
Lightweight Cooperative Logging for Fault
Replication in Concurrent Programs

Nuno Machado
nuno.machado@ist.utl.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. Software is usually released with bugs. Therefore, fixing bugs
in a post-deployment environment is crucial. Over the years, many tech-
niques have been proposed to handle this problem and coping with fail-
ures resulting from non-deterministic events. This report presents a sur-
vey of some of these approaches and proposes some possible lines of
research to improve the current state of art.

1 Introduction

Software bugs continue to hamper the reliability of software. It is estimated
that bugs account for 40% of system failures [1], leading to huge costs both to
software producers and end users [2]. Over the years, different efforts have been
made to develop new techniques to prevent and avoid errors during software
production. As examples, one can highlight techniques such as the use of box
testing [3, 4] and the use of formal methods [5].

Despite their undeniable value, these techniques are still too time consuming
and expensive to match the time-to-market requirements imposed to the soft-
ware industry [6]. This problem is exarcebated when we take into consideration
the increasing complexity of modern software, due to the advent of multi-core
systems. As a result, the software released to the marked turns out to be error-
prone. Therefore, it is imperative to design and implement debug tools that
alleviate the developers’ burden of finding and fixing the software bugs, in par-
ticular those arising from concurrency issues.

Unfortunately, if debugging single-threaded applications can be cumbersome,
debugging multi-threaded software is typically way more challenging. Contrary
to sequential bugs that usually depend only on the program input and on exe-
cution environments (and therefore can be easily reproduced), concurrency bugs
show an inherently nondeterministic nature. This means that even when execut-
ing the same code on the same machine with the same input, the exact timing
of an instruction or code segment execution may vary from one run to another.
Thus, reproducing this kind of bugs can take hours, days, or even months [7].
Since the time to fix a bug is directly related to developer’s ability to reproduce
it for diagnosis [8], any debug mechanisms that is able to provide whole-system
deterministic replay is a significant asset.

1

However, achieving the original execution replay may require the recording
of all relevant details of the faulty execution [9] (including the order of access to
shared memory regions, thread scheduling, program inputs, signals, etc), a task
that induces a large space and performance overhead during production runs.

This problem could be mitigated by exploring the fact that there is usually
a large number of users running the faulty software. In other words, one should
be able to leverage the great number of executions performed. By gathering and
analyzing information collected from different users regarding both correct and
faulty runs, one can improve the bug tracking process and make bug reproduction
more cost-effective.

In the past decade, a significant amount of research has been performed in
order to provide better ways to efficiently debug nowadays complex systems. So
far, the focus of related work has been on minimizing the recorded information
during production runs to achieve deterministic replay, or on analyzing the logs
provided by users’ community to statistically isolate the bug. While in the past
these techniques have been used in isolation, this project aims at combining the
best of both worlds: develop a lightweight mechanism to log relevant information
during original executions, but also leveraging the data provided by different
users.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present all the
background related with our work. Section 4 describes the proposed architecture
to be implemented and Section 5 describes how we plan to evaluate our results.
Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

This work addresses the problem of minimizing the recording overhead in
production runs in order to reproduce bugs of a program. To achieve this, this
work will study how one can infer patterns of similarity among different users’
executions to improve the bug replay.

Goals: This work aims at designing and implementing a lightweight
mechanism to log relevant information from multiple executions per-
formed by a community of users of the same program and, subsequently,
statistically analyzing the gathered data to extract valuable clues to re-
produce the failure and to pinpoint its likely source.

Our approach to address this problem is based on the observation that the
work of recording the information required to find a bug can be distributed
by the large number of users that execute that program. If each user collects
only a fraction of the traces, the performance of its instance of the program
will not be significantly affected. In addition, it is possible to relax the need
to extensively log production runs to deterministic replay the bug on the first
attempt, by performing a statistical analysis of the aggregate of information

2

sent by the users. Using this technique, concurrency bugs can be addressed by
tracing precise points of the code, such as accesses to shared variables, thread
interleavings and lock acquisitions.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the algo-
rithms to trace, collect and analyze information in order to deterministic
replay the bug; ii) an implementation of a prototype of this system, and
iii) an extensive experimental evaluation using real life version of pro-
grams with bugs that have already been identified.

3 Related Work

There are various approaches to prevent bugs in a program and to optimize
the debugging process. Albeit the overviewed work presented in this section
focuses on those that try to reproduce the failure or to statistically isolate it,
one can also highlight other techniques, such as code analysis [10, 11].

The remaining of this section is organized as follows. Section 3.1 presents
the deterministic replay approach. Section 3.2 identifies the main challenges
and performance metrics in order to have a good debugging tool. Section 3.3
overviews some systems that employ the record/replay technique. Section 3.4
presents the statistical debugging approach and the main solutions that follow
this method. Finally, Section 3.5 concludes the section.

3.1 Deterministic replay

Developers often employ cyclic debugging [12] to understand the root cause of
a failure. It is called cyclic debugging because the developers rerun the program
several times, in an effort to incrementally refine their clues regarding the bug
and narrow its location.

This approach works relatively well for deterministic failures, since they can
be easily repeated and observed simply by re-executing the program. However,
cyclic debugging is not feasible when dealing with non-deterministic bugs, be-
cause they don’t always reveal themselves in every execution.

The problem of non-determinism can be addressed by employing an approach
called deterministic replay (or record/replay) [13]. The purpose of this technique
is to re-execute the program, obtaining the exact same behavior as the original
execution. This is possible because almost all instructions and states can be
reproduced as long as all possible non-deterministic factors that have an impact
on the program’s execution are replayed in the same way [13].

Deterministic replay operates in two phases:

1. Record phase - consists of capturing data regarding non-deterministic
events, putting that information into a trace file.

2. Replay phase - the application is re-executed consulting the trace file to
force the replay of non-deterministic events according to the original execu-
tion.

3

3.2 Challenges and performance metrics

Although simple in theory, it is not an easy task to build a deterministic
replay system in order to be applicable in practice. One needs to take in account
certain aspects and make some trade-offs. We now present the main challenges
and performance metrics that need to be considered when developing these kind
of debugging systems.

3.2.1 Overhead performance The main challenge lies in determining the
level of abstraction at which it will operate, that is to say, what and how much
information must be recorded in order to achieve deterministic replay. If one
wishes to get a replay with high accuracy with respect to the production run, it
will incur in a great recording overhead. On the other hand, the less information
is collected, the harder it will be to get a replayed execution which resembles to
the original. Therefore, a solution should be [12]:

– Space efficient - recording implies saving the information somewhere, typ-
ically in a trace file. Thus, the total amount of space needed to record the
information should be minimized.

– Time efficient - in order to monitor the original execution, it is needed to
instrument the application. Consequently, there are more instructions to run
and the initial performance will be degraded. Hence, this overhead should
also be minimized in order to maintain the use of the program acceptable.

3.2.2 Non-determinism External factors often interfere with the program
execution, preventing the timing and the sequence of instructions executed to be
always identical. These factors have internal (e.g. access order to shared memory
locations by multiple threads) or external sources (e.g. inputs from keyboard or
network). In particular, the following reasons can hamper the reproduction of a
program [14]:

– Processor-specific instructions: some processors have dedicated input
instructions, whose output depends on the processor version. One example
is the RDTSC instruction on a Pentium processor, which reads the timestamp
counter. In Pentium versions that support out-of-order execution (instruc-
tions are not necessarily performed in the order they appear in the source
code), the RDTSC instruction can return a misleading cycle count, because
it could potentially be executed before or after its location in the source
code. To avoid this, a serializing instruction is used. Serializing instructions
force every preceding instruction in the code to complete before allowing the
program to continue.

– Signals: signals make processors aware of external events, but can happen
asynchronously. A signal may change the memory state, register values, and
the program control-flow.

– Reads of un-initialized memory locations: the values read from mem-
ory locations which are not explicitly initialized often change in different
runs.

4

– System calls: certain system calls may present a differing behavior because
their results depend on the environment in which they are running. The
Linux system calls gettimeofday() and uname()are some examples.

– Different access order of shared memory locations: the interleaving
of read/write accesses to shared memory locations by different threads may
vary from run to run.

– Inputs: the inputs from keyboard and network may not be the same de-
pending on the execution.

Non-determinism arising from thread scheduling and signal delivering can
be tackled by recording them with “logical time”, instead of ordinary physical
time. In fact, logical time may be sufficient to support deterministic replay in
uni-processor systems [15]. Nonetheless, when one moves to the field of multipro-
cessors (SMPs and multi-cores), the scenario becomes more complex. In addition
to thread scheduling, asynchronous events, and signals, one has to take into ac-
count how concurrent threads interleave with each other, since they actually
execute simultaneously on different processors. Therefore, one needs to capture
the global order of shared memory access and synchronization points. Obviously,
this is not a problem when threads are independent from each other.

3.2.3 Privacy and Security Generally, post-deployment debugging tech-
niques need to collect some information at the user site regarding the failed
execution. This information is then sent to the developers, in order to under-
stand and fix the bug. This necessarily brings privacy and security concerns.
The former is concerned with the sensitivity and the confidentiality of user in-
formation sent to the developer site (for instance, it can happen that the bug is
only triggered by some determined input format placed in the password field of
a form). On the other hand, the latter is linked with the vulnerabilities which
may be explored by an attacker. For instance, an attacker may eavesdrop the
communication channel between user and developer, aiming at gather significant
information about the user. Alternatively, he can perform a denial-of-service at-
tack through an overflow of the developer site with forged information, thereby
exhausting its resources.

Addressing these issues is not trivial, because they are closely related to so-
cial aspects and are sometimes technically complex. However, for privacy two
solutions may be provided: 1) before sending any error report, the user may op-
tionally examine its contents and decide whether to send it or not. Unfortunately,
most users do not have the expertise to properly understand these reports, albeit
some techniques may be used to ease this task [16]; 2) the user strictly forbids
the transmission of error reports, thus making monitoring useless.

In addition, some techniques may be employed to minimize the amount of
user private data revealed [16, 17], although they are not yet capable of fully
anonymize the bug report.

Security issues may be tackled using cryptographic mechanisms, such as
asymmetric keys and digital signatures.

5

3.2.4 Network Bandwidth Given that information is sent from the user
site to the developer site through the network, one has to take into account
the available bandwidth. First, the transmission of data should not compromise
other user tasks that also need to access the network. Second, the amount of in-
formation recorded during production runs must be transferred in an acceptable
time, in order to allow a faster analysis in the developer site.

On the developer site, it is also necessary to have sufficient network band-
width available so it can properly handle the large number of user sites.

3.3 Record/Replay systems

Two approaches have been initially proposed to achieve deterministic re-
play [12]: the content-based (or data-driven) replay approach and the ordering-
based (or control-driven) replay approach.

The content-based approach advocates the storing of all data read by the
instructions during record phase. Later, one replays the execution providing
the correct input to each instruction, therefore getting the same output and,
consequently, deterministic re-execution. However, this method generates a large
amount of logged data, thus becoming impractical.

The ordering-based approach does not require recording every instruction to
replay execution. Instead, one only needs to know the initial state of the ap-
plication and to log the timings of interactions with external sources, such as
I/O channels, program files, or other threads. If these asynchronous events are
replayed at the same point as they were delivered in the original execution, an
equivalent execution is obtained. This method has the advantage of creating
smaller logs, because most of the data read by the instruction stream is pro-
duced during the run. Thereby, the log contains only data that is not produced
by the program itself but comes from somewhere else. However, the ordering-
based approach suffers from the drawback that all the interactions with the
environment must take place, so that the internal state of the application and
the state of the environment are updated correctly. Otherwise, the internal state
of the program will eventually differ from the one seen in the original execution.
As a result, contrary to content-based approach where all data to execute any
instruction is always available, ordering-based technique is not able to execute
isolated instructions.

In fact, the approaches described above in their pure state are not feasible
in practice because they operate on a level of abstraction that is too low, thus
demanding too much trace data. Therefore, a mix of content-based and ordering-
based techniques is commonly used in deterministic replay. This scheme is based
on the notion that part of the required information for executing the instruction
stream can be reproduced by the interactions with the environment (ordering-
based), while the rest can be consulted from the trace file (content-based).

In the past few years, much research has been done in order to develop better
record and replay systems. Based on how they are implemented, prior work can
be divided in two main categories: hardware-based and software-based. Within
this classification, one can also distinguish the solutions according to another

6

criterion: whether they support multiprocessor replay or only uni-processor re-
play.

3.3.1 Hardware-based In general, hardware-based solutions offer support
for multiprocessor systems. One of the first approaches in this direction was the
one proposed by Bacon et. al [18], which introduces a mechanism of multipro-
cessor replay by attaching a hardware instruction counter to cache-coherence
messages to identify memory sharing. Although fast, this mechanism produces
a large log.

More recently, new hardware extensions were proposed to minimize the run-
time recording overhead. Relevant examples are the Flight Data Recorder (FDR) [19]
and, later, BugNet [20] and DeLorean [21].

We will briefly describe each of these systems in the next paragraphs.

Flight Data Recorder [19]: This system focuses on recording enough infor-
mation to replay the last one second of whole-system execution before the
crash. Like Bacon et. al’s scheme, FDR snoops the cache-coherence proto-
col. It outstrips the former by using a modified version of Netzer’s Transitive
Reduction algorithm [22] to reduce the number of logged races.
FDR continuously traces activity information, such as interrupts, external
inputs, and shared memory access ordering. It also implements checkpoints,
relying on the SafetyNet mechanism [23] to obtain a state that can be used
to start the re-execution.
The authors claim that FDR modestly affects program runtime, as the per-
formance overhead is less then 2% [19]. The combined sizes of logs needed
for replay in FDR (it records checkpoints, interrupts and external inputs,
and memory races) is about 34 MB. For this reason, FDR can operate on a
“always on” mode in anticipation of being triggered. Finally, the hardware
complexity in FDR is about 1.3 MB of on-chip hardware and 34 MB of main
memory space.
However, for providing the last second of the full system replay, FDR has
to log additional information, such as interrupts, I/O, and direct memory
access (DMA) events. For intensive I/O applications, the size of the logs may
be too large to be used in practice. Furthermore, FDR requires a core dump
snapshot to be sent to the developer, whose size can go up to 1GB, depending
on the program’s memory footprint and the size of the main memory chip
used in the system.

BugNet [20]: This system also focuses on multiprocessor systems and makes
use of dedicated hardware buffers to trace the runtime information required
to re-execute instructions that preceded a system failure. BugNet is based
on FDR, but contrary to the former it does not strive to replay the full
system execution. Rather, it focus on detecting application level bugs and
hence replays only executions in user code and shared libraries.
BugNet’s implementation approach is based on checkpointing. Each new
checkpoint is created after a certain number of instructions have been exe-
cuted and captured (denoted by checkpoint interval), allowing the start of

7

re-execution at the beginning of each interval. Checkpoints can be termi-
nated by program crashes, interrupts, system calls, and context switches.
When the termination is caused by application failures, the logs generated
during recording will be used to help the debugging.

At the beginning of each checkpoint, BugNet records the initial register
state. Then, it traces the values read by the first load memory accesses in
each replay interval, or when a data race is detected. This information is
referred to as the first-load log and is stored in a hardware-based dictionary.
This is enough to guarantee deterministic program’s re-execution, without
having to replay the interrupts and system calls routines.

Since BugNet focuses on just capturing application level bugs, the logs are
smaller than in FDR. In BugNet, the log size is less than 1 MB, so users
can effortlessly communicate the log back to the developer. Furthermore,
BugNet has very little performance overhead (less than 0.01%, as the SPEC
programs used in the tests do not have many interrupts or system calls), and
the total on-chip hardware required is about 48 KB.

Limitations of BugNet include the fact that it only catches errors that are
identified by the application itself or by the operating system. Therefore,
errors resulting from incorrect programming logic are not addressed. More-
over, given that BugNet only tracks application code, it cannot track bugs
that derive from complex interactions between the user process and the op-
erating system. Finally, the data provided by BugNet is only sufficient to
replay the last few checkpoints before the occurrence of the bug. This makes
its record/replay scheme unsuitable for profiling purposes.

DeLorean [21]: This system is a hardware-assisted scheme for deterministic
replay, where instructions are atomically executed by processors as blocks
(or chunks), similarly to transactional memory or thread-level speculation.
Then, rather than recording data dependencies, it logs the total order in
which chunks commit.

This results in two main advantages over the previous schemes. First, since
the memory accesses of a processor can overlap and reorder within and across
the same-processor blocks, DeLorean can record and replay an execution at
a comparable speed to that of Release Consistency (RC) execution. In con-
trast, FDR and BugNet only record at the speed of Sequential Consistency
(SC) execution. Second, it provides a substantial reduction in log size. This
reduction is accomplished by either omitting the chunk size or the ID of
the committing processor from the entry. To be able to omit the chunk size,
one needs to decide deterministically when to finish a chunk. On the other
hand, to be able to omit the ID of the committing processor from the log
entry, one has to “predefine” the chunk commit interleaving. This can be
accomplished by enforcing a given commit policy — e.g., pick processors in
a round-robin fashion, allowing them to commit one chunk at a time. The
drawback is that, by delaying the commit of completed chunks until their
turn, one may slow down execution and replay.

8

Given the need of making trade-offs between performance and log size, De-
Lorean provides two different executions modes: OrderOnly (for better per-
formance) and PicoLog (for smaller logs).
In the OrderOnly mode, the commit interleaving is not predefined, but
chunking is deterministic. Hence, the chunk size does not need to be logged.
During execution, the arbiter (module which is responsible for observing the
order of chunk commits) logs the committing processor IDs in the Processor
Interleaving (PI) log. During replay, it uses the PI log to enforce the same
commit interleaving. The log size is smaller because there is only the PI
log. In reality, each processor also keeps a very small ChunkSize (CS) log
where, for each of its few chunks that were truncated non-deterministically,
it records both the position in the sequence of chunks committed by the
processor and the size. This mode has a performance 2-3% lower than that
of RC. With chunk sizes of 2000 instructions (the optimal size according to
[21]), OrderOnly uses on average only 2.1 bits (or 1.3 bits if compressed) per
processor per kilo-instruction to store both the PI and CS logs.
In the PicoLog mode, chunking is deterministic and the commit interleaving
is predefined. During both execution and replay, the arbiter enforces a given
commit order. Each processor keeps the very small CS log discussed for
OrderOnly, but there is no PI log. Thus, the log size decreases comparing
to the OrderOnly mode. For chunks with 1000 instructions, PicoLog needs a
compressed log with an average of 0.05 bits per processor per kilo-instruction.
However, PicoLog has a worse performance, being 14% lower than RC. This
is still faster than SC, which is, on average, 21% slower than RC.

Unfortunately, despite various optimization endeavors to reduce hardware
complexity [21], all the previous approaches still demand significant hardware
modifications. These modifications are not yet available nowadays, except on
simulations.

3.3.2 Software-based Given that changing hardware always brings high
manufacturing costs, alongside with an increase in complexity, software-based
approaches have been the focus of a significant amount of research lately. We
now present an overview of some of these approaches. We start by reviewing those
targeting uni-processor systems and then move to discuss solutions coping the
additional sources of non-determinism characterizing multiprocessor systems.

IGOR [24]: This system was one of the first software-based solutions for deter-
ministic replay. It relies on checkpointing techniques for replaying programs,
reconstructing the application state from a given previous checkpoint. How-
ever, since IGOR does not record external I/O events, re-execution may not
be identical to the original if the environment has changed.
This method operates collecting information at individual virtual memory
page level. To achieve this, it makes use of a new pagemod() system call,
which determines the set of pages that have been changed since the pre-
vious checkpoint. To control checkpoints it employs another system call -
ualarm().

9

In the replay phase, IGOR consults the log file to get the most recent check-
point for each virtual memory page. After that, it uses an interpreter to
proceed the execution from the last checkpoint up to a instruction defined
by the user.
Unfortunately, IGOR involves changes to (i) the compiler - to log data allo-
cations, (ii) both the library and loader - to initiate the trace and to enable
dynamic function replacement. The recording overhead during production
runs varies from 50% up to 400%. In addition, re-execution is about 140x
slower, thus becoming an unattractive approach. Finally, IGOR does not
support non-determinism caused by multithreaded programs.

Flashback [15]: This system is implemented as an operating system extension
and it provides deterministic replay to assist software debugging. Like IGOR,
Flashback uses an content-based approach and relies on checkpoint tech-
niques. However, it employs shadow processes to capture non-deterministic
interactions between the monitored process and the operating system in
a lightweight fashion. These interactions include system call invocations,
memory-mapping, shared memory usage for multithreaded applications, and
signals. For instance, if a process makes a read system call, Flashback records
the return value of the system call and the data that the kernel copies into
the read buffer. During replay, when this specific system call is found, the
previous recorded value is then injected to the process by Flashback.
This tool provides three primitives [15]:
– checkpoint - captures the current state and returns a handler state, al-

lowing the program roll back to if required.
– discard(x) - discards the captured checkpoint provided, avoiding any

future attempts to roll back to this specific state.
– replay(x) - rolls back the process to the previous execution state pointed

by the state handler provided and then the execution is deterministically
replayed up to where replay() primitive is called.

These primitives are implemented using shadow processes. A shadow process
is a snapshot of the running process created by replicating the in-memory
representation of the process in the operating system. Its creation is achieved
by creating a new structure in the kernel and initializing it with the contents
of the monitored process structure (e.g. registers contents, process memory,
file descriptors etc). The pointer to the shadow process is stored in the cur-
rent process structure. The copy-on-write mechanism is used in order to
reduce overhead. Moreover, since Flashback’s intent is not to recover from
neither system crashes or hardware failures, one does not need to persistently
store shadow processes, which still further reduces overhead.
The results presented in [15] show that the impact in the performance of
the application is about 10%. However, the space overhead grows linearly
with the number of invocations for both read and write system calls, and
the combined log size ranges from around 440KB to 830KB with 4500 and
9000 invocations, respectively.
A main limitation of Flashback is that it requires modification to debugging
tools to incorporate support for the framework. Besides that, Flashback is

10

also not suitable for profiling purposes because the replay mechanism does
not allow the instrumentation of the target program for the replay phase.
Finally, recording and replaying of signals and deterministic replay of mul-
tithreaded applications is outlined in the future work but it is not currently
supported by Flashback.

The above discussed mechanisms ensure deterministic re-execution only on
uni-processor systems, not coping with the non-determinism associated with pos-
sible data races among threads simultaneously running on different processors.
The following approaches strive to address these issues.

InstantReplay [25]: This system was one of the first software systems for de-
terministic replay on multiprocessors. It consists of a technique to replay
shared memory accesses using an ordering-based approach. This technique
allows the access to shared memory objects only through well-defined proto-
col CREW (Concurrent-Reader-Exclusive-Writer) primitives. This protocol
is instrumented for execution replay, and sets down one of two possible states
for each shared memory object:

– concurrent-read: all the processors can read, none can write.
– exclusive-write: one processor (the owner) can read and write; all the

others do not have access.

Then, each shared memory object is extended with a version number, that
is incremented after each write access during both record and replay phases.
All threads record versioning information to its own trace file.
During the record phase a reader traces the current version number of its
shared object. In turn, a writer traces the current version number of its
shared object and the number of readers since the previous write access on
his shared object. During the replay phase a reader waits until the current
version number of its shared object matches the previously traced version
number. On another hand, a writer blocks until the version number on its
shared object matches the previously traced version number and until the
number of readers also matches the traced count.
This technique tends to generate great amounts of recorded data when the
granularity of shared memory accesses within the program is very small.
Moreover, it results in a severe performance degradation with more than 8
processors executing, imposing more than 10x production-run overhead.

DejaVu[26]: This system is a record/replay tool designed at IBM that provides
deterministic execution replay of concurrent Java programs by capturing how
threads have been scheduled (ordering-based approach). The technique used
by DejaVu to capture scheduling decisions is independent of the underly-
ing operating system. It is based on the notion of logical thread schedule,
where the number of critical events occurring between thread swapping is
counted. DejaVu distinguishes two types of events: (1) critical events, namely
synchronization operations (e.g. monitorenter and monitorexit) and ac-
cesses to shared variables, and (2) noncritical events, that can only influence

11

the thread that executes them. Hence, the scheduling of noncritical events is
not relevant for replaying the recorded execution. Total ordering is achieved
by attaching a global scalar timestamp to each critical event. It also uses
one local clock per thread to allow each thread to pinpoint their schedule
intervals.
To limit the size of the trace files, only a pair of clock values FirstCriti-
calEvent and LastCriticalEvent of each thread schedule interval is recorded.
To capture the schedule interval for each thread, DejaVu relies on the obser-
vation that the local clock of a thread is only incremented while the thread
is running and, hence, global clock and local clock values will differ. When
a thread starts executing a critical event, it compares its clock value to that
of the global clock. If values are different, the thread detects the end of the
previous schedule interval and the start of a new schedule interval. Once the
thread finishes executing a critical event, it increments the global clock and
then synchronizes its local clock with the global clock.
During the replay phase, DejaVu reads a thread schedule from the trace
file previously generated. When a thread is created and begins its execution,
DejaVu supplies it with an ordered list of its logical schedule intervals. Then,
the thread sets its local clock to the value of the FirstCriticalEvent from
the next schedule interval and waits until the global clock value becomes
equal to that value. At the end of each critical event, the thread checks
whether global clock value becomes larger than LastCriticalEvent value of
the current interval, which is the point where the thread starts to execute
the next schedule interval. When there are no more intervals left, the thread
terminates.
Although supports multiprocessors, the technique used in DejaVu enforces
a global order on variable accesses across multiple threads, which incurs
a large runtime overhead on multiprocessor applications. Moreover, given
that each critical event must be synchronized on the global timestamp, only
non-critical events may actually run concurrently, leading to short thread
intervals and huge trace files. However, on a uniprocessor, overheads are less
than 88% during the record phase. Trace files are less than 1 KiB/s.

JaRec [27]: Is a portable record/replay system for Java. It addresses specifically
the problem of synchronization races when executing multithreaded Java
applications.
This tool operates entirely on the Java-bytecode level, but requires the JVM
Profiler Interface (JVMPI) to be used without modifying the JVM. Each
class that is loaded by the JVM is instrumented using JIT, thus requiring
no static instrumentation. The instrumentation modifies the monitor entry
and exit events, the starting and joining of threads, and invocation points
of wait and notify primitives. Contrary to DejaVu, JaRec dropes the idea of
global ordering and uses a Lamport’s clock to preserve the partial order of
threads and to reduce the size of logs.
However, JaRec requires a program to be data race free in order to guarantee
a correct replay, otherwise it only ensures deterministic replay up until the

12

first data race. This constraint makes this approach unattractive for most
real world concurrent applications, given that is common the existence of
benign or harmful data races.
The overhead of JaRec ranges from 10% to 125% on micro-benchmarks,
while on macro-benchmarks, the observed overhead lies around 80% during
the record phase. During the replay phase the overhead varies from 40% to
300%.

LEAP [28]: Is a recent deterministic replay system for concurrent Java pro-
grams on multiprocessors. LEAP’s approach is based on a new type of local
order with reference to the shared memory locations and concurrent threads
(ordering-based approach). It relies on the observation that one does not
need to guarantee global order of thread accesses to shared memory loca-
tions. Instead, it is sufficient to record the thread access order that each
shared variable sees to achieve deterministic replay. The authors use math-
ematical models to prove the soundness of this statement.
To track thread accesses, LEAP associates an access vector to each differ-
ent shared variable. During execution, whenever a thread reads or writes
in a shared variable, the thread ID is stored in the access vector. There-
fore, one gets local-order vectors of thread accesses performed on individual
shared variables, instead of a global-order vector. This simple technique al-
lows lightweight recording.
The overall infrastructure of LEAP consists of three modules: the trans-
former, the recorder, and the replayer. The transformer receives the program
Java bytecode and produces two files: the record version and the replay ver-
sion. Then, the record version is executed and the recorder module gathers
each SPE’s access vector. When the recording stops, LEAP saves both the
access vectors and the thread creation order information, and creates a replay
driver.
Finally, the replayer uses the logged information and the generated replay
driver to start the execution of the replay version of the program. To guaran-
tee the correct execution order of threads, LEAP takes control of the thread
scheduling.
The evaluation results in [28] show that LEAP incurs less than 10% runtime
overhead for real world applications, but still imposes a significant overhead
in some cases (626% for an application with several shared variables ac-
cessed in hot loops). However, when comparing to InstantReplay, DejaVu
and JaRec, the tests performed in third-party benchmarks demonstrate that
LEAP is 5x to 10x faster than these systems. In terms of space overhead,
the log size in LEAP is still considerable, ranging from 51 to 37760 KB/sec.
LEAP has also some limitations. As it only captures the non-determinism
caused by thread interleavings, LEAP may not reproduce executions contain-
ing non-deterministic inputs, such as random number generators. Another
drawback comes from the fact that LEAP always replays the program from
the beginning, making it unsuitable for long running applications. Finally,
LEAP cannot reproduce bugs arising from data races in JDK library, because
it does not record shared variables in these APIs.

13

SMP-ReVirt [9]: This system was the first to record and replay multiproces-
sor virtual machines without requiring new hardware components. To mini-
mize the recording overhead, SMP-Revirt leverages hardware page protection
mechanisms to detect races between virtual CPUs in a multiprocessor vir-
tual machine, instead of instrumenting every shared memory access. This has
the advantage of being able to record and replay an entire virtual machine
without changing its software. To address other sources of non-determinism,
SMP-Revirt logs virtual interrupts, input from virtual devices (e.g. the vir-
tual keyboard), network, real-time clock, and the results of non-deterministic
instructions (e.g. those that read processors’ time stamp counter).
Due to the page-level granularity, this approach is well suited for applications
with coarse-grained data sharing, resulting in less than 10% performance
degradation for 4 processors. However, SMP-ReVirt imposes more than 10x
overhead for applications with finer-grained data sharing and false sharing.
For example, the relative overhead for FMM SPLASH-2 benchmark increases
from 50% to 636% when the number of processors increase from 2 to 4, as
reported in [9]. The space overhead is also significant and scales poorly. The
log size requirements range from 0.562 GB/day with a single processor to 90
GB/day with 4 processors, in the worst case.

All the previous approaches try to reproduce the bug on the first replay run,
thus inducing large overheads during production runs. This also has the draw-
back of penalizing bug-free executions, which are much more frequent than the
faulty ones [13]. Motivated by this, recent work has tried to further minimize
the cost of recording the production run. By relaxing deterministic replay sacri-
ficing the idea of getting a completely faithful re-execution, one can decrease the
number of data logged, thus reducing the cost for user site executions. However,
this brings another challenge related to the time needed to infer the unrecorded
information during production runs. We now briefly present some of these ap-
proaches.

PRES [13]: This system is a record/replay technique to help reproduce bugs on
multiprocessors. PRES (Probabilist Replay with Execution Sketching) aims
at reducing the number of attempts needed to reproduce the bug, but re-
laxing the constraint of replaying it at the first try. By doing this, PRES
can minimize the recording overhead during production runs, albeit at the
cost of a increase in the bug replaying time during diagnosis. Assuming that
diagnosis is done offline and automatically, this trade-off can probably be
well tolerated by programmers.
The authors make also another pertinent observation: as long as the bug can
be reproduced, it is of less importance for the programmers to reproduce
it with precisely the same execution path seen in the original execution.
Thereby, during production runs PRES logs only partial execution infor-
mation – a sketch. This sketch will be used later by an intelligent partial-
information replayer to reproduce the bug via multiple attempts to recon-
struct the missing information necessary for reproduction.
In particular, PRES operates in three stages:

14

– Production run: records only relevant events in an execution sketch,
which will be then sent to the developer site if a bug occurs (the authors
do not take into consideration any privacy issues). PRES instruments
the code using Intel’s tool Pin and employs 5 different techniques of
sketch recording that trade reproduction for lowered recording overhead
(SYNC, SYS, FUNC, BB-N, BB). For instance, the most lightweight
technique (SYNC) records only the global order of synchronization op-
erations, while the one that offers the fastest reproducibility of the bug
(BB) records the global order of basic blocks, thus requiring more record-
ing points.

– Reproduction phase: automatically repeats the multiple attempts of
replaying the program until the bug is revealed. After each failed replay
attempt, feedback is generated to improve future attempts. To re-execute
the program, PRES uses a module named PI-Replayer that consults
either execution sketches or feedbacks for previous replay attempts at
every non-deterministic point. Alongside, a Monitor controls each replay,
searching both for executions that do not match, at some point, the
original sketch (here the execution is stopped and feedback is generated)
and the moment at which the failure is reproduced.

– Diagnosis phase: PRES intelligent replayer leverages on the complete
information from the previous stage to reproduce the bug with 100%
certain during each replay.

The obtained results show that sketching methods can reduce significantly
the logging overhead during record phase, and also allow the bug reproduc-
tion with high probability within an acceptable time. For example, SYNC
and SYS result in 6-60% overhead for non-server applications and in 7-33%
throughput degradation for servers. These schemes can also replay 12 of the
13 evaluated bugs within mostly fewer than 10 replay attempts. On the other
hand, FUNC and BB-5 can reproduce all 13 tested bugs with mostly less
than 5 replay attempts, but with an overhead of 8-48% for servers and 18-
779% for non-server applications. The authors also claim that SYNC’s and
SYS’s overhead remained small across executions with an increased number
of processors (from 2 to 8-cores), thus achieving a good scalability. In terms
of log sizes, for example, SYNC needs 2 KB/req up to 126 KB/req, while
FUNC requires 5.42 KB/req up to 3485.63 KB/req, for different server ap-
plications. As one can see, the values vary dramatically depending on the
number of recording points.

ODR [29]: Is a replay system that addresses the output-failure problem. In other
words, ODR aims at reproducing all failures visible in the output of a pro-
gram in its subsequent replays. It relaxes the need of generating a high-
fidelity replay of the original execution by producing a possible execution
that provides the same outputs as the first. This is called output determin-
ism.
This approach has the drawback of making no guarantees about non-output
properties of the original run. Nevertheless, the authors claim that output de-
terminism is valuable for debugging purposes because: (i) the output-visible

15

errors (e.g. crashes and core dumps) are reproduced, (ii) although sometimes
different, the memory-access values provided are consistent with the failure,
and (iii) it does not require the values of data races to be identical to original
ones.
Although the obvious benefits in terms of decreasing the storage overhead,
not recording the outcomes of data-races makes reproducing a failed run
a very challenging task. This because the bugs often depend on the out-
comes of races. To address this problem, rather than record data-race out-
comes, ODR infers the data-race outcomes of an output-deterministic run.
Once inferred, ODR substitutes these values in future program replays, thus
achieving output-deterministic re-executions.
To infer data-race outcomes, ODR uses a technique named Deterministic-
Run Inference (DRI). DRI’s job is to search the space of possible runs to find
one whose outputs are similar to those experienced in the original execution.
Since an exhaustive search of the run space is intractable for all but the
simplest programs, two techniques are employed to ease this task. The first
is to direct the search, which by leveraging carefully on selected properties
recorded during productions runs (e.g. schedule, input, and read trace), al-
lows to prune extensive portions of the search space. The second technique
consists in relaxing the memory-consistency of all runs in the run space to
find output-deterministic runs with less effort. This is possible because, in
general, a weaker consistency model allows more runs matching the original’s
output than a stronger model, i.e., under a weaker consistency model, DRI
only needs to find a possible schedule that produces the same output as the
original schedule, without having to be strictly identical to the latter.
The evaluation of ODR showed that, albeit the recording overhead results in
a slowdown of the application of only 1.6x, inference times can be too high
for many programs (more than 24 hours in some cases). However, a tradeoff
between recording overhead and inference time can be made. For instance, if
one records all branches of an execution, the inference time can be reduced
by orders of magnitude, while the production run suffers only a slowdown
of 4.5x on average. Regarding log sizes, no concrete values are given by the
authors.

ESD [30]: This system uses a technique for automating the debugging process
via a synthesis of an execution of the program that reveals the bug. ESD
(Execution Synthesis Debugger) makes use of a program and the coredump
associated with a bug report to produce an execution of that program that
causes the given error to manifest deterministically. Like PRES and ODR,
ESD relaxes the goal of achieving true deterministic replay. It is based on the
idea that replaying a synthesized execution that exhibits the same bug, even
if it is not precisely the execution experienced by the user, can be sufficient
to make a noteworthy improvement in the debugging task.
Execution synthesis works in two steps:
– Sequential path synthesis: ESD defines a searching goal, which com-

prises the basic block where the bug appeared and the condition on

16

program state that held true at that the moment of failure. Then, it
does static analysis (on both program’s control flow graph and data flow
graph) to shrink the search space of possible paths to the basic block
presented in the goal. Finally, employs symbolic execution to derive a
feasible path to the goal from the over-approximation computed during
static analysis.

– Thread schedule synthesis: in the case of multithreaded programs,
ESD finds a schedule for interleaving the execution paths of the individ-
ual threads. To do this, it extends symbolic execution to also treat thread
preemption decisions as symbolic. It uses the stack trace from the bug
report to place thread preemption points in strategic places, e.g. before
calls to mutex lock operations, that can lead to the desired schedule with
high probability.

While conceptually these two phases are separated, ESD overlaps them and
synthesizes one “global” sequential path, by exploring the possible thread
preemptions as part of the sequential path synthesis. Thereby, ESD can
get a serialized execution of the multithreaded application. Also, for both
sequential path and thread schedule synthesis phases, ESD applies heuristics
to make the search for a suitable path and thread schedule efficient.

The main benefit of this approach is that it does not require any tracing dur-
ing the original execution, thus causing no performance degradation of the
program at user site. This makes ESD attractive for performance-sensitive
applications, such as web servers and database systems. The time experi-
enced by the authors to synthesize executions of real bugs is considerable
low, being less than 3 minutes in all cases. This clearly outperforms inference
time of ODR.

However, given that ESD is based on heuristics, it could suffer of lack of pre-
cision, which increases the time to find the bug. Also, ESD requires the core-
dump of the application, which is not always available due to privacy issues.
Finally, symbolic execution is not suitable for reproducing bugs that rely on
inputs resulting from complex operations, such as cryptographic functions
(e.g. it is very hard to find a string that was the input for a given hash).

3.4 Statistical Debugging

The deterministic replay approach is not the only way to improve the task of
debugging. Statistical debugging is a recently proposed approach that aims at
isolating bugs by analyzing information gathered from a large number of users.
This technique improves deterministic record and replay as it focus more on
diagnosing the bug than repeating it.

The idea behind statistical debugging is based on the notion that software
applications are usually executed by a large user communities. Hence, instead
of trying to detect the bug by relying only in data from runs experienced by a
single user, statistical debugging attempts to speed up the bug tracking process
by distributing the monitoring across different clients. By doing this, it is possible

17

to extract patterns of similarity among the universe of collected executions that
could lead to the failure.

In general, the infrastructure for statistical debugging consists of a central
database which receives user reports from both successful and unsuccessful runs,
and a module to statistically analyze the collected data. After isolating the
failure, the central site can send back to the users a patch to fix the application.

This technique also brings the problem of how much information record dur-
ing production runs in order not to degrade runtime performance at the user site.
Alongside, it must take into account scalability issues, given that the central site
has to be able to manage all the received reports.

In this section we will give an overview of some solutions developed to provide
statistical debugging.

GAMMA [31]: Is a system whose purpose is to provide a continuous improve-
ment of software applications after their deployment. It achieves this by
distributing monitoring tasks across different users, in order to collect par-
tial information that will be then combined to obtain the overall monitoring
information.

GAMMA is based on two main technologies:

– Software Tomography: is based on sparse sampling and information
synthesizing. This technique divides the monitoring task into a set of
smaller subtasks and assigns these subtasks to different user sites. Each
subtask requires less instrumentation than the main task, which al-
lows the distribution of the monitoring cost among different software
instances. This is has a great advantage comparing to other traditional
monitoring approaches which require all the instrumentation sites to be
applied to the same user application. As result, the experienced perfor-
mance degradation by the user is significantly smaller.

– Onsite code modification/update: allows modifying or updating the
application code at the user site. This capability lets software develop-
ers dynamically adjust the instrumentation to collect different kinds of
information and to efficiently deliver patches and new features to users.

Using these two technologies, the process of using the GAMMA system con-
sists of two cycles:

– Incremental monitoring: lets developers interact with software in-
stances to adjust the information to be collected. This allows the devel-
opers to investigate problems directly in the field, without endeavoring
to recreate the user environment in-house.

– Feedback-based evolution: allows the software evolution to fit user’s
needs. Since the information monitored is directly related to how users
use the software, it is more likely, for example, that features more com-
monly used be fixed before others rarely executed.

Although the authors state that GAMMA uses lightweight instrumenta-
tion, no concrete evaluation results are presented in the paper. Nevertheless,
GAMMA has the drawback of not collecting information about the success

18

or failure of the program’s execution. This prevents the effective use of infor-
mation collected in the field for coverage testing, because it is not possible
to compare the expected output with the actual output. Another issue of
the GAMMA system is that it requires developers to select subtasks, which
sometimes is a very complex process.

CBI [32, 33]: Was one of the first systems to employ statistical debugging. CBI
(Cooperative Bug Isolation) is a sampling infrastructure for gathering infor-
mation software executions produced by its user community. After collecting
information CBI performs an automatic analysis of that information to help
in isolating bugs.
CBI is based on sampling, that is to say, it monitors information only from
time to time. This brings the benefit of having a modest impact on the
performance of the program. However, given that some bugs occur rarely, it
becomes more difficult to track them. In other words, one needs to guarantee
that the sampling is statistically fair, so that the analysis is consistent with
the happening events. CBI addresses this by using a Bernoulli process to do
the sampling.
The information regarding program runs is collected via predicate profiles
from both successful and failing executions. Predicate profiles are particular
points of the program which are instrumented to provide data about their
values. Logged predicates can be classified in three categories:
– Branches: for every conditional, there are two predicates to track whether

the true or false branch was taken, respectively.
– Returns: at each call point of functions which return scalar values, there

are three predicates to track whether the return value is < 0, > 0 or =
0.

– Scalar-pairs: at each scalar assignment x = ..., identify each same-
typed in-scope variable yi and each constant expression cj . There are
three predicates to track whether the new value of x is smaller, greater
or equal to yi and cj , respectively.

The data gathered across multiple executions of the program is integrated
into feedback reports. Conceptually, the feedback report for a particular ex-
ecution consists of a bit-vector, with two bits for each monitored predicate
(observed and true). The observed bit indicates whether the predicate was
ever observed, while the true bit states whether the predicate, if observed,
was ever true. In addition, there is a final bit that captures the overall exe-
cution success or failure.
This approach has the advantage of producing always the same amount of
data independently of the sampling density or running time. Unfortunately,
this implies a significant loss of information, since the order of observations
is not recorded.
The CBI’s automatic bug isolation process proceeds with the statistical anal-
ysis of the information gathered in order to pinpoint the likely source of the
failure. Given that many of the logged predicates are irrelevant, CBI assigns
a score to every predicate to identify the best failure predictor among them.

19

The predictors are scored based on sensivity (accounts for many failed runs)
and specificity (does not mis-predict failure in a successful execution). Using
these metrics, CBI selects the top predictors.
The performance impact of CBI’s sampling varies directly with its density.
Unconditional instrumentation adds a performance penalty of 13%, while
with a sampling density of 1/100 the impact decreases to 6%. In turn, a
1/1000 density imposes only 0.5% of performance degradation. The logs
generated are less than 40KB.
One of the main problems with CBI system is that it relies on a code
duplication-based instrumentation scheme that doubles the size of the pro-
gram. Such a large increase in code size may not be suitable in practice for
some applications. Moreover, CBI does not address non-deterministic bugs.

HOLMES [34]: This system is a statistical debugging tool that isolates bugs by
finding paths that correlate with a failure. Inspired by previous work of CBI,
HOLMES elaborates on statistical debugging by investigating the impact of
using path profiles to improve the accuracy of bug isolation. It is based on
the observation that paths are a natural candidate for debugging as they
capture more information about program behavior than predicate profiles.
For instance, paths can provide more context on how the buggy code was
exercised, which helps in the task of debugging, while predicates can only
locate the point in code where the error occurred.
HOLMES can operate in two modes:
– Non-Adaptive debugging: this mode implements CBI’s statistical de-

bugging algorithm using path profiles instead of predicate profiles. Like
the previous work, HOLMES instruments the program and collects path
profiles information during program runs, which is then aggregated in
feedback reports. The feedback reports have the same structure as those
of CBI.
In the next step, gathered paths are assigned numeric scores to determine
the top predictor of bug from the set of all available paths. These scores
also follow the metrics specified in CBI’s approach.

– Adaptive debugging: Is a mode that arises from the fact that in large
programs, usually only a small fraction of the code is buggy and thus rel-
evant to debugging. Contrary to sampling, HOLMES adaptive technique
starts with no instrumentation. In the initial phase, HOLMES receives
only bug reports, which consists of a stack trace and partial state of the
program at the point of failure. After obtaining an enough number of
bug reports, HOLMES employs static analysis to point out portions of
code that more likely contain the causes of the failure. Then, these por-
tions of code are instrumented to monitor useful information and collect
detailed profiles, being afterwards redeployed in the field. Because only
important parts of the code are instrumented, HOLMES avoid the need
for sparse random sampling.
The process is then repeated, but this time HOLMES collects partial
profiles in place of bug reports. These profiles are later analyzed using the

20

same techniques as in the non-adaptive mode. The analysis compute a
set of bug predictors and if some of then are strong enough to explain the
failure, then the iterative process ends (a predictor is classified as strong
if it’s score exceeds a defined threshold and weak otherwise). If that does
not happen, HOLMES expands its search by using static analysis and
bug predictors to identify other parts of code which are closely related
to the weak predictors. In practice, this consists in identifying a set of
functions that interact with weak predictors to be profiled in the next
iteration. This iterative process carries on until strong predictors are
found and all bugs have been explained.

The slowdown observed by the authors when evaluating HOLMES was less
than 10%. In turn, the code space overhead imposed by the instrumentation
is generally smaller than 50%, with exception for the EDG compiler where
it reaches 250%.
HOLMES is attractive for software maintenance, as it avoids the tedious
manual task of selectively replace client binaries with instrumented versions
in order to collect more information about the problem. Therefore, develop-
ers can focus exclusively on fixing bugs.
However, weak predictors can be sparse. Hence, given that HOLMES ex-
plores only near weak predictors, it is possible to get stuck with no new sites
available to explore.

Unfortunately, all the previous approaches described are not suitable to track
concurrency bugs. These kind of bugs arise from the non-determinism inherent
to operations involving multiple threads. Thus, they cannot be captured by
predicates or profiles used in prior work, which focus only on one thread at a
time. Thereby, new research has been done to address concurrency bugs with
statistical debugging. The Cooperative Concurrency Bug Isolation (CCI) is the
first to tackle these issues.

CCI [35]: This system is a low-overhead instrumentation framework to diagnose
production-run failures caused by concurrency bugs. CCI works by recording
specific thread interleavings during the original run, using then statistical
models to identify strong bug predictors among the information recorded.
This approach is built based on CBI principles, so CCI also leverages on
sampling to keep low overhead in production runs and relies on statistical
models that assign scores to predicates to discover the root causes of the
failure.
However, unlike CBI, CCI strives to find causes of concurrency bugs. There-
fore, it implements new sampling techniques, that address the non-deterministic
challenges of these kind of errors. For instance, CCI sampling may require
cross-thread coordination, because concurrency bugs involve multiple threads.
Moreover, it must also keep each sampling period active for some time, be-
cause concurrency bugs always involve multiple memory accesses.
Thereby, CCI consider three different instrumentation schemes, that offer
different tradeoffs between performance and failure-predicting capability:

21

– CCI-Havoc: tracks whether the value of a memory location is changed
between two consecutive accesses from one thread. This captures the
change of program states in the view of one thread at two nearby points,
and may help to diagnose atomicity violations, which happen when pro-
grammers make incorrect assumptions about atomicity and fail to en-
force mutual exclusion for memory accesses that should occur atomically.
If these accesses happen to be interleaved with conflicting accesses from
different threads, the program might behave incorrectly.

– CCI-FunRe: tracks function re-entrance: simultaneous execution by
multiple threads. This may help to diagnose errors arising from misuse
of thread-unsafe functions.

– CCI-Prev: tracks whether two consecutive accesses (read or write) to
one memory location come from the same thread or distinct threads.
This captures interactions among multiple threads at a fine granularity,
and may help to diagnose data races and atomicity violations.

The evaluation results for CCI show that sampling significantly decreases
monitoring overhead. The results obtained by the authors show that most of
the runtime overhead experienced was lower than 10% for the applications
tested. However, for memory-access intensive applications, the instrumenta-
tion schemes still incur very high monitoring overheads (more than 920%).
Moreover, not all bugs can be diagnosed by CCI. From the 9 tested con-
currency failures, CCI-Prev, CCI-Havoc, and CCI-FunRe could explain 7,
7, and 4, respectively. This is mostly due to limitations of each instrument
scheme (CCI-FunRe shows the weakest diagnosis capability due to its coarse
granularity) and loss of information in sampling.

3.5 Summary

Figure 1 summarizes the record/replay and statistical debugging systems
previously presented. The systems are classified according to their approach and
(i) whether they support multiprocessors and other sources of non-determinism
(e.g. interrupts, I/O, etc), (ii) whether they employ an efficient and scalable
recording mechanism (one considers the recording efficient if the overhead is
generally less than 35%), and (iii) whether they leverage on data provided by
different users.

Given that solutions were evaluated with different benchmarks and distinct
units of measurement, one can not perform a precise comparative analysis. De-
spite that, some aspects can be highlighted. In general, hardware-based solu-
tions present lower performance overheads than software-based solutions, but
require hardware extensions which are not standard nowadays. On the other
hand, software-only solutions typically have smaller logs.

Regarding software-based record/replay systems, one can highlight ESD as
this solution do not incur any overhead during productions runs. Other solutions,
namely Flashback, LEAP, PRES also have a modest impact on performance
(less than 35%). However, Flashback does not cope with concurrency issues on
multiprocessor. When comes to other sources of non-determinism, besides the

22

Fig. 1. Summary of the presented systems.

hardware-assisted approaches, only SMP-ReVirt, PRES, ODR and ESD provide
support for I/O inputs and interrupts replay.

Comparing now record/replay systems with statistical debuging systems, Fig-
ure 1 shows that the former are mostly better prepared to deal with bugs arising
from concurrent executions in multiprocessor programs. However, they rely only
on one user execution, thus incurring more overhead in recording information
during original executions or spending more time to infer unrecorded data in
order to repeat the bug. In fact, CCI also supports multiprocessor applications,
but, as CCI relies on sampling, it can miss some important clues to debug some
concurrency errors.

4 Architecture

As discussed in the previous section, deterministic replay approaches do not
leverage multiple executions performed by different users. This is done by sta-
tistical debugging approaches, but, unfortunately, these kind of systems are not
yet too well suited to address concurrency bugs. As they rely on sampling, some
important information may not be recorded.

23

The problem addressed in this work is to design and implement a prototype
of a system that improves deterministic replay of failures by taking advantage of
statistical information collected from different users’ executions of the program.
By doing this, we aim to further minimize the performance overhead and the
log size that would be required if one had to record all the information at each
client.

The system we propose will be built on top of LEAP [28]. In the following
sections, we will present the relevant properties of LEAP that justify its choice
as the basis of this work, as well as the proposed architecture to overcome some
of the LEAP drawbacks.

4.1 LEAP Properties

Like LEAP, our solution will focus on replaying concurrency bugs, namely
those resulting from data races and atomicity violations. Thereby, errors caused
by other sources of non-determinism (e.g. I/O and network inputs) are outside
the scope of this work.

LEAP was not built to leverage data from different clients, but, as stated
before, has some key qualities:

– Software-based - LEAP is a software-only solution, thus it not requires
extending commodity hardware with non-standard components.

– Local-order based deterministic replay - instead of enforcing a global
order of thread accesses to shared memory locations in order to achieve
deterministic replay, LEAP only records the thread access order that each
shared variables. This information is stored in an access vector for each
shared variable and used to enforce the same thread scheduling during replay.

– Recording overhead - the previous local-order recording scheme avoids
the need for global synchronization operations, only requiring local synchro-
nization operations which can be executed in parallel. This allows LEAP to
be 5x to 10x faster than other related approaches, such as InstantReplay and
DejaVu.

However, LEAP tends to produce considerable log sizes (51 up to 37760
KB/sec) and still incurs a significant overhead for some specific applications,
namely those that have several shared variables accessed in hot loops. To address
the log size issue and to further minimize recording overhead, our solution will
expand LEAP in some aspects. To better explain the differences, we then present
the proposed architecture.

4.2 Proposed Architecture

Figure 2 illustrates the architecture of the proposed system.
As one can see, there is a module in each client denoted recorder. The recorder

will be responsible for collecting the access vectors for each shared variable dur-
ing the execution of the (previously instrumented) program. Unlike LEAP, our

24

Fig. 2. Overview of the proposed system.

approach does not intend to record all shared variables’ access vectors. Instead,
each user will record accesses only to a part of the program’s variables, which
may differ from client to client. Assuming that the program will be executed by
a large population of users, this mechanism will allow to gather access vectors
for the whole set of shared variable with high probability. By doing this, we aim
at minimizing the performance overhead that would be required if one had to
record all the access vectors at each client.

Then, each client will send their partial access vectors (along with information
about the success or failure of the execution) to the developer site to be analyzed.
Here, the statistical analyzer will explore the received reports to complete the
missing access vectors and generate a replay driver of the faulty execution to be
replayed. By pinpointing the most common access vectors observed by the users,
we plan to ease the task of inferring the original unrecorded access vectors.

Finally, the replay driver will serve as an entry point for the replayer com-
ponent to control the replaying of the program execution. However, since the
inferred access vectors may not be sufficient to reproduce the bug, one may have
to generate a different replay driver. Because of this, the replayer will have to
send feedback to the statistical analyzer, so the latter can investigate another
feasible access vectors and produce a new replay driver.

25

5 Evaluation

The evaluation of the proposed architecture and the recording mechanisms
employed will be performed experimentally, building a prototype. In detail, to
evaluate our proposal we intend to proceed as follows:

– Evaluation metrics: to assess the quality of our system, we plan to quantify
the recording overhead imposed, the log size needed and the correctness of
the bug reproducibility, i.e., if the bug is in fact repeated or not.

– Tests with real bugs: there is a large variety of bug repositories of real
applications available. We aim at using some of them (e.g. IBM ConTest and
Tomcat bug repositories) to perform our tests. We will focus on concurrency
bugs, trying to cover different types of these kind of failures, for instance
data races, atomicity violations and deadlocks.

– Comparison with other systems: we can only claim that our solution
is somehow better than other if we compare both. Therefore we plan to
compare our system to the native execution and to LEAP system, but also,
if time allows, to other solutions, such as DejaVu, InstantReplay and JaRec.

6 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23, 2011: Write a paper describing the project.

– May 24 - June 15: Finish the writing of the dissertation.

– June 15, 2011: Deliver the MSc dissertation.

7 Conclusions

In this report we have surveyed some representative approaches to deal with
the cumbersome task of finding and fixing bugs on released software. We have
then discussed the main challenges and performance metrics that one has to take
into account when building these kind of solutions. Several system have been pre-
sented to illustrate the current state of the art, with emphasis on those following
the deterministic replay approach and the statistical debugging approach.

We have also proposed a solution that combines these two techniques and
presented its architecture. We concluded the report with a description of the
methodology to be applied in the evaluation of the proposed solution, as well
with the schedule for future work.

26

Acknowledgments We are grateful to P. Romano, J. Garcia, P. Louro, P.
Ruivo and L. Rosa for the fruitful discussions and comments during the prepa-
ration of this report. This work was partially supported by project “FastFix”
(FP7-ICT-2009-5).

References

1. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?:
an empirical study of bug characteristics in modern open source software. In:
Proceedings of the 1st workshop on Architectural and system support for improving
software dependability. ASID ’06, New York, NY, USA, ACM (2006) 25–33

2. of Standards, N.I., Technology (NIST), D.o.C.: Software errors cost u.s. economy
$59.5 billion annually. NIST News Release 2002-10 (2002)

3. E. Steegmans, P. Bekaert, F.D.G.D.N.S.M.v.D., Boydens, J.: Black & white testing:
Bridging black box testing and white box testing

4. Tao Feng, K.B.: A survey of software testing methodology. (2010)
5. Hall, A.: Realising the benefits of formal methods. Journal of Universal Computer

Science 13(5) (2007) 669–678
6. Parnas, D.L.: Really rethinking ‘formal methods’. Computer 43 (1) (2010) 28–34
7. Godefroid, P., Nagappan, N.: Concurrency at microsoft – an exploratory survey.

CAV Workshop on Exploiting Concurrency Efficiently and Correctly (2008)
8. S. Lu, S. Park, E.S., Zhou, Y.: Learning from mistakes – a comprehensive study

of real world concurrency bug characteristics. ASPLOS (2008)
9. Dunlap, G.W., Lucchetti, D.G., Fetterman, M.A., Chen, P.M.: Execution replay

of multiprocessor virtual machines. In: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments. VEE
’08, New York, NY, USA, ACM (2008) 121–130

10. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: Muvi:
automatically inferring multi-variable access correlations and detecting related se-
mantic and concurrency bugs. In: Proceedings of twenty-first ACM SIGOPS sym-
posium on Operating systems principles. SOSP ’07, New York, NY, USA, ACM
(2007) 103–116

11. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: Proceedings of the 8th
USENIX conference on Operating systems design and implementation. OSDI’08,
Berkeley, CA, USA, USENIX Association (2008) 267–280

12. Cornelis, F., Georges, A., Christiaens, M., Ronsse, M., Ghesquiere, T., Bosschere,
K.D.: A taxonomy of execution replay systems. In: In Proceedings of the Inter-
national Conference on Advances in Infrastructure for Electronic Business, Edu-
cation, Science, Medicine, and Mobile Technologies on the Internet. (2003)

13. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: Pres:
Probabilistic replay with execution sketching on multiprocessors (2009)

14. Patil, H., Pereira, C., Stallcup, M., Lueck, G., Cownie, J.: Pinplay: a framework for
deterministic replay and reproducible analysis of parallel programs. In: Proceedings
of the 8th annual IEEE/ACM international symposium on Code generation and
optimization. CGO ’10, New York, NY, USA, ACM (2010) 2–11

15. Srinivasan, S.M., K, S., Andrews, C.R., Zhou, Y.: Flashback: A lightweight exten-
sion for rollback and deterministic replay for software debugging. In: In USENIX
Annual Technical Conference, General Track. (2004) 29–44

27

16. Castro, M., Costa, M., Martin, J.P.: Better bug reporting with better privacy.
In: Proceedings of the 13th international conference on Architectural support for
programming languages and operating systems. ASPLOS XIII, New York, NY,
USA, ACM (2008) 319–328

17. Wang, R., Wang, X., Li, Z.: Panalyst: privacy-aware remote error analysis on com-
modity software. In: Proceedings of the 17th conference on Security symposium,
Berkeley, CA, USA, USENIX Association (2008) 291–306

18. Bacon, D.F., Goldstein, S.C.: Hardware-assisted replay of multiprocessor pro-
grams. In: PROCEEDINGS OF THE ACM/ONR WORKSHOP ON PARAL-
LEL AND DISTRIBUTED DEBUGGING, PUBLISHED IN ACM SIGPLAN NO-
TICES. (1991) 194–206

19. Xu, M., Bodik, R., Hill, M.D.: A ”flight data recorder” for enabling full-system
multiprocessor deterministic replay. In: Proceedings of the 30th annual interna-
tional symposium on Computer architecture. ISCA ’03, New York, NY, USA, ACM
(2003) 122–135

20. Narayanasamy, S., Pokam, G., Calder, B.: Bugnet: Continuously recording program
execution for deterministic replay debugging. In: In ISCA. (2005) 284–295

21. Pablo Montesinos, L.C., Torrellas, J.: Delorean: Recording and deterministically
replaying shared-memory multiprocessor execution efficiently

22. Netzer, R.H.B.: Optimal tracing and replay for debugging shared-memory paral-
lel programs. In: Proceedings of the 1993 ACM/ONR workshop on Parallel and
distributed debugging. PADD ’93, New York, NY, USA, ACM (1993) 1–11

23. Sorin, D.J., Martin, M.M.K., Hill, M.D., Wood, D.A.: Safetynet: improving the
availability of shared memory multiprocessors with global checkpoint/recovery. In:
Proceedings of the 29th annual international symposium on Computer architecture.
ISCA ’02, Washington, DC, USA, IEEE Computer Society (2002) 123–134

24. Feldman, S.I., Brown, C.B.: Igor: a system for program debugging via reversible
execution. In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on
Parallel and distributed debugging. PADD ’88, New York, NY, USA, ACM (1988)
112–123

25. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant
replay. IEEE Trans. Comput. 36 (April 1987) 471–482

26. Choi, J.D., Srinivasan, H.: Deterministic replay of java multithreaded applications.
In: Proceedings of the SIGMETRICS symposium on Parallel and distributed tools.
SPDT ’98, New York, NY, USA, ACM (1998) 48–59

27. Georges, A., Christiaens, M., Ronsse, M., De Bosschere, K.: Jarec: a portable
record/replay environment for multi-threaded java applications. Softw. Pract. Ex-
per. 34 (May 2004) 523–547

28. Huang, J., Liu, P., Zhang, C.: Leap: lightweight deterministic multi-processor
replay of concurrent java programs. In: Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of software engineering. FSE ’10,
New York, NY, USA, ACM (2010) 385–386

29. Altekar, G., Stoica, I.: Odr: output-deterministic replay for multicore debugging.
In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems prin-
ciples. SOSP ’09, New York, NY, USA, ACM (2009) 193–206

30. Zamfir, C., Candea, G.: Execution synthesis: a technique for automated software
debugging. In: Proceedings of the 5th European conference on Computer systems.
EuroSys ’10, New York, NY, USA, ACM (2010) 321–334

31. Orso, R., Liang, D., Harrold, M.J., Computing, R.L.O.: Gamma system: Continu-
ous evolution of software after deployment. In: In Proceedings of the international
symposium on Software testing and analysis, ACM Press (2002) 65–69

28

32. Liblit, B.R., Liblit, B.R., Liblit, B.R.: Cooperative bug isolation. Technical report
(2004)

33. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug
isolation. SIGPLAN Not. 40 (June 2005) 15–26

34. Chilimbi, T.M., Nori, A.V., Liblit, B., Vaswani, K., Mehra, K.: Holmes: Effective
statistical debugging via efficient path profiling. In: in 31st International Confer-
ence on Software Engineering (ICSE 2009. (2009)

35. Jin, G., Thakur, A., Liblit, B., Lu, S.: Instrumentation and sampling strategies for
cooperative concurrency bug isolation. In: Proceedings of the ACM international
conference on Object oriented programming systems languages and applications.
OOPSLA ’10, New York, NY, USA, ACM (2010) 241–255

29

