
Mechanisms for Providing Causal Consistency on Edge Computing
(extended abstract of the MSc dissertation)

Nuno Cerqueira Afonso
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luís Eduardo Teixeira Rodrigues

Abstract—Today, many applications offload computation and
storage to the cloud. Unfortunately, the high network latency
between clients and datacenters can impair novel, latency-
constrained applications, such as augmented reality. Edge
computing has emerged as a potential solution to circumvent
this problem. To unleash its full potential, the edge must cache
data that is frequently used. However, building a storage service
that is able to maintain many (partial) replicas while providing
meaningful consistency guarantees is an open challenge. In
this paper, we present Gesto, a data storage architecture that
enables scalable causal consistency for edge networks. Gesto
integrates a novel causality tracking mechanism that relies
on multipart timestamps of constant size, independently on
the number of edge caches. As our evaluation shows, this
mechanism enables Gesto to simultaneously offer fast local
operations, high throughput, fast update replication, great
scalability, and, unlike previous work, quick client migrations.

I. INTRODUCTION

Cloud computing is an established paradigm and most
applications, including those that run on mobile devices,
use the cloud to fetch data, upload information, or offload
computations that are resource intensive and can drain the
battery of the devices [1]. Image processing for face or
object recognition [2], [3] is an example of a resource-eager
task that can be offloaded to the cloud. This functionality is
key for many augmented reality applications such as marker
detection [2] or just-in-time video indexing [4]. However, a
response time below 5–30 milliseconds is typically required
for these applications to be usable [5]. This may be impos-
sible to guarantee when accessing remote datacenters.

To circumvent this limitation, the use of computing re-
sources closer to the logical extreme of the network, such
that the cloud is pushed closer to clients, has emerged as a
viable solution. Many approaches based on this principle are
being advocated, including the use of cloudlets [6], Mobile
Edge Computing (MEC) [7], and fog computing [8]. In
addition to removing the latency bottleneck, edge computing
brings other advantages, such as decreasing the load on
datacenter networks [9] and making the applications more
robust to datacenter outages [5].

To unleash their full potential, edge nodes should not
only provide processing capacity, but also cache data that
may be frequently used [10]; otherwise, the advantages of
processing on the edge may be impaired by frequent remote

data accesses [11]. By using cached data, end-users’ requests
rarely need to be served by the root datacenters.

Consequently, we claim that a key ingredient of edge
assisted cloud computing is a storage service that extends
the one offered by the cloud, in a way that relevant data
is replicated closer to the edge. Nevertheless, designing
such a storage service while providing meaningful con-
sistency guarantees is not trivial. Specifically, we focus
on the problem of supporting causal consistency on the
edge, given that causal consistency was shown to be the
strongest consistency criteria that can be offered without
compromising availability [12]. The edge scenario enforces a
set of requirements that makes the implementation of causal
consistency hard:

High Scalability. An important observation is that, to
ensure acceptable latency, many edge nodes will need to
be deployed. For instance, to ensure the target 5–30 mil-
liseconds latency, every heavily populated region of 95 114
Km2 (a circle of 174 Km radius) should have its own
edge instance in the center. We estimate this number based
on measured round-trip-times (RTTs) among Amazon EC2
regions (RTT of 22.5 ms between the Oregon and California
regions, which are 783 Km apart), such that the 5 ms
lower-bound is met. In Europe alone, with a total area of
10.18 million Km2, approximately 107 replicas should be
deployed.

Partial Replication. Edge replicas will only maintain
partial information given that: (i) for efficiency, only infor-
mation that is valuable to the clients that a replica is serving
should be shipped and stored on the edge; (ii) edge nodes
are resource-constrained.

Non-sticky Sessions. Clients should be able to efficiently
move among replicas without having to restart their session.
Clients may move, for instance, due to mobility or to read
data that is not replicated in their preferred replica.

Interestingly, most systems that offer causal consistency
in the cloud make exactly the opposite assumptions [13]–
[21]: they have been developed for scenarios where a few
datacenters exist, each datacenter usually implements full
replication, and clients remain mostly connected to a single
datacenter.

In this paper, we present Gesto, a novel hierarchical
architecture that enables causally consistent cloud stores to

1



span over edge networks. Firstly, Gesto is able to scale with
the number of edge devices by relying on constant sized
multipart timestamps to track causality (the size of these
timestamps does not grow with the number of edge replicas).
Secondly, it supports partial replication, a replication model
that is a requirement in edge networks, given that edge
devices are resource-constrained. Finally, Gesto copes with
the fact that users may need to attach to different replicas
during their operation, and are not tied to a single one.

We have built a prototype of Gesto and we have compared
its performance against other state of the art causally con-
sistent systems, such as COPS [13], Saturn [20], and Occult
[19]. Our evaluation shows that Gesto can efficiently enable
causally consistent cloud stores to take advantage of edge
devices.

II. RELATED WORK

The causal dependencies of an operation are determined
by happened-before relations (→) [12], [22], which are
defined by three rules:

Thread of Execution. If a and b are two operations
executed by the same thread of execution (for instance, by
the same client), then a → b if a happens before b.

Reads From. If a is an update operation and b is a read
operation that reads the value set by a, then a → b.

Transitivity. If a → b and b → c, then a → c.
A storage system is said to be causally consistent if

its clients perform v1=read(k1) and, subsequently, make
v2=read(k2), where write(k2,v2) → write(k1,v1), and there
is no other operation write(k2,v′) such that write(k2,v2) →
write(k2,v′) → write(k1,v1).

All systems that enforce causal consistency need to
maintain some form of metadata to keep track of causal
dependencies. This metadata can assume multiple forms,
being used for tagging operations and capturing the causal
past of clients. The metadata kept by clients allows the
understanding of which updates can be made visible to
that client without violating causality. By comparing the
metadata associated with two operations, it should always
be possible to determine in which orders these operations
should be applied to respect causality. Ideally, one would
also like to always be able to check if two operations are
concurrent. Unfortunately, the amount of information that
needs to be maintained to accurately capture concurrency
may be prohibitively large and affect the system’s perfor-
mance [19], [20]. Thus, many systems reduce the amount of
metadata at the cost of losing precision, creating what has
been named false dependencies. They are scenarios where
some operations appear to be causally related, but, in fact,
are not. Not surprisingly, the right amount of metadata that
needs to be kept for a given scenario is one of the most
studied aspects of distributed systems, both by practitioners
and theoreticians [23]–[26]. A key contribution of our work
is to propose a multipart timestamp that offers a good trade-
off between size and precision for the network edge.

Although there has been a significant amount of work in
causally consistent cloud storage services in the past years,
there are no systems that join support for partial replication,
efficient client migration, low update visibility, and constant
metadata size (key feature to scale). Here, we briefly discuss
some properties of the most relevant previous solutions.

Usually, systems use variants of vector clocks as metadata,
which grows linearly with the number of replicas. Examples
are PRACTI [14], SwiftCloud [15], Legion [16], Eunomi-
aKV [17] and C3 [21]. The size of these clocks allows them
to achieve low visibility latency. Unfortunately, as the size
grows with the system’s scale, these systems do not scale
well as the number of edge caches increases. Occult [19]
introduces compression techniques that enable vectors with
a reduced size. It does not introduce inconsistencies, because
it relies on a master-slave replication scheme.

GentleRain [18] and Saturn [20] do an effort to keep
the metadata size constant. However, they have not been
designed to consider frequent client migrations, and perform
poorly in this respect.

Other solutions, such as COPS [13], keep explicit track
of the object versions that have been read by the client. This
avoids false dependencies, potentially minimizing the update
visibility latency. However, they have not been designed
for partial replication. They can be extended (as we will
do for our experimental evaluation), but the adopted model
disallows them to efficiently trim the client’s causal past. As
a result, these systems need to process a very large amount
of metadata, which severely limits the system’s throughput.

Among all these systems, only SwiftCloud [15] and
Legion [16] consider using edge caches: both allow clients to
maintain a partial replica. In SwiftCloud, all the coordination
between edge replicas is done through the closest datacenter.
Unlike Gesto, they do not consider migration among edge
replicas, forcing clients to always be attached to the same
one, regardless of observing an increase on latency. In
Legion, clients execute direct synchronization, bypassing the
cloud. However, this is a heavy process, because clients
have to exchange vector clocks for calculating the differ-
ence between their states, create structures that ensure data
confluence and return them to each other. With the increase
of the number of peers, clients quickly become overloaded.

III. SYSTEM MODEL

Before presenting the design of Gesto, there are some
decisions that must be highlighted. Firstly, we consider a
particular type of network edge, which allows us to optimize
the protocols. Secondly, Gesto separates the propagation of
data and metadata. In the following paragraphs, we clarify
the reasons that have led us to such choices.

Datacenters, Cloudlets and Regions. We assume a model
of edge computing where the cloud is extended with smaller
datacenters that are located closer to clients and maintain
partial replicas of the state stored in the cloud datacenters.
This model has been sometimes called the heavy edge

2



network model [27]. The smaller datacenters have been
called cloudlets [6], a term that we also adopt.

We assume that each cloudlet is hierarchically attached to
one (and just one) datacenter. Naturally, each datacenter can
communicate with multiple cloudlets. Clients can connect to
any cloudlet or directly to a datacenter. The set of system
components that consists of a single datacenter, the cloudlets
attached to that datacenter, and the clients attached to those
cloudlets, is denoted a Gesto region.

Clients are not required to stay connected to the same
cloudlet during their operation; they can dynamically attach
to another cloudlet at any point. Clients may change their
attachment point due to mobility, to access data that is not
available in the replica they are attached to, or just to adapt to
changing network conditions. Each cloudlet runs an instance
of the Gesto service, that manages the client access to the
data that is locally replicated.

We assume that each cloudlet maintains a partial replica
of the application state (the entire state is maintained in the
storage service instantiated by datacenters). A Gesto instance
keeps a copy of the data that is more likely to be relevant
for computations performed at its cloudlet. The algorithms
used to select which data is cached at each instance are
orthogonal to the contributions of this paper.

Data and Metadata. In Gesto, we separate metadata
management from payload propagation. This approach has
been adopted by some recent systems [14], [20], [21], [28],
because it optimizes the application of remote updates,
which becomes no longer constrained by the expensive
dissemination of payloads in the network. When an update
occurs at a given site, the system can choose any data path
that is more convenient to propagate it. For instance, updates
in a given cloudlet may be shipped to a cloud datacenter first,
and, from there, to other cloudlets, or can be directly shipped
to sibling cloudlets. On the other hand, metadata information
is propagated using a specific topology, detailed below, that
allows optimizations for keeping a small size.

IV. DESIGN

In this section, we present the design of Gesto, a causally
consistent storage service for edge networks. We start by
giving an overview of Gesto’s architecture and main fea-
tures. Then, we analyze the metadata structure.

A. Overview

Goal. Gesto is a hierarchical architecture that aims at ex-
tending — requiring minimal changes — causally consistent
cloud storage services with mechanisms to operate in the
edge, bringing them closer to clients.

System Components. Gesto has the following components,
which create a three-tier architecture, as depicted in Figure 1.

A cloud storage service is a causally consistent key-value
storage system designed to run across a small number of
datacenters. We assume, without loss of generality, that each
datacenter replicates the whole application state. Also, we
assume that each datacenter is linearizable [29].

datacenters

clients

region 1 region 2

Gesto instances

1

2

2

broker3

3

3

4

4

5

6

broker7 8

8

9

update

Figure 1. Gesto three-layer architecture. The numbers represent the steps
that an update issued at the leftmost Gesto instance of region 1 will follow
until being propagated to the rightmost Gesto instance of region 2. The
execution flow does not depict the payload transmission within regions
(done by 5). Steps with � indicate that they require the update’s payload
to be executed.

A regional broker manages metadata by orchestrating its
propagation within a region.

Gesto instances are partial replicas of the application state
(the state maintained in the cloud storage service instantiated
by datacenters) that reside in the logical extreme of the
network, typically one in each cloudlet. Each Gesto instance
has a local datacenter to which they are connected, namely
their parent datacenter.

A client proxy connects clients to Gesto. It is in charge
of propagating client requests to Gesto. Before propagating
them, these are enriched with causal information that is used
by Gesto to guarantee causality.

Execution Flow. Clients interact with the system through
a client proxy by performing read and write operations.
These operations can be sent to any replica (a Gesto instance
or a datacenter). However, for better performance, clients
should mostly interact with their closest replica. Before
performing any operation, clients need to attach to a replica.
The purpose of the attach procedure is to ensure that the
target replica has a state that is consistent with the causal
past of that client. Once attached, the client can issue read
and write requests without further synchronization.

The process of detaching from a replica and attaching
to another (for instance, to access a data item that is not
cached in the origin replica) is called a migration. A client
migration within a region is assumed to be a relatively
infrequent operation (once attached, clients should perform
multiple local reads/writes before migrating again), but it
is not assumed to be rare. In fact, client migrations is

3



a requirement that derives from the assumption of partial
replication, which is the only realistic assumption in face of
resource-constrained cloudlets.

In the following example, we illustrate the sequence of
steps that are executed from the point a client issues a write
request in a given region, up to the moment the update is
applied not only in other replicas of the same region, but also
in replicas of remote regions. Note that the current paper
is mainly concerned with the mechanisms used inside each
region. However, Gesto is modular and can be combined
with whatever mechanism the datacenter uses natively to
maintain causal consistency across regions. Thus, the exam-
ple below also illustrates the interplay between Gesto and
the datacenter’s native causal consistency mechanisms. The
execution flow, depicted in Figure 1, is as follows:
Step 1 : The replica (a Gesto instance) handles a local write
request by assigning it a multipart timestamp (the format of
this is discussed in §IV-B). Multipart timestamps (MP_TS )
have enough information to order updates according to
causality.
Step 2 : The replica returns the MP_TS to the client, that
can assume the completion of the write. Concurrently, the
update is propagated to the regional replicas (including the
parent datacenter) and the corresponding MP_TS to the
regional broker.
Step 3 : When the regional broker receives the MP_TS , it
processes it and sends it to the regional replicas that store
the associated object, but not to the original one.
Step 4 : When a replica receives both the update payload
and the corresponding MP_TS coming from the regional
broker, it installs the update and makes it visible to local
clients.
Step 5 : When the regional datacenter has made the update
visible, it generates the metadata required by the native inter-
datacenter causal consistency protocol. From the perspective
of this protocol, the update installed by Gesto is handled as
its own local update. Then, the update is propagated to other
datacenters using the native protocol. Gesto is oblivious to
the internals of the inter-datacenter replication mechanism.
On the receiving side, there needs to be some changes on
the update, before it is applied in the Gesto instance:
Step 6 : The native inter-datacenter protocol ensures that
the update is locally applied in causal order. Just before
storing it, the datacenter generates a new Gesto MP_TS and
locally installs the update.
Step 7 : The datacenter propagates the update payload
to the regional replicas. Concurrently, it propagates the
associated MP_TS to the regional broker.
Steps 8 and 9 : They are similar to 3 (considering the
datacenter as the origin replica) and 4 respectively.

As noted in §III, Gesto does not require the network
path used to propagate the update payload to be the same
as the path used to propagate the corresponding multipart
timestamp. Gesto is agnostic to the process of propagating

the update payload (different Gesto deployments can use
different strategies to propagate update payloads), because
remote updates are applied by the order that metadata
arrives. In our exposition, we abstract this by calling a
payload non-blocking multicast primitive whenever the con-
tent of updates needs to be shipped to other replicas. We
make very few assumptions about this service and we do
not require updates to be received in order. Differently,
multipart timestamps follow a specific path. As we will
explain, the path used to propagate multipart timestamps
and the changes performed to these timestamps during the
propagation process are instrumental to keep the size of the
timestamps small.

B. Multipart Timestamps
Gesto associates with each update a multipart timestamp.

A multipart timestamp is only meaningful within the region
were it was generated, lacking meaning at remote regions.
Clients also maintain a multipart timestamp, summarizing
their causal past, that is handed to a replica when attaching.
The structure is key to guarantee fast and consistent intra-
region client migrations.

A multipart timestamp includes two entries, namely the
local timestamp (lts) and the regional timestamp (rts). In
turn, each entry is a 〈src, clock〉 tuple that includes a source
field (src), for identifying the creator of the timestamp, and
a clock field (clock), which captures the creation time.

The lts entries are created by the replica where the write is
issued. Therefore, the src field of the lts indicates the origin
replica of the update. It is used by clients attached to that
replica to keep track of the most recent local update they
have observed. A local timestamp can only be compared with
other local timestamps created in exactly the same replica.

The rts entries are always assigned by the regional broker.
Whenever an update created in an instance is propagated to
other remote instances, it is assigned a new regional entry
by the broker. The rts is used by clients to keep track of the
causal dependencies for remote updates. It is the regional
timestamp that allows the ordering of updates generated in
different replicas of a given region.

The use of a single regional entry to keep track of all
remote causal dependencies prevents the client from storing
a different lts for each instance that exists in a region.
Otherwise, metadata could reach very large sizes. Intuitively,
Gesto keeps track of updates that happen in the local
instance with more accuracy than for remote ones, given that
the broker merges all remote updates in a single entry. The
rational for this asymmetry is that we assume that clients
perform much more local operations than remote ones. As
we will show, experimental results confirm that this model
offers a good trade-off between metadata size and accuracy.

V. PROTOCOLS

In the following sections, we detail the basic protocols
of Gesto. Namely, the read and write protocols, the update
propagation protocol, and the migration protocol to allow the
movement of clients throughout the network. Due to space

4



constraints, the algorithms’ pseudocode is only available in
the full thesis.

A. Reads and Writes

Clients read and write data items to their attached replica
through their client proxy. Usually, this replica corresponds
to the preferred one.

Read. Gesto’s read protocol executes without any syn-
chronization, as we expect reads to be the most common
operation. Thus, the client is not required to forward its own
multipart timestamp. This happens because the migration
procedure ensures that the local instance is up-to-date with
the client’s past, before allowing the client to make other
operations. The replica handles read requests by returning
the stored value alongside its corresponding timestamp. If
the replica does not cache the target key, an error is returned.
In turn, the client incorporates the update (together with the
update’s causal dependencies) to its causal past by merging
the two multipart timestamps. It is done by picking the
greatest regional entry and, if the update was generated in
the contacted replica, the largest local entry.

Write. Firstly, the client generates an unique identifier
for the update. Then, it forwards the update request to
its preferred replica, together with its multipart timestamp.
The receiving replica assigns a new multipart timestamp
to the update, by preserving its regional component and
getting a new local component. The new entry must have a
higher clock than the last operation recorded in the client’s
past. This guarantees that the timestamp assigned to the
update is greater than the timestamps associated to any
operation observed by the client, which is essential to enable
consistent client migrations. If the key is locally cached,
the update is applied to the local key-value store. Then, the
metadata associated with the update is sent to the regional
broker and the payload is propagated to all other regional
replicas, including the parent datacenter. Concurrently, the
new timestamp is returned to the client. Finally, the client
incorporates the new update into its causal past by simply
overwriting its old multipart timestamp with the new one.

B. Intra-regional Update Replication

As mentioned, Gesto decouples the dissemination of data
and metadata. In order to apply a remote update, a replica
must have received both the associated payload and the
metadata. The payload is directly received from the orig-
inating replica and can arrive out of order. So, they are
buffered until they can be applied in causal order. Metadata
is received in an order that respects causality. Therefore,
updates are applied in that exact order.

Metadata goes from the origin replica to the regional
broker. The broker merges the metadata produced in differ-
ent replicas into a single stream, consistent with causality.
Then, it propagates it to the other regional replicas. For
each replica, the broker only sends the metadata associated
to updates on items that are cached, filtering out the rest.

This enhances performance, because it avoids processing
irrelevant metadata and reduces the network traffic.

To simplify the process of creating a causally consistent
stream at the broker, we require the use of FIFO channels
between the broker and the replicas. We also enforce that
replicas send multipart timestamps to the broker in local
timestamp order. Under these constraints, the stream is
causally consistent if the broker assigns regional timestamps
respecting the order by which it receives multipart times-
tamps from replicas. In fact, an update b originating at some
replica 1 can only depend on an update a originating on
some other replica 2 if a was visible at 1 before b was
issued, such that the client that issued b could have read
a. This means that the metadata associated to a must have
been received by the broker before b’s metadata. Note that
concurrent updates from different replicas may be serialized
by the broker in any order.

There are a few subtle issues that are worth mentioning. In
case of suffering a timeout, clients can submit the same write
to multiple replicas, assigning it more than one multipart
timestamp. Still, the update is locally applied only once,
when the first multipart timestamp is received. Also, clocks
are only loosely synchronized, which enables the local
application of a remote update with a timestamp clock value
that is greater than the local wall clock. To ensure that clock
values match the causal order, the replica may have to wait
for its wall clock to catch up when issuing new timestamps.

C. Client Migration
A migration is the procedure that allows a client to attach

to a new replica (the target replica) after being previously
attached to another one (the origin replica). A client may
migrate if its current preferred replica does not replicate a
data item, it became unreachable, or the client has physically
moved, being closer to other replica. When faced with a
cache miss, the client may directly migrate to the local
datacenter or, when this information is available, to another
cloudlet that also replicates the desired data item. Migration
is supported by an attach operation, which is mandatory,
and by a snapshot operation, which is optional and has the
purpose of reducing the migration latency.
Attach. In order to perform a migration, a client issues
an attach request to the target replica. The client’s multipart
timestamp is sent as a parameter, because it captures its
causal past. In order to successfully attach to a target replica,
the client must wait until that replica has a consistent state.
To track which updates have already been locally applied,
each replica maintains some bookkeeping information about
their own region. Namely, a replica keeps track of the last
update it has applied from each remote replica and the
highest regional timestamp that has been locally applied.
Thus, a replica can satisfy an attachment request as soon as
the last received lts from the origin and the highest regional
timestamp are, respectively, higher or equal than the local
and regional entries of the client’s multipart timestamp.

The second part of the attachment procedure consists on
generating a new multipart timestamp that allows the client

5



to interact with the target replica. Since the client has not yet
observed any state on the target replica, the clock of the local
entry of the multipart timestamp is simply assigned with
value 0. The clock on the regional entry is set to the most
recent update that has been previously observed by the client.
For this, the target replica checks the regional timestamp that
was assigned by the broker to the last operation performed at
the origin replica and that was received at the target replica.
Then, it compares this to client’s regional timestamp and
keeps the highest value.

Snapshot. The snapshot operation is executed at the origin
replica. In spite of being optional, this operation may speed-
up the attachment to the target replica. The reason to
implement a snapshot operation is the following. Assume
that a client reads some object x on the origin replica with
timestamp tx, which makes it have tx in the local part of
its timestamp. When the client attaches to a target replica, it
will need to wait until the target replica receives a timestamp
greater or equal to tx from the origin replica. Unfortunately,
it may happen that the target instance does not cache object
x. In fact, the target replica may cache very few items
that are also cached at the origin replica. Thus, a higher
timestamp from the origin replica may take an arbitrary
amount of time to reach the target replica. The snapshot
operation aims at ensuring that the target replica quickly
receives an update.

To force an update of the metadata on the target in-
stance, snapshot is implemented by emulating an update
that is performed at the origin replica and that needs to
be propagated to the target replica, thus prompting the
propagation of the associated metadata. To avoid incurring
the full cost of updating a data object, this operation is
implemented as an update on a faux object that consumes
no state. These updates do not have unique identifiers and
do not required the exchange of payload messages; they
only trigger metadata updates on the origin replica, regional
broker, and target replica. There is a faux object for every
pair of replicas.

Liveness. Since snapshot operations are not mandatory, we
need a mechanism to ensure that migrations complete in
bounded time, even when the objects that are replicated
at the origin and target replicas are not updated for long
periods. Thus, in absence of further updates, each replica
periodically executes a spontaneous snapshot. This bounds
the migration latency and guarantees that, if no failures
occur, a client migration will always complete.

D. Inter-regional Update Replication

By design, Gesto is only concerned with keeping track
of causality within a region and relies on any pre-existing
protocol that is natively supported by the datacenter for inter-
regional replication. This allows Gesto to be plugged into an
existing system, in order to augment it with support for edge
computing, with minimal changes to the inter-datacenter
replication protocols already in place.

The inter-regional replication works as follows. When
a datacenter installs a new update, either issued by a lo-
cal client or originating at a regional replica, it generates
whatever metadata is required by the native inter-regional
protocol. Then, the datacenter ships the update, together
with the inter-regional metadata, to remote datacenters. Note
that Gesto is oblivious to the structure of the inter-regional
metadata and to how it is generated. Similarly, the Gesto
multipart timestamp does not need to be shipped to remote
datacenters and can be ignored by the native protocol. This
ensures the modularity of the design.

Eventually, a receiver datacenter will decide that it is safe
to locally install the update. When a datacenter installs a
remote update, it generates a fresh Gesto multipart times-
tamp for its own region. This multipart timestamp contains
a local entry that is greater than any local timestamp ever
assigned by the datacenter, and a regional entry that is set
to 0. This is sufficient to guarantee that any client who
reads this update from the datacenter can safely migrate
to other regional replicas. Finally, the datacenter acts as
if the update was issued by a local client: (i) installs the
update, together with the multipart timestamp; (ii) sends the
payload to all regional replicas; (iii) sends the timestamp to
the regional broker. The broker will process the metadata as
it was an update originating in its region and propagate it
to the regional replicas, which in turn will make the remote
update visible to local clients.

E. Correctness
We have derived proofs of correctness for Gesto’s algo-

rithms. Due to space constraints, these were not included in
this paper, but can be seen in the full thesis.

VI. RECONFIGURATION AND FAULTS

Like the correctness arguments, the reconfiguration strate-
gies were not included in this paper. Furthermore, they are
not evaluated, leaving them as future work.

VII. IMPLEMENTATION

In order to ease the implementation of Gesto and of the
other systems (eventual consistency, COPS [13], Occult [19]
and Saturn [20]) for making a fair performance evaluation,
we have created a framework for edge storage. It considers
the following components: clients, which are in charge of in-
teracting with the system; client receivers, that get the client
requests and redirect them to the right internal component;
partitions, that store the replica state and reply to read/write
requests; timestamp senders, that export update metadata for
their replication; timestamp receivers, which get the remote
update metadata and manage their application; brokers, that
create a network among regional replicas. Overall, there are
two possibilities for connecting the different components,
due to separating (or not) the propagation of the update
payload from the metadata. Solutions that make this sep-
aration, like Gesto and Saturn, use all the components. The
eventually consistent system, COPS and Occult use clients,
client receivers and partitions.

6



Lu Ly Nc Nt R S
Li 5.7 6.6 4.8 13.0 13.6 9.7
Lu - 8.5 1.2 15.0 15.6 11.7
Ly - - 7.5 6.9 7.4 3.5
Nc - - - 14.0 14.6 10.7
Nt - - - - 0.8 10.0
R - - - - - 10.6

Table I
AVERAGE LATENCIES (HALF RTT) IN MILLISECONDS AMONG

LOCATIONS: LILLE (LI), LUXEMBOURG (LU), LYON (LY), NANCY
(NC), NANTES (NT), RENNES (R) AND SOPHIA (S).

The framework was developed on Linux, using Er-
lang/OTP as the programming language. Each node executes
the Erlang R16B02 virtual machine. Note that more recent
releases of the virtual machine exist (at the moment of
writing, the latest stable release is version 21), but this exact
virtual machine was needed for running Basho Bench [30], a
benchmarking tool that simulates the clients of each system.

Although the details from the implementation of each
system are in the full thesis, here we just mention the
most relevant decisions. Eventual consistency works as the
baseline for the best achievable results, because it does not
have to manage complex metadata. COPS was converted to a
version that supports partial replication. The compression of
client metadata is only done when the write is done to a fully
replicated object. Otherwise, the returned version is added
to the list of dependencies, like a read operation. Occult
uses the temporal metadata compression, with a multipart
timestamp with a maximum of ten entries. The datacenter is
the master of all shards. At most, clients retry three times at
their local replica for getting a consistent read. Afterwards,
they must read from the master shard. Saturn has an internal
network of brokers, which may propagate updates to replicas
or to other brokers. Eventually, updates will reach all replicas
that replicate them. All these systems consider that there is
only one region, with a datacenter and several cloudlets.

VIII. EVALUATION

Our primary goal is to determine if Gesto can extend
causally consistent cloud storage services to efficiently oper-
ate in the edge. Thus, our evaluation answers the following
question: can Gesto simultaneously offer low local operation
latency, high throughput, fast update replication, scalability,
and fast client migration?

Setup. All experiments were run on the Grid’5000 [31]
experimental platform using fully-dedicated servers. Each
server runs Ubuntu 14.04 and has two physical CPUs
ranging from four to eight cores each and from 4 to 64
GB of memory. We use a total of seven locations. Table I
presents the average measured latencies among these. Our
experiments focus on the intra-region operation. Thus, we
place the single datacenter and the broker in Lyon, because
of its centrality. The remaining locations have a cloudlet.

Clients are co-located with their preferred replica, but in
separate machines. Each client eagerly sends requests to its
preferred replica with zero thinking time. Each experiment

Eventual Gesto Saturn Occult COPS
0

2

4

6

8

10

12
99th

95th

90th

50th

Reads

L
at

e
nc

y 
(m

s)

0,2989 0,3324

10,698

1,1353
0,3374

Eventual Gesto Saturn Occult COPS
0

2

4

6

8

10
99th

95th

90th

50th

Writes

L
at

e
nc

y 
(m

s)

0,3600 0,3838

10,144

1,2475
0,3889

Figure 2. Each system’s read and write latencies.

runs for two minutes. The first and the last ten seconds of
each experiment are ignored, to avoid experimental artifacts.
The remote update visibility is computed by storing the
physical time at the origin replica when the operation is
issued, and subtracting it from the physical time at the target
replica when the operation completes. To synchronize the
clocks, each machine runs the NTP protocol before starting
the test. Basho gives the other results.

Workloads. We experiment with two different synthetic
workloads: W1 and W2. In W1, clients only perform
local operations with a distribution of 90% reads and 10%
updates. In W2, clients execute a mixture of local operations
and migrations, with a distribution of 70% reads, 10% up-
dates and 20% migrations to any replica. In both workloads,
we can tune the client access pattern to control the number of
direct causal dependencies associated with each operation.
For instance, forcing a client to read n data items and,
only then, to perform the write, approximates the number
of dependencies to n. W2 is just considered on §VIII-E, but
W1 is used on all experiments.

A. Local Operation Latency

The first experiment compares the systems in regard to
their client read and write latencies (plots on the left and
right of Figure 2, respectively). The majority of the systems
has faster reads than writes, with Occult being the exception.
Its writes take almost the same time (there is marginal
difference between the median and the 99th percentile),
because they are always made on the datacenter. But, in
reads, there is the possibility of the local replica replying
with an inconsistent version. So, in the worst case, reads
take as long as writes, plus the latencies from the retries. In
practice, the datacenter is visited less than ten percent of the
times, because the 90th percentile is below two milliseconds.

Looking at the remaining systems, eventual consistency
has the combined lowest latencies, for not having to deal
with the creation of metadata. Saturn and Gesto have vir-
tually the same results, because they support fast metadata
creation and the serialization of updates is not on the client
path. COPS cannot match their performance, because of its
explicit dependency check. When there is an update to the

7



9/1 18/2 27/3 36/4 45/5 54/6 63/7
0K

10K

20K

30K

40K

50K

60K

70K

80K

90K Eventual Gesto Saturn Occult
COPS

Access pattern (reads/writes)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
 / 

s)

Figure 3. Each system’s throughput for a given access pattern, while
maintaining the same read/write ratio.

local state, the server looks for pending dependencies that
got fulfilled. The higher load delays client operations.

B. Throughput
The throughput of local operations for a given client

access pattern is displayed in Figure 3. Not surprisingly,
the eventually consistent system makes the most operations,
mainly due to not managing any metadata. Gesto and Saturn
are not far away (they are lower by less than ten percent).
Between them, there is no significant difference, because
the serialization of remote updates is not on the client path
and their propagation is done on the background. COPS
is the only system that is heavily impacted by the client
access pattern. When the client’s dependency list increases,
the costs involved in the explicit check are large enough
to incur in a system slowdown. At this experiment, Occult
exhibits the lowest throughput, because of its high write
latency. However, in §VIII-D, there is an increase in the
number of clients, showing that it supports a fair amount
without overloading. Initially, this system had even lower
throughput, because the datacenter had to propagate the
update to all replicas and the amount of updates that arrived
at each instance was the highest. Furthermore, clients write
to the datacenter and, when trying to read from their local
replica, the probability of getting a non-consistent version is
higher, leading to more retries.

C. Remote Update Visibility
In Figure 4, there are the remote update visibility latencies

for each system’s access pattern. Like in §VIII-B, only
COPS shows a negative evolution, with all the other systems
keeping an almost constant remote update visibility latency.
Eventual is still the system with the best performance, but
now is closely followed by Occult (COPS is near, when
clients frequently write to the fully replicated object). Given
its optimistic approach to causal consistency, Occult’s slave
replicas apply remote updates as soon as they receive them,
without making any checks. The node organization together
with the FIFO channels ensure that updates are received
in the same order as they left the master, which preserves
the consistency. In the worst case, Gesto shows a smaller

9/1 18/2 27/3 36/4 45/5 54/6 63/7
0

5

10

15

20

25

30 Eventual Gesto Saturn Occult
COPS

Access pattern (reads/writes)

R
em

ot
e 

u
pd

at
e 

vi
si

bi
lit

y 
(m

s)

Figure 4. Each system’s 90th percentile of remote update visibility for a
given access pattern, while maintaining the same read/write ratio.

0 5 10 15 20 25 30
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Eventual
Gesto
Saturn
Occult

Remote update visibility (ms)

C
D

F

Figure 5. Cumulative distribution function for each system’s remote update
visibility.

remote update visibility latency than Saturn. The more direct
propagation of updates and the lower number of hops in the
internal nodes are what contribute to such fact.

For visualizing each system’s overall remote update visi-
bility latency, Figure 5 shows the corresponding CDF. This
time, clients read a variable amount of objects between up-
dates, leading to a more generalized behavior, while keeping
workload W1. COPS was excluded from this experiment,
because there is a more relaxed control of the amount of
dependencies and it has high probability of bottlenecking.

The experimental results offer some interesting insights.
As expected, eventual consistency is always the fastest,
with the results directly matching the latency among the
different physical locations. Occult gets closer to eventual
consistency as the amount of remote updates increase. Given
that all writes are done in the datacenter, geographically
close locations incur in a higher remote update latency. This
becomes less noticeable as nodes get farther apart, because
the detour has a lower impact. Saturn explores the proximity
of its instances by having more serializers connecting them,
resulting in a fast propagation. However, it quickly slows
down (it is only faster on the first five percent of all updates),
because the hops introduce more delays. This is also visible
when Gesto surpasses Saturn (around half of all updates).

8



0 100 200 300 400 500 600 700 800
0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K
Eventual
Gesto
Saturn
Occult
COPS

Number of clients

T
hr

ou
gh

pu
t (

op
er

at
io

ns
 / 

s)

Figure 6. Each system’s throughput for a given number of clients.

D. Scalability
This experiment focuses on understanding how many

clients are needed to reach each system’s maximum through-
put. Clients are equally shared among all instances. The
results are depicted in Figure 6.

Eventual consistency should always have the highest
throughput, but this does not happen. From 150 clients,
it starts to slow down and is surpassed by both Gesto
and Saturn. However, the problem is not with eventual
consistency, but with the other two. After a careful analysis,
the components for exporting and importing metadata are
bottlenecking the propagation of updates (their queue grows
faster than what they can process). This reduces the amount
of delivered remote updates, allowing the response to more
client requests. Optimizations to the code might solve the
issue. When looking at a number of clients below 150, the
performance of Gesto and Saturn is near optimal, which
was also shown in §VIII-B. COPS has a promising start,
but the dependency check quickly degrades performance.
Its maximum throughput is roughly 45% lower than both
Gesto and Saturn. Finally, Occult begins with the worst
performance, due to the high client write latency. Increasing
the load provides a steady evolution, getting its maximum
throughput when serving 550 clients, which exceeds COPS.
The simple protocols and the client side consistency check
are the reasons behind such numbers.

E. Migration Latency
The last experiment is to assess the cost of performing

a client migration, mainly the additional latency that is
induced by this operation. There are clients with workloads
W1 and W2. The CDF with each system’s migration latency
is displayed in Figure 7.

Again, since the eventually consistent system does not
enforce any invariant when performing this operation, it
is the one that offers faster migrations. Occult, Gesto and
COPS exhibit near optimal migration latency. Occult relies
on optimistic causal consistency to show the updates as soon
as they arrive, reducing the probability of clients having to
wait for consistent versions. Gesto’s multipart timestamp ac-
counts for client’s read-heavy workload. Since the migration

0 10 20 30 40 50 60
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Eventual
Gesto
Saturn
Occult
COPS

Migration latency (ms)

C
D

F

Figure 7. Cumulative distribution function for each system’s migration
latency.

does not follow a write, the client synchronization time is
reduced. Usually, the migration finishes without additional
latencies. COPS exhibits a little higher latencies, because
of the cost associated with the processing of its metadata.
Finally, Saturn has the worst latencies, due to not optimizing
client migrations. It has to generate a label with a potentially
high number of false dependencies, which has an impact on
latency. The sequential execution of the label creation and
the attachment to the target replica are also responsible for
slowing down the process.

IX. CONCLUSIONS

In this paper, we have presented Gesto, a data storage ar-
chitecture that aims at providing causally consistent storage
on the edge. Gesto differs from previous work on causal
consistency, because it considers novel challenges that are
inherent to edge computing: high number of replicas and
efficient support for frequent client migrations, which results
from client movement and resource constrained replicas.
Our solution uses a constant amount of metadata, regardless
of the number of edge replicas in each region, offers low
update visibility latency, high throughput, and supports quick
migrations. Furthermore, it is modular and can be plugged
into a pre-existing protocol that ensures causal consistency
across regions, without requiring changes to the native
mechanisms.

ACKNOWLEDGMENTS

This work was performed at INESC-ID and was partially
supported by FCT (INESC-ID multiannual funding) through
the PIDDAC Program funds as part of projects PTDC/EEI-
COM/29271/2017 (Cosmos) and UID/CEC/50021/2013.
This work has been performed in collaboration with Manuel
Bravo, a previous member of the Distributed Systems Group
at INESC-ID.

REFERENCES

[1] M. Satyanarayanan, “A Brief History of Cloud Offload: A
Personal Journey from Odyssey Through Cyber Foraging to
Cloudlets,” GetMobile: Mobile Computing and Communica-
tions, vol. 18, no. 4, pp. 19–23, 2015.

9



[2] C. Streiffer, A. Srivastava, V. Orlikowski, Y. Velasco, V. Mar-
tin, N. Raval, A. Machanavajjhala, and L. Cox, “ePrivateEye:
To the Edge and Beyond!” in SEC ’17. San Jose, California,
USA: ACM, 2017, pp. 18:1–18:13.

[3] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan,
“Cachier: Edge-Caching for Recognition Applications,” in
ICDCS ’17. Atlanta, Georgia, USA: IEEE, 2017, pp. 276–
286.

[4] M. Satyanarayanan, P. Gibbons, L. Mummert, P. Pillai,
P. Simoens, and R. Sukthankar, “Cloudlet-based Just-in-Time
Indexing of IoT Video,” in GIoTS ’17. Geneva, Switzerland:
IEEE, 2017, pp. 1–8.

[5] G. Ricart, “A City Edge Cloud with its Economic and
Technical Considerations,” in PerCom ’17. Kona, Hawaii,
USA: IEEE, 2017, pp. 599–604.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,
“The Case for VM-Based Cloudlets in Mobile Computing,”
Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[7] M. Patel, Y. Hu, P. Heédeé, J. Joubert, C. Thornton,
B. Naughton, J. Ramos, C. Chan, V. Young, S. Tan, D. Lynch,
N. Sprecher, T. Musiol, C. Manzanares, U. Rauschenbach,
S. Abeta, L. Chen, K. Shimizu, A. Neal, P. Cosimini, A. Pol-
lard, and G. Klas, “Mobile-Edge Computing – Introductory
Technical White Paper,” ETSI, Tech. Rep., Sep. 2014.

[8] F. Bonomia, R. Milito, J. Zhu, and S. Addepalli, “Fog
computing and its role in the internet of things,” in MCC
’12. Helsinki, Finland: ACM, 2012, pp. 13–16.

[9] P. Hao, Y. Bai, X. Zhang, and Y. Zhang, “EdgeCourier: An
Edge-hosted Personal Service for Low-bandwidth Document
Synchronization in Mobile Cloud Storage Services,” in SEC
’17. San Jose, California, USA: ACM, 2017, pp. 7:1–7:14.

[10] E. Ahmed and M. H. Rehmani, “Mobile Edge Computing:
Opportunities, solutions, and challenges,” Future Generation
Computer Systems, vol. 70, pp. 59–63, 2017.

[11] S. Mortazavi, M. Salehe, C. Gomes, C. Phillips, and
E. de Lara, “Cloudpath: A Multi-tier Cloud Computing
Framework,” in SEC ’17. San Jose, California, USA: ACM,
2017, pp. 20:1–20:13.

[12] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto, “Causal memory: definitions, implementation, and
programming,” Distributed Computing, vol. 9, no. 1, pp. 37–
49, 1995.

[13] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen, “Don’t Settle for Eventual: Scalable Causal Consistency
for Wide-area Storage with COPS,” in SOSP ’11. Cascais,
Portugal: ACM, 2011, pp. 401–416.

[14] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkatara-
mani, P. Yalagandula, and J. Zheng, “PRACTI Replication,” in
NSDI ’06. San Jose, California, USA: USENIX Association,
2006, p. 5.

[15] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas,
and M. Shapiro, “Write Fast, Read in the Past: Causal
Consistency for Client-Side Applications,” in Middleware ’15.
Vancouver, British Columbia, Canada: ACM, 2015, pp. 75–
87.

[16] A. v. d. Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira,
and A. Bieniusa, “Legion: Enriching Internet Services with
Peer-to-Peer Interactions,” in WWW ’17. Perth, Australia:
IWWWCSC, 2017, pp. 283–292.

[17] C. Gunawardhana, M. Bravo, and L. Rodrigues, “Unobtrusive
Deferred Update Stabilization for Efficient Geo-Replication,”
in USENIX ATC ’17. Santa Clara, California, USA: USENIX
Association, 2017, pp. 83–95.

[18] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gen-
tleRain: Cheap and Scalable Causal Consistency with Physi-
cal Clocks,” in SoCC ’14. Seattle, Washington, USA: ACM,
2014, pp. 4:1–4:13.

[19] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson,
and W. Lloyd, “I Can’t Believe It’s Not Causal! Scalable
Causal Consistency with No Slowdown Cascades,” in NSDI
’17. Boston, Massachusetts, USA: USENIX Association,
2017, pp. 453–468.

[20] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: A Dis-
tributed Metadata Service for Causal Consistency,” in EuroSys
’17. Belgrade, Serbia: ACM, 2017, pp. 111–126.

[21] P. Fouto, J. Leitão, and N. Preguiça, “Consistência Causal
em Sistemas Geo-Distribuídos com Replicação Parcial,” in
INForum ’18. Coimbra, Portugal: FCTUC, 2018, pp. 65–76.

[22] L. Lamport, “Time, Clocks and the Ordering of Events in a
Distributed System,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

[23] B. Charron-Bost, “Concerning the Size of Logical Clocks in
Distributed Systems,” Information Processing Letters, vol. 39,
no. 1, pp. 11–16, 1991.

[24] M. Singhal and A. Kshemkalyani, “An Efficient Implemen-
tation of Vector Clocks,” Information Processing Letters,
vol. 43, no. 1, pp. 47–52, 1992.

[25] R. Schwarz and F. Mattern, “Detecting Causal Relationships
in Distributed Computations: In Search of the Holy Grail,”
Distributed Computing, vol. 7, no. 3, pp. 149–174, 1994.

[26] F. J. Torres-Rojas and M. Ahamad, “Plausible Clocks: Con-
stant Size Logical Clocks for Distributed Systems,” Dis-
tributed Computing, vol. 12, no. 4, pp. 179–195, 1999.

[27] A. Shoker, J. Leitão, P. Van Roy, and C. Meiklejohn,
“LightKone: Towards general purpose computations on the
edge,” Tech. Rep., 2016.

[28] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer, “Kronos: The
Design and Implementation of an Event Ordering Service,”
in EuroSys ’14. Amsterdam, The Netherlands: ACM, 2014,
pp. 1–14.

[29] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness
Condition for Concurrent Objects,” Transactions on Program-
ming Languages and Systems, vol. 12, no. 3, pp. 463–492,
1990.

[30] “Basho Bench,” http://github.com/basho/basho_bench, Ac-
cessed: 2018-10-12.

[31] “Grid’5000,” https://www.grid5000.fr, Accessed: 2018-10-12.

10


