). We consider the example of a sensor that measures the speed of
vehicles in a road. This sensor acts as a publisher. A photographic camera with
timeliness requirement subscribes to this information as follows:

01 Subscriber s = subscribe VehicleInfo
02 where ((type = any)
03 and (speed > 50))
04 withQoS ((bandwidth = any)
05 and (latency < 100))

The condition latency < 100 will eliminate all the paths from publishers
that cannot meet this timeliness requirement. On the other hand, there are two
reasons to make the publisher advertise the profile of the events. First, because
receivers may use it to specify the type of events that they want. Consider for
instance low quality and high quality voice. In this case, both kinds of events
could use the same type with a different value in the attribute bandwidth.
The other reason to advertise the profile of the events is to let the underlying
middleware system determine the requirements of the communication and act
accordingly. Hence, in the case of the speed sensor, the advertisement would
look like this:

01 Publisher p = new Publisher
02 of VehicleInfo
03 withProfile (type = 1,
04 speed = any)
05 withQoSProfile (bandwidth = 1)

Advertisements are very important in a QoS-aware system. In fact, some
QoS related information, such as the occupied bandwidth is not a characteristic
of each individual event but of the shape of the traffic produced by the publisher.

1The model has been originally proposed by the authors in a position paper in [2].

3



Given the type of decoupling aimed in the model proposed here, the profile of the
source must be advertised independently of each individual publish operation.
Also, note that a subscription may be refused due to lack of system resources.

3 QoS-Aware Distributed Message Brokers

Some QoS parameters are already supported in some publish-subscribe models
or systems, such as CORBA Notification Service [14], Java Message Service [21]
or Distributed Asynchronous Collections [10]. This is the case of message re-
liability, message priority, message earliest delivery time, message expire time,
duplicate message detection or message ordering, for instance. Depending on
the architecture, these QoS parameters may be supported or not.

As far as we know, QoS parameters that have been widely studied in the
direct communication paradigm, such as latency and bandwidth, are not ade-
quately addressed in publish-subscribe systems. Hence, we envision a message
broker that also copes with these QoS parameters. Unlike message reliability
or message ordering, the sort of QoS parameters that we aim to ensure re-
quires a reservation of resources along the path(s) connecting publishers and
subscribers. In a publish-subscribe system, to preserve the decoupling among
the participants, reservations should be done by the message broker on behalf
of the applications. This clearly prompts for the development of QoS aware
distributed message brokers.

A QoS-aware message broker is a distributed component that manages the
following entities: i) Advertisements of publishers, including the QoS profiles of
the information being advertised; ii) Subscriptions, including desired QoS con-
ditions; iii) System resources. The system resources represent the networking,
memory and processing resources available to support the exchange of events.
They encapsulate low-level QoS protocols, such as RSVP or other similar mech-
anisms widely used in direct communication systems [5, 6, 22, 4].

A naive implementation of a QoS-aware message broker could rely on a
centralized event server: all participants would directly contact the server that
would forward the messages from publishers to subscribers. Unfortunately, such
solution is inherently non-scalable, as the capacity of the system would be lim-
ited by the bandwidth and processing power of the central server. In this paper
we are particularly interested in building a scalable QoS-aware message broker,
i.e., a broker able to provide service to a large number of participants.

4 Related work

There are two classes of systems that are relevant to the IndiQoS architecture:
publish-subscribe message brokers (typically without QoS support) and systems
with QoS routing (that can be used to augment publish-subscribe brokers with
QoS support). We will now briefly review the most relevant related work in
these two classes.

4



4.1 Publish-Subscribe Message Brokers

There are three main different classes of publish-subscribe systems: brokerless
systems, where subscribers connect directly to publishers; centralized broker
systems, and decentralized broker systems. The Cambridge Event Architecture
(CEA) [3] is an example of a broker-less system. The system uses the publish-
register-notify paradigm, where subscribers register directly in the publisher
nodes and messages flow directly from the latter to the former. This model
does not provide the level of decoupling required by many applications. The
CORBA Event Service [13], the CORBA Notification Service [14] and the Java
Message Service [12] are examples of models that use a broker that is conceptu-
ally centralized. Centralized implementations of these paradigms are not scal-
able in the number of applications and subscriptions supported. As examples of
architectures using decentralized brokers, we have the Scalable Internet Event
Notification Architecture (SIENA) [8], the Scribe [20] and the Hermes [16].

SIENA is composed by a network of routers that need to first disseminate
all advertisements among them2 and then use reverse paths for matching sub-
scriptions. Whenever possible, SIENA merges advertisement or subscription
messages, to reduce signaling traffic, but the basic need to flood information
contained in the advertisements is not eliminated. To preclude the flooding
of information, Scribe and Hermes use a Distributed Hash Table [19] (DHT),
together with the notion of rendezvous nodes. The fundamental idea of these
systems is that subscriptions and advertisements meet at the rendezvous node of
the specified type. In this way, the system does not need to maintain the infor-
mation about subscriptions and advertisements in all routers: each event type
is associated with one router in a deterministic way and routing is performed
by the DHT. The IndiQoS architecture leverages on the Hermes architecture
by augmenting it with appropriate QoS routing mechanisms.

4.2 QoS Routing

Routing messages using QoS parameters as input variables naturally requires
availability of QoS information to the routers. Possible solutions to this problem
may range from flooding routers with QoS information, thus enabling routers
to locally decide which paths are best, to the other extreme where no QoS
information is distributed and any routing decision is taken after flooding the
entire data network with a reservation request.

Quality of Service Extensions (QoSPF) is a well-known example of a protocol
that tries to maintain updated QoS information at the routers [1]. To support
QoS, QoSPF adds two new link state advertisement messages to OSPF: one to
describe available resources, the other to describe resources that are reserved
(in a given link). Any change in the available resources or in the reservations
triggers a new message. In practice this makes QoSPF not scalable, because
the additional cost of these updates is not negligible. Despite this weakness,

2Even if advertisement messages were not used, the same would be necessary for the
subscription messages.

5



a similar approach is used to support traffic-engineering [15] inside a single au-
tonomous system.

A radically different approach is followed by the algorithm in [17] that keeps
QoS information local to the links. However, unlike the previous approach,
routers do not have the necessary information to locally select paths. Therefore,
whenever an application requests a reservation of resources, it must flood the
request throughout the network. This flooding will serve two purposes: i) do a
tentative reservation in the links it goes through and ii) collect QoS information
kept in the links. This flooding process is kept under control by a pruning
mechanism, because paths known to be non-optimal may be discontinued. This
may happen at all nodes that receive two or more messages relative to the same
reservation. Therefore, there is a wave moving forward with the reservation
messages and another one moving backward pruning non-optimal paths. A
third message is needed to issue the definitive reservation, whenever an optimal
path reaches destination(s). The reader should notice that each reservation
might require at least two messages by link in the flooding process.

In a way that is similar to our own approach, there are protocols that try
to find a compromise between these two extreme solutions. This is the case of
protocols that build trees taking into account QoS parameters. For instance,
the QoS Manager for Internet Connections (QoSMIC) builds the tree restrict-
ing connections based on available bandwidth [23]. When a node wants to join,
it connects to the nearest node that has the necessary bandwidth. To do this,
each tree node must know the network topology, including the available band-
width in the connections. This applies also to other protocols, like QoS Depen-
dent Multicast Routing Algorithm (QDMR) [11]. However, in the context of a
publish-subscribe system, IndiQoS is inherently better than any of the previ-
ously existing solutions, because it embodies the lightweight structure of a DHT,
which requires nodes to have information of only O(log n) neighbors, keeps QoS
link state information local and, unlike [17], uses a restricted dissemination of
reservation messages.

5 The IndiQoS Architecture

The IndiQoS architecture, illustrated in the Figure 1, is a type-based publish-
subscribe system that uses a decentralized message broker to connect publishers
and subscribers. The message broker is composed by a set of routers, structured
in a peer-to-peer overlay network. The routing of events is made by a DHT.
Applications connect to the message broker using one of the routers. This
architecture is inspired by Hermes [16]. However, IndiQoS includes mechanisms
to manage the QoS resources.

5.1 Decentralized Message Broker

The IndiQoS message broker is comprised of a set of nodes connected using an
overlay network. These nodes behave as event routers that cooperate to form

6



S − Subscriber
P − Publisher

S

S

S

S

S

P
Event Service

P

(a) Overview

API IndiQoS

Publisher

Network

API IndiQoS

Network

Subscriber

Resource Manager

Network

Pub−Sub with QoS

DHTResource Manager

Network

Pub−Sub with QoS

DHTResource Manager

Network

Pub−Sub with QoS

DHTResource Manager

Network

Pub−Sub with QoS

DHT

Event Service

(b) Interaction between the components
of the system

Figure 1: IndiQoS architecture.

event dissemination trees able to satisfy the QoS requirements requested by the
applications. The routing functions required to build the tree are provided by
a DHT.

As depicted in Figure 1, each node of the overlay network executes a pro-
tocol stack composed of: (i) a publish-subscribe layer, that manages the ad-
vertisements and subscriptions and, in response, automatically establishes the
reservations required to satisfy the applications; (ii) a DHT (overlay) layer, that
supports message routing and (iii) the underlying network layer, encapsulated
by abstract network components.

A DHT is a fundamental building block for distributed applications. Basi-
cally, it allows a group of distributed hosts to collectively manage a mapping
from keys to values using a hash function. The DHT used in the current im-
plementation of IndiQoS is Bamboo [18]. Bamboo is based on Pastry [19] that
uses the same geometry3 but relies on alternative neighbor management algo-
rithms that aim at improving the path quality (namely the latency). We exploit
these properties of Bamboo but we have slightly adapted its behavior to avoid
the reconfiguration of the overlay in stable conditions (in order to preserve the
stability of established network reservations).

As in Hermes, the IndiQoS uses the notion of rendezvous nodes. The ren-
dezvous nodes are responsible for keeping control information about specific
event types. The rendezvous node for a given type T is the node numerically
closest to the output hash(T ). It is up to the DHT to route messages tar-
geted to node hash(T ) to the correct destination. Applications (publishers and
subscribers) interact with the message broker using one node as the gateway.
Gateways try to route advertisements (subscriptions) to the rendezvous node
that corresponds to the type of that advertisement (subscription). In this way,
advertisements and subscriptions of the same type must always meet at some
node. This is illustrated in Figure 2. Additionally, one positive aspect of this
architecture is that the hash function automatically distributes the load gen-
erated by different types among the nodes of the network. This reduces the

3The term geometry is used to refer to the pattern of neighbor links in a DHT, independent
of the routing algorithms used.

7



P − Publisher
R − Rendezvous Node

P

R

Event Service

(a) Advertisement

S − Subscriber
P − Publisher
R − Rendezvous Node

S

S

P

R

SS

S

Event Service

(b) Subscriptions

Figure 2: Paths in the message broker.

possibility of getting bottlenecks.

5.2 Event Distribution Trees

IndiQoS creates event distribution trees where the publisher is the root of the
tree and the subscribers are the leafs. Nodes of the DHT, including the ren-
dezvous node, can act as splitting points for that tree. The distribution tree is
constructed in a distributed way: the publisher starts by registering itself, send-
ing an advertisement to the rendezvous node. In a similar manner, subscribers
also route the subscription to the rendezvous. Only the first subscription needs
to reach the publisher (through the rendezvous node). Subsequent subscriptions
that cross this path do not need to be forwarded up to the rendezvous: instead,
if they can be merged at some crossing node, this node will create a new branch
of the tree. As the system evolves, new branches are more likely to be found
closer to the subscribers. This is illustrated in Figure 2. In the final tree, split-
ting of events may occur, not only in the rendezvous node R, but also in other
routers.

To maintain the event distribution tree, publishers (subscribers) need to
periodically refresh their advertisements (subscriptions).

5.3 Quality of Service

We assume that it is possible to establish QoS reservations in the links of the
IndiQoS overlay network. Clearly, it would be impossible to create a publish-
subscribe system with QoS support without an underlying QoS-aware data net-
work that supports such QoS links. However, a node of the IndiQoS network
is not required to establish a QoS reservation to every other node of the net-
work. Instead, it must only establish a QoS reservation with its direct peers
in the overlay. Furthermore, it is not required to establish an individual reser-
vation for each publisher/subscriber flow. Instead, IndiQoS is based on letting
direct peers to establish a single reservation for the aggregate traffic managed
by IndiQoS . The division of the aggregate reservation among the individual
publisher-subscriber flows is managed directly by the IndiQoS nodes.

8



Therefore, an IndiQoS node must perform the following steps to join the
network: i) join the overlay network (in the current version, the Bamboo over-
lay); this step will define which other nodes of the IndiQoS network will be the
direct peers of the joining node; ii) establish with the underlying data network
a QoS reservation in the link to each of its peers for the aggregate IndiQoS
traffic. It should be noticed that, in practice, the number of requests made by
each node is small, because nodes of Bamboo have only O(log n) neighbors.

In each node of the IndiQoS system there is a Resource Manager that is
aware of the available bandwidth and expected latency in each link of the over-
lay network. Hence, the Resource Manager must locally keep track of all the
reservations already made by the publish-subscribe system that go through its
node. As the paths are bound in the rendezvous node, the Resource Managers
at the nodes along the path have to verify if the requested QoS can be satisfied.
The Resource Manager gets the next hop information from the DHT and adds
the QoS-related information to the advertisements and subscriptions in their
path to the rendezvous node. This allows the rendezvous node to determine
for a given path i) if there is enough bandwidth and ii) what is the expected
latency. Hence, the rendezvous node contacts the subscriber to establish the
reservations upstream to itself, while it makes the same thing toward the pub-
lisher. Note that this does not result in an implosion of messages toward the
publisher, because reservations can be shared when they meet at a given node.
It is up to the Resource Manager at each node to reserve the necessary resources
at each link and distributes resources by publications and subscriptions as they
arrive. The reader should notice that the Resource Manager makes reservations
locally in each event router and only when paths are already defined.

Our approach to build IndiQoS has a number of advantages. First of all,
Bamboo already tries to set neighbors of nodes in a way that reflects data net-
work proximity. As a result, IndiQoS makes a rational use of data network
resources. Additionally, most QoS reservations made by the IndiQoS applica-
tions will not pass to the data network, because IndiQoS nodes manage their
own resources locally. This means that Bamboo only needs to set up QoS links
when nodes enter or depart from the network or when resources of some link
become exhausted.

5.4 Replication of the Rendezvous Points

The fundamental problem of QoS routing is to find a compromise between quan-
tity of state update information and quality of routing decision. A perfect de-
cision requires too many information (which may overwhelm the network with
traffic), while too few information may result in very bad decisions or even in
unfeasible paths. Our solution to this problem is the replication of the ren-
dezvous nodes. The idea is to explore several routing alternatives, keeping QoS
information local to the links. Since routing operations in a DHT like Bam-
boo need a small number of hops (lookups take O(log n) hops with a small
constant) the additional traffic cost associated with each rendezvous node is
small. Additionally, this has the advantage of increasing performance, scala-

9



R − Rendezvous Node

S − Subscriber
P − Publisher

S

S

S

S

S

P

P

R

R

Event Service

Figure 3: Using a replicated rendezvous.

bility and fault tolerance of the system. Assuming that T is a number that
represents the type, the k rendezvous nodes are the nodes numerically closest
to hash(T ), hash(T +1), hash(T +2), . . . , hash(T +k−1). Publishers and sub-
scribers send their messages to all the k rendezvous nodes. The difference to the
single rendezvous node is that now the subscriber collects QoS information from
all the possible paths. It chooses the best option and only after this moment
the reservations take place, going upstream from the subscriber to the publisher
through the preferred rendezvous. As with a single rendezvous node, tolerance
to node failures or departures is transparently ensured by periodic refreshment
of advertisements and subscriptions.

Figure 3 shows a distribution tree for one event type with two rendezvous
replicas. A significant advantage of having several rendezvous replicas for each
event type is that the paths are distributed and there is no longer a single
bottleneck point in the overlay. As the number of rendezvous replicas grows,
the system has more alternative paths between publishers and subscribers and
it becomes more likely finding a path satisfying the QoS requirements of any
subscription.

6 Evaluation

This section presents the results obtained in the evaluation of the IndiQoS
architecture. The results show the benefits of using the DHT and the replication
of rendezvous nodes. We also compare our system with different approaches for
building the event distribution trees.

To evaluate the IndiQoS system, we have used the network simulator pro-
vided with the distribution of the Bamboo DHT [18]. The network was gen-
erated by GT-ITM [7] using a transit-stub network. In our simulations, there
are 252 IndiQoS nodes and 30% of these nodes have one subscriber application
connected. The system has also one publisher for each event type. The simu-
lations generate subscriptions until the maximum network usage is reached for
the tested configuration. Each subscription requires 12.5% of the bandwidth
available in each link. The subscription requests are randomly assigned to sub-
scribers and we assume that the maximum network usage was reached when we
detect a sequence of 100 consecutive refused subscriptions.

10



In our experiments, we compare IndiQoS with two different solutions de-
scribed in Section 4.2. One of them keeps the QoS state information local to
the links and floods the routing requests (this is called “Flooding Requests”).
The second one follows a solution, which, in a sense, is the extreme opposite: it
floods each link state update and excludes all links without enough bandwidth
before computing the shortest path in terms of latency (this is called “Flooding
Network State”). To ensure a fair comparison, all the three methods that we
compare, IndiQoS and the two flooding alternatives, use all the nodes of the
same overlay QoS network.

6.1 Benefits of the DHT

Using a DHT to implement a system like IndiQoS has several advantages. One
advantage is that, in opposition to a centralized server approach, the load im-
posed by subscriptions is distributed, given that subscriptions associated with
different event types are routed through different rendezvous points distributed
among the network nodes. Another advantage is that the DHT provides a very
efficient way for each participant to locate, and contact, the rendezvous point
for any given event type. This advantage is inherent to the routing way of the
DHT.

Figure 6.3 shows the increase in network utilization as the number of event-
types increases. Percentage of bandwidth refers to the ratio between the sum
of the bandwidth occupied in all the links of the QoS paths and the sum of
the bandwidth of all the links of the network. With a single event type, all
advertisements and subscriptions are managed by the same rendezvous node
(this corresponds to a centralized solution). The bandwidth to this node quickly
becomes exhausted while other links in the network may remain under-utilized.
By increasing the number of types, and the number of corresponding rendezvous
nodes, a better utilization of system resources is promoted.

6.2 Benefits of Rendezvous Replication

A key aspect of the IndiQoS architecture is the replication of rendezvous nodes
for each event type. This strategy has two complementary goals. In the first
place, it increases the amount of subscriptions supported for each type. Given
that there is a limited amount of bandwidth available to each rendezvous node,
the replication of the rendezvous nodes increases the available bandwidth for
each event type. In second place, when more than one rendezvous node is able
to coordinate the reservations for a given subscription, it becomes possible to
select the path that offers a better end-to-end latency.

Figure 6.3 depicts the maximum achievable network utilization as a function
of the number of replicas of the rendezvous node for a single event type. In the
experiment we did not allow subscriptions to merge. Therefore, each subscriber
has its own individual flow. As expected, it is observed an increase in the number
of subscriptions that are satisfied as the number of replicas of the rendezvous
increases. Interestingly, with a single event type it is possible to make better use

11



of resources than with multiple event types. This results from the fact that it
is easier for a subscriber to reach the distribution tree of the single type (unlike
the case of multiple different trees). Hence, this points to the conclusion that
fewer types in the network lead to a better utilization of resources if several
rendezvous nodes are provided.

Figure 6.3 depicts the average latency between the publisher and each sub-
scriber as a function of the number of replicas of the rendezvous node. An
interesting aspect of the results is that significant latency gains can be achieved
with as few as four replicas, and that further increase in the number of replicas
does not provide a significant improvement.

Naturally, the advantages of augmenting the number of replicas of a ren-
dezvous node come with cost: there is an increase in the signaling required
for satisfying a subscription. This happens because a subscription needs to be
forwarded to the different replicas of the rendezvous node. Figure 6.3 shows
the average number of control messages for each request that had success. In-
creasing the number of replicas also increases the number of control messages
to register in the rendezvous nodes and make resource reservations. As wee will
show next, when comparing our approach with other alternatives, the signaling
cost is competitive for a small number of replicas.

6.3 Comparison with other Strategies

A fundamental goal of the IndiQoS architecture is to implement a scalable
message broker. In particular, we are interested in measuring the signaling
costs of our solution when compared with 1 and 3 replicas of the rendezvous
node (IndiQoS 1 PC and 3 PC). Is also compared to other solutions. There are
two alternative approaches that we have used for comparison:

i) One approach consists in using a link-state protocol to ensure that every
node keeps an up-to-date representation of the network state (FNS). As a result,
each node can autonomously select the best path to satisfy a given subscription.
This approach is used in commercial traffic-engineering solutions (such as [15]):
it requires each node to keep the state of the complete network and to flood a
link-state update whenever the bandwidth of a link changes significantly.

ii) Another approach consists in flooding a subscription request to every
node of the network in order to find an acceptable path (FR). This approach,
used in [17], does not require every node to keep up-to-date information about
the state of the network, but has a significant signaling cost associated with
each subscription.

Figures 6.3 and 6.3 shows the signaling cost of IndiQoS against these two
alternatives. As it can be seen, the signaling cost is substantially smaller (five
times less). Naturally, given that IndiQoS operates without global knowledge
of the network conditions, it cannot find paths as good as the other approaches.
However, it can be seen that the increase in latency is smaller when compared
with the signaling gains.

12



(a) Network utiliza-
tion vs. event types

(b) Network utiliza-
tion vs. replication.

(c) Latency vs. repli-
cation

(d) Signaling vs. repli-
cation

(e) Signaling (f) Latency

Figure 4: Performance

7 Conclusions and Further Work

The paper presented the IndiQoS architecture, a scalable QoS-aware publish-
subscribe system with QoS-aware publications and subscriptions that preserve
the decoupling that makes the publish-subscribe model so appealing. To support
such model, the IndiQoS includes a decentralized message-broker based on a
DHT that leverages on underlying network-level QoS reservation mechanisms.
To increase the network usage and to reduce the end-to-end latency, and still
offer low-cost signaling, we propose to replicate the rendezvous points for each
event type. Experiments show that the resulting system offers a small signaling
overhead without a significant performance penalty (end-to-end latency and
network utilization), when compared to solutions that require the system to
maintain or obtain global knowledge.

References
[1] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, and T. Przygienda. QoS

routing mechanisms and OSPF extensions, Aug. 1999. RFC 2676.

13



[2] F. Araújo and L. Rodrigues. On QoS-aware publish-subscribe. In Proceedings of the
International Workshop on Distributed Event-Based Systems, pages 511–515, Vienna,
Austria, July 2002. IEEE. (Proceedings the 22nd International Conference on Distributed
Computing Systems Workshops).

[3] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri.
Generic support for distributed applications. IEEE Computer, Mar. 2000.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for
differenciated services, December 1998. RFC 2475.

[5] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an
overview, June 1994. RFC 1633.

[6] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation protocol
(RSVP) — version 1 functional specification, September 1997. RFC 2205.

[7] K. Calvert, M. Doar, and E. Zegura. Modeling internet topology. IEEE Communications
Magazine, June 1997.

[8] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems, 19(3):332–383, Aug. 2001.

[9] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of pub-
lish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[10] P. Eugster, R. Guerraoui, and J. Sventek. Distributed asynchronous collections: Ab-
stractions for publish/subscribe interaction. In In 14th European Conference on Object
Oriented Programming (ECOOP 2000), pages 252–276, June 2000.

[11] L. Guo and I. Matta. QDMR: An efficient QoS dependent multicast routing algorithm.
In Proc. of the Fifth IEEE Real-Time Technology and Applications Symposium (RTAS
’99), 1999.

[12] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message Service. Sun
Microsystems, April 2002.

[13] OMG. Event Service Specification. Object Management Group, Mar. 2001.

[14] OMG. Notification Service Specification. Object Management Group, Aug. 2002.

[15] E. Osborne and A. Simha. Traffic Engineeering with MPLS. Cisco Press, 2003.

[16] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architecture.
In 22nd IEEE International Conference on Distributed Computing Systems Workshops
(DEBS ’02), 2002.

[17] H. Pung, J. Song, and L. Jacob. Fast and efficient flooding based QoS routing algorithm.
In Proceedings of IEEE ICCCN99, pages 298–303, Sept. 1999.

[18] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. Technical
report, University of California at Berkeley, Dec. 2003.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. Lecture Notes in Computer Science, 2218, 2001.

[20] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The design of a
large-scale event notification infrastructure. In Networked Group Communication, pages
30–43, 2001.

[21] Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303, USA. Java Message
Service, Nov. 1999.

[22] J. Wroclawski. The use of RSVP with IETF integrated services, September 1997. RFC
2210.

[23] S. Yan, M. Faloutsos, and A. Banerjea. QoS-aware multicast routing for the internet:
The design and evaluation of QoSMIC, Feb. 2002.

14


