
Fault Replication in Concurrent Programs
(extended abstract of the MSc dissertation)

Nuno de Ferraz Almeida e Peixoto Machado
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—This thesis addresses the problem of reproducing
an execution of a concurrent buggy program, in order to ease
its debugging. For this, the thesis introduces CoopLEAP, a
system that provides fault replication of concurrent programs,
based in cooperative recording and partial log combination.
CoopLEAP employs a partial recording scheme to reduce
the amount of information that a given program instance is
required to store in order to support deterministic replay. The
use of partial logs allows to substantially reduce the overhead
imposed by the instrumented code execution, but raises the
problem of finding the combination of logs capable of replaying
the fault. This thesis also proposes an heuristic, denoted
Similarity-Guided Merge, to perform this search. Third-party
benchmarks and a real-world application, used to evaluate
the implemented prototype of CoopLEAP, shown that it can
not only successfully replay concurrency bugs, but also impose
smaller overheads in comparison with other existing solutions.

I. INTRODUCTION

Software bugs continue to hamper the reliability of soft-
ware. It is estimated that bugs account for 40% of system
failures [1]. Unfortunately, despite the progress made on
the development of techniques that prevent and correct
errors during software production (e.g. formal methods [2]),
a significant number of errors still reach end-users [3]. This
problem is exacerbated when we take into consideration the
increasing complexity of modern software, due to the advent
of multi-core systems. Therefore, it is imperative to develop
tools that alleviate the developers’ burden of debugging the
software, for instance, by providing the faulty execution
replay.

Unfortunately, achieving deterministic replay is not a
trivial task, especially in parallel applications. Contrary to
sequential bugs that usually depend only on the program
input and on execution environments (and therefore can be
easily reproduced), concurrency bugs show an inherently
nondeterministic nature. This means that even when exe-
cuting the same code on the same machine with the same
input, the exact timing of an instruction or code segment
execution may vary from one run to another [4].

The deterministic replay technique addresses this problem
by recording the execution relevant details [5] (including the
order of access to shared memory regions, thread scheduling,
program inputs, signals, etc), a task that induces a large
space and performance overhead during production runs.

However, if one records too little data, it may not be
sufficient to reproduce the bug.

In the past decade, a significant amount of research has
been performed in order to develop efficient solutions (either
based on hardware or software) that provide deterministic
replay. Several of these solutions [6], [7], [8] aim at replay-
ing the bug on the first attempt, but this comes with an
excessively high cost (10x-100x slowdown) on the original
run, which is still too expensive to be practical.

As user-side executions are much more performance crit-
ical when compared to developers’ in-house debugging, it
is important to reduce the production run overhead, even if
it results in a slightly longer bug-reproduction time during
diagnosis. Our observation is that one can further mitigate
the runtime penalties by exploring the fact that there is usu-
ally a large number of users running the faulty software. By
gathering, analyzing and combining information recorded
from different users regarding program’s faulty runs, one
can make bug reproduction more cost-effective. If each user
collects only a fraction of the traces, the performance of its
instance of the program will not be so significantly affected.

Thereby, this thesis introduces CoopLEAP, a deterministic
replay system (based on LEAP [9]) which leverages on
cooperative recording performed by multiple clients and on
statistical techniques to combine the collected partial logs.
Therefore, the contributions of this thesis can be enumerated
as follows:
• A set of novel statistical metrics to detect correlations

between partial logs;
• A novel heuristic, named Similarity-Guided Merge, that

leverages on the previous metrics to systematically per-
form a guided search, among the possible combinations
of partial logs, to find those which generate complete
replay drivers capable of reproducing the bug with high
probability.

• An experimental evaluation of the implemented proto-
type of CoopLEAP, based on third-party benchmarks
and on a real-world application.

The rest of this document is structured as follows: Sec-
tion II presents the background concepts related to this work.
Section III overviews some deterministic replay and statis-
tical debugging systems. Section IV introduces CoopLEAP,
describing in detail not only its architecture, but also the
Similarity-Guided Merge heuristic and the metrics used to

1



measure similarity of partial logs. Section V shows the
results of the experimental evaluation study. Finally, Sec-
tion VI concludes this document by summarizing its main
points and future work.

II. BACKGROUND

A. Deterministic replay
Deterministic replay (or record/replay) aims to overcome

the problems associated with the reproduction of bugs, in
particular those raised by non-determinism. The purpose
of this technique is to re-execute the program, obtaining
the exact same behavior as the original execution. This is
possible because almost all instructions and states can be
reproduced as long as all possible non-deterministic factors
that have an impact on the program’s execution are replayed
in the same way [4]. Thereby, deterministic replay operates
in two phases: 1) Record phase – consists of capturing data
regarding non-deterministic events, putting that information
into a trace file; 2) Replay phase – the application is re-
executed consulting the trace file to force the replay of non-
deterministic events according to the original execution.

B. Non-determinism
External factors often interfere with the program execu-

tion, preventing the timing and the sequence of instructions
executed to be always identical. The sources of these fac-
tors can be divided into two types: input non-determinism
and memory non-determinism [10]. Input non-determinism
encompasses all the inputs that are received by the system
layer being recorded and are not produced by that layer
(e.g. signals, system calls, hardware interrupts, DMA, etc),
and is present in both single-processor and multi-processor
machines.

Regarding memory non-determinism in single-processor,
it is mainly due to variations in tread scheduling and signal
delivering, as a result of differences in the architectural state
(e.g. cache line misses, memory latencies, etc). This kind
of non-determinism can be tackled by recording the events
with “logical time” [11], instead of ordinary physical time. In
fact, logical time may be sufficient to support deterministic
replay in single-processor systems [12]. However, when one
moves to the field of multi-processors (e.g. SMPs and multi-
cores), the scenario becomes more complex. In addition to
thread scheduling, asynchronous events, and signals, one has
to take into account how concurrent threads interleave with
each other, since they actually execute simultaneously on
different processors. Therefore, one needs to capture the
global order of shared memory accesses and synchronization
points. Obviously, this is not a problem when threads are
independent from each other.

III. RELATED WORK

There are various approaches to prevent bugs in a program
and to optimize the debugging process. In this section we
focus on approaches that try to reproduce the failure or to
statistically isolate it, as these are the most relevant to the
work reported in the thesis.

Among the deterministic replay solutions, over the past
few years, several solutions have been proposed to cope with
the challenges brought by multi-processors. Based on how
they are implemented, prior work can be divided in two main
categories: hardware-based and software-based.

The hardware-based solutions rely on hardware extensions
to efficiently record the non-deterministic events and, con-
sequently, mitigate the overhead imposed to the production
run. As examples, one can highlight FDR [13], BugNet [14],
and, more recently, DeLorean [15]. However, despite various
optimization endeavors to reduce hardware complexity [15],
all the previous approaches still demand significant hardware
modifications. These modifications are not yet available
nowadays, except on simulations.

Regarding the software-based approach, InstantReplay [8]
was the first deterministic replay system to support multi-
processors. It leverages on a instrumented version of CREW
protocol to control and log the accesses to shared memory
locations. JaRec [6] reduces the overheads imposed by In-
stantReplay, by dropping the idea of global ordering and
using a Lamport’s clock [11] to preserve the partial order
of threads and to reduce the size of logs. However, JaRec
requires a program to be data race free in order to guarantee
a correct replay, otherwise it only ensures deterministic
replay up until the first data race. This constraint makes
this approach unattractive for most real world concurrent
applications, given that is common the existence of benign
or harmful data races. All the previous approaches try to
reproduce the bug on the first replay run, thus inducing
large overheads during production runs. This also has the
drawback of penalizing bug-free executions, which are much
more frequent than the faulty ones [4]. Motivated by this,
some recent solutions, such as PRES [4], ODR [16], and
ESD [17], relax the constraint of replaying the bug at the first
try, by only logging partial information in order to further
minimize the cost of recording the original execution. Later,
these solutions apply inference techniques to complete the
missing information.

Our solution, denoted CoopLEAP, also relies on the
observation that it is not crucial to achieve deterministic
replay at the first attempt, but improves these systems as
it leverages on information logged by multiple clients to
ease the inference task. For this, CoopLEAP draws on
statistical debugging techniques, which aim at isolating bugs
by analyzing information gathered from a large number of
users. Statistical debugging was pioneered by CBI [18]. This
system collects feedback reports that contain values recorded
for certain predicates of the program (e.g. branches, return
values, etc). Then, performs a statistical analysis of the
information gathered in order to pinpoint the likely source
of the failure. However, CBI does not support concurrency
bugs. CCI [19] outstrips this limitation by adjusting CBI’s
principles to cope with non-deterministic events. For in-
stance, it implements new sampling techniques, with longer
sampling periods, because concurrency bugs always involve
multiple memory accesses.

2



Since recording and replaying input non-determinism can
be achieved with an overhead less than 10% [4], [5], [12],
the work presented in this thesis only focuses on coping
with memory non-determinism. In fact, a recent study on
the evolution of the types of errors in MySQL database [20]
shows a growth trend in the number and proportion of con-
currency bugs over the years. Thereby, CoopLEAP addresses
the deterministic replay of this kind of bugs (e.g. atomicity
violations, data races), disregarding other sources of non-
determinism.

IV. COOPLEAP SYSTEM

This section introduces CoopLEAP, a system that pro-
vides fault replication of concurrent programs, based in
cooperative recording and partial log combination. Given
that CoopLEAP is based on LEAP [9], it shares most of
its features and its main components. Hence, we begin by
presenting an overview of LEAP.

A. Standard LEAP
LEAP [9] proposes a general technique for the determin-

istic replay of Java concurrent programs in multi-processors.
It is based on the insight that, to achieve deterministic replay,
it is sufficient to record the local order of thread accesses
to shared variables, instead of enforcing a global order. To
track thread accesses, LEAP associates an access vector to
each different shared variable. During execution, whenever
a thread reads or writes in a shared variable, its ID is stored
in the access vector. For instance, let us assume a program
P with a shared variable x and running with two threads
(t1 and t2). If, during the execution of P , x is accessed one
time by t1 and, later, two times by t2, the access vector of
x will be <t1,t2,t2>.

Using this technique, one gets (local) order vectors of
thread accesses performed on individual shared variables,
instead of a global-order vector. This allows lightweight
recording, but relaxes faithfulness in the replay, allowing
thread interleavings that are different from the original
execution. However, in [9] the authors claim that using this
approach does not affect the error reproduction, and they
formally prove the soundness of this statement.

To locate the shared program elements (SPEs), LEAP
uses a static escape analysis called thread-local objects
analysis [21] from the Soot1 framework. Given that accu-
rately identifying shared variables is generally an unde-
cidable problem, this technique computes a sound over-
approximation, i.e. every shared access to a field is indeed
identified, but some accesses which are actually not may
also be classified as shared [9]. Are considered as SPEs
variables that serve as monitors (including Java monitors)
and other shared field variables (including class and thread
escaped instance variables). For each identified SPE, LEAP
assigns offline a numerical index in order to be able to
consistently identify objects across different runs. Moreover,
as access vectors only contain thread IDs tracked during the

1http://www.sable.mcgill.ca/soot

Figure 1. Overview of the LEAP architecture (adapted from the LEAP
paper).

production run, it is imperative to correctly recognize each
thread in both recording and replay phases. LEAP achieves
this by maintaining a mapping between the thread name and
the thread ID during recording and using the same mapping
for replay.

The overall infrastructure of LEAP, depicted in Figure 1,
consists of three major components: the transformer, the
recorder, and the replayer.

The transformer receives the Java program bytecode and
employs two types of instrumentation schemes to produce
the record version and the replay version, respectively.

The record version is then executed and the recorder
component stores the accesses to each SPE in its correspon-
dent access vector. When the production run ends, LEAP
generates three different files: the access vectors, the thread
ID map information, and the replay driver.

Finally, the replayer uses the logged information and
the generated replay driver to start the execution of the
replay version of the program. To guarantee the correct
execution order of threads, LEAP takes control of the thread
scheduling and consults the thread ID map information file.

The evaluation study presented in [9], shows that LEAP
incurs a runtime overhead ranging from 7.3% to 626% (for
applications with several shared variables accessed in hot
loops). In terms of space overhead, the log size in LEAP
is still considerable, ranging from 51 to 37760 KB/sec. To
mitigate the log sizes and further minimize the recording
overhead, CoopLEAP extends LEAP to leverage on informa-
tion recorded by multiple users of the program and support
partial log combination.

B. CoopLEAP Architecture
1) Overview: Figure 2 illustrates the overall architecture

of CoopLEAP. During the instrumentation phase (Figure 2 -
1), the transformer instruments the Java program bytecode
to generate both the record version and the replay version,
as done in LEAP. The nuance resides on the record version,
where only a subset of all SPEs is actually instrumented (as

3



Figure 2. Overview of the CoopLEAP architecture: (1) Instrumentation
phase; (2) Record and Replay phases.

this version will be further called as partial record version).
It should also be noted that each client is assigned a different
subset of SPEs to record, according to some defined criterion
(see Section IV-C). The partial record versions are then sent
to the clients, whereas the replay version is sent to the
replayer.

Figure 2 -2 illustrates the record and replay phases. In
CoopLEAP, there is a recorder module for each client.
However, unlike LEAP, in CoopLEAP the recorder does
not record all SPEs’ access vectors. Instead, each user
logs accesses only to a part of the program’s SPEs, as
previously defined by the transformer. Assuming that the
program is executed by a large population of users, this
mechanism allows to gather access vectors for the whole set
of SPEs with high probability. By doing this, CoopLEAP
aims at minimizing the performance overhead that would be
required if one had to record all the access vectors at each
client.

When the production run ends, each client sends its partial
log to the developer site to be analyzed. This log consists
of the access vectors recorded for a subset of the SPEs,
the thread ID map, and also an additional bit indicating the
success or failure of the execution (successful executions
can be useful for the statistical analysis).

Here, the statistical analyzer will employ an heuristic
(see Section IV-E) to explore and merge the received access
vectors in order to generate a complete log of the faulty

execution2. By pinpointing the most correlated partial logs,
CoopLEAP plans to ease the task of inferring the original
unrecorded access vectors. Once the merge of partial logs
is complete, the combination of access vectors is sent to the
replayer, along with the thread ID map and the generated
replay driver.

Finally, just like in LEAP, the replay driver will serve as
an entry point for the replayer to control the replaying of
the program execution. However, in CoopLEAP the replay
phase is slightly different. Given that access vectors come
from independent executions, the combined information can
be incompatible. As a result, the execution replay will fail
and the bug will not be reproduced. In this case, the replayer
will send feedback to the statical analyzer communicating
the replay failure, so the latter can investigate another access
vector combination and produce a new complete log for
replay. This process ends when the bug is successfully
replayed or when the maximum number of attempts to do
it is reached.

C. Partial Log Recording
CoopLEAP introduces the novelty of recording accesses

to only a fraction of the entire set of the SPEs of the
program. The subset of SPEs to be traced is defined at
instrumentation time by the transformer. For this purpose,
different criteria can be used, e.g. random selection, load
balancing distribution, subset of fixed SPEs, etc. However,
in this work, we only consider the random selection of
a certain percentage of the total number of SPEs of the
program for partial recording. Basically, whenever a new
SPE is identified, CoopLEAP generates a random value and
compares it with a pre-defined threshold (used to bound the
percentage of the total number of SPEs to be instrumented)
to decide whether the SPE is to be instrumented or not.

It should be noted that this scheme is statistically fair,
assuming that there is a significant number of users running
the program. However, it is not granted to be optimal, as it
does not always allow partial log overlapping, i.e. it may not
exist SPEs in common for each two potential similar partial
logs. For instance, let us consider a program with eight
SPEs (speIndex = {0..7}) and a coverage of 50%. It
could happen that two partial logs (l1 and l2) collected from
two identical executions may not be considered as similar,
since l1 may only record the subset {0..3} and l2 may
only record the subset {4..7}, for example. This could be
addressed by increasing the percentage of coverage (at the
cost of greater overheads), or by defining a smaller fixed
subset of SPEs to be logged by all users.

Moreover, one can also note that the overhead reduc-
tions may not be linear with the decrease of the coverage
percentage. The reason is because some SPEs could be
accessed more times than others, therefore, when instru-
menting the code, the load balance may not be equally

2In this work, we are assuming that all the partial logs refer to the same
bug. Despite that, for different bugs on the same program, some additional
data could be used for distinction purposes, namely the line of code where
the bug appeared.

4



distributed among the users. A solution for this could be
instrumenting the whole program and execute it one time
to measure the number of accesses performed on each SPE,
at the developer side. Later, when instrumenting the user
versions, CoopLEAP could already take into account the
SPEs workload.

The investigation of new partial recording schemes is
scheduled as future work.

D. Merge of Partial Logs
The major challenge of using partial recodring is how to

combine the collected partial logs in such a way that the
access vectors used lead to a feasible thread interleaving,
capable of reproducing the bug during the replay.

In general, the following observations make the partial
log merging difficult: i) the bug can be the result of several
different thread interleavings; ii) the probability of obtaining
two identical executions of the same program can be very
low (this probability is inversely proportional to the com-
plexity of the program in terms of number of SPEs and the
number of thread accesses); iii) the combination of access
vectors from partial logs of faulty executions may enforce
a thread order that leads to a non-faulty replay execution;
iv) the combination of access vectors from partial logs of
faulty executions may enforce a thread order that leads to a
impossible replay execution.

To address these challenges and mitigate the incompat-
ibility of the merged access vectors, CoopLEAP applies
statistical metrics over the universe of collected partial logs
to pick those that present more similarity. Thereby, our
statistical metrics are divided in two types: statistical metrics
for partial log correlation and statistical metrics for bug
correlation.

1) Statistical Metrics for Partial Log Correlation: These
metrics are related to the partial logs as a whole and measure
the amount of information that they have in common, so one
can increase the probability of merging compatible access
vectors. In particular, the following statistical metrics are
used to calculate the partial log correlation: Similarity and
Relevance. Both metrics are described in detail below.

a) Similarity – The rationale behind the classification of
the similarity between two partial logs is related to their
number of SPEs with identical access vectors (i.e. that had
recorded exactly the same thread interleaving). Hence, the
more SPEs with equal access vectors the partial logs have,
the better. The computation of this metric can come in two
flavors: Plain Similarity and Dispersion-based Similarity,
according to the weight given to the SPEs of the program.

To better define these metrics, let us first present some
formal notation:
S – Set of all the SPE identifiers of the program.
Sl – Set of the SPE identifiers recorded only by the partial log l.
AV – Set of the hashes of the access vectors recorded by all the partial

logs.
AVl – Set of the hashes of the access vectors recorded only by the

partial log l.
avecs(s) : S → {AV1,AV2, ...,AVn} – Map that, for a given SPE

identifier s, returns the set of the hashes of its different access vectors,
recorded by all the partial logs.

avecl(s) : Sl 7→ AVl – Function that maps a SPE identifier s to the
hash of its access vector, recorded by the partial log l.

Equall1,l2 = {s | s ∈ Sl1 ∩ Sl2 ∧ avecl1 (s) = avecl2 (s)} – Set of
the SPE identifiers, recorded by both partial logs l1 and l2, with identical
access vectors.

Diff l1,l2 = {s | s ∈ Sl1 ∩ Sl2 ∧ avecl1 (s) 6= avecl2 (s)} – Set of
the SPE identifiers, recorded by both partial logs l1 and l2, with different
access vectors.

Siml0 = {l1, l2, ..., lk} – Set of the k partial logs more similar to l0
(denoted as group of similars of l0).

Filll0,Siml0
= {s | s ∈ Sl0 ∪ Sl1 ∪ Sl2 ∪ ... ∪ Slk ∧ l1, l2, ..., lk ∈

Siml0} – Union of the sets of the SPE identifiers recorded by the partial
log l0 and by the partial logs of its group of similars Siml0 .

With this, we can now define the metrics as follows.
Let l1 and l2 be two partial logs, their Plain Similarity is

given by the following equation:

PlainSimilarity(l1, l2) =
#Equall1,l2

#S
×

(
1−

#Diff l1,l2
#S

)
(1)

where #Equall1,l2 , #S, and #Diff l1,l2 denote the cardi-
nality of the sets Equall1,l2 , S, and Diff l1,l2 , respectively.

It should be noted that this metric will only be 1 when
both logs are complete and identical, i.e. they have recorded
access vectors for all the SPEs of the program (Sl1 =
Sl2 = S) and those access vectors are equal for both logs
(avecl1(s) = avecl2(s),∀s ∈ S). This implies that, for every
two partial logs, their plain similarity will always be less
than 1. However the greater this value is, the more probable
is that the both partial logs come from the same production
run.

Let l1 and l2 be two partial logs, their Dispersion-based
Similarity is given by the following equation:

DispersionSimilarity(l1, l2) =
∑

x∈Equall1,l2

weight(x)

×

1−
∑

y∈Diffl1,l2

weight(y)

 (2)

where weight(s) is a function of type S → Double
that maps each SPE identifier to a double value referent
to its relative weight, in terms of overall-dispersion. Here,
the overall-dispersion of a given SPE corresponds to the
proportion of its different access vectors when compared to
the total number of different access vectors collected for all
the SPEs. Thereby, the weight function of a SPE identifier
s can be calculated as follows:

weight(s) =
#avecs(s)

#AV
(3)

Notice that some other metrics could be defined if one
consider other types of weights (e.g. the average number of
accesses recorded for each SPE), but in this work we only
use overall-dispersion.

Comparing the two metrics, one can see that the Plain
Similarity considers that every SPE has the same impor-
tance, whilst the Dispersion-based Similarity assigns dif-
ferent weights to the SPEs. In general, both metrics allow
to pinpoint the most similar partial logs, but the first is
more useful when the overall-dispersion weight values are
relatively well distributed for all the SPEs. On the other
hand, the Dispersion-based Similarity is more suitable for

5



cases when there are many SPEs whose access vectors are
identical in every execution.

b) Relevance – this metric allows to classify each partial
log according to its likelihood of being completed with
compatible information:

Relevance(l0) = α×
#Filll0,Siml0

#S

+ (1− α)×
∑k

n=1 Similarity(l0, ln)

k
, ln ∈ Siml0

(4)

where Similarity(l0, ln) is one of the two possible types
of Similarity metrics.

As one can see, the Relevance metric is the sum of two
parcels with different importance (given by α). The first
parcel is related to the number of SPEs that is possible to
fill joining the access vectors from the partial log l0 and
its group of similars Siml0 . This follows the rationale that
the more missing SPEs of l0 that can be filled with access
vectors from similar partial logs, the better.

In turn, the second parcel gives the similarity ratio of all
the partial logs in the group. This allows to pick, as the base
partial log, the one whose group of similars is composed
by partial logs with high similarity, thus increasing the
probability of merging compatible information. It should be
noted that the maximum size k of the group of similars can
be defined by the developer. Moreover, a partial log l1 can
only be part of Siml0 if Similarity(l0, l1) ≥ threshold.
This avoids the group of similars to be composed by partial
logs with a very low value of similarity.

In our experiments, we found α = 0.7, k = 5,
threshold = 0.3 for Plain Similarity, and threshold = 0.01
for Dispersion-based Similarity, to be good values.

2) Statistical Metrics for Bug Correlation: Unlike the
previous metrics, the statistical metrics for bug correlation
are concerned with the correlation between the bug and each
access vector individually. This also leverages information
from successful executions and is specially useful when,
even after merging the partial logs, there are still SPEs to
be completed.

To compute these metrics, we adapt the scoring method
proposed by Liblit et al [18]. Thereby, access vectors are
classified based on their Sensitivity and Specificity, i.e.
whether they account for many failed runs and few suc-
cessful runs. With this information, it is possible to define a
third metric, denoted Importance, which identifies the access
vectors that are simultaneously high sensitive and specific.

Let Ftotal be the total number of partial logs resulting
from failed executions; for each access vector v, let F (v)
be the number of failed partial logs that have recorded v for
a given SPE, and S(v) be the number of successful partial
logs that have recorded v for a given SPE. The three metrics
are then calculated as follows.

Sensitivity(v) =
F (v)

Ftotal
(5)

Specificity(v) =
F (v)

S(v) + F (v)
(6)

Importance(v) =
2

1
Sensitivity(v)

+ 1
Specificity(v)

(7)

In summary, the higher the Importance value, the more
correlated with the bug is the access vector.

E. Similarity-Guided Merge

To merge the partial logs and generate a complete log
capable of replaying the faulty execution, we developed a
heuristic denoted Similarity-Guided Merge. This heuristic
operates in the following five steps:

1. Calculate the degree of similarity between the partial
logs – the first step consists of calculating the similarity be-
tween each partial log and all the others from the universe of
partial logs received. To calculate the similarity, CoopLEAP
applies the Plain Similarity metric or the Dispersion-based
Similarity metric, to every possible pair of partial logs.

2. Identify the list of base partial logs – the next step
consists of identifying the list of the partial logs that can
be a potential good basis to start reconstructing the faulty
execution. To build this list, CoopLEAP first calculates
the relevance of each partial log and picks the n most
relevant ones (we found n = 10 to be a suitable value for
our experiments) in a descending order according to their
relevance value.

3. Complete the base partial log with information from
the group of similars – having already chosen the base
partial log, CoopLEAP identifies the unrecorded SPEs in
the base partial log and completes them with the respective
access vectors traced by the logs in the group of similars. If
all SPEs become filled, the obtained complete log is sent to
the replayer, along with the thread ID map and the generated
replay driver. On the other hand, if there are still empty
SPEs, the heuristic proceeds with the next step.

4. Complete the base partial log with information from
partial logs “similar by transitivity” – when the access
vectors from the group of similars are not sufficient to create
a complete replay log, CoopLEAP tries to fill the missing
SPEs with access vectors from the partial logs “similar by
transitivity”. These partial logs, although not belonging to
the group of similars referred in the previous step, are part
of the group of similars of those partial logs which are
themselves similar to the base partial log. In other words,
if l1 ∈ Siml0 ∧ l2 ∈ Siml1 ⇒ l2 ∈ Sim2

l0
, where Simn

l0
contains the partial logs which are nth-degree similar to l0
(in this example, l2 would be second-degree similar to l0).

5. Complete the base partial log with statistical indicators
– if it is still not possible to complete the log for replay
(the union of the different groups of similars may not cover
all the SPEs of the program), CoopLEAP applys the metrics
described in Section IV-D2 to the universe of access vectors
collected, and picks the ones with greater Importance (see
Equation 7) to fill the missing SPEs.

At the end of this process, CoopLEAP replays the merged
log and verifies if the bug is reproduced. If it is, the goal has
been achieved and the process ends. If it is not, CoopLEAP
chooses the next partial log in the list of the most relevant to

6



be the new base partial log and re-executes the Similarity-
Guided Merge from the step 3. It should be referred that,
in the worst case scenario, where all the most important
indicators failed to replay the bug, the heuristic switches to
a brute force mode. Here, all the possible access vectors are
tested for each missing SPE.

V. EVALUATION

A. Experimental Setting
All the experiments were conducted in a machine Intel

Core 2 Duo at 2.26 Ghz, with 4 GB of RAM and running
Mac OS X. CoopLEAP prototype was implemented over a
LEAP public version3. In order to get comparative figures,
this standard version of LEAP was also used in the experi-
ments.

Regarding partial logging, three different configurations
were employed: CLEAP-25%, CLEAP-50%, and CLEAP-
75%, where each partial log traces 25%, 50%, and 75% of
the SPEs of the program, respectively. For each configura-
tion, 500 partial logs from failed executions were used, plus
more 50 of successful runs. To get a fairer comparison of
the three recording schemes, the partial logs were generated
from 500 complete logs, picking randomly the SPEs to be
stored according to the scheme’s percentage.

For the Plain Similarity we used a threshold of 0.3 and
for the Dispersion-based Similarity we used a threshold of
0.01 (given that the weights of some SPEs may be very low).
Regarding the maximum number of attempts of the heuristic
to reproduce the bug, it was set to 500.

B. Evaluation Criteria
Three main criteria were used to evaluate CoopLEAP,

namely: i) the bug replay capacity (consists of the number
of attempts of the heuristic to replay the bug, therefore,
the less number of tries, the better); ii) the performance
overhead; and iii) the size of the partial logs produced. It
should be noted that the two latter criteria were applied to
both CoopLEAP and standard LEAP, in order to evaluate
the benefits and the limitations of our solution.

To assess CoopLEAP’s bug replay capacity, we used some
bugs from the IBM ConTest benchmark suite [22], and a real
bug from the widely-used application Tomcat. To measure
the overheads imposed, we compared CoopLEAP against
LEAP on the Java Grande workload benchmark.

C. Bug Replay Capacity
1) ConTest Benchmark: The IBM ConTest benchmark

suite [22] contains programs with many types of concurrency
bugs. The ones used in our experiments are described in
Table I, in terms of its number of SPEs, the total number of
SPE accesses, and the bug-pattern according to [22].

Table II shows the number of attempts of the heuristic
(using both Plain Similarity and Dispersion-based Similar-
ity) to replay the ConTest benchmark bugs, when recording
25%, 50%, and 75% of the SPEs.

3Available at http://sites.google.com/site/leaphkust/

Program SPEs Total Accesses Bug Description
BubbleSort 10 49964 Not-atomic

Manager 4 30240 Not-atomic
TwoStage 4 27103 Two-stage

ProducerConsumer 8 997 Orphaned thread
Piper 6 347 Missing condition for Wait

Table I
DESCRIPTION OF THE CONTEST BENCHMARK BUGS USED IN THE

EXPERIMENTS.

Program Plain Similiarity Dispersion-based Similarity
25% 50% 75% 25% 50% 75%

BubbleSort 1 1 1 1 1 1
Manager X X X X X X
TwoStage 34 13 X 7 1 1

ProducerConsumer 5 2 1 1 1 1
Piper 2 1 1 1 1 1

Table II
NUMBER OF THE ATTEMPTS REQUIRED BY THE HEURISTIC TO REPLAY

BUG IN THE CONTEST BENCHMARK (THE X INDICATES THAT THE
HEURISTIC FAILED TO REPLAY THE BUG IN THE MAXIMUM NUMBER OF

ATTEMPTS STIPULATED).

Analyzing the results, one can verify that the Similarity-
Guided Merge heuristic only failed to replay the bug in
programs Manager and TwoStage (only in the particular
case of Plain-Similarity for CLEAP-75%). These results
confirm that executions containing a higher number of
total SPE accesses are more unlikely to be successfully
reproduced using partial logging strategies. However, an
overall high number of accesses per se is not an indicator
that the heuristic will fail, as shown by the results obtained
for program BubbleSort. The main reason for the failure
of the heuristic is related to how the accesses are distributed
between the SPEs and how that influences the SPE’s disper-
sion ratio. Here, the dispersion ratio indicates how disperse
is the SPE, i.e. whether many different access vectors were
recorded for it or not. The dispersion ratio is computed by
dividing the number of different access vectors recorded for
the SPE by the total number of access vectors recorded for
that SPE. Figure 3 depicts the SPE dispersion ratios for the
ConTest benchmark programs (for the sake of readability
and to ease the comparison, Figure 3 only presents the values
for the full logging configuration).

As one can note, the BubbleSort program has only one
SPE with a very high dispersion ratio (this SPE also accounts
for about 99% of the total accesses), while the remaining
SPEs always present the same access vector across all the
executions. For this reason, the partial log combination
ended to be trivial, since it was easy for the Similarity-
Guided Merge heuristic to combine compatible information.

On the other hand, the Manager program has all its SPEs
with a dispersion ratio of 1 or closer, which means that
almost all the recorded executions had a different thread
interleaving. These clearly represent unfavorable conditions
for the partial logging approach, which in fact failed to

7



Figure 3. SPE dispersion ratios for the ConTest benchmark programs,
when logging all the SPEs of the program.

replay the bug, as indicated in Table II.
Regarding the TwoStage application, it presents unusual

results when using Plain Similarity, since the bug was not
replayed when the partial logs recorded more information.
The explanation for this is related to the SPE dispersion
ratios. As one can observe in Figure 3, from the four SPEs
of the program, two were always identical (SPE 0 and 2),
one had very few equal access vectors (SPE 1), and the last
one was always different (SPE 3). Let us further discuss the
three partial logging scenarios when using Plain Similarity:

CLEAP-75% – with this configuration, each partial log
was composed by three SPEs. Hence, the list of base partial
logs ended being composed by the partial logs whose group
of similars contained only other partial logs matching in
the SPEs 0 and 2. As a consequence, the access vectors
combined for filling either SPE 1 or 3 were incompatible.

CLEAP-50% – with this configuration, each partial log
was composed by two SPEs. Here, the list of base partial
logs was filled with the partial logs that have other ones
matching access vectors for the SPE 1. This because all
the partial logs containing only SPEs 0 and 2, albeit hav-
ing many other similar partial logs, could not generate a
complete replay log just by combining information from
their group of similars. Therefore, their relevance was lower
(see Equation 4). The same did not happened for the partial
logs containing SPE 1 and the bug was replayed by trying
different access vectors for filling SPE 4.

CLEAP-25% – with this configuration, each partial log
was composed by a single SPE. Since there were no inter-
section points between the partial logs, the Similarity-guided
Merge heuristic picked random partial logs to act as base to
generate the replay log. Then, it tried to replay the error by
successively filling the missing SPEs with the access vectors
indicated by the statistical indicators. As can be verified, the
bug was successful replayed at the 34th attempt.

On the other hand, when using Dispersion-based Simi-
larity, the heuristic could easily reproduce the bug, because
the SPEs had different importances. Thence, the partial logs
with the same access vector for SPE 1 were immediately

identified as the best base partial logs and used to generate
a complete replay log.

As final remark, it should be noted that the addition of
successful logs did not impact the results. The reason is due
to the fact that when it was necessary to fill missing SPEs,
there were always many different access vectors with the
same degree of correlation to the bug.

2) Tomcat: Tomcat4 is a widely-used complex server ap-
plication. The bug replay capacity of the Similarity-Guided
Merge heuristic was tested with bug #37458 5 of Tomcat
v5.5. This error consists of a NullPointerException,
resulting from a data race, and was already used in [9] to
test LEAP.

This application bug requires the recording of 15 SPEs,
which only account for a total of 61 accesses. This is due
to the fact that we use a test unit (JUnit) to trigger the
bug, therefore the transformer only instruments the SPEs
accessed during the execution of the JUnit class. The use
of a driver can be considered as an useful asset, since it
allows to circumscribe the really needed SPEs to replay the
bug, which is better in terms of scalability (one avoids to
instrument all the unnecessary SPEs of the program).

Table III shows the number of attempts of the Similarity-
Guided Merge heuristic (using both Plain Similarity and
Dispersion-based Similarity) to replay the Tomcat#37458
bug, when recording 25%, 50%, and 75% of the SPEs.

Program Plain Similiarity Dispersion-based Similarity
25% 50% 75% 25% 50% 75%

Tomcat#37458 2 1 1 1 1 1

Table III
NUMBER OF THE ATTEMPTS REQUIRED BY THE HEURISTIC TO REPLAY

TOMCAT#37458 BUG.

From the analysis of Table III, it can be verified that our
heuristic could easily replay the bug. In fact, one can say
that this is a relatively simple error in terms of complexity,
as can be proved by the SPE dispersion ratios illustrated in
Figure 4. This means that practically all the 500 execution
logs collected resulted from production runs originating very
similar thread interleavings.

D. Overheads

The Java Grande Forum6 benchmark contains typically
computationally intensive science and engineering applica-
tions that require high-performance computers. Given that
Java Grande Forum Benchmark does not have known bugs,
it was only used in our experiments to assess the benefits
and limitations of CoopLEAP when compared to LEAP, on
demanding computing environments. Table IV describes the
benchmark programs used in terms of number of SPEs and
the overall number of times that they are accessed. For the

4http://tomcat.apache.org/
5https://issues.apache.org/bugzilla/show bug.cgi?id=37458
6http://www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks/

8



Figure 4. SPE dispersion ratios for the Tomcat#37458 bug, when logging
all the SPEs of the program.

sake of readability, the results of the tests performed are
presented in tables, since the values obtained vary within a
large scale.

Program SPEs Total Accesses
Raytracer 16 2.56×109

SparseMatmult 8 5.08×107
SOR 8 1.99×106

Montecarlo 15 1.50×105
Series 8 2.00×104

Table IV
DESCRIPTION OF THE JAVA GRANDE FORUM BENCHMARK PROGRAMS

USED IN THE EXPERIMENTS.

1) Performance Overhead: Table V contains the experi-
ments with respect to the performance overhead measured
when tracing the SPEs with the previous logging configura-
tions.

Program Performance Overhead
25% 50% 75% LEAP

Raytracer 9566.7% 17452.1% 44610.6% 92908.4%
SparseMatmult 598.2% 1725.5% 2505.1% 2606.7%

SOR 1.1% 2.0% 2.4% 2.7%
Montecarlo 1.5% 2.3% 3.7% 7.3%

Series 0.1% 0.4% 2.3% 6.5%

Table V
PERFORMANCE OVERHEADS FOR THE JAVA GRANDE FORUM

BENCHMARK PROGRAMS.

One can verify that there is always a decrease of the
performance overhead of CoopLEAP when compared to
standard LEAP. The most preponderant case is Series,
where CoopLEAP achieved a runtime degradation 65x and
16x smaller than LEAP, for CLEAP-25% and CLEAP-50%,
respectively. These reductions are explained by the fact the
majority of the accesses are confined to only two of the
eight SPEs of the program. Hence, when those specific SPEs
are not traced, the imposed overhead is automatically lower.

However, for this program, even the worst case overhead
was not very significant.

On the other hand, for Raytracer, one can note that
both CoopLEAP and LEAP still incur in a heavy perfor-
mance overhead, as a result of the high number of accesses
performed to the SPEs. Nonetheless, once more CoopLEAP
brought visible improvements, reducing LEAP penalties by
9.7x, 5.3x, and 2.1x when logging 25%, 50%, and 75% of
the SPEs, respectively. This scenario is similar to that of
SparseMatmult, where CoopLEAP achieved decreases
of 4.4x and 1.5x (for CLEAP-25% and CLEAP-50%, re-
spectively) when compared to the runtime degradation of
LEAP. This trend also holds for the remaining programs,
however with less significant overheads.

2) Log Sizes: Concerning the log size ratios with respect
to LEAP, the results are shown in Figure 5.

Figure 5. Log size ratios for the Java Grande benchmark programs
with reference to log size generated by LEAP (which corresponds to the
recording scheme of 100%).

From the figure analysis, the benefits of partial logging
are clear. The most evident case is SOR, where the log sizes
when using CLEAP-25% account for only 0.1% of LEAP’s
log size. For SOR with both CLEAP-50% and CLEAP-75%,
the ratios were 0.33 and 0.67, respectively, which is even
smaller than the expected. In fact, for all the benchmark
programs, there was a high heterogeneity in the size of
the access vectors of the program SPEs, which significantly
influenced the actual reduction in the log sizes. In other
words, the decreases are just not completely linear because
some SPEs are accessed more times than others. Given
that the instrumentation of the code is performed statically,
the load balance in terms of thread accesses may not be
equally distributed among the users, as previously referred in
Section IV-C. This implies that the impact of logging x% of
the SPEs will not necessarily mean a reduction of x% in both
performance overhead and log size. In fact, sometimes the
reduction may be greater than expected (as in Raytracer
and SparseMatMult), but other times may be lower (as
in Series when using CLEAP-75%). This motivates future
research in how one can equally distribute the information
to be recorded among the different clients.

9



VI. CONCLUSIONS

This thesis introduced CoopLEAP, a system based on
LEAP [9] that provides fault replication of concurrent pro-
grams, through cooperative recording and partial log com-
bination. As each user collects only a fraction of the traces,
one can further minimize the overhead imposed by logging
the original execution. To avoid a brute force approach
to find a compatible combination of partial logs, capable
of successfully replaying the bug, we also developed a
heuristic, denoted Similarity-Guided Merge.

The evaluation study, performed with third-party bench-
marks and a real-world application, shown that the benefits
from partial recording are clear, as CoopLEAP could al-
ways reduce both performance degradations and log sizes
produced by LEAP. Furthermore, it was shown that the
Similarity-Guided Merge heuristic can successfully replay
concurrency bugs by combining information traced by dif-
ferent partial logs. Unfortunately, in the presence of more
complex programs (where almost every faulty execution
presents a different thread interleaving), the heuristic exhib-
ited limitations in replaying the bug within the maximum
number of attempts set.

As future work, one points out the need to further evaluate
the bug replay capacity and the performance of CoopLEAP
in more complex and realistic scenarios, with also a larger
number of partial logs collected. Moreover, new partial
logging schemes (e.g. that take into account load balancing)
and new similarity metrics (e.g. that use euclidean or edit
distances between access vectors) should be studied.

ACKNOWLEDGMENTS

This work was partially supported by FCT (INESC-ID
multi-annual funding) through the PIDDAC program funds,
and by the european project “FastFix” (FP7-ICT-2009-5).
Parts of this work have been performed in collaboration with
other members of the Distributed Systems Group at INESC-
ID, namely, Paolo Romano, João Garcia, Pedro Louro, and
João Matos.

REFERENCES

[1] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai,
“Have things changed now?: an empirical study of bug
characteristics in modern open source software,” in ASID, ser.
ASID. ACM, 2006, pp. 25–33.

[2] A. Hall, “Realising the benefits of formal methods,” Journal
of Universal Computer Science, vol. 13, no. 5, pp. 669–678,
2007.

[3] D. L. Parnas, “Really rethinking ‘formal methods’,” Com-
puter, vol. 43, pp. 28–34, 2010.

[4] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu, “Pres: probabilistic replay with execution sketching
on multiprocessors,” in SOSP. ACM, 2009, pp. 177–192.

[5] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen, “Execution replay of multiprocessor virtual machines,”
in VEE. ACM, 2008, pp. 121–130.

[6] A. Georges, M. Christiaens, M. Ronsse, and K. De Boss-
chere, “Jarec: a portable record/replay environment for multi-
threaded java applications,” Software Practice and Experi-
ence, vol. 40, pp. 523–547, May 2004.

[7] J.-D. Choi and H. Srinivasan, “Deterministic replay of java
multithreaded applications,” in SPDT. ACM, 1998, pp. 48–
59.

[8] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging par-
allel programs with instant replay,” IEEE Trans. Comput.,
vol. 36, pp. 471–482, April 1987.

[9] J. Huang, P. Liu, and C. Zhang, “Leap: lightweight determin-
istic multi-processor replay of concurrent java programs,” in
FSE. ACM, 2010, pp. 385–386.

[10] G. Pokam, C. Pereira, K. Danne, L. Yang, and J. Torrellas,
“Hardware and software approaches for deterministic multi-
processor replay of concurrent programs,” Intel Technology
Journal, vol. 13, pp. 20–41, 2009.

[11] L. Lamport, “Ti clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, pp. 558–565,
July 1978.

[12] S. M. Srinivasan, S. K, C. R. Andrews, and Y. Zhou, “Flash-
back: A lightweight extension for rollback and deterministic
replay for software debugging,” in USENIX Annual Technical
Conference. USENIX Association, 2004, pp. 29–44.

[13] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder”
for enabling full-system multiprocessor deterministic replay,”
in ISCA. ACM, 2003, pp. 122–135.

[14] S. Narayanasamy, G. Pokam, and B. Calder, “Bugnet: Contin-
uously recording program execution for deterministic replay
debugging,” in ISCA. IEEE Computer Society, 2005, pp.
284–295.

[15] L. C. Pablo Montesinos and J. Torrellas, “Delorean: Record-
ing and deterministically replaying shared-memory multipro-
cessor execution efficiently,” in ISCA. IEEE Computer
Society, 2008, pp. 123–134.

[16] G. Altekar and I. Stoica, “Odr: output-deterministic replay for
multicore debugging,” in SOSP. ACM, 2009, pp. 193–206.

[17] C. Zamfir and G. Candea, “Execution synthesis: a technique
for automated software debugging,” in EuroSys. ACM, 2010,
pp. 321–334.

[18] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in PLDI. ACM,
2003, pp. 141–154.

[19] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation
and sampling strategies for cooperative concurrency bug
isolation,” in OOPSLA. ACM, 2010, pp. 241–255.

[20] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues, “A study
of the internal and external effects of concurrency bugs,” in
DSN. IEEE Computer Society, 2010, pp. 221–230.

[21] R. L. Halpert, C. J. F. Pickett, and C. Verbrugge, “Component-
based lock allocation,” in PACT. IEEE Computer Society,
2007.

[22] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and how
to test them,” in IPDPS. IEEE Computer Society, 2003, pp.
286–293.

10


