
Supporting Linearizable Semantics in Replicated

Databases∗

Lúıs Rodrigues
INESC-ID/IST

ler@ist.utl.pt

Nuno Carvalho
INESC-ID/IST

nonius@gsd.inesc-id.pt

Emili Miedes
U. Politecnica de Valencia

emiedes@iti.upv.es

Abstract

This paper proposes a novel database replication algorithm that
offers strong consistency (linearizable semantics) and allows reads and
non-conflicting writes to execute in parallel in multiple replicas. The
proposed algorithm supports the use of quorums to trade the availabil-
ity/efficiency of read and write operations, making a bridge between
consensus-based and quorum based solutions for database replication.
Furthermore, the algorithm offers better performance for linearizable
read-only transactions with a negligible impact on write transactions.

1 Introduction

Database replication is an important technique to increase the availability of
data. Furthermore, by allowing read-only and non-conflicting write transac-
tions to execute in parallel in multiple copies, database replication can also
improve the performance of a distributed database system. Not surprisingly,
the cost of ensuring the consistency of the database replicas in the presence
of concurrent writes is one of the bottlenecks of replication algorithms.

∗This work was partially supported by project Pastramy (PTDC/EIA/72405/2006).
Selected sections of this report will be published in the Proceedings of the 7th IEEE In-
ternational Symposium on Network Computing and Applications (IEEE NCA08), Cam-
bridge, MA, USA, July 2008. (short paper)



In most cases, the weaker the consistency model one tries to enforce, the
more efficient is the algorithm that supports that model. Due to this rea-
son, many database management systems only enforce snapshot isolation [3],
which is weaker than serializability [2]. Still, even serializability allows for
reads to be executed “in the past”.

Linearizable [14] or atomic semantics is a stronger consistency criteria
that ensures that all transactions appear to execute atomically at a single
instant in time and, furthermore, if a transaction Ty is started after transac-
tion Tx commits, Ty is ensured to be linearized after Tx. Given that atomic
semantics are needed in several application areas, this raises the interesting
question of whether is possible to design replication algorithms that enforce
such strong semantics and allow one to use quorums to trade the availability
of writes with the efficiency of reads.

This paper proposes a replication protocol that combines the consensus-
based replication [15, 20, 17] and the quorum-based replication approaches [10,
9] to achieve the goal above. Our protocol has the advantages of: i) not en-
forcing read operations to contact a write quorum of replicas in order to
commit (namely, readers are not required to “write-back” the value that
has been read nor to be serialized by an uniform total order primitive); ii)
not slowing down the write operations; iii) allow reads and non-conflicting
writes to execute in parallel in different replicas. Besides having practical
relevance, our proposal makes a bridge between consensus-based and quo-
rum based solutions for database replication.

The rest of the paper is structured as follows. Section 2 motivates our
work and surveys the related work. Our replica-consistency algorithm is
described in Section 3 and its performance is discussed in Section 4. Section 5
concludes the paper.

2 Related Work

2.1 Consistency Criteria for Databases

In the paper, we are concerned with the two stronget consistency criteria for
concurrent databases, namely serlializability [2] and linearizability [14], that
can be defined as follows:

Serializability The serializability property property can be defined on a
history of transactions. A history is serializable if (i) its invocations and
responses can be reordered to yield a sequential history, (ii) that sequential
history is correct according to the sequential definition of the data. Note



that if each transaction is correct by itself, then any serial execution (at any
transaction order) of these transactions is correct. As a result, any execution
that is equivalent (in its outcome) to a serial execution, is correct.

Linearizability The linearizable property can be defined on a history of
transactions. A history is linearizable if (i) its invocations and responses
can be reordered to yield a sequential history, (ii) that sequential history
is correct according to the sequential definition of the data and (iii) if a
response preceded an invocation in the original history, it must still precede
it in the sequential reordering. Note that the first two points here match
serializability: the operations appear to happen in some order. It is the last
point which distinguishes linearizability from serializability.

2.2 Replica Consistency Algorithms

Multiple algorithms have been proposed to manage the consistency of repli-
cated data. These can be classified according to many different criteria. In
this paper, we classify previous work according to the following aspects of
replica consistency algorithms:

• If they are only suitable to replicate individual data item (also known
as registers) or are also suitable for replicating collection of data item
(such as databases) accessed by transactions. Transaction are defined
as atomic sequences of multiple read and/or write operations.

• If they use quorums or consensus as the main technique to ensure
consistency.

• If they require the use of locking at each individual replica.

We start by considering algorithms to replicate individual registers. Two
main approaches can be used to provide atomic (or linearizable) semantics:
quorum based and consensus based. Furthermore, quorum-based approaches
can be non-blocking or rely on locking to ensure consistency. Each of these
approaches is discussed below. Finally, we discuss how the algorithms used
to replicate individual registers can be extended to replicate databases ac-
cessed by transactions.

2.3 Non-Blocking Quorum-Based Atomic Register

The non-blocking quorum-based approach operates as follows [12]. Let Ω
be the set of replicas of the register. There are two types of operations



associated with the register: read and write operations. To execute an
operation, not all replicas need to participate. We assume that two types of
quorum sets are defined, write quorums and read quorums such that read
quorums intersect with write quorums, and write quorums intersect with
each other. Furthermore, each replica maintains a version number associated
with the register; every-time the value of the register is updated, the version
number is increased. The reader must be aware that the description of the
algorithm is necessarily concise. For a more detailed description see, for
instance, [12].

A write operation is initiated by multicasting a ReadRequest and wait-
ing for a ReadReply(v, t) from a read quorum of replicas. The Read-

Reply(v, t) includes the value v and version number t of the replica. Then,
a new version number is created by incrementing the largest version num-
ber from the replies. Subsequently, a WriteRequest(v′, t′) is multicast
with the new value and version number. When a WriteRequest(v′, t′) is
received, a replica replies with a WriteReply and updates its local value
(and version) if the version is larger than the version stored locally. The
operation concludes when a WriteReply has been received from a write
quorum of replicas.

The read operation is initiated by multicasting a ReadRequest and
waiting for a ReadReply(v, t) from a read quorum of replicas. The value to
be returned is the one associated with the largest version number from all the
values received. However, before returning, the read operation proceeds by
writing back the value to be returned, by exchanging WriteRequest(v′, t′)
and WriteReply with a write quorum of replicas as described above for
the write operation.

A drawback of the write back phase is that it forces every read operation
to be as expensive as a write operation (in fact, both a read and a write
quorum of replicas are required for both operations). One may wonder if
there are non-blocking solutions (i.e., that do not resort to some form of
locking) that can avoid expensive read operations (i.e., to allow fast reads).
In [8] it is shown that non-blocking fast reads are only possible in the case
of single writer registers.

2.4 Consensus-Based Atomic Register

This solution relies on the use of an atomic broadcast [13] primitive which,
in turn, can be implemented on top of a consensus primitive [19]. In sim-
ple terms, an atomic broadcast primitive ensures that all correct processes
receive the same messages in exactly the same order (see Section 3.1 for a



detailled definition). Atomic broadcast can be used to implement any form
of deterministic object using a technique that has been coined the state-
machine approach [18].

An atomic register can be implemented using the state-machine approach
as follows. Both write and read operations are implemented by (atomically)
broadcasting a request and waiting for a reply of at least one replica. Note
that all correct replicas receive and process all requests in exactly the same
order. Unfortunately, in this solution read and writes are equally expensive
(and, in fact, any consensus protocol uses a write quorum internally).

2.5 Locking Quorum-Based Atomic Register

The quorum-based approach can be modified to use locking. In this ap-
proach, a lock is associated with the register. The algorithm is similar to
the non-blocking quorum-based atomic solution described before with the
following differences. When a read or write request is received, it is only
processed if the register is unlocked. If the register is locked the request
is queued until the register is unlocked. Also, when a process updates its
local value in response to a WriteRequest it grants the lock to the writer.
Furthermore, the write operation is augmented to include the multicast of a
LockRelease message as soon as a WriteReply is received from a write
quorum. As the name implies, the LockRelease message releases a lock
that has been granted by a previous WriteRequest, allowing for pending
(write or read) request to be processed. Obviously, this approach requires
some form failure detection to release the lock when the process that holds
the lock fails. Furthermore, in face of concurrent write operations, different
writers may acquire write locks in different orders in different replicas, caus-
ing deadlocks. In fact, this sort of conflicts may hinder the efficiency of the
replicated system [11].

2.6 From Registers to Transactional Databases

Transactions typically perform an atomic sequence of multiple read and/or
write operation in several data items. When moving from register replica-
tion to database replication, two main approaches are possible: to perform
inter-replica coordination every time a given data item is accessed (what has
been called linear interaction mode [20]) or to execute the entire transaction
optimistically in a single replica and perform a single inter-replica coordina-
tion step at the end (also called constant interaction approach [20]). Given
that there is usually a high cost in the communication, we will concentrate



on the later approach. In particular, we will describe an approach that is
known as the certification approach with voting [15]. The general outline of
the algorithm is as follows:

1. A transaction t is submitted to a given replica of the database. Let this
replica be denoted the delegate node. All the transaction’s operations
are executed locally on the delegate node, obtaining (local) read locks
on read data items (in this approach we assume that, in order to be
written, an object must be previously read. i.e., we exclude blind
writes).

2. When the application requests a commit, a Prepare message with the
set of written data items is sent to all nodes using atomic broadcast.

3. When the write set of a transaction t is delivered by atomic broadcast,
all nodes try to obtain local write locks on all items in the set. If there
is a transaction that holds a write lock on any item of the write set of
t, t is placed on hold until that write lock is relinquished. Transactions
holding read locks on any item of the write set of t are aborted: in this
case the delegate node broadcasts an Abort message to all replicas.
When the delegate node has obtained all write locks, sends a Commit

message to all servers, through (uniform) reliable broadcast.

4. Upon the reception of the Commit message, a node applies the trans-
action’s write set to the local database and subsequently releases all
locks held on behalf of that transaction. Upon the reception of an
abort message, nodes abort the transaction and releases all its locks.

This algorithm requires the exchange of an atomic broadcast plus an
(uniform) reliable broadcast message during the inter-replica coordination
phase, also called the transaction certification phase. There is a variant of
this algorithm that requires only the exchange of an atomic broadcast (avoid-
ing the dissemination of the final commit/abort vote to all replicas) [20].
However, that variant requires the delegate node to send both the read
and the write set to the other replicas. In any case, as in the consensus-
based atomic register approach introduced above, all transactions (including
read-only transactions) need to go through the global certification phase if
linearizable semantics are to be provided. Thus, all transactions are required
to use a write quorum to commit.

Note that, in this algorithm, both write and read transactions must
use the atomic broadcast and the totally ordered certification procedure in



order to ensure linearizable semantics. In fact, if one attempts to optimize
the system and execute read transaction in a single replica linearizability
is not ensured. For instance, replica p receives a transaction tw updating
value of some data item fromv v to v′ via the atomic broadcast primitive;
p immediately executes a local read-only transaction tr

1
that reads the new

value v′; another read transaction tr
2
, initiated after the commit of tr

1
, that

is submitted to another replica may still read the old value v, given that the
atomic broadcast message may be delivered at different times in different
replicas. Actually, if read transactions from the same client are allowed to
be submitted to different replicas (for instance, due to the use of a load
balancer), this optimization does not even ensures serializability (see [16]
for an interesting discussion on the problem and solutions based on atomic
broadcast).

3 The WCRQ Algorithm

In the following, we present our novel algorithm, that we have named “Write-
Consensus Read-Quorum” (WCRQ), that combines consensus and quorum
based approaches to achieve the advantages of both schemes, namely:

i) It exhibits constant interaction [20], since a single coordination phase
is executed at commit time. Thus, contrary to classical quorum based ap-
proaches, there is no need to communicate every time a data item is accessed.

ii) It allows read-only transactions to coordinate with only a read-quorum
of replicas, while still providing linearizable semantics. Therefore, unlike
classical consensus-based approaches, one can trade the efficiency of read
and write transactions without weakening the semantics. In particular, one
does not need to send all read-only transactions to a single primary copy.

3.1 Building Blocks

We consider an asynchronous message passing system model augmented
with a failure detector [6]. Our algorithm uses the following broadcast prim-
itives: regular reliable broadcast (R-broadcast), uniform reliable broadcast
(UR-broadcast), and uniform total order (UTO-broadcast). Examples of im-
plementations of these primitives can be found in [4, 6, 12]. In the following
definitions, let Ω be the set of replicas that need to perform inter-replica
coordination.

The perfect failure detector is denoted by P, and it outputs, at every
process, the set of processes that are detected to have crashed (we simply
say detected). A perfect failure detector is characterized by the following



properties: (1) (accuracy) if a process p is detected by any process, then p

has crashed and; (2) (completeness) eventually every process that crashes is
permanently detected by every correct process. Once the crash of a process
p is detected by some process q, the detection is permanent.

The primitive R-broadcast(m) satisfies the following three properties: (1)
(agreement) if a correct process in Ω has R-delivered(m), then every correct
process in Ω eventually R-delivers(m); (2) (validity) if a correct process R-
broadcasts(m), then every correct process in Ω eventually R-delivers(m); (3)
(integrity) for any message m, every correct process delivers m only if m

was previously broadcast by some process p ∈ Ω.
The primitive UR-broadcast(m) satisfies the following three properties:

(1) (uniform agreement) if a process in Ω has UR-delivered(m), then every
correct process in Ω eventually UR-delivers(m); (2) (validity) as for the
regular version; (3) (integrity) as for the regular version.

The properties of the primitive UTO-broadcast [13] are the same as the
uniform reliable broadcast with the additional property: (4) (uniform total
order) let m1 and m2 be two messages that are UTO-broadcast. We note
m1 < m2 if and only if a process (correct or not) UTO-delivers m1 before
m2.

We assume that a quorum system has been defined on the set of partici-
pants. The quorum system defines two types of quorums: read quorums and
write quorums. The quorum system respects the following constraints: i)
A read quorum always intersects with a write quorum. ii) A write quorum
always intersects with (another) write quorum. Note that our algorithm is
independent on the mechanisms used to define the quorum system: one may
use weighted voting [10, 9] or some other form of quorums [7, 1]. The quo-
rum system used by our replication algorithm does not need to be the same
as the one used to implement uniform total order, but the overall efficiency
of the system may benefit from the use of a consistent set of quorum system
at both layers.

3.2 Algorithm Description

As the name “Write-Consensus Read-Quorum” implies, our algorithm uses
different approaches to execute update transactions and read-only transac-
tions.

Update transactions are executed in a manner that is similar to the cer-
tification algorithm with voting (CAV) of [15]. The transaction is executed
optimistically in a single replica, called the delegate replica, and, at commit
time, uniform total order is used to serialize a (globally consistent) certifi-



cation procedure. However, the certification procedure is different from the
CAV: the main difference between CAV and the WCRQ algorithm is that,
in WCRQ, an explicit acknowledgment is sent back to the delegate node
and that a write quorum of acknowledgments needs to be collected before
the transaction is certified.

In detail, the delegate replica in order to certify a transaction sends a
PrepareW(t,WSt) message with the transaction write-set WSt through
the uniform total order primitive. When the PrepareW(t,WSt) message
is delivered, each replica obtains a write lock for each item i in WSt

1; when
all write locks have been acquired, it sends back an acknowledgment mes-
sage AckW(t) to the delegate node using a point-to-point channel. When
the delegate node has acquired all the locks for t and it has received a
AckW(t) from a write-quorum of replicas, it sends a Commit(t) message
using uniform reliable broadcast. When the Commit(t) message is deliv-
ered, t is committed, writing all its updates in the database and releasing
all locks held by t. All transactions t′waiting to obtain write locks on an
object written by t are aborted (the delegate node for that transaction sends
a Abort(t) message is sent using uniform broadcast). When a Abort(t)
message is delivered, t is aborted, releasing all its locks.

This protocol, in conjunction with the read algorithm to be described
below, ensures that no transaction commits before obtaining write locks at
a write-quorum of replicas on the data items that are about to be changed.
As a result, subsequent read-only transactions are guaranteed to read the
fresh data.

On the other hand, read-only transactions do not need to be broadcast
using the uniform total order primitive. Instead, they are executed opti-
mistically in a single replica (the delegate replica) and, at commit time,
only a read-quorum of replicas need to be contacted to execute the certifi-
cation procedure (note that the delegate node is part of this read-quorum).
Replicas in the read-quorum check if the read items are still up-to-date
in the local database. If the transaction is detected to read data “in the
past” (because the data has been locked and/or updated by a more recent
write-transaction), a notification is sent to the delegate node to abort the
transaction.

In detail, the delegate node performs the following steps to certify a

1If there is one or more read locks on i, every t
′ not yet serialized by the total order

primitive that has that read lock is aborted (by sending an Abort(t′) message using total
order broadcast), and the write lock on o is granted to t. If there is a write lock on i, or
if some read locks on i are from transactions t

′ that have been serialized before t, t will
be placed on hold until those write/read locks are released.



read transaction. It sends a PrepareR(t,RSt) message with the transac-
tion read-set RSt to a read-quorum of replicas. When the message Pre-

pareR(t,RSt) is delivered, each node certifies the transaction as follows. It
obtains a read lock for all the data items in RSt (if there is a write lock on
the item, the transaction waits until the write lock is released). When the
read locks have been aquired, if the data items version is the same as the
one read at the delegate node, it sends back a AckR(t) acknowledgement
to the delegate node; otherwise, it sends back a NackR(t) notification to
the delegate node. In any case, the read locks are released as soon as the
transaction has been certified. When the delegate node has received an
AckR(t) acknowledgement from a read-quorum of replicas, it commits the
transaction t. Otherwise, if it receives a NackR(t) notification, it aborts
the transaction.

Given that the protocol requires the delegate node to send a second
message to commit or abort the transaction, this protocol uses a perfect
failure detector to signal the failure of the delegate node and initiate an
inter-replica coordination phase to decide on the outcome of the affected
transactions. This protocol step is only executed when nodes fail and does
not affect the performance of the protocol in steady-state. The reader must
note that most practical implementations of database replication systems
that are based on the certification approach rely on some form of group
communication [4] service (see, for instance, the GORDA architecture [5]); in
this case, the failure of a replica is followed by the installation of a new view
(with the up to date membership of active replicas); the view installation
procedure introduces a global consistency point in the communication flow
that makes the inter-replica coordination trivial [4]).

4 Discussion

In this section, we first discuss the correctness of our algorithm and later we
discuss its cost in terms of communication steps and number of messages.

4.1 Correctness

We now discuss the correctness of the algorithm. Assume that a given
data item as an initial value v. Assume also that an update transaction
tw updates the value of that data item to v′. An execution would violate
if a transaction tr

1
would commit reading the value v′ and a subsequent

transaction tr
2
, initiated after the commit of tr

1
, would still read value v. We

show that this is impossible by contradiction. Assume that the delegate



node for transaction tr
1

is node p. In order to read v′ at node p, tw must
have committed at node p. Let q be the delegate node for transaction tw. In
order to q to send a Commit(tw) message it must have collected AckW(tw)
messages from a write quorum Qw of replicas. Also, AckW(tw) messages
are only sent after a write lock has been obtained for the data item. Thus,
when transaction tr

1
commits, a write quorum Qw of replicas has either:

i) the item locked or ii) the new value v′ for that item (if they have also
received the commit message).

Assume that the delegate node for transaction tr
2

is node r. In order
to commit tr

1
and return the value v, node r must contact a read quorum

of replicas Qr. Furthermore, in order to send back an AckR(tr
2
), all nodes

n ∈ Qr must have the old version of the data and no write lock on the item.
However, given that transaction tr

2
is initiated after transaction tr

1
, there is

at least one node i ∈ Qw ∩ Qr that either has the item locked or the value
v′, thus the contradiction.

4.2 Cost

We analyze the cost of our algorithm in terms of the number of messages
and communication steps needed to provide the service. This measure is
less ambiguous than the usual number of “phases”. To give an example,
the classical two phase commit protocol (2PC) has three communication
steps [3]: (1) Prepare sent from the coordinator to the participants, (2)
Reply of the participants sent to the coordinator, and (3) Decision sent
by the coordinator to the participants. We consider in our analysis only the
best case scenario, i.e. runs with no failure suspicions. This is the most
frequent case in practice. Using this metrics, we now analyze the cost of our
building blocks and that of the certification algorithm with voting (CAV)
of [15]. These costs are summarized in Table 1. In the table, N is the total
number of replicas, W is the size of a write quorum, and R is the size of a
read quorum.

The cost of a regular reliable broadcast is just the cost of sending the
message to each recipient, i.e., one multicast step or N point-to-point mes-
sages. Uniform reliable multicast requires the exchange of acknowledgments
among recipients, thus it requires one additional communication step and N

multicast acknowledgments (or N2 point-to-point acknowledgments). Total
order typically requires 3 communication steps, as one additional step and
one additional multicast message is required to assign a sequence number
to the replicas (this step may be omitted in some cases, but this is not
relevant to make the comparative performance analysis). The costs for the



Algorithm Steps p2p messages Multicast messages

Regular reliable broadcast 1 N 1
Uniform reliable broadcast 2 N + N2 1 + N

Uniform total order 3 2N + N2 2 + N

CAV-Write 5 3N + 2N2 3 + 2N

WCRQ-Write 6 3N + 2N2 + W 3 + 2N + W

WCRQ-Write (cross-layer) 5 3N + 2N2 3 + 2N

CAV-ReadOnly 5 3N + 2N2 3 + 2N

WCRQ-ReadOnly 2 2R 1 + R

Table 1: Communication Steps

consistency protocols are just the sum of the cost of their building blocks.
As it can be observed, using the WCRQ algorithm provides much more

efficient linearizable read-only transactions than the voting certification al-
gorithm. Furthermore, most of the additional cost of W messages for update
transactions can be eliminated using cross-layer design techniques. In fact,
the implementation of the uniform total order primitive requires the ex-
change of acknowledgments among the participants. If we piggy-back the
AckW message with the acknowledgment generated at the level of the uni-
form total order primitive, the cost of the update transaction can approx-
imate the cost of the voting certification algorithm. In fact, generating an
acknowledgment at the replication layer is slightly less efficient than gener-
ating the acknowledgment at the (lower) uniform total order layer, but this
cost increment is negligible when compared with the full cost of sending an
additional message.

5 Conclusions

In this paper we have proposed a new replication algorithm, that we have
named “Write-Consensus Read-Quorum”. The algorithm combines the ad-
vantages of certification-based replication protocols, namely constant inter-
action cost, with the advantages of quorum-based replication (faster reads)
when providing strong consistency, in particular, linearizable semantics. In-
terestingly, the algorithm achieves these qualities with negligible overhead
for write transactions in terms of number of messages or communication
steps when compared with competing algorithms such as [15], that require
the use of a write-quorum to certify a read-only transaction in order to of-
fer linearizable semantics. Furthermore, contrary to primary-backup style



solutions, that redirect all read operations to a single replica, we allow the
parallel execution of read-only transactions in multiple replicas.

References

[1] D. Agrawal and A. El-Abbadi. An efficient and fault-tolerant solution
for distributed mutual exclusion. ACM Transaction on Computer Sys-
tems, February 1991.

[2] P. Bernstein and N. Goodman. Serializability theory for replicated
databases. Journal of Computer and System Sciences, 31:355–374,
1985.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[4] K. Birman. The Process Group Approach to Reliable Distributed Com-
puting. Comm. ACM, 36(12):37–53, December 1993.

[5] N. Carvalho, A. Correia Jr., J. Pereira, L. Rodrigues, R. Oliveira,
and S. Guedes. On the use of a reflective architecture to augment
database management systems. Journal of Universal Computer Sci-
ence, 13(8):1110–1135, 2007.

[6] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of ACM, 34(1):225–267, 1996. A preliminary
version appeared in the Proceedings of the Tenth ACM Symposium on
Principles of Distributed Computing, pages 325–340. ACM Press, Au-
gust 1991.

[7] S. Cheung, M. Ammar, and M. Ahamad. The grid protocol: A high
performance scheme for maintaining replicated data. In Proceedings of
the 6th Internation Conference on Data Engineering, pages 438–445,
1990.

[8] P. Dutta, R. Guerraoui, R. Levy, and A. Chakraborty. How fast can a
distributed read be? In Proc. of the ACM Symposium on Principles of
Distributed Computing (PODC 2004), pages 236–245, 2004.

[9] H. Garcia-Molina and D. Barbara. How to assign votes in distributed
system. Journal of the ACM, 32(4):841–860, 1985.



[10] D. Gifford. Weighted voting for replicated data. In Proc. of the 7th
ACM Symposium on Operating System Principles, pages 150–162, USA,
December 1979.

[11] J. Gray, P. Helland, P. O’Neal, and D. Shasha. The dangers of replica-
tion and a solution. In Proc. of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 173–182, Montreal, Quebec,
Canada, June 1996.

[12] Rachid Guerraoui and Lúıs Rodrigues. Reliable Distributed Systems.
Springer Verlag, 2006.

[13] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related
Problems. In Sape Mullender, editor, Distributed Systems, pages 97–
145. ACM Press, 1993.

[14] M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463–492, July 1990.

[15] B. Kemme and G. Alonso. A suite of database replication protocols
based on group communication primitives. In Proc. of the 18th Inter-
national Conference on Distributed Computing Systems (ICDCS), The
Netherlands, May 1998.

[16] R. Oliveira, J. Pereira, A. Correia Jr, and E. Archibald. Revisiting
1-copy equivalence in clustered databases. In Proceedings of the 2006
ACM symposium on Applied computing, pages 728 – 732, 2006.

[17] M. Patiño Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scal-
able replication in database clusters. In Proc. of the 14th International
Symposium on Distributed Computing (DISC), Toledo, Spain, October
2000.

[18] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Computing Surveys, 22(4):299–319,
Dec. 1990.

[19] J. Turek and D. Shasha. The Many Faces of Consensus in Distributed
Systems. IEEE Computer, 25(6):8–17, June 1992.

[20] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Database replication techniques: a three parameter classification. In



Proc. of the 19th IEEE Symposium on Reliable Distributed Systems
(SRDS2000), Germany, October 2000.


