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Resumo

O aparecimento dos multi-processadores tornou atraente o desenvolvimento programas de

software paralelos, visto que estes permitem tirar maior partido dos recursos de computação

dispońıveis e obter melhor desempenho. Contudo, escrever e depurar programas concorrentes

têm-se revelado tarefas bastante complicadas devido à natureza não-determińıstica deste tipo de

aplicações, isto é, correr várias vezes o mesmo programa pode levar a diferentes resultados para

cada execução. A técnica de reprodução determińıstica resolve este problema ao providenciar

a reprodução fiel da execução original. Infelizmente, o uso desta técnica traz elevados custos

adicionais, pois requer a gravação de todas as fontes de não-determinismo do programa, de modo

a obter o seu comportamento original.

Para abordar este problema, esta tese apresenta o CoopLEAP, um sistema que providencia

a replicação de faltas de programas concorrentes, baseado em gravação cooperativa e na com-

binação de históricos parciais. O CoopLEAP aplica um esquema de gravação parcial para reduzir

a quantidade de informação que uma dada instância do programa necessita de guardar de modo a

suportar reprodução determinista. O uso de históricos parciais permite reduzir substancialmente

os custos adicionais impostos pela execução do código instrumentado, mas levanta o problema de

encontrar uma combinação de históricos capaz de reproduzir a falta. Esta tese também propõe

uma heuŕıstica, denominada Similarity-Guided Merge, para efectuar esta procura. As bancadas

experimentais, usadas para avaliar a implementação de um protótipo do CoopLEAP, mostram

que este consegue não só reproduzir com sucesso erros de concorrência, como também impor

menores custos adicionais, em comparação com outras soluções existentes.





Abstract

With the advent of multi-processors, it becomes appealing to develop parallel software pro-

grams that take full advantage of the available computing resources and achieve better perfor-

mance. However, writing and debugging concurrent programs are very challenging tasks because

of the non-deterministic nature of this kind of applications, i.e. running the same program sev-

eral times may lead to different outcomes for each run. The deterministic replay technique

addresses this problem, as it provides a faithful reproduction of the original run. Unfortunately,

deterministic replay comes with very expensive overheads, since it requires recording all sources

of non-determinism to achieve the original program behavior.

To address this problem, this thesis presents CoopLEAP, a system that provides fault repli-

cation of concurrent programs, based in cooperative recording and partial log combination.

CoopLEAP employs a partial recording scheme to reduce the amount of information that a

given program instance is required to store in order to support deterministic replay. The use

of partial logs allows to substantially reduce the overhead imposed by the instrumented code

execution, but raises the problem of finding the combination of logs capable of replaying the

fault. This thesis also proposes an heuristic, denoted Similarity-Guided Merge, to perform this

search. In-house and third-party benchmarks, used to evaluate the implemented prototype of

CoopLEAP, show that it can not only successfully replay concurrency bugs, but also impose

smaller overheads in comparison with other existing solutions.
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1Introduction
This thesis addresses the problem of replaying faulty executions of concurrent programs in

order to help developers to remove bugs from software. For this purpose, the thesis proposes a

scheme to reduce the amount of information that a given program instance is required to store

to support deterministic replay.

1.1 Motivation

Software bugs continue to hamper the reliability of software. It is estimated that bugs

account for 40% of system failures (Li, Tan, Wang, Lu, Zhou, & Zhai 2006), leading to huge

costs both to software producers and end users (of Standards & Technology 2002). Over the

years, different efforts have been made to develop new techniques to prevent and avoid errors

during software production. As examples, one can highlight techniques such as the use of box

testing (Steegmans, Bekaert, Devos, Delanote, Smeets, van Dooren, & Boydens 2004; Omar &

Mohammed 1991) and the use of formal methods (Hall 2007).

Despite their undeniable value, these techniques are still too time consuming and expensive

to match the time-to-market requirements imposed to the software industry (Parnas 2010). This

problem is exacerbated when we take into consideration the increasing complexity of modern

software, due to the advent of multi-core systems. As a result, the software released to the

marked turns out to be error-prone. Therefore, it is imperative to design and implement debug

tools that alleviate the developers’ burden of finding and fixing the software bugs, in particular

those arising from concurrency issues.

Unfortunately, if debugging single-threaded applications can be cumbersome, debugging

multi-threaded software is typically way more challenging. Contrary to sequential bugs that

usually depend only on the program input and on execution environments (and therefore can be

easily reproduced), concurrency bugs show an inherently nondeterministic nature. This means
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that even when executing the same code on the same machine with the same input, the exact

timing of an instruction or code segment execution may vary from one run to another. Thus,

reproducing this kind of bugs can take hours, days, or even months (Godefroid & Nagappan

2008). Since the time to fix a bug is directly related to developer’s ability to reproduce it for

diagnosis (Lu, Park, Seo, & Zhou 2008), any debug mechanism that is able to provide whole-

system deterministic replay is a significant asset.

However, obtaining the faithful original execution replay may require the recording of all

its relevant details (Dunlap, Lucchetti, Fetterman, & Chen 2008) (including the order of access

to shared memory regions, thread scheduling, program inputs, signals, etc), a task that induces

a large space and performance overhead during production runs. On the other hand, if one

records too little data, it may not be sufficient to reproduce the bug. In summary, a trade-off

must be made between the degree of fidelity in replay and the runtime overhead imposed by the

amount of information traced.

1.2 Approach

In the past decade, a significant amount of research has been performed in order to develop

efficient solutions (either based on hardware or software) that provide deterministic replay.

Several of these solutions (Georges, Christiaens, Ronsse, & De Bosschere 2004; Choi & Srinivasan

1998) aim at replaying the bug on the first attempt, but this comes with an excessively high

cost (10x-100x slowdown) on the original run, which is still too expensive to be practical.

As user-side executions are much more performance critical when compared to developers’

in-house debugging, it is important to reduce the production run overhead, even if it results

in a slightly longer bug-reproduction time during diagnosis. Motivated by this, some recent

works (Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009; Altekar & Stoica 2009) try to minimize

the recording overhead at the cost of a greater number of replay attempts. This is achieved by

first recording partial information during the original execution and then inferring the unrecorded

information, on the developer side.

Despite some significant results, these solutions always try to reproduce the error relying

on the data collected from one single run of the application. This constrains the reduction that

can be made on the amount of partial information to be collected.
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Our observation is that one can further mitigate the runtime penalties by exploring the fact

that there is usually a large number of users running the faulty software. In other words, one

should be able to leverage the great number of executions performed. By gathering, analyzing

and combining information recorded from different users regarding program’s faulty runs, one

can make bug reproduction more cost-effective. If each user collects only a fraction of the traces,

the performance of its instance of the program will not be so significantly affected. Using this

technique, concurrency bugs can be addressed by tracing precise points of the code, such as

accesses to shared variables, thread interleavings and lock acquisitions.

Therefore, the approach followed in this thesis is the following: i) a lightweight mechanism

to partially record relevant information from multiple executions performed by a community of

users of the same program, and ii) strategies to merge the logs of the faulty executions and

generate a replay driver that reproduces the bug.

1.3 Contributions

The contributions of the thesis are the following:

• A set of novel statistical metrics to detect correlations between partial logs, namely two

metrics to measure similarity of partial logs (named Plain Similarity and Dispersion-based

Similarity) and a metric to classify each partial log according to the likelihood of its

reconstruction reproduce the error (denoted Relevance);

• A novel heuristic, named Similarity-Guided Merge, that leverages on the previous metrics

to systematically perform a guided search, among the possible combinations of partial logs,

to find those which generate complete replay drivers capable of reproducing the bug with

high probability.

1.4 Results

This thesis produced the following results:

• A prototype of a lightweight deterministic replay system, named Cooperative LEAP, or

simple CoopLEAP (since it is based on LEAP (Huang, Liu, & Zhang 2010), a deterministic
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replay software-based solution). CoopLEAP implements three low overhead recording

schemes and leverages on the partial logs generated by multiple clients to deterministically

reproduce concurrency bugs.

• An experimental evaluation of the implemented prototype based on a developed micro-

benchmark, third-party benchmarks, and on a real-world complex server application.

1.5 Research Context

This work was performed in the context of the FastFix project1. One of the main goals

of this project is to build a plataform for remote software maintenance, capable of monitoring

execution environments and replicate application failures. During my work, I benefited from

the fruitful collaboration with the remaining members of the GSD team working on FastFix,

namely Paolo Romano, João Garcia, Pedro Louro and João Matos. A preliminary description

of this work can be found in a paper published in INForum 2011 by Machado, Romano, &

Rodrigues (2011).

1.6 Structure of the Document

The rest of this thesis is structured as follows: Chapter 2 presents some background concepts

related to this work, as well as an overview of some deterministic replay and statistical debugging

systems. Chapter 3 introduces CoopLEAP, describing in detail not only its architecture, but

also the Similarity-Guided Merge heuristic and the metrics used to measure similarity of partial

logs. Chapter 4 shows the results of the experimental evaluation study. Finally, Chapter 5

concludes this document by summarizing its main points and future work.

1https://services.txt.it/fastfix-project



2Related Work
There are various approaches to prevent bugs in a program and to optimize the debugging

process. This chapter focuses on approaches that try to reproduce the failure or to statistically

isolate it, as these are the most relevant to the work reported in the thesis.

The remaining of this chapter is organized as follows. Section 2.1 presents the deterministic

replay approach. Section 2.2 identifies the main challenges and performance metrics in order to

have a good debugging tool. Section 2.3 overviews some systems that employ the deterministic

replay technique. Section 2.4 presents the statistical debugging approach and the main solutions

that follow this method. Finally, Section 2.5 concludes the chapter.

2.1 Deterministic replay

Developers often employ cyclic debugging (Cornelis, Georges, Christiaens, Ronsse, Gh-

esquiere, & Bosschere 2003) to understand the root cause of a failure. It is called cyclic de-

bugging because the developers rerun the program several times, in an effort to incrementally

refine their clues regarding the bug and narrow its location.

This approach works relatively well for deterministic failures, since they can be easily re-

peated and observed simply by re-executing the program. However, cyclic debugging is not

feasible when dealing with non-deterministic bugs, because they do not always reveal them-

selves in every execution.

The problem of non-determinism can be addressed by employing an approach called de-

terministic replay (or record/replay) (Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009). The

purpose of this technique is to re-execute the program, obtaining the exact same behavior as the

original execution. This is possible because almost all instructions and states can be reproduced

as long as all possible non-deterministic factors that have an impact on the program’s execution

are replayed in the same way (Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009).
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Deterministic replay operates in two phases:

1. Record phase - consists of capturing data regarding non-deterministic events, putting

that information into a trace file.

2. Replay phase - the application is re-executed consulting the trace file to force the replay

of non-deterministic events according to the original execution.

2.2 Challenges and performance metrics

Although simple in theory, it is not an easy task to build a deterministic replay system in

order to be applicable in practice. We now present the main challenges and performance metrics

that need to be considered when developing these kind of debugging systems.

2.2.1 Overhead performance

The main challenge lies in determining the level of abstraction at which the debugger will

operate, that is to say, what and how much information must be recorded in order to achieve

deterministic replay. If one wishes to get a replay with high accuracy with respect to the pro-

duction run, it will require a great recording overhead. On the other hand, the less information

is collected, the harder it will be to get a replayed execution which resembles to the original.

Therefore, according to Cornelis, Georges, Christiaens, Ronsse, Ghesquiere, & Bosschere (2003)

a solution should be:

• Space efficient - recording implies saving the information somewhere, typically in a trace

file. Thus, the total amount of space needed to record the information should be minimized.

• Time efficient - in order to monitor the original execution, it is needed to instrument the

application. Consequently, there are more instructions to run and the initial performance

will be degraded. Hence, this overhead should also be minimized in order to maintain the

use of the program acceptable.
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2.2.2 Non-determinism

External factors often interfere with the program execution, preventing the timing and the

sequence of instructions executed to be always identical. The sources of these factors can be

divided into two types: input non-determinism and memory non-determinism (Pokam, Pereira,

Danne, Yang, & Torrellas 2009). We now describe each type in more detail.

2.2.2.1 Input Non-determinism

In general, the input non-determinism encompasses all the inputs that are received by the

system layer being recorded and are not produced by that layer. Therefore, one has differ-

ent levels of abstraction according to the system layer being considered: user-level or system-

level (Pokam, Pereira, Danne, Yang, & Torrellas 2009). In the case of user-level replay, all

inputs proceeding from the operating system are not granted to be repeatable across two runs

and, therefore, are considered as non-deterministic. In turn, for system-level replay, the non-

deterministic inputs are those coming from external devices (I/O, DMAs, interrupts, etc). We

now focus on the sources of non-determinism at each level.

For user-level replay, the following sources can hamper the deterministic replay (Patil,

Pereira, Stallcup, Lueck, & Cownie 2010):

• Processor-specific instructions: some processors have dedicated input instructions,

whose output depends on the processor version. One example is the RDTSC instruction on

a Pentium processor, which reads the timestamp counter. In Pentium versions that support

out-of-order execution (instructions are not necessarily performed in the order they appear

in the source code), the RDTSC instruction can return a misleading cycle count, because it

could potentially be executed before or after its location in the source code. To avoid this,

a serializing instruction is used. Serializing instructions force every preceding instruction

in the code to complete before allowing the program to continue.

• Signals: signals make processors aware of external events, but can happen asyn-

chronously. A signal may change the memory state, register values, and the program

control-flow.
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• System calls: certain system calls may present a differing behavior because their re-

sults depend on the environment in which they are running. The Linux system calls

gettimeofday() and uname()are some examples.

Regarding system-level replay, the sources of non-determinism are listed as follows:

• Inputs: the inputs from keyboard and network may not be the same depending on the

execution.

• Hardware interrupts: the control flow of the execution changes whenever an interrupt

service routine is called to handle a hardware interrupt. These interrupts are useful to

notify the processor that some data (e.g. disk read) are ready to be consumed. Given that

an interrupt can happen asynchronously, one needs to record the instant of time at which

the interrupt arrived. Moreover, it is also necessary to log the source of the interrupt (e.g.

disk I/O, network I/O, timer interrupt, etc).

• Direct Memory Access (DMA): DMA allows other hardware subsystems to access

directly to the memory, independently of the processor. To achieve deterministic replay,

one needs to log the values written by DMA as well as the timestamp at which they were

written.

It should be noted that input non-determinism is present in both single-processor and multi-

processor machines.

2.2.2.2 Memory Non-determinism

When comes to memory non-determinism in single-processor, the following reasons are

sources of non-determinism:

• Reads of un-initialized memory locations: the values read from memory locations

which are not explicitly initialized often change in different runs.

• Different access order of shared memory locations: the interleaving of read/write

accesses to shared memory locations by different threads may vary from run to run. This

is due to interrupts being delivered at different times, as a result of differences in the
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architectural state (e.g. cache line misses, memory latencies, etc.) and the load in the

system.

Non-determinism arising from thread scheduling and signal delivering can be tackled by

recording them with “logical time” (Lamport 1978), instead of ordinary physical time. In

fact, logical time may be sufficient to support deterministic replay in single-processor sys-

tems (Srinivasan, Kandula, Andrews, & Zhou 2004). However, when one moves to the field

of multi-processors (SMPs and multi-cores), the scenario becomes more complex. In addition to

thread scheduling, asynchronous events, and signals, one has to take into account how concur-

rent threads interleave with each other, since they actually execute simultaneously on different

processors. Therefore, one needs to capture the global order of shared memory access and syn-

chronization points. Obviously, this is not a problem when threads are independent from each

other.

2.2.3 Privacy and Security

Generally, post-deployment debugging techniques need to collect some information at the

user site regarding the failed execution. This information is then sent to the developers, in

order to understand and fix the bug. This necessarily brings privacy and security concerns. The

former is concerned with the sensitivity and the confidentiality of user information sent to the

developer site (for instance, it can happen that the bug is only triggered by some determined

input format placed in the password field of a form). On the other hand, the latter is linked

with the vulnerabilities which may be explored by an attacker. For instance, an attacker may

eavesdrop the communication channel between user and developer, aiming at gather significant

information about the user. Alternatively, he can perform a denial-of-service attack through an

overflow of the developer site with forged information, thereby exhausting its resources.

Addressing these issues is not trivial, because they are closely related to social aspects

and are sometimes technically complex. However, for privacy two solutions may be provided: i)

before sending any error report, the user may optionally examine its contents and decide whether

to send it or not. Unfortunately, most users do not have the expertise to properly understand

these reports, albeit some techniques may be used to ease this task (Castro, Costa, & Martin

2008); ii) the user strictly forbids the transmission of error reports, thus making monitoring

useless.
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In addition, some techniques may be employed to minimize the amount of user private data

revealed (Castro, Costa, & Martin 2008; Wang, Wang, & Li 2008), although they are not yet

capable of fully anonymize the bug report.

Security issues may be tackled using cryptographic mechanisms, such as asymmetric keys

and digital signatures.

2.2.4 Network Bandwidth

Given that information is sent from the user site to the developer site through the network,

one has to take into account the available bandwidth. First, the transmission of data should

not compromise other user tasks that also need to access the network. Second, the amount of

information recorded during production runs must be transferred in an acceptable time, in order

to allow a faster analysis in the developer site.

On the developer site, it is also necessary to have sufficient network bandwidth available so

it can properly handle the large number of user sites.

2.3 Deterministic Replay systems

Two approaches have been initially proposed to achieve deterministic replay (Cornelis,

Georges, Christiaens, Ronsse, Ghesquiere, & Bosschere 2003): the content-based (or data-driven)

replay approach and the ordering-based (or control-driven) replay approach.

The content-based approach advocates the storing of all data read by the instructions during

record phase. Later, one replays the execution providing the correct input to each instruction,

therefore getting the same output and, consequently, deterministic re-execution. However, this

method generates a large amount of logged data, thus becoming impractical.

The ordering-based approach does not require recording every instruction to replay execu-

tion. Instead, one only needs to know the initial state of the application and to log the timings

of interactions with external sources, such as I/O channels, program files, or other threads. If

these asynchronous events are replayed at the same point as they were delivered in the origi-

nal execution, an equivalent execution is obtained. This method has the advantage of creating

smaller logs, because most of the data read by the instruction stream is produced during the
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run. Thereby, the log contains only data that is not produced by the program itself but comes

from somewhere else. However, the ordering-based approach suffers from the drawback that all

the interactions with the environment must take place, so that the internal state of the appli-

cation and the state of the environment are updated correctly. Otherwise, the internal state

of the program will eventually differ from the one seen in the original execution. As a result,

contrary to content-based approach where all data to execute any instruction is always available,

ordering-based technique is not able to execute isolated instructions.

In fact, the approaches described above in their pure state are not feasible in practice

because they operate on a level of abstraction that is too low, thus demanding too much trace

data. Therefore, a mix of content-based and ordering-based techniques is commonly used in

deterministic replay. This scheme is based on the notion that part of the required information

for executing the instruction stream can be reproduced by the interactions with the environment

(ordering-based), while the rest can be consulted from the trace file (content-based).

In the past few years, much research has been done in order to develop better record and

replay systems. Based on how they are implemented, prior work can be divided in two main

categories: hardware-based and software-based. Within this classification, one can also distin-

guish the solutions according to another criterion: whether they support multi-processor replay

or only uni-processor replay.

2.3.1 Hardware-based

In general, hardware-based solutions offer support for multi-processor systems. One of

the first approaches in this direction was the one proposed by Bacon & Goldstein (1991), which

introduces a mechanism of multi-processor replay by attaching a hardware instruction counter to

cache-coherence messages to identify memory sharing. Although fast, this mechanism produces

a large log.

More recently, new hardware extensions were proposed to minimize the runtime recording

overhead. Relevant examples are the Flight Data Recorder (FDR) (Xu, Bodik, & Hill 2003)

and, later, BugNet (Narayanasamy, Pokam, & Calder 2005) and DeLorean (Pablo Montesinos &

Torrellas 2008).

We will briefly describe each of these systems in the next paragraphs.
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Flight Data Recorder (Xu, Bodik, & Hill 2003): This system focuses on recording

enough information to replay the last one second of whole-system execution before the

crash. Like Bacon et. al’s scheme, FDR snoops the cache-coherence protocol. It outstrips

the former by using a modified version of Netzer’s Transitive Reduction algorithm (Netzer

1993) to reduce the number of logged races.

FDR continuously traces activity information, such as interrupts, external inputs, and

shared memory access ordering. It also implements checkpoints, relying on the SafetyNet

mechanism (Sorin, Martin, Hill, & Wood 2002) to obtain a state that can be used to start

the re-execution.

The authors claim that FDR modestly affects program runtime, as the performance over-

head is about 10% (Xu, Bodik, & Hill 2003). The combined sizes of logs needed for replay

in FDR (it records checkpoints, interrupts and external inputs, and memory races) are

about 34 MB, for the performed experiments. For this reason, FDR can operate on a

“always on” mode in anticipation of being triggered. Finally, the hardware complexity in

FDR is about 1.3 MB of on-chip hardware and 34 MB of main memory space.

However, for providing the last second of the full system replay, FDR has to log addi-

tional information, such as interrupts, I/O, and direct memory access (DMA) events. For

intensive I/O applications, the size of the logs may be too large to be used in practice.

Furthermore, FDR requires a core dump snapshot to be sent to the developer, whose size

can go up to 1 GB, depending on the program’s memory footprint and the size of the main

memory chip used in the system.

BugNet (Narayanasamy, Pokam, & Calder 2005): This system also focuses on multi-

processor systems and makes use of dedicated hardware buffers to trace the runtime infor-

mation required to re-execute instructions that preceded a system failure. BugNet is based

on FDR, but contrary to the former it does not strive to replay the full system execution.

Rather, it focus on detecting application level bugs and hence replays only executions in

user code and shared libraries.

BugNet’s implementation approach is based on checkpointing. Each new checkpoint is

created after a certain number of instructions have been executed and captured (denoted

by checkpoint interval), allowing the start of re-execution at the beginning of each interval.

Checkpoints can be terminated by program crashes, interrupts, system calls, and context
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switches. When the termination is caused by application failures, the logs generated during

recording will be used to help the debugging.

At the beginning of each checkpoint, BugNet records the initial register state. Then, it

traces the values read by the first load memory accesses in each replay interval, or when a

data race is detected. This information is referred to as the first-load log and is stored in

a hardware-based dictionary. This is enough to guarantee the deterministic re-execution

of the program, without having to replay the interrupts and system calls routines.

Since BugNet focuses on just capturing application level bugs, the logs are smaller than

in FDR. In BugNet, the log size is less than 1 MB, so users can effortlessly communicate

the log back to the developer. Furthermore, BugNet has very little performance overhead

(less than 0.01%, as the SPEC programs used in the tests do not have many interrupts or

system calls), and the total on-chip hardware required is about 48 KB.

Limitations of BugNet include the fact that it only catches errors that are identified by the

application itself or by the operating system. Therefore, errors resulting from incorrect

programming logic are not addressed. Moreover, given that BugNet only tracks application

code, it cannot track bugs that derive from complex interactions between the user process

and the operating system. Finally, the data provided by BugNet is only sufficient to replay

the last few checkpoints before the occurrence of the bug. This makes its record/replay

scheme unsuitable for profiling purposes.

DeLorean (Pablo Montesinos & Torrellas 2008): This system is a hardware-assisted

scheme for deterministic replay, where instructions are atomically executed by proces-

sors as blocks (or chunks), similarly to transactional memory or thread-level speculation.

Then, rather than recording data dependencies, it logs the total order in which chunks

commit.

This results in two main advantages over the previous schemes. First, since the memory

accesses of a processor can overlap and reorder within and across the same-processor blocks,

DeLorean can record and replay an execution at a comparable speed to that of Release

Consistency1 (RC) execution. In contrast, FDR and BugNet only record at the speed of

1A system is said to provide release consistency, if all write operations by a certain node are seen by the other
nodes after the former releases the object and before the latter acquires it.
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Sequential Consistency2 (SC) execution. Second, it provides a substantial reduction in log

size. This reduction is accomplished by either omitting the chunk size or the ID of the

committing processor from the entry. To be able to omit the chunk size, one needs to

decide deterministically when to finish a chunk. On the other hand, to be able to omit

the ID of the committing processor from the log entry, one has to predefine the chunk

commit interleaving. This can be accomplished by enforcing a given commit policy, e.g.,

pick processors in a round-robin fashion, allowing them to commit one chunk at a time.

The drawback is that, by delaying the commit of completed chunks until their turn, one

may slow down execution and replay.

Given the need of making trade-offs between performance and log size, DeLorean provides

two different executions modes: OrderOnly (for better performance) and PicoLog (for

smaller logs).

In the OrderOnly mode, the commit interleaving is not predefined, but chunking is deter-

ministic. Hence, the chunk size does not need to be logged. During execution, the arbiter

(module which is responsible for observing the order of chunk commits) logs the commit-

ting processor IDs in the Processor Interleaving (PI) log. During replay, it uses the PI

log to enforce the same commit interleaving. The log size is smaller because there is only

the PI log. In reality, each processor also keeps a very small ChunkSize (CS) log where,

for each of its few chunks that were truncated non-deterministically, it records both the

position in the sequence of chunks committed by the processor and the size. This mode has

an average performance 2-3% lower than that of RC. With chunk sizes of 2000 instructions

(the optimal size according to Pablo Montesinos & Torrellas (2008)), OrderOnly uses on

average only 2.1 bits (or 1.3 bits if compressed) per processor per kilo-instruction to store

both the PI and CS logs.

In the PicoLog mode, chunking is deterministic and the commit interleaving is prede-

fined. During both execution and replay, the arbiter enforces a given commit order. Each

processor keeps the very small CS log discussed for OrderOnly, but there is no PI log.

Thus, the log size decreases comparing to the OrderOnly mode. For chunks with 1000

instructions, PicoLog needs a compressed log with an average of 0.05 bits per processor

per kilo-instruction. However, PicoLog has a worse performance, being 14% lower than

2A system is said to provide sequential consistency, if every node of the system sees the (write) operations on
the same memory part in the same order.
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RC. This is still faster than SC, which is, on average, 21% slower than RC.

Unfortunately, despite various optimization endeavors to reduce hardware complex-

ity (Pablo Montesinos & Torrellas 2008), all the previous approaches still demand significant

hardware modifications. These modifications are not yet available nowadays, except on simula-

tions.

2.3.2 Software-based

Given that changing hardware always brings high manufacturing costs, alongside with an

increase in complexity, software-based approaches have been the focus of a significant amount of

research lately. We now present an overview of some of these approaches. We start by reviewing

those targeting uni-processor systems and then move to discuss solutions coping the additional

sources of non-determinism characterizing multi-processor systems.

IGOR (Feldman & Brown 1988): This system was one of the first software-based solutions

for deterministic replay. It relies on checkpointing techniques for replaying programs,

reconstructing the application state from a given previous checkpoint. However, since

IGOR does not record external I/O events, re-execution may not be identical to the original

if the environment has changed.

This method operates collecting information at individual virtual memory page level. To

achieve this, it makes use of a new pagemod() system call, which determines the set of

pages that have been changed since the previous checkpoint. To control checkpoints it

employs another system call - ualarm().

In the replay phase, IGOR consults the log file to get the most recent checkpoint for each

virtual memory page. After that, it uses an interpreter to proceed the execution from the

last checkpoint up to a instruction defined by the user.

Unfortunately, IGOR involves changes to i) the compiler - to log data allocations, ii) both

the library and loader - to initiate the trace and to enable dynamic function replacement.

The recording overhead during production runs varies from 50% up to 400%. In addition,

re-execution is about 140x slower, thus becoming an unattractive approach. Finally, IGOR

does not support non-determinism caused by multithreaded programs.
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Flashback (Srinivasan, Kandula, Andrews, & Zhou 2004): This system is implemented

as an operating system extension and it provides deterministic replay to assist software de-

bugging. Like IGOR, Flashback uses an content-based approach and relies on checkpoint

techniques. However, it employs shadow processes to capture non-deterministic interac-

tions between the monitored process and the operating system in a lightweight fashion.

These interactions include system call invocations, memory-mapping, shared memory us-

age for multithreaded applications, and signals. For instance, if a process makes a read

system call, Flashback records the return value of the system call and the data that the

kernel copies into the read buffer. During replay, when this specific system call is found,

the previous recorded value is then injected to the process by Flashback.

This tool provides three primitives (Srinivasan, Kandula, Andrews, & Zhou 2004):

• checkpoint - captures the current state and returns a handler state, allowing the

program roll back to if required.

• discard(x) - discards the captured checkpoint provided, avoiding any future attempts

to roll back to this specific state.

• replay(x) - rolls back the process to the previous execution state pointed by the state

handler provided and then the execution is deterministically replayed up to where

replay() primitive is called.

These primitives are implemented using shadow processes. A shadow process is a snapshot

of the running process created by replicating the in-memory representation of the process

in the operating system. Its creation is achieved by creating a new structure in the kernel

and initializing it with the contents of the monitored process structure (e.g. registers

contents, process memory, file descriptors etc). The pointer to the shadow process is

stored in the current process structure. The copy-on-write mechanism is used in order to

reduce overhead. Moreover, since Flashback’s intent is not to recover from neither system

crashes or hardware failures, one does not need to persistently store shadow processes,

which still further reduces overhead.

The results presented by Srinivasan, Kandula, Andrews, & Zhou(2004) show that the

impact in the performance of the application is about 10%. However, the space overhead

grows linearly with the number of invocations for both read and write system calls, and the
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combined log size ranges from around 440 KB to 830 KB with 4500 and 9000 invocations,

respectively.

A main limitation of Flashback is that it requires modification to debugging tools to

incorporate support for the framework. Besides that, Flashback is also not suitable for

profiling purposes because the replay mechanism does not allow the instrumentation of

the target program for the replay phase. Finally, recording and replaying of signals and

deterministic replay of multithreaded applications is outlined in the future work but it is

not currently supported by Flashback.

The above discussed mechanisms ensure deterministic re-execution only on uni-processor

systems, not coping with the non-determinism associated with possible data races among threads

simultaneously running on different processors. The following approaches strive to address these

issues.

InstantReplay (LeBlanc & Mellor-Crummey 1987): This system was one of the first soft-

ware systems for deterministic replay on multi-processors. It consists of a technique to re-

play shared memory accesses using an ordering-based approach. This technique allows the

access to shared memory objects only through well-defined protocol CREW (Concurrent-

Reader-Exclusive-Writer) primitives. This protocol is instrumented for execution replay,

and sets down one of two possible states for each shared memory object:

• concurrent-read: all the processors can read, none can write.

• exclusive-write: one processor (the owner) can read and write; all the others do not

have access.

Then, each shared memory object is extended with a version number, that is incremented

after each write access during both record and replay phases. All threads record versioning

information to its own trace file.

During the record phase a reader traces the current version number of its shared object.

In turn, a writer traces the current version number of its shared object and the number

of readers since the previous write access on his shared object. During the replay phase a

reader waits until the current version number of its shared object matches the previously

traced version number. On another hand, a writer blocks until the version number on
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its shared object matches the previously traced version number and until the number of

readers also matches the traced count.

This technique tends to generate great amounts of recorded data when the granularity of

shared memory accesses within the program is very small. Moreover, it results in a severe

performance degradation with more than 8 processors executing, imposing more than 10x

production-run overhead.

SMP-ReVirt (Dunlap, Lucchetti, Fetterman, & Chen 2008): This system was the first

to record and replay multi-processor virtual machines without requiring new hardware

components. To minimize the recording overhead, SMP-Revirt leverages hardware page

protection mechanisms to detect races between virtual CPUs in a multi-processor virtual

machine, instead of instrumenting every shared memory access. This has the advantage of

being able to record and replay an entire virtual machine without changing its software.

To address other sources of non-determinism, SMP-Revirt logs virtual interrupts, input

from virtual devices (e.g. the virtual keyboard), network, real-time clock, and the results

of non-deterministic instructions (e.g. those that read processors’ time stamp counter).

Due to the page-level granularity, this approach is well suited for applications with coarse-

grained data sharing, resulting in less than 10% performance degradation for 4 processors.

However, SMP-ReVirt imposes more than 10x overhead for applications with finer-grained

data sharing and false sharing. For example, the relative overhead for FMM SPLASH-2

benchmark increases from 50% to 636% when the number of processors increase from 2

to 4, as reported by Dunlap, Lucchetti, Fetterman, & Chen (2008). The space overhead

is also significant and scales poorly. The log size requirements range from 0.562 GB/day

with a single processor to 90 GB/day with 4 processors, in the worst case.

DejaVu (Choi & Srinivasan 1998): This system is a record/replay tool designed at IBM

that provides deterministic execution replay of concurrent Java programs by capturing how

threads have been scheduled (ordering-based approach). The technique used by DejaVu

to capture scheduling decisions is independent of the underlying operating system. It is

based on the notion of logical thread schedule, where the number of critical events occurring

between thread swapping is counted. DejaVu distinguishes two types of events: i) critical

events, namely synchronization operations (e.g. monitorenter and monitorexit) and
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accesses to shared variables, and ii) noncritical events, that can only influence the thread

that executes them. Hence, the scheduling of noncritical events is not relevant for replaying

the recorded execution. Total ordering is achieved by attaching a global scalar timestamp

to each critical event. It also uses one local clock per thread to allow each thread to

pinpoint their schedule intervals.

To limit the size of the trace files, only a pair of clock values FirstCriticalEvent and

LastCriticalEvent of each thread schedule interval is recorded. To capture the schedule

interval for each thread, DejaVu relies on the observation that the local clock of a thread

is only incremented while the thread is running and, hence, global clock and local clock

values will differ. When a thread starts executing a critical event, it compares its clock

value to that of the global clock. If values are different, the thread detects the end of

the previous schedule interval and the start of a new schedule interval. Once the thread

finishes executing a critical event, it increments the global clock and then synchronizes its

local clock with the global clock.

During the replay phase, DejaVu reads a thread schedule from the trace file previously

generated. When a thread is created and begins its execution, DejaVu supplies it with

an ordered list of its logical schedule intervals. Then, the thread sets its local clock to

the value of the FirstCriticalEvent from the next schedule interval and waits until the

global clock value becomes equal to that value. At the end of each critical event, the

thread checks whether global clock value becomes larger than LastCriticalEvent value of

the current interval, which is the point where the thread starts to execute the next schedule

interval. When there are no more intervals left, the thread terminates.

Although it supports multi-processors, the technique used in DejaVu enforces a global

order on variable accesses across multiple threads, which incurs a large runtime overhead

on multi-processor applications. Moreover, given that each critical event must be synchro-

nized on the global timestamp, only non-critical events may actually run concurrently,

leading to short thread intervals and huge trace files. However, on a uniprocessor, over-

heads are less than 88% during the record phase. Trace files are less than 1 KB/s.

JaRec (Georges, Christiaens, Ronsse, & De Bosschere 2004): Is a portable record/ re-

play system for Java. It addresses specifically the problem of synchronization races when

executing multithreaded Java applications.
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This tool operates entirely on the Java-bytecode level, but requires the JVM Profiler

Interface (JVMPI) to be used without modifying the JVM. Each class that is loaded

by the JVM is instrumented using JIT, thus requiring no static instrumentation. The

instrumentation modifies the monitor entry and exit events, the starting and joining of

threads, and invocation points of wait and notify primitives. Contrary to DejaVu, JaRec

drops the idea of global ordering and uses a Lamport’s clock (Lamport 1978) to preserve

the partial order of threads and to reduce the size of logs.

However, JaRec requires a program to be data race free in order to guarantee a correct

replay, otherwise it only ensures deterministic replay up until the first data race. This

constraint makes this approach unattractive for most real world concurrent applications,

given that is common the existence of benign or harmful data races.

The overhead of JaRec ranges from 10% to 125% on micro-benchmarks, while on macro-

benchmarks, the observed overhead lies around 80% during the record phase. During the

replay phase the overhead varies from 40% to 300%.

LEAP (Huang, Liu, & Zhang 2010): Is a recent deterministic replay system for concurrent

Java programs on multi-processors. LEAP’s ordering approach is based on a new type of

local order with reference to the shared memory locations and concurrent threads. It relies

on the observation that one does not need to guarantee global order of thread accesses to

shared memory locations. Instead, it is sufficient to record the thread access order that

each shared variable sees to achieve deterministic replay. The authors use mathematical

models to prove the soundness of this statement.

To track thread accesses, LEAP associates an access vector to each different shared vari-

able. During execution, whenever a thread reads or writes in a shared variable, the thread

ID is stored in the access vector. Therefore, one gets local-order vectors of thread accesses

performed on individual shared variables, instead of a global-order vector. This simple

technique allows lightweight recording.

The evaluation results presented by Huang, Liu, & Zhang (Huang, Liu, & Zhang 2010) show

that LEAP incurs less than 10% runtime overhead for real world applications, but still

imposes a significant overhead in some cases (626% for an application with several shared

variables accessed in hot loops). However, when comparing to InstantReplay, DejaVu and

JaRec, the tests performed in third-party benchmarks demonstrate that LEAP is 5x to
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10x faster than these systems. In terms of space overhead, the log size in LEAP is still

considerable, ranging from 51 to 37760 KB/sec.

LEAP has also some limitations. As it only captures the non-determinism caused by

thread interleavings, LEAP may not reproduce executions containing non-deterministic

inputs, such as random number generators. Another drawback comes from the fact that

LEAP always replays the program from the beginning, making it unsuitable for long

running applications. Finally, LEAP cannot reproduce bugs arising from data races in

JDK library, because it does not record shared variables in these APIs.

A detailed description of the LEAP system is presented in Section 3.1.

All the previous approaches try to reproduce the bug on the first replay run, thus inducing

large overheads during production runs. This also has the drawback of penalizing bug-free exe-

cutions, which are much more frequent than the faulty ones (Park, Zhou, Xiong, Yin, Kaushik,

Lee, & Lu 2009). Motivated by this observation, recent work has tried to further minimize the

cost of recording the production run. By relaxing deterministic replay sacrificing the idea of

getting a completely faithful re-execution, one can decrease the number of data logged, thus

reducing the cost for user site executions. However, this brings another challenge related to the

time needed to infer the unrecorded information during production runs. We now briefly present

some of these approaches.

PRES (Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009): This system is a record/

replay technique to help reproduce bugs on multi-processors. PRES (Probabilist Replay

with Execution Sketching) aims at reducing the number of attempts needed to reproduce

the bug, but relaxing the constraint of replaying it at the first try. By doing this, PRES

can minimize the recording overhead during production runs, albeit at the cost of a in-

crease in the bug replaying time during diagnosis. Assuming that diagnosis is done offline

and automatically, this trade-off can probably be well tolerated by programmers.

The authors make also another pertinent observation: as long as the bug can be repro-

duced, it is of less importance for the programmers to reproduce it with precisely the same

execution path seen in the original execution. Thereby, during production runs PRES logs

only partial execution information, denoted a sketch. This sketch will be used later by

an intelligent partial-information replayer to reproduce the bug via multiple attempts to
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reconstruct the missing information necessary for reproduction.

In particular, PRES operates in three stages:

• Production run: records only relevant events in an execution sketch, which will

be then sent to the developer site if a bug occurs (the authors do not take into

consideration any privacy issues). PRES instruments the code using Intel’s tool

Pin and employs 5 different techniques of sketch recording that trade reproduction

for lowered recording overhead (SYNC, SYS, FUNC, BB-N, BB). For instance, the

most lightweight technique (SYNC) records only the global order of synchronization

operations, while the one that offers the fastest reproducibility of the bug (BB) records

the global order of basic blocks, thus requiring more recording points.

• Reproduction phase: automatically repeats the multiple attempts of replaying

the program until the bug is revealed. After each failed replay attempt, feedback

is generated to improve future attempts. To re-execute the program, PRES uses

a module named PI-Replayer that consults either execution sketches or feedbacks

for previous replay attempts at every non-deterministic point. Alongside, a Monitor

controls each replay, searching both for executions that do not match, at some point,

the original sketch (here the execution is stopped and feedback is generated) and the

moment at which the failure is reproduced.

• Diagnosis phase: PRES intelligent replayer leverages on the complete information

from the previous stage to reproduce the bug with 100% certain during each replay.

The obtained results show that sketching methods can reduce significantly the logging

overhead during record phase, and also allow the bug reproduction with high probability

within an acceptable time. For example, SYNC and SYS result in 6-60% overhead for

non-server applications and in 7-33% throughput degradation for servers. These schemes

can also replay 12 of the 13 evaluated bugs within mostly fewer than 10 replay attempts.

On the other hand, FUNC and BB-5 can reproduce all 13 tested bugs with mostly less

than 5 replay attempts, but with an overhead of 8-48% for servers and 18-779% for non-

server applications. The authors also claim that SYNC’s and SYS’s overhead remained

small across executions with an increased number of processors (from 2 to 8-cores), thus

achieving a good scalability. In terms of log sizes, for example, SYNC needs 2 KB/req

up to 126 KB/req, while FUNC requires 5.42 KB/req up to 3485.63 KB/req, for different



2.3. DETERMINISTIC REPLAY SYSTEMS 25

server applications. As one can see, the values vary dramatically depending on the number

of recording points.

ODR (Altekar & Stoica 2009): Is a replay system that addresses the output-failure problem.

In other words, ODR aims at reproducing all failures visible in the output of a program

in its subsequent replays. It relaxes the need of generating a high-fidelity replay of the

original execution by producing a possible execution that provides the same outputs as

the first. This is called output determinism.

This approach has the drawback of making no guarantees about non-output properties of

the original run. Nevertheless, the authors claim that output determinism is valuable for

debugging purposes because: i) the output-visible errors (e.g. crashes and core dumps)

are reproduced, ii) although sometimes different, the memory-access values provided are

consistent with the failure, and iii) it does not require the values of data races to be

identical to original ones.

Although the obvious benefits in terms of decreasing the storage overhead, not record-

ing the outcomes of data-races makes reproducing a failed run a very challenging task.

This because the bugs often depend on the outcomes of races. To address this problem,

rather than record data-race outcomes, ODR infers the data-race outcomes of an output-

deterministic run. Once inferred, ODR substitutes these values in future program replays,

thus achieving output-deterministic re-executions.

To infer data-race outcomes, ODR uses a technique named Deterministic-Run Inference

(DRI). DRI’s job is to search the space of possible runs to find one whose outputs are

similar to those experienced in the original execution. Since an exhaustive search of the

run space is intractable for all but the simplest programs, two techniques are employed to

ease this task. The first is to direct the search, which by leveraging carefully on selected

properties recorded during productions runs (e.g. schedule, input, and read trace), allows

to prune extensive portions of the search space. The second technique consists in relaxing

the memory-consistency of all runs in the run space to find output-deterministic runs with

less effort. This is possible because, in general, a weaker consistency model allows more

runs matching the original’s output than a stronger model, i.e., under a weaker consistency

model, DRI only needs to find a possible schedule that produces the same output as the

original schedule, without having to be strictly identical to the latter.
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The evaluation of ODR showed that, albeit the recording overhead results in a slowdown of

the application of only 1.6x, inference times can be too high for many programs (more than

24 hours in some cases). However, a tradeoff between recording overhead and inference

time can be made. For instance, if one records all branches of an execution, the inference

time can be reduced by orders of magnitude, while the production run suffers only a

slowdown of 4.5x on average. Regarding log sizes, no concrete values are given by the

authors.

ESD (Zamfir & Candea 2010): This system uses a technique for automating the debugging

process via a synthesis of an execution of the program that reveals the bug. ESD (Exe-

cution Synthesis Debugger) makes use of a program and the core dump associated with a

bug report to produce an execution of that program that causes the given error to manifest

deterministically. Like PRES and ODR, ESD relaxes the goal of achieving true determin-

istic replay. It is based on the idea that replaying a synthesized execution that exhibits

the same bug, even if it is not precisely the execution experienced by the user, can be

sufficient to make a noteworthy improvement in the debugging task.

Execution synthesis works in two steps:

• Sequential path synthesis: ESD defines a searching goal, which comprises the

basic block where the bug appeared and the condition on program state that held

true at that the moment of failure. Then, it does static analysis (on both program’s

control flow graph and data flow graph) to shrink the search space of possible paths to

the basic block presented in the goal. Finally, employs symbolic execution to derive a

feasible path to the goal from the over-approximation computed during static analysis.

• Thread schedule synthesis: in the case of multithreaded programs, ESD finds a

schedule for interleaving the execution paths of the individual threads. To do this, it

extends symbolic execution to also treat thread preemption decisions as symbolic. It

uses the stack trace from the bug report to place thread preemption points in strategic

places, e.g. before calls to mutex lock operations, that can lead to the desired schedule

with high probability.

While conceptually these two phases are separated, ESD overlaps them and synthesizes

one “global” sequential path, by exploring the possible thread preemptions as part of the
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sequential path synthesis. Thereby, ESD can get a serialized execution of the multithreaded

application. Also, for both sequential path and thread schedule synthesis phases, ESD

applies heuristics to make the search for a suitable path and thread schedule efficient.

The main benefit of this approach is that it does not require any tracing during the

original execution, thus causing no performance degradation of the program at user site.

This makes ESD attractive for performance-sensitive applications, such as web servers and

database systems. The time experienced by the authors to synthesize executions of real

bugs is considerable low, being less than 3 minutes in all cases. This clearly outperforms

inference time of ODR.

However, given that ESD is based on heuristics, it could suffer of lack of precision, which

increases the time to find the bug. Also, ESD requires the core dump of the application,

which is not always available due to privacy issues. Finally, symbolic execution is not

suitable for reproducing bugs that rely on inputs resulting from complex operations, such

as cryptographic functions (e.g. it is very hard to find a string that was the input for a

given hash).

2.4 Statistical Debugging

The deterministic replay approach is not the only way to improve the task of debugging.

Statistical debugging is a recently proposed approach that aims at isolating bugs by analyzing

information gathered from a large number of users. This technique improves deterministic record

and replay as it focus more on diagnosing the bug than repeating it.

The idea behind statistical debugging is based on the notion that software applications

are usually executed by a large user communities. Hence, instead of trying to detect the bug

by relying only in data from runs experienced by a single user, statistical debugging attempts

to speed up the bug tracking process by distributing the monitoring across different clients.

By doing this, it is possible to extract patterns of similarity among the universe of collected

executions that could lead to the failure.

In general, the infrastructure for statistical debugging consists of a central database which

receives user reports from both successful and unsuccessful runs, and a module to statistically

analyze the collected data. After isolating the failure, the central site can send back to the users
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a patch to fix the application.

This technique also brings the problem of how much information record during production

runs in order not to degrade runtime performance at the user site. Alongside, it must take into

account scalability issues, given that the central site has to be able to manage all the received

reports.

In this section we will give an overview of some solutions developed to provide statistical

debugging.

GAMMA (Orso, Liang, Harrold, & Lipton 2002): Is a system whose purpose is to pro-

vide a continuous improvement of software applications after their deployment. It achieves

this by distributing monitoring tasks across different users, in order to collect partial in-

formation that will be then combined to obtain the overall monitoring information.

GAMMA is based on two main technologies:

• Software Tomography: is based on sparse sampling and information synthesizing.

This technique divides the monitoring task into a set of smaller subtasks and assigns

these subtasks to different user sites. Each subtask requires less instrumentation than

the main task, which allows the distribution of the monitoring cost among different

software instances. This is has a great advantage comparing to other traditional

monitoring approaches which require all the instrumentation sites to be applied to

the same user application. As result, the experienced performance degradation by

the user is significantly smaller.

• Onsite code modification/update: allows modifying or updating the application

code at the user site. This capability lets software developers dynamically adjust

the instrumentation to collect different kinds of information and to efficiently deliver

patches and new features to users.

Using these two technologies, the process of using the GAMMA system consists of two

cycles:

• Incremental monitoring: lets developers interact with software instances to adjust

the information to be collected. This allows the developers to investigate problems

directly in the field, without endeavoring to recreate the user environment in-house.
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• Feedback-based evolution: allows the software evolution to fit user’s needs. Since

the information monitored is directly related to how users use the software, it is more

likely, for example, that features more commonly used be fixed before others rarely

executed.

Although the authors state that GAMMA uses lightweight instrumentation, no concrete

evaluation results are presented in the paper. Nevertheless, GAMMA has the drawback

of not collecting information about the success or failure of the program’s execution. This

prevents the effective use of information collected in the field for coverage testing, because

it is not possible to compare the expected output with the actual output. Another issue

of the GAMMA system is that it requires developers to select subtasks, which sometimes

is a very complex process.

CBI (Liblit, Aiken, Zheng, & Jordan 2003; Liblit, Naik, Zheng, Aiken, & Jordan 2005):

Was one of the first systems to employ statistical debugging. CBI (Cooperative Bug

Isolation) is a sampling infrastructure for gathering information software executions

produced by its user community. After collecting information CBI performs an automatic

analysis of that information to help in isolating bugs.

CBI is based on sampling, that is to say, it monitors information only from time to time.

This brings the benefit of having a modest impact on the performance of the program.

However, given that some bugs occur rarely, it becomes more difficult to track them. In

other words, one needs to guarantee that the sampling is statistically fair, so that the

analysis is consistent with the happening events. CBI addresses this by using a Bernoulli

process to do the sampling.

The information regarding program runs is collected via predicate profiles from both suc-

cessful and failing executions. Predicate profiles are particular points of the program which

are instrumented to provide data about their values. Logged predicates can be classified

in three categories:

• Branches: for every conditional, there are two predicates to track whether the true

or false branch was taken, respectively.

• Returns: at each call point of functions which return scalar values, there are three

predicates to track whether the return value is < 0, > 0 or = 0.



30 CHAPTER 2. RELATED WORK

• Scalar-pairs: at each scalar assignment x = ..., identify each same-typed in-scope

variable yi and each constant expression cj . There are three predicates to track

whether the new value of x is smaller, greater or equal to yi and cj , respectively.

The data gathered across multiple executions of the program is integrated into feedback

reports. Conceptually, the feedback report for a particular execution consists of a bit-

vector, with two bits for each monitored predicate (observed and true). The observed bit

indicates whether the predicate was ever observed, while the true bit states whether the

predicate, if observed, was ever true. In addition, there is a final bit that captures the

overall execution success or failure.

This approach has the advantage of producing always the same amount of data indepen-

dently of the sampling density or running time. Unfortunately, this implies a significant

loss of information, since the order of observations is not recorded.

The CBI automatic bug isolation process proceeds with the statistical analysis of the

information gathered in order to pinpoint the likely source of the failure. Given that many

of the logged predicates are irrelevant, CBI assigns a score to every predicate to identify

the best failure predictor among them. The predictors are scored based on sensitivity

(accounts for many failed runs) and specificity (does not mis-predict failure in a successful

execution). Using these metrics, CBI selects the top predictors.

The performance impact of CBI’s sampling varies directly with its density. Unconditional

instrumentation adds a performance penalty of 13%, while with a sampling density of 1/100

the impact decreases to 6%. In turn, a 1/1000 density imposes only 0.5% of performance

degradation. The logs generated are less than 40KB.

One of the main problems with CBI system is that it relies on a code duplication-based

instrumentation scheme that doubles the size of the program. Such a large increase in

code size may not be suitable in practice for some applications. Moreover, CBI does not

address non-deterministic bugs.

HOLMES (Chilimbi, Liblit, Mehra, Nori, & Vaswani 2009): This system is a statistical

debugging tool that isolates bugs by finding paths that correlate with a failure. Inspired

by previous work of CBI, HOLMES elaborates on statistical debugging by investigating

the impact of using path profiles to improve the accuracy of bug isolation. It is based on
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the observation that paths are a natural candidate for debugging as they capture more

information about program behavior than predicate profiles. For instance, paths can

provide more context on how the buggy code was exercised, which helps in the task of

debugging, while predicates can only locate the point in code where the error occurred.

HOLMES can operate in two modes:

• Non-Adaptive debugging: this mode implements CBI’s statistical debugging al-

gorithm using path profiles instead of predicate profiles. Like the previous work,

HOLMES instruments the program and collects path profiles information during pro-

gram runs, which is then aggregated in feedback reports. The feedback reports have

the same structure as those of CBI.

In the next step, gathered paths are assigned numeric scores to determine the top

predictor of bug from the set of all available paths. These scores also follow the

metrics specified in CBI’s approach.

• Adaptive debugging: Is a mode that arises from the fact that in large programs,

usually only a small fraction of the code is buggy and thus relevant to debugging.

Contrary to sampling, HOLMES adaptive technique starts with no instrumentation.

In the initial phase, HOLMES receives only bug reports, which consists of a stack

trace and a partial state of the program at the point of failure. After obtaining an

enough number of bug reports, HOLMES employs static analysis to point out portions

of code that more likely contain the causes of the failure. Then, these portions of

code are instrumented to monitor useful information and collect detailed profiles,

being afterwards redeployed in the field. Because only important parts of the code

are instrumented, HOLMES avoid the need for sparse random sampling.

The process is then repeated, but this time HOLMES collects partial profiles in place

of bug reports. These profiles are later analyzed using the same techniques as in the

non-adaptive mode. The analysis compute a set of bug predictors and if some of then

are strong enough to explain the failure, then the iterative process ends (a predictor

is classified as strong if it’s score exceeds a defined threshold and weak otherwise).

If that does not happen, HOLMES expands its search by using static analysis and

bug predictors to identify other parts of code which are closely related to the weak

predictors. In practice, this consists in identifying a set of functions that interact with
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weak predictors to be profiled in the next iteration. This iterative process carries on

until strong predictors are found and all bugs have been explained.

The slowdown observed by the authors when evaluating HOLMES was less than 10%. In

turn, the code space overhead imposed by the instrumentation is generally smaller than

50%, with exception for the EDG compiler where it reaches 250%.

HOLMES is attractive for software maintenance, as it avoids the tedious manual task

of selectively replace client binaries with instrumented versions in order to collect more

information about the problem. Therefore, developers can focus exclusively on fixing bugs.

However, weak predictors can be sparse. Hence, given that HOLMES explores only near

weak predictors, it is possible to get stuck with no new sites available to explore.

Unfortunately, all the previous approaches described are not suitable to track concurrency

bugs. These kind of bugs arise from the non-determinism inherent to operations involving

multiple threads. Thus, they cannot be captured by predicates or profiles used in prior work,

which focus only on one thread at a time. Thereby, new research has been done to address

concurrency bugs with statistical debugging. The Cooperative Concurrency Bug Isolation (CCI)

is the first to tackle these issues.

CCI (Jin, Thakur, Liblit, & Lu 2010): This system is a low-overhead instrumentation

framework to diagnose production-run failures caused by concurrency bugs. CCI works

by recording specific thread interleavings during the original run, using then statistical

models to identify strong bug predictors among the information recorded. This approach

is built based on CBI principles, so CCI also leverages on sampling to keep low overhead in

production runs and relies on statistical models that assign scores to predicates to discover

the root causes of the failure.

However, unlike CBI, CCI strives to find causes of concurrency bugs. Therefore, it im-

plements new sampling techniques, that address the non-deterministic challenges of these

kind of errors. For instance, CCI sampling may require cross-thread coordination, because

concurrency bugs involve multiple threads. Moreover, it must also keep each sampling

period active for some time, because concurrency bugs always involve multiple memory

accesses.
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Thereby, CCI consider three different instrumentation schemes, that offer different trade-

offs between performance and failure-predicting capability:

• CCI-Havoc: tracks whether the value of a memory location is changed between

two consecutive accesses from one thread. This captures the change of program

states in the view of one thread at two nearby points, and may help to diagnose

atomicity violations, which happen when programmers make incorrect assumptions

about atomicity and fail to enforce mutual exclusion for memory accesses that should

occur atomically. If these accesses happen to be interleaved with conflicting accesses

from different threads, the program might behave incorrectly.

• CCI-FunRe: tracks function re-entrance: simultaneous execution by multiple

threads. This may help to diagnose errors arising from misuse of thread-unsafe func-

tions.

• CCI-Prev: tracks whether two consecutive accesses (read or write) to one memory

location come from the same thread or distinct threads. This captures interactions

among multiple threads at a fine granularity, and may help to diagnose data races

and atomicity violations.

The evaluation results for CCI show that sampling significantly decreases monitoring over-

head. The results obtained by the authors show that most of the runtime overhead ex-

perienced was lower than 10% for the applications tested. However, for memory-access

intensive applications, the instrumentation schemes still incur very high monitoring over-

heads (more than 920%). Moreover, not all bugs can be diagnosed by CCI. From the

9 tested concurrency failures, CCI-Prev, CCI-Havoc, and CCI-FunRe could explain 7, 7,

and 4, respectively. This is mostly due to limitations of each instrument scheme (CCI-

FunRe shows the weakest diagnosis capability due to its coarse granularity) and loss of

information in sampling.

2.5 Summary

Figure 2.1 summarizes the deterministic replay (record/replay) and statistical debugging

systems previously presented. The systems are classified according to their approach and i)

whether they support multi-processors and other sources of non-determinism besides thread
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Figure 2.1: Summary of the presented systems.

interleaving when accessing shared variables (e.g. interrupts, user inputs, etc) , ii) whether they

employ an efficient and scalable recording mechanism (one considers the recording efficient if

the overhead is generally less than 35%), and iii) whether they leverage on data provided by

different users.

Given that the discussed solutions log different events, use different log compression schemes,

and were evaluated with different benchmarks and distinct units of measurement, one can not

perform a precise comparative analysis. Despite that, some aspects can be highlighted. In

general, hardware-based solutions present lower performance overheads than software-based so-

lutions, but require hardware extensions which are not standard nowadays. On the other hand,

software-only solutions typically have smaller logs.

Regarding software-based record/replay systems, one can highlight ESD as this solution do

not incur any overhead during productions runs. Other solutions, namely Flashback, LEAP,

PRES also have a modest impact on performance (less than 35%, in general). However, Flash-

back does not cope with concurrency issues on multi-processor. When comes to other sources

of non-determinism, besides the hardware-assisted approaches, only SMP-ReVirt, PRES, ODR

and ESD provide support for I/O inputs and interrupts replay.
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Comparing now record/replay systems with statistical debugging systems, Figure 2.1 shows

that the former are mostly better prepared to deal with bugs arising from concurrent executions

in multi-processor programs. However, they rely only on one user execution, thus incurring

more overhead in recording information during original executions or spending more time to

infer unrecorded data in order to repeat the bug. In fact, CCI also supports multi-processor

applications, but, as CCI relies on sampling, it can miss some important clues to debug some

concurrency errors.

It should be noted that, in this chapter, we have only addressed approaches that try to

reproduce the failure or to statistically isolate it. Other techniques, to prevent bugs in a program,

such as code analysis (Lu, Park, Hu, Ma, Jiang, Li, Popa, & Zhou 2007; Musuvathi, Qadeer, Ball,

Basler, Nainar, & Neamtiu 2008) are outside the scope of this thesis. Moreover, since recording

and replaying input non-determinism can be achieved with an overhead less than 10% (Park,

Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009; Dunlap, Lucchetti, Fetterman, & Chen 2008;

Srinivasan, Kandula, Andrews, & Zhou 2004), the work presented in this thesis only focuses on

addressing memory non-determinism. In fact, a recent study on the evolution of the types of

errors in MySQL database (Fonseca, Li, Singhal, & Rodrigues 2010) shows a growth trend in

the number and proportion of concurrency bugs over the years. Thereby, this thesis addresses

the deterministic replay of this kind of bugs (e.g. atomicity violations, data races), disregarding

other sources of non-determinism.

The following chapter introduces CoopLEAP, a novel deterministic replay system based on

partial logging and on statistical debugging principles. The statistical metrics and the heuristic

used to combine partial logs are also presented.
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3CoopLEAP System

This chapter introduces CoopLEAP, a system that provides fault replication of concurrent

programs, based in cooperative recording and partial log combination. Given that CoopLEAP

is based on LEAP, it shares most of its features and its main components. Hence, this chapter

starts with Section 3.1 presenting LEAP in detail. The chapter follows with a description of the

CoopLEAP architecture and its main components, in Section 3.2. Then, Sections 3.3 and 3.4

describe the strategies to store partial logs during production runs and how to merge them in

order to generate a complete replay log that reproduces the bug.

3.1 Standard LEAP

LEAP (Huang, Liu, & Zhang 2010) proposes a general technique for the deterministic replay

of concurrent programs in multi-processors. It is based on the insight that, to reproduce the

execution, it is sufficient for each shared variable to track the order of the thread accesses it sees

during production run. In this section, a description of the LEAP system is provided.

3.1.1 Local-order Deterministic Replay

As noted before, instead of enforcing a global order of thread accesses to shared memory

locations, LEAP relies on a new type of local order with reference to the program shared variables

and concurrent threads. To track thread accesses, LEAP associates an access vector to each

different shared variable. During execution, whenever a thread reads or writes in a shared

variable, its ID is stored in the access vector. Therefore, one gets (local) order vectors of thread

accesses performed on individual shared variables, instead of a global-order vector. This simple

technique allows lightweight recording.

In order to better understand this technique and state its differences with the conventional

global-order based approach, let us present an example. Figure 3.1 shows a code snippet with
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Figure 3.1: Example of code containing a two-stage bug.

races that may lead to an error, namely a two-stage access bug (Farchi, Nir, & Ur 2003). Opera-

tions to both data1 and data2 variables need to be protected because they can be concurrently

accessed by different threads. However, it was wrongly assumed that separately protecting each

operation is enough. In fact, both blocks of operations at lines 16-17 and 20-21 are synchronized,

but a context switch may occur between the access to first and the second blocks and the value

stored in data1 may be changed by another thread. Hence, the condition at line 24 may be

verified and an exception thrown.

Figure 3.2 illustrates a thread interleaving that triggers the bug. Assuming that, initially,

data1 = 0, thread t1 will have its local variable t1 = 1 at line 1.17. However, given that

thread t2 increments data1 at line 2.16, when thread t1 executes line 1.21, it will have t2 = 3.

Therefore, an exception will be thrown at line 1.25.

A global-based technique would require 13 global synchronization1 operations to record this

schedule and replay the program. In turn, instead of a global vector, the local-order approach

uses two access vectors (data1.vec and data2.vec) for the shared variables data1 and data2,

which record <t1,t1,t1,t1,t2,t2,t2,t2,t1> and <t1,t1,t1>, respectively. Therefore, this

1Each ++ operation is non-atomic, therefore is equivalent to two single operations.
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Figure 3.2: Execution interleaving that triggers the bug.

technique requires no global synchronization operations and 12 local synchronization operations

distributed for two groups that can be traced in parallel.

By losing global order enforcement, local-order recording relaxes faithfulness in the replay,

allowing thread interleavings that are different from the original execution. For instance, in the

example, line 1.19 could be executed before line 2.15. However, in Huang, Liu, & Zhang (2010)

the authors claim that using this approach does not affect the error reproduction, and they

formally prove the soundness of this statement.

3.1.2 Locating Shared Variable Accesses

To locate shared variables, LEAP uses a static escape analysis called thread-local objects

analysis (TLO) (Halpert, Pickett, & Verbrugge 2007) from the Soot2 framework. TLO classifies

any field as thread-shared whenever it is possibly accessed by more than one thread at a time,

otherwise it is considered as thread-local.

Given that accurately identifying shared variables is generally an undecidable problem, this

technique computes a sound over-approximation, i.e. each shared access to a field is indeed

identified, but some accesses which are actually not may also be classified as shared (Bodden &

2http://www.sable.mcgill.ca/soot



40 CHAPTER 3. COOPLEAP SYSTEM

Havelund 2008). Despite that, LEAP authors have also proved that this over-approximation do

not affect the correctness of the deterministic replay.

Another issue of TLO is its inability to distinguish between read and write accesses, therefore

shared variables whose values never change after initialization are also considered. For these

reason, LEAP further refines this technique to avoid recording accesses to shared immutable

variables.

3.1.3 Variable Identification Across Executions

Given that the standard JVMs are not able to consistently identify objects across different

runs, LEAP assigns offline a numerical index to each shared program element (SPE). Are consid-

ered as SPEs variables that serve as monitors (including Java monitors) and other shared field

variables (including class and thread escaped instance variables). For example, in Figure 3.1,

the two shared field variables data1 and data2 of the TwoStage class are assigned the numerical

IDs 1 and 2.

The static field-based shared variable identification, besides remaining consistent across

runs and imposing no runtime degradations, has the advantage of being more fine-grained than

other object level identification approaches (LeBlanc & Mellor-Crummey 1987), because different

fields of the same object are mapped to different indexes. As a result, one avoids the runtime

serialization of accesses to different fields of the same object.

Unfortunately, this approach brings also some drawbacks, as referred below:

• Different instances of the same type are not statically distinguished. Consequently, the

same access vector englobes all accesses performed to the same shared field variable of

different instances of the same type. To illustrate this phenomenon, consider that the

variables data1 and data2 (in Figure 3.1) instead of being of the type Integer, were

instances of the following class Data:

public class Data {

public int value;

public Data(){value = 0;}

}
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Figure 3.3: Execution interleaving that triggers the bug when shared variables data1 and data2
are instances of a class Data.

Thereby, class TwoStage would now declare the two variables like Data data1,data2 and

execute the buggy interleaving as depicted in Figure 3.3. As one can see, all the accesses

to both variables data1.value and data2.value are now recorded globally into the same

access vector (Data.value.vec). Albeit this brings a slightly worse performance, it does

not affect the correctness of the deterministic replay (Huang, Liu, & Zhang 2010).

• Scalar variables that are alias to shared array variables are not uniquely identified. To

handle this issue, LEAP does an alias analysis for all of the scalar array variables in the

program and uses the same SPE for all the aliases, neglecting the indexing operations.

This solution decreases the degree of concurrency, but makes sure that nondeterminism

caused by array aliases is correctly tracked.

• Different index positions of an array are not uniquely identified. In fact, this is an obvious

consequence that follows from the usage of the an static analysis scheme. For instance, let

us consider an array arr and two positions arr[x] and arr[y]. Basically, both positions

address the same shared variable if x == y and this is not trivial to decide statically. As

a consequence, independent shared array positions that could be recorded in separate, are

logged into a single access vector.



42 CHAPTER 3. COOPLEAP SYSTEM

3.1.4 Unique Thread Identification

As access vectors only contain thread IDs tracked during the production run, it is imperative

to correctly recognize each thread in both recording and replay phases. LEAP achieves this by

maintaining a mapping between the thread name and the thread ID during recording and using

the same mapping for replay.

3.1.5 Handling Early Replay Termination

As mentioned earlier in Section 3.1.1, LEAP allows different global thread interleavings, as

long as their individual state remains the same. This has the disadvantage of allowing early

termination scenarios, i.e. a crash failure might be manifested before all SPE accesses are

replayed. To deal with this problem, LEAP ensures that all the thread recorded actions are

performed before the ending of the replay execution, which guarantees that its final state and

the one seen in the original execution are identical.

3.1.6 Architecture

3.1.6.1 Overview

The overall infrastructure of LEAP, depicted in Figure 3.4, consists of three major compo-

nents: the transformer, the recorder, and the replayer.

The transformer receives the Java program bytecode and employs two types of instrumen-

tation schemes to produce the record version and the replay version, respectively.

The record version is then executed and the recorder component stores the accesses to each

SPE in its correspondent access vector. When the production run ends, LEAP generates three

different files: the access vectors, the thread ID map information, and the replay driver.

Finally, the replayer uses the logged information and the generated replay driver to start

the execution of the replay version of the program. To guarantee the correct execution or-

der of threads, LEAP takes control of the thread scheduling and consults the thread ID map

information file.

Each one of the main components is described with more detail in the following sections.
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Figure 3.4: Overview of the LEAP architecture (adapted from the LEAP paper).

3.1.6.2 Transformer

The transformer module is responsible for instrumenting the Java bytecode and it is imple-

mented with support of the Soot framework. Soot provides four intermediate representations for

code: Baf, Jimple, Shimple and Grimp, each one corresponding to different levels of abstraction

on the represented code. LEAP uses Jimple, which is a typed, three-address3, statement based

intermediate representation. Thereby, after the SPE locator identifies all the SPEs in the code,

the transformer iterates over each Jimple statement instrumenting: i) SPE accesses, ii) thread

creation information, and iii) recording end points.

In the first case, an API accessSPE(int speIndex, long threadId) call is placed before

the Jimple statement to log both the thread ID and the SPE index. To guarantee that the

correct SPE thread accessing order is recorded, LEAP uses a SPE-specific lock to encompass

both the API invocation and the SPE access. Figure 3.5 illustrates this instrumentation scheme

applied to line 17 from the example code in Figure 3.1 (data1 index is considered to be 1 as in

Section 3.1.3).

3Three-address code is a form of representing intermediate code, where each instruction has the form: result :=
operand1 operator operand2 (three addresses). This allows every instruction to implement exactly one fundamental
operation.
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Figure 3.5: The instrumentation of SPE accesses.

In the particular case when the SPE is a Java monitor object, the monitoring invoca-

tion is inserted after the monitorentry and before the monitorexit operations. In addi-

tion, the call is also inserted before notify/notifyAll/Thread.start instructions and after

wait/Thread.join instructions. If a thread accesses to SPEs multiple times in a method, its ID

needs only to be captured once. Another optimization is do not instrument those SPEs whose

accesses are always wrapped by the same monitor.

Regarding thread initialization, the thread identity information is recorded by instrumenting

the Thread constructor with an API threadStartRun(long threadId) invocation, allowing

LEAP to track the thread creation order, as described in Section 3.1.4.

Finally, LEAP instruments recording end points to inform the recorder to save the traced

runtime information and to create the replay driver. Currently, three types of recording end

points are provided. The first consists of adding a ShutdownHook to the JVM Runtime in order

to perform the saving operations at the end of the program execution. The second is a try-catch

block placed into the main thread and the run method of each Java Runnable class, followed

by a crashed(Throwable crashedException) method invocation inside the catch block. This

allows uncaught runtime exceptions to be also recording end points. Lastly, it also possible for

users to do specific annotations of end points. In this case, during Jimple statements traverse,

the transformer will replace the annotation with an API monitoring call, marking the end of

recording.

All the above steps belong to the record version generation process. To create the replay

version, the process is almost the same, with the following differences: i) the accessSPE()

invocation has to be inserted before monitorenter and wait instructions, to avoid a deadlock

with the order of synchronization operations enforced by the LEAP replayer; ii) additional API

calls are inserted after each SPE access to check whether a thread has performed the total

number of SPE accesses recorded in the original execution or not, as mentioned in Section 3.1.5.
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3.1.6.3 Recorder

The recorder is responsible for monitoring the execution of the record version of the pro-

gram. Every time the accessSPE() method is called, the recorder stores the executing thread

ID into the access vector of the SPE. For this purpose, it is used a Vector<Long> array, named

accessVector, where each position contains the access vector for the SPE with the corre-

spondent index (e.g. accesses performed to the SPE 1 will be stored in the vector given by

accessVector[1]).

Alongside, whenever a new thread is created, the thread information is added to the data

structure that maps the thread name to the thread ID.

When a program end point is reached, the recorder saves both the recorded access vectors

and the thread ID map data structures. In addition, the recorder also creates the replay driver,

i.e. a Java file containing the code needed to execute the replay version of the program and

initiate both the thread scheduler and the trace loader components.

3.1.6.4 Replayer

The replayer uses the replay driver to, first, start both the trace loader and the scheduler

and, then, execute the instrumented version of the program targeted for replay.

Once started, the trace loader reads the files containing the saved access vectors and the

thread ID map. This information is then used by the scheduler to control the thread execution

interleaving and enforce a deterministic replay. The scheduler also assigns to each thread a

semaphore maintained in a global data structure, in order to allow the thread suspension and

resume whenever required.

Regarding SPE accesses, despite being also instrumented with an accessSPE() invocation,

the implementation of the method differs from that of the recording phase. In the replayer,

this method checks whether the thread should access the SPE or not, according to the order

stablished in the SPE access vector. Thereby, if a thread is not allowed to access the SPE

it is suspended. A thread also counts the number of times it has already accessed each SPE,

and suspends itself if finds that it has already performed all the accesses recorded in the access

vector, waiting for all other threads to end their execution.
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3.2 CoopLEAP Architecture

CoopLEAP extends LEAP to support partial log combination. Although CoopLEAP shares

most of its predecessor’s components, its overall architecture is different. In this section, we focus

on the extensions of CoopLEAP, describing its new features and components.

3.2.1 Overview

Figure 3.6 illustrates the overall architecture of CoopLEAP. During the instrumentation

phase (Figure 3.6 -1), the transformer instruments the Java program bytecode to generate both

the record version and the replay version, as done in LEAP. The nuance resides on the record

version, where only a subset of all SPEs is actually instrumented (as this version will be further

called as partial record version). It should also be noted that each client is assigned a different

subset of SPEs to record, according to some defined criterion (see Section 3.3). The partial

record versions are then sent to the clients, whereas the replay version is sent to the replayer.

Figure 3.6 -2 illustrates the record and replay phases. In CoopLEAP, there is a recorder

module for each client. The recorder has exactly the same purpose as on LEAP, i.e. is responsible

for collecting the access vectors for each SPE during the execution of the program. However,

unlike the latter, CoopLEAP does not intend to record all SPEs’ access vectors. Instead, each

user logs accesses only to a part of the program’s SPEs, as previously defined by the transformer.

Assuming that the program is executed by a large population of users, this mechanism

allows to gather access vectors for the whole set of SPEs with high probability. By doing this,

CoopLEAP aims at minimizing the performance overhead that would be required if one had to

record all the access vectors at each client.

When the production run ends, each client sends its partial log to the developer site to be

analyzed. This log consists of the access vectors recorded for a subset of the SPEs, the thread

ID map, and also an additional bit indicating the success or failure of the execution (successful

executions can be useful for the statistical analysis).

Here, the statistical analyzer will employ an heuristic (see Section 3.5) to explore and merge

the received access vectors in order to generate a complete log of the faulty execution4. By

4In this work, we are assuming that all the partial logs refer to the same bug. Despite that, for different bugs
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Figure 3.6: Overview of the CoopLEAP architecture: (1) Instrumentation phase; (2) Record
and Replay phases.

pinpointing the most correlated partial logs, CoopLEAP plans to ease the task of inferring the

original unrecorded access vectors.

Once the merge of partial logs is complete, the combination of access vectors is sent to the

replayer, along with the thread ID map and the generated replay driver.

Finally, just like in LEAP, the replay driver will serve as an entry point for the replayer

to control the replaying of the program execution. However, in CoopLEAP the replay phase is

slightly different. Given that access vectors come from independent executions, the combined

information can be incompatible. As a result, the execution replay will fail and the bug will

not be reproduced. In this case, the replayer will send feedback to the statical analyzer commu-

nicating the replay failure, so the latter can investigate another access vector combination and

produce a new complete log for replay. This process ends when the bug is successfully replayed

on the same program, some additional data could be used for distinction purposes, namely the line of code where
the bug appeared.
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or when the maximum number of attempts to do it is reached.

3.2.2 Statistical Analyzer

As previously referred, the statistical analyzer is responsible for analyzing and combining

the information sent by the clients. Figure 3.7 depicts its internal structure.

Figure 3.7: Statistical Analyzer component.

Once received, the access vectors are first loaded by the trace loader and then organized

by the partial log manager. To facilitate the statistical analysis, the partial log manager hashes

(using the Java hashCode() method) the information contained in the access vectors and builds

the following control data structures:

• PartialLogProfiles - contains the loaded information regarding each partial log, with

respect to its success bit and its SPEs’ access vectors.

• SPEProfiles - maps each SPE to a list containing all its different access vectors recorded

in the partial logs.

• MatchLogs - holds a profile referent to the comparison between each two partial logs,

indicating their SPEs with equal access vectors and their degree of similarity.

• StatisticalIndicators - stores the values of the statistical metrics for each access vector

(see Section 3.4.2).
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Afterwards, the access vector merger module leverages on the above data structures to start

the execution of the heuristic for merging the partial logs. Once the most correlated partial logs

are located, their access vectors are merged and sent to the replayer in order to start the bug

replay. Alongside, the generated replay driver and the thread ID map are also sent.

Every time the reproduction fails, the statistical analyzer proceeds with the heuristic and

generates both a new access vector combination and a new replay driver. This process is car-

ried on until the replayer reproduces the bug5 or exceeds the stipulated maximum number of

attempts.

3.3 Partial Log Recording

CoopLEAP introduces the novelty of recording the accesses to only a fraction of the entire

set of the SPEs of the program. The subset of SPEs to be traced is defined at instrumentation

time by the transformer. For this purpose, different criteria can be used, e.g. random selection,

load balancing distribution, etc. However, in this work, we only consider the random selection

of a certain percentage of the total number of SPEs of the program for partial recording. For

this, CoopLEAP uses a static variable denoted COVERAGE to bound the percentage of the total

number of SPEs to be instrumented. This variable consists of a double, whose value is the

range [0,1].

Later, during the thread-local object analysis (see Section 3.1.2), whenever a new SPE is

identified, a random number in the interval [0,1] is generated and compared to the coverage

threshold. If the random number is less or equal to COVERAGE, then it is placed in a toRecord

list, otherwise it is added to a notToRecord list. This mechanism allows to know whether a

future reference to some SPE is to be instrumented or not, in case it already belongs to the

toRecord list or to the notToRecord list, respectively.

It should be noted that this scheme is statistically fair, assuming that there is a signifi-

cant number of users running the program. However, it is not granted to be optimal, as it

does not always allow partial log overlapping, i.e. it may not exist SPEs in common for each

two potential similar partial logs. For instance, let us consider a program with eight SPEs

5A bug is known to be reproduced by catching the thrown exception or by matching the produced output to
that of the original faulty execution.
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(speIndex = {0..7}) and a coverage of 50%. It could happen that two partial logs (l1 and

l2) collected from two identical executions may not be considered as similar, since l1 may only

record the subset {0..3} and l2 may only record the subset {4..7}, for example. This could

be addressed by increasing the percentage of coverage (at the cost of greater overheads), or

by defining a smaller fixed subset of SPEs to be logged by all users, thus always allowing the

existence of points of comparison between the partial logs.

Moreover, one can also note that the overhead reductions may not be linear with the decrease

of the coverage percentage. The reason is because some SPEs could be accessed more times than

others, therefore, when instrumenting the code, the load balance may not be equally distributed

among the users. A solution for this could be instrumenting the whole program and execute

it one time to measure the number of accesses performed on each SPE, at the developer side.

Later, when instrumenting the user versions, CoopLEAP could already take into account the

SPEs workload.

The investigation of new partial recording schemes is scheduled as future work.

3.4 Merge of Partial Logs

The major challenge of our approach to provide low-overhead deterministic replay is how

to combine the collected partial logs in such a way that the access vectors used lead to a feasible

thread interleaving during the replay. In addition, that thread interleaving has to be also capable

of reproducing the bug observed in the original execution.

In general, the following observations make the partial log merging difficult:

• the bug can be the result of several different thread interleavings;

• the probability of obtaining two identical executions of the same program can be very low

(this probability is inversely proportional to the complexity of the program in terms of

number of SPEs and the number of thread accesses);

• the combination of access vectors from partial logs of faulty executions may enforce a

thread order that leads to a non-faulty replay execution;
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Figure 3.8: Example of a buggy program and two different logs that lead to a “division by zero”
bug.

• the combination of access vectors from partial logs of faulty executions may enforce a

thread order that leads to a impossible replay execution;

To better understand the case mentioned above where the combination of two faulty execu-

tion partial logs can lead to a non-faulty replay execution, let us present an example. Figure 3.8

illustrates a code snippet of a “naive” program that has a division by zero bug and shows two

possible logs of executions that trigger the error (LogA and LogB).

Notice that both logs are complete, but let us consider a partial recording scenario where

LogA contains only y.vec and LogB has x.vec alone. By merging the two access vectors,

one gets a complete log with x.vec = <t2,t1,t2> and y.vec = <t1,t2,t1> that leads to the

following execution order: 4,1,2,5,3,6, where the program ends with success.

In addition, despite being a simple program, one can also see that there are

other possible buggy execution orders (e.g. 1,4,2,5,6,3 and 4,5,1,2,6,3) which

generate different trace logs ({x.vec = <t1,t2,t2,t1>, y.vec = <t1,t2,t2,t1>} and

{x.vec = <t2,t2,t1,t1>, y.vec = <t2,t1,t2,t1>}, respectively). This supports the claim

that a bug can be result of several different thread interleavings.

Although the example used does not present an impossible execution replay situation, it can

happen that the combination of access vectors lead to a deadlock scenario. Here, each thread

wants to access a SPE whose access vector’s first position contains the ID of the other thread. As

a consequence, the threads block and wait for each other indefinitely. For Figure 3.8, an example

could be t1 wanting to access x.vec = <t2,...> and t2 wanting to access y.vec = <t1,...>
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at the same time.

Our approach to address these challenges and mitigate the incompatibility of the merged

access vectors consists of employing some statistical metrics over the universe of collected partial

logs to pick those which present more similarity. Our statistical metrics are divided in two types:

statistical metrics for partial log correlation and statistical metrics for bug correlation.

The following sections begin by describing both types of statistical metrics and, then, present

the Similarity-Guided Merge heuristic that systematically produces combinations of access vec-

tors until the bug has been replayed.

3.4.1 Statistical Metrics for Partial Log Correlation

This section discusses the statistical metrics for partial log correlation, which are related to

the partial logs as a whole and measure the amount of information that they have in common,

so one can increase the probability of merging compatible access vectors.

In particular, the following statistical metrics are used to calculate the partial log correlation:

Similarity and Relevance. Both metrics are described in detail below.

3.4.1.1 Similarity

The rationale behind the classification of the similarity between two partial logs is related

to their number of SPEs with identical access vectors6. Hence, the more SPEs with equal access

vectors the partial logs have, the better. The computation of this metric can come in two flavors:

Plain Similarity and Dispersion-based Similarity, according to the weight given to the SPEs of

the program.

To better define these metrics, let us first present some formal notation (see Table 3.1).

With this, we can now define the metrics as follows:

Plain Similarity Let l1 and l2 be two partial logs, their plain similarity is given by the following

equation:

PlainSimilarity(l1, l2) =
#Equall1,l2

#S
×
(

1−
#Diff l1,l2

#S

)
(3.1)

6An access vector is considered to be identical to one another if both had recorded exactly the same thread
interleaving.
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Notation Description

S Set of all the SPE identifiers of the pro-
gram.

Sl Set of the SPE identifiers recorded only by
the partial log l.

AV Set of the different hashes of the access
vectors recorded by all the partial logs.

AV l Set of the hashes of the access vectors
recorded only by the partial log l.

avecs(s) : S → {AV1,AV2, ...,AVn} Map that, for a given SPE identifier s, re-
turns the set of the hashes of its different
access vectors, recorded by all the partial
logs.

avecl(s) : Sl 7→ AV l Function that maps a SPE identifier s to
the hash of its access vector, recorded by
the partial log l.

Equall1,l2 = {s | s ∈ Sl1 ∩ Sl2 ∧ avecl1(s) = avecl2(s)} Set of the SPE identifiers, recorded by
both partial logs l1 and l2, with identical
access vectors.

Diff l1,l2 = {s | s ∈ Sl1 ∩ Sl2 ∧ avecl1(s) 6= avecl2(s)} Set of the SPE identifiers, recorded by
both partial logs l1 and l2, with different
access vectors.

Siml0 = {l1, l2, ..., lk} Set of the k partial logs more similar to l0
(denoted as group of similars of l0).

Filll0,Siml0
= {s | s ∈ Sl0 ∪ Sl1 ∪ Sl2 ∪ ... ∪ Slk ∧

l1, l2, ..., lk ∈ Siml0}
Union of the sets of the SPE identifiers
recorded by the partial log l0 and by the
partial logs of its group of similars Siml0 .

Table 3.1: Formal notation used to define the statistical metrics.

where #Equall1,l2 , #S, and #Diff l1,l2 denote the cardinality of the sets Equall1,l2 , S, and

Diff l1,l2 , respectively.

It should be noted that this metric will only be 1 when both logs are complete and identical,

i.e. they have recorded access vectors for all the SPEs of the program (Sl1 = Sl2 = S) and

those access vectors are equal for both logs (avecl1(s) = avecl2(s),∀s ∈ S). This implies

that, for every two partial logs, their plain similarity will always be less than 1. However

the greater this value is, the more probable is that the both partial logs come from the

same production run.

Dispersion-based Similarity Let l1 and l2 be two partial logs, their dispersion-based simi-
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larity is given by the following equation:

DispersionSimilarity(l1, l2) =
∑

x∈Equall1,l2

weight(x)×

1−
∑

y∈Diffl1,l2

weight(y)

 (3.2)

where weight(s) is a function of type S → Double that maps each SPE identifier to

a double value referent to its relative weight, in terms of overall-dispersion. Here, the

overall-dispersion of a given SPE corresponds to the proportion of its different access

vectors when compared to the total number of different access vectors collected for all the

SPEs. Thereby, the weight function of a SPE identifier s can be calculated as follows:

weight(s) =
#avecs(s)

#AV
(3.3)

Notice that some other metrics could be defined if one consider other types of weights

(e.g. the average number of accesses recorded for each SPE), but in this work we only use

overall-dispersion.

Comparing the two metrics, one can see that the Plain Similarity considers that every SPE

has the same importance, whilst the Dispersion-based Similarity assigns different weights

to the SPEs. In general, both metrics allow to pinpoint the most similar partial logs,

but the first is more useful when the overall-dispersion weight values are relatively well

distributed for all the SPEs. On the other hand, the Dispersion-based Similarity is more

suitable for cases when the access vector overall-dispersion weight is very high only for a

small subset of SPEs of the program or when there are many SPEs whose access vectors

are identical in every execution.

3.4.1.2 Relevance

It is easier to deterministically replay an execution if one starts from a base. Therefore, the

Relevance metric allows to classify each partial log according to its likelihood of being completed

with compatible information:
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Relevance(l0) = α×
#Filll0,Siml0

#S

+ (1− α)×
∑k

n=1 Similarity(l0, ln)

k
, ln ∈ Siml0 (3.4)

where Similarity(l0, ln) is one of the two possible types of Similarity metrics.

As one can see, the Relevance metric is the sum of two parcels with different importance

(given by α). The first is related to the number of SPEs that is possible to fill joining the access

vectors from the partial log l0 and its group of similars Siml0 . This follows the rationale that

the more missing SPEs of l0 that can be filled with access vectors from similar partial logs, the

better.

In turn, the second parcel gives the similarity ratio of all the partial logs in the group. This

allows to pick, as the base partial log, the one whose group of similars is composed by partial

logs with high similarity, thus increasing the probability of merging compatible information.

It should be noted that the maximum size k of the group of similars can be defined by the

developer. Moreover, a partial log l1 can only be part of Siml0 if Similarity(l0, l1) ≥ threshold.

This avoids the group of similars to be composed by partial logs with a very low value of

similarity.

In our experiments, we found α = 0.7, k = 5, threshold = 0.3 for Plain Similarity, and

threshold = 0.01 for Dispersion-based Similarity, to be good values.

3.4.2 Statistical Metrics for Bug Correlation

Unlike the previous metrics, the statistical metrics for bug correlation are concerned with

the correlation between the bug and each access vector individually, i.e. for the universe of

access vectors collected for each SPE, these statistical metrics help to find the access vector

which accounts for a greater number of failed executions. This also leverages information from

successful executions and is specially useful when, even after merging the partial logs, there are

still SPEs to be completed.

To compute these metrics, we adapt the scoring method proposed by Liblit et al (see CBI
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in Section 2). Thereby, access vectors are classified based on their Sensitivity and Specificity,

i.e. whether they account for many failed runs and few successful runs. With this information,

it is possible to define a third metric, denoted Importance, which identifies the access vectors

that are simultaneously high sensitive and specific.

Let Ftotal be the total number of partial logs resulting from failed executions; for each access

vector v, let F (v) be the number of failed partial logs that have recorded v for a given SPE, and

S(v) be the number of successful partial logs that have recorded v for a given SPE. The three

metrics are then calculated as follows.

Sensitivity(v) =
F (v)

Ftotal
(3.5)

Specificity(v) =
F (v)

S(v) + F (v)
(3.6)

Importance(v) =
2

1
Sensitivity(v) + 1

Specificity(v)

(3.7)

In summary, the higher the Importance value, the more correlated with the bug is the access

vector.

3.5 Similarity-Guided Merge

To merge the partial logs and generate a complete log capable of replaying the faulty ex-

ecution, we developed a heuristic denoted Similarity-Guided Merge. This section starts by

describing the heuristic and then presents a case study to illustrate how it operates.

3.5.1 Algorithm

The Similarity-Guided Merge heuristic leverages on the statistical metrics discussed in Sec-

tions 3.4.1 and 3.4.2 to combine the information recorded by the partial logs with a high prob-

ability of compatibility. This heuristic operates in five steps, as described as follows:

1. Calculate the degree of similarity between the partial logs – the first step consists

of calculating the similarity between each partial log and all the others from the universe
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of partial logs received. To calculate the similarity, CoopLEAP applies the Equation 3.1 or

the Equation 3.2 (whether one wants to use the Plain Similarity metric or the Dispersion-

based Similarity metric, respectively) to each possible pair of partial logs.

For each combination of two partial logs, a profile (containing the result of the metric and

a list of the SPEs with identical access vectors) is generated and stored in the MatchLogs

data structure.

2. Identify the list of base partial logs – the next step consists of identifying the list

of the partial logs that can be a potential good basis to start reconstructing the faulty

execution. To build this list, CoopLEAP first calculates the relevance of each partial log

(storing the result in its respective profile in the PartialLogProfiles data structure) and

picks the n most relevant ones (we found n = 10 to be a suitable value for our experiments).

It should be noted that this is a sorted list, where the partial logs are arranged in a

descending order according to their relevance value. Thence, the first base partial log will

be the one with the highest relevance value.

3. Complete the base partial log with information from the group of similars –

having already chosen the base partial log, CoopLEAP can now start the merge of access

vectors. For that, CoopLEAP identifies the unrecorded SPEs in the base partial log and

completes them with the respective access vectors traced by the logs in the group of

similars.

If all SPEs become filled, the obtained complete log is sent to the replayer, along with

the thread ID map and the generated replay driver. On the other hand, if there are still

empty SPEs, the heuristic proceeds with the next step.

4. Complete the base partial log with information from partial logs “similar by

transitivity” – when the access vectors from the group of similars are not sufficient to

create a complete replay log, CoopLEAP tries to fill the missing SPEs with access vectors

from the partial logs “similar by transitivity”. These partial logs, although not belonging

to the group of similars referred in the previous step, are part of the group of similars of

those partial logs which are themselves similar to the base partial log. In other words, if

l1 ∈ Siml0 ∧ l2 ∈ Siml1 ⇒ l2 ∈ Sim2
l0

, where Simn
l0

contains the partial logs which are

nth-degree similar to l0 (in this example, l2 would be second-degree similar to l0).
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5. Complete the base partial log with statistical indicators – if it is still not possible

to complete the log for replay (the union of the different groups of similars may not

cover all the SPEs of the program), CoopLEAP searches the StatisticalIndicators

data structure for access vectors of the missing SPEs. The StatisticalIndicators data

structure contains the results of applying the metrics described in Section 3.4.2 to the

universe of access vectors collected, thus allowing to know the ones with greater Importance

(see Equation 3.7).

At the end of this process, CoopLEAP replays the merged log and verifies if the bug is

reproduced. If it is, the goal has been achieved and the process ends. If it is not, CoopLEAP

chooses the next partial log in the list of the most relevant to be the new base partial log,

and re-executes the Similarity-Guided Merge from the step 3. It should be referred that, in

the worst case scenario, where all the most important indicators failed to replay the bug, the

heuristic switches to a brute force mode. Here, all the possible access vectors are tested for each

missing SPE.

3.5.2 Case Study

In order to better understand how the Similarity-Guided Merge operates, this section illus-

trates its operation using a simple case study. Let us assume a buggy program with four SPEs:

w, x, y, and z. Figure 3.9 depicts eight different faulty executions of the program and their

respective partial logs (considering a recording of 50% of the SPEs). Notice that the symbol

[w]1 corresponds to the hash of the information contained in the access vector recorded for the

SPE w, hence [w]1 6= [w]2 and so on.

Executing the Similarity-Guided Merge heuristic, the first step is to measure the similarity

between all partial logs. In this case, we will use the Dispersion-based Similarity metric, as it

brings some additional complexity due to the weight of the SPEs. Thereby, one should start by
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Figure 3.9: Examples of eight faulty executions and their respective partial logs (considering
that each partial log records 50% of the SPEs).

calculating the weights:

S = {w, x, y, z}

#S = 4

AV = {[w]1, [w]3, [w]5, [x]1, [x]2, [y]1, [z]1, [z]2}

#AV = 8

weight(w) =
3

8
= 0.375

weight(x) =
2

8
= 0.25

weight(y) =
1

8
= 0.125

weight(z) =
2

8
= 0.25

Taking the partial log A as example, Figure 3.10 illustrates the comparison of access vectors

between A and the other partial logs, and shows their values of similarity.

As one can see, among the universe of partial logs which have traced common SPEs with

respect to A, only the partial logs D and C have recorded identical access vectors, namely for

the SPE x. Given that for both partial logs x is the only SPE in common with A, their similarity

takes the value of weight(x) which is equal to 0.25. Therefore, one can say that SimA = {D,G}.

Calculating the similarity values for all the partial logs, one obtains the values shown in
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Figure 3.10: Similarity values between the partial log A and the other partial logs.

Table 3.2.

B C D E F G H

A 0 0 0.25 0 0 0.25 0

B - 0 0.25 0 0.125 0.125 0.375

C - - 0 0 0 0 0

D - - - 0 0 0.25 0.25

E - - - - 0.25 0 0

F - - - - - 0.094 0.125

G - - - - - - 0.125

Table 3.2: Similarity values between the partial logs.

Having the groups of similar logs, the next step is to identify the base partial log, which

will be the one with greater value of relevance. Table 3.3 shows the values of relevance for the

eight partial logs, as well as the intermediate values needed to calculate them. One can verify

that the two partial logs with the highest relevance are then D and A. However, the first base

partial log is considered to be D, as it has a greater k and, therefore, has more chances of being

completed with compatible access vectors. Regarding the complete sorted list of potential base

partial logs, it will be the following: [D,A,G, F,E,B,H,C].

Having already a base partial log, one can move along to the third step, which consists

of completing the base partial log with information from the group of similars. Figure 3.11

illustrates that process. In this case, the information from the group of similars is sufficient for

fulfilling the base partial log and, therefore, one can already proceed to the replay phase.

Notice that this replay log is different from the original execution D (see Figure 3.9). How-

ever, curiously, it is identical to the original execution A, hence allows to deterministically
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Log SimLog FillLog,SimLog

∑
SimLog k Relevance

A {D,G} 4 0.5 2 0.775

B {H,D,F,G} 3 0.875 4 0.591

C {} 2 0 0 0.35

D {A,B,G,H} 4 1 4 0.775

E {F} 3 0.25 1 0.6

F {E,B,H,G} 4 0.594 4 0.745

G {A,D,B,H} 4 0.75 4 0.756

H {B,D,F,G} 3 0.875 4 0.591

Table 3.3: Relevance values of the partial logs.

Figure 3.11: Process of completing the base partial log.

reproduce the bug.

In a normal execution of the Similarity-Guided Merge heuristic, the process would stop at

this moment. However, for the sake of completion, let us use this case study to also better

explain the final steps of the heuristic.

The fourth step is to complete the base partial log with information from partial logs “similar

by transitivity”. Taking the partial log E as example, one knows that SimE = {F}, which does

not provide sufficient information to generate a complete replay log. As a consequence, it is

necessary to complete the missing SPEs with access vectors from the partial logs belonging to

SimF . The chosen partial log will then be the B, as depicted in Figure 3.12. Once more, one

now gets a complete log for replay.

In turn, the fifth and final step of the heuristic consists of completing the base partial log

with statistical indicators. Here, let us assume the existence of a new partial log S = {[w]1, [x]1},

which has resulted from a successful execution. Let us also take the partial log C as the base
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Figure 3.12: Completing the partial log E with information from partial logs “similar by tran-
sitivity”.

partial log. Applying the statistical metrics described in Section 3.4.2 for each access vector

recorded, one obtains the following table:

v F (v) S(v) Sensitivity Specificity Importance

[w]1 1 1 0.125 0.5 0.2

[w]3 1 0 0.125 1 0.22

[w]5 1 0 0.125 1 0.22

[x]1 3 1 0.375 0.75 0.5

[x]2 2 0 0.25 1 0.4

[y]1 4 0 0.5 1 0.667

[z]1 3 0 0.375 1 0.545

[z]2 1 0 0.125 1 0.22

Table 3.4: Statistical indicators for all the recorded access vectors.

where Ftotal = 8. Since C has already recorded the SPEs w and z, one is only interested

in filling the missing ones, i.e. x and y. Looking up in Table 3.4, one can see that the chosen

access vectors will be [x]1 and [y]1, as they are the ones with greater Importance. The complete

replay log will then be {[w]3, [x]1, [y]1, [z]2}.

Given that it is not granted that replaying this complete log reproduces the bug with success,

it may be necessary to generate a new replay log. Assuming that, in this case, all the other base

partial logs had already failed the bug replay, one would proceed with the brute force approach,

producing a new test case with the other possible access vector, i.e. [x]2.
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3.6 Summary

This chapter presented the main components of CoopLEAP architecture, with the focus

being on the modifications made to the LEAP system and the process of merging partial logs.

The chapter started with an introduction of the standard LEAP system, presenting the local-

order based approach for deterministic replay and the techniques used by LEAP to record and

replay the SPEs of the program. It proceeded with the depiction of the Statistical Analyzer

component and the introduction of the partial log recording scheme. The statistical metrics for

partial log correlation, namely the two types of Similarity, were then described, as well as the

statistical metrics for bug correlation. This was followed by the introduction of the Similarity-

Guided Merge heuristic for combining the partial logs, which was then explained in detail using

a case study. In the next chapter, the heuristic for deterministic replay presented is evaluated

(using both types of Similarity) and compared to the standard LEAP scheme, using benchmarks

and a real world application.
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4Evaluation
This chapter reports the results of the experimental study aimed at evaluating and com-

paring the performance of CoopLEAP to the one of standard LEAP. It begins by describing

the experimental settings and the criteria used in the evaluation. Then, Section 4.3 assesses

the bug replay capacity of the Similarity-Guided Merge using both types of Similarity metrics

(Plain Similarity and Dispersion-based Similarity) for our micro-benchmark, the IBM ConTest

benchmark, and the real world application Tomcat. Section 4.4 compares the results regarding

the performance and space overheads imposed by CoopLEAP and LEAP. Finally, Section 4.5

presents a brief discussion of the results obtained.

4.1 Experimental Setting

All the experiments were conducted in a machine Intel Core 2 Duo at 2.26 Ghz, with 4 GB

of RAM and running Mac OS X. CoopLEAP prototype was implemented over a LEAP public

version1. In order to get comparative figures, this standard version of LEAP was also used in

the experiments.

Regarding partial logging, three different configurations were employed:

• Cleap-25% – each partial log traces 25% of the SPEs of the program.

• Cleap-50% – each partial log traces 50% of the SPEs of the program.

• Cleap-75% – each partial log traces 75% of the SPEs of the program.

For each one, 500 partial logs from failed executions were used, plus more 50 of successful

runs. To get a fairer comparison of the three recording schemes, the partial logs were generated

from 500 complete logs, picking randomly the SPEs to be stored according to the scheme’s

1Available at http://sites.google.com/site/leaphkust/
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percentage. For the Plain Similarity we used a threshold of 0.3 and for the Dispersion-based

Similarity we used a threshold of 0.01 (given that the weights of some SPEs may be very low).

Regarding the maximum number of attempts of the heuristic to reproduce the bug, it was set

to 500.

4.2 Evaluation Criteria

Three main criteria were used to evaluate CoopLEAP, namely: i) the bug replay capacity,

ii) the performance overhead, and iii) the size of the partial logs produced. The first consists of

the number of attempts of the heuristic to replay the bug, therefore, the less number of tries, the

better. This metric was applied to compare the heuristic execution with both types of Similarity,

assessing which type performs better in which case. The second criterion is measured in terms

of the percentage of runtime degradation of the original execution of the program imposed by

the instrumentation. The last criterion is related to the size of the partial logs generated to

trace the access vectors of the SPEs. It should be noted that the two latter criteria were applied

to both CoopLEAP and standard LEAP, in order to evaluate the benefits and the limitations

of our solution.

4.3 Bug Replay Capacity

4.3.1 Micro-Benchmark

4.3.1.1 Description

In order to evaluate the correction of the deterministic replay capacity of CoopLEAP, we

started by developing a micro-benchmark that allows to easily tune the number of threads and

SPEs used in the experiments2. This micro-benchmark consists of an application that simulates

transfers between bank accounts. Since the threads concurrently update the accounts with no

synchronization, the final balance may not be correct. In this application, each thread runs over

five iterations of a cycle, alternating between account transfer operations and check operations.

2Code available at http://www.gsd.inesc-id.pt/∼nmachado/bank micro.java
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Every time a thread finds an inconsistent balance, it raises an exception that prints a message

indicating that a bug has occurred.

Besides the bug being non-deterministic, even when occurs, it may be the result of different

thread interleavings (because the bug exceptions may not always be raised by the same threads

at the same point in every execution), which further hampers the partial log merge.

To assess how the complexity of the program impacts the bug replay capacity, the micro-

benchmark was executed with eight different configurations. These configurations were obtained

by varying the number of SPEs of the program (in practice, this corresponds to the number of

accounts in the bank) and also by varying the number of threads of these configurations. Thereby,

we configured the micro-benchmark for 32 SPEs and 64 SPEs. For each of these configurations,

we ran the program with 8, 16, 32, and 64 threads.

4.3.1.2 Results

The number of the attempts required by the heuristic to replay bug for the configurations

mentioned above are shown in Table 4.1.

SPEs Similarity
8 Threads 16 Threads 32 Threads 64 Threads

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

32
Plain 2 1 1 X X 2 X X 1 X X X

Dispersion 53 1 1 X X 5 X X 1 X X X

64
Plain 5 1 1 X 1 1 X X X X X X

Dispersion X 1 1 X 1 1 X X X X X X

Table 4.1: Number of the attempts required by the heuristic to replay bug in the micro-
benchmark (the X indicates that the heuristic failed to replay the bug in the maximum number
of attempts stipulated).

Effect of the Increase in the Number of Threads: From the analysis of Table 4.1, one

can see that the heuristic fails to reproduce the bug when the program executes with 64 threads.

Moreover, for 32 threads, it can only be replayed by recording 75% of the SPEs. This matches

our observation that the more complex the program, the more difficult is to replay the bug.

This is mainly due to the fact that, with more threads running, there are more SPE accesses

and more possible interleavings, what hinders the existence of similar executions. Table 4.2 and

Figure 4.1 depict this phenomenon.
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Figure 4.1: SPE dispersion ratios for the four logging configurations (Cleap-25%, Cleap-50%,
Cleap-75%, and complete) in both cases of 32 and 64 SPEs, running with 8 and 64 threads.

Table 4.2 indicates, for different configurations scenarios, the sum of all thread accesses

performed to the SPEs during the execution of the micro-benchmark application. As expected,

the overall number of accesses increases when there are more threads running.

The plots of Figure 4.1 show the dispersion ratio of each SPE index of the program, for

both 32 and 64 SPEs, running with 8 and 64 threads. Here, the dispersion ratio indicates how

disperse is the SPE, i.e. whether many different access vectors were recorded for it or not. The

dispersion ratio is computed by dividing the number of different access vectors recorded for the

SPE by the total number of access vectors recorded for that SPE3. Thereby, it should be noted

that, for the complete recording scheme, the total number of accesses vectors recorded for every

SPE is always 500. However, this value can be lower when decreasing the percentage of the

recording scheme, as not all SPEs are traced by all the partial logs.

3Recalling the case study of Figure 3.9, the dispersion ratio of x would be 2
5
, as there are two different access

vectors ([x]1 and [x]2) in all the five access vectors recorded for x (referring to partial logs A,D,E,F,G)
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SPEs
Threads

8 16 32 64

32 3570 7138 14281 28576

64 4080 8159 16326 32663

Table 4.2: Overall number of thread accesses for the different configuration scenarios.

Observing Figure 4.1, it can be observed that the dispersion ratio for both cases with 64

threads running is almost always equal to 1, which means that all the access vectors collected are

different. In contrast, with 8 threads, the dispersion ratios vary within the interval [0.45;0.94]

and [0.51;0.96], for 32 SPEs and 64 SPEs, respectively. A special note for the SPE 0, which is

identical for all the executions and, therefore, has a very low dispersion ratio.

The plots also indicate that the dispersion ratio usually increases with the decrease in the

percentage of SPE recording. This is explained by the fact that most of the access vectors traced

are different, thus being more likely that CoopLEAP picks non-identical access vectors when

building the partial logs. As a result, the Similarity-Guided Merge heuristic will probably have

less opportunities to combine compatible information and replay the bug when records a smaller

percentage of the SPEs.

Returning to Table 4.1, there is a curious case when the program has 32 SPEs: the execution

of the heuristic for 32 threads slightly outperforms the one for 16 threads, using Cleap-75%.

The reason is related to the fact that, for the 32 threads case, the heuristic could immediately

generate a complete replay log by combining information from only one partial log of the group of

similar logs. On the other hand, for the 16 threads case, the replay log was always generated by

merging access vectors from other three logs of the similar group, and that information happen

not to be compatible at the first attempts.

Effect of SPE Number Increase: Table 4.1 shows that, in general, the increase of SPEs

did not bring significant impairments for the Similarity-guided Merge heuristic. In fact, observ-

ing Table 4.2, one can note that the increase in the number of accesses is not proportional to the

increase in the number of SPEs. This is due to the fact that our micro-benchmark simulates a

fixed number of bank transfers, doing computations that use the operation %bank.numAccounts

to determine both source and destination account indexes. Given that the number of SPEs is

related to the number of accounts, having more SPEs results in bank transfers within a sparser



70 CHAPTER 4. EVALUATION

universe of accounts. Hence, with 64 SPEs the number of transfers for each account is smaller

than with 32 SPEs, so as the number of accesses in the correspondent access vector.

Curiously, for the case with 16 threads, the heuristic performed better with 64 SPEs than

with 32 SPEs, specially when using Cleap-50%. This because, in the latter case, there were

SPEs with up to 734 accesses, while in the case with 64 SPEs the maximum number of accesses

recorded for a single SPE was only 224. Thereby, the overall dispersion-ratio resulted to be

higher for 32 SPEs.

On the other hand, the number of SPEs was very influent when running the program with

32 threads. For 64 SPEs, all the few group of similars created were composed by only one partial

log, which was not sufficient to generate a complete replay log. Consequently, the missing access

vectors ended being filled with incompatible information.

Plain Similarity vs Dispersion-based Similarity: Comparing the two types of similar-

ity metrics, one can see that the Plain Similarity achieved better results, especially for Cleap-

25%. This follows our idea that Plain Similarity is more suitable for situations where there are

not significant disparities in the weight distribution across the majority of the SPEs, just as in

this case.

For the configurations with 8 threads and using Cleap-25%, the problem with the

Dispersion-based Similarity was that the similarity threshold was too low. This allowed to

create group of similars composed by partial logs with a similiarity degree close to the thresh-

old, but capable of filling many SPEs when combined. Hence, the partial logs in these conditions

were classified as the most relevant (see Equation 3.4), in contrary to what happened when run-

ning the heuristic with Plain Similarity. In the particular case of this configuration for 64 SPEs,

we tested again with a higher threshold (= 0.07), and the heuristic was able to replay the bug

at the 81st attempt. However, once more the groups of similars were slightly different to those

of Plain Similarity, since the SPE weights were not completely identical (for instance, having

SPE 0 in common was irrelevant for the computation of the Dispersion-based Similarity between

partial logs).

Finally, it should be noted that the addition of successful logs ended to be irrelevant. As

the error occurred with many different execution interleavings, there were always a lot of access

vectors with the same statistical importance to fill the missing SPEs.
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4.3.2 ConTest Benchmark

4.3.2.1 Description

To further evaluate the bug capacity replay, some programs from a third-party benchmark

were also used. The IBM ConTest benchmark suite (Farchi, Nir, & Ur 2003) contains programs

with many types of concurrency bugs. The ones used in our experiments are described in

Table 4.3, in terms of its number of SPEs, the total number of SPE accesses, and the bug-

pattern according to Farchi, Nir, & Ur (2003).

Program SPEs Total Accesses Bug Description

BubbleSort 10 49964 Not-atomic

Manager 4 30240 Not-atomic

TwoStage 4 27103 Two-stage

ProducerConsumer 8 997 Orphaned thread

Piper 6 347 Missing condition for Wait

Table 4.3: Description of the ConTest benchmark bugs used in the experiments.

4.3.2.2 Results

Table 4.4 shows the number of attempts of the heuristic (using both Plain Similarity and

Dispersion-based Similarity) to replay the ConTest benchmark bugs, when recording 25%, 50%,

and 75% of the SPEs.

Program
Plain Similiarity

Dispersion-based
Similarity

25% 50% 75% 25% 50% 75%

BubbleSort 1 1 1 1 1 1

Manager X X X X X X

TwoStage 34 13 X 7 1 1

ProducerConsumer 5 2 1 1 1 1

Piper 2 1 1 1 1 1

Table 4.4: Number of the attempts required by the heuristic to replay bug in the ConTest
benchmark (the X indicates that the heuristic failed to replay the bug in the maximum number
of attempts stipulated).

Analyzing the results, one can verify that the Similarity-Guided Merge heuristic only failed
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to replay the bug in program Manager. Besides that, the TwoStage bug was also not reproduced

in the particular case of Plain-Similarity for Cleap-75%. These results are also coherent with

the statement that executions containing a higher number of total SPE accesses are more unlikely

to be successfully reproduced using partial logging strategies. However, an overall high number

of accesses per se is not an indicator that the heuristic will fail, as shown by the results obtained

for program BubbleSort. The main reason for the failure of the heuristic is related to how the

accesses are distributed between the SPEs and how that influences the SPE dispersion ratio.

Figure 4.2 supports this claim by depicting the SPE dispersion ratios for the ConTest benchmark

programs (for the sake of readability and to ease the comparison, Figure 4.2 only presents the

values for the complete logging configuration).

Figure 4.2: SPE dispersion ratios for the ConTest benchmark programs, when logging all the
SPEs of the program.

As one can note, the BubbleSort program has only one SPE with a very high dispersion

ratio (which also accounts for about 99% of the total accesses), while the remaining SPEs

always present the same access vector across all the executions. For this reason, the partial log

combination ended to be trivial, since it was easy for the Similarity-Guided Merge heuristic to

combine compatible information.

On the other hand, the Manager program has all its SPEs with a dispersion ratio of 1 or

closer, which means that almost all the recorded executions had a different thread interleaving.

These clearly represent unfavorable conditions for the partial logging approach, which in fact
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failed to replay the bug, as indicated in Table 4.4.

Regarding the TwoStage application, it presents unusual results when using Plain Similarity,

since the bug was not replayed when the partial logs recorded more information. The explanation

for this is related to the SPE dispersion ratios. As one can observe in Figure 4.2, from the four

SPEs of the program, two were always identical (SPE 0 and 2), one had very few equal access

vectors (SPE 1), and the last one was always different (SPE 3). Let us further discuss the three

partial logging scenarios when using Plain Similarity:

• Cleap-75% – with this configuration, each partial log was composed by three SPEs.

Hence, the list of base partial logs ended being composed by the partial logs whose group of

similars contained only other partial logs matching in the SPEs 0 and 2. As a consequence,

the access vectors combined for filling either SPE 1 or 3 were incompatible.

• Cleap-50% – with this configuration, each partial log was composed by two SPEs. Here,

the list of base partial logs was filled with the partial logs that have other ones matching

access vectors for the SPE 1. This because all the partial logs containing only SPEs 0 and

2, albeit having many other similar partial logs, could not generate a complete replay log

just by combining information from their group of similars. Therefore, their relevance was

lower (see Equation 3.4). The same did not happened for the partial logs containing SPE

1 and the bug was replayed by trying different access vectors for filling SPE 4.

• Cleap-25% – with this configuration, each partial log was composed by a single SPE.

Since there were no intersection points between the partial logs, the Similarity-guided

Merge heuristic picked random partial logs to act as base to generate the replay log.

Then, it tried to replay the error by successively filling the missing SPEs with the access

vectors indicated by the statistical indicators. As can be verified, the bug was successful

replayed at the 34th attempt.

On the other hand, when using Dispersion-based Similarity, the heuristic could easily repro-

duce the bug, because the SPEs had different importances. Thence, the partial logs with the

same access vector for SPE 1 were immediately identified as the best base partial logs and used

to generate a complete replay log.

As final remark, once more it could be observed that the addition of successful logs did not

impact the results. The reason is the same referred for the micro-benchmark, i.e. when it was
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necessary to fill missing SPEs, there were always many different access vectors with the same

degree of correlation to the bug.

4.3.3 Tomcat

4.3.3.1 Description

The real-world application used in the experiments was Tomcat4, which is an open source

software implementation (developed by the Apache Software Foundation) of the Java Servlet

and JavaServer Pages specifications from Oracle Corporation. The bug replay capacity of the

Similarity-Guided Merge heuristic was tested with bug #37458 5 of Tomcat v5.5. This error

consists of a NullPointerException, resulting from a data race, and was already used in the

work of Huang, Liu, & Zhang (2010) to test the LEAP solution.

In terms of SPEs and number of shared accesses, this application bug requires the recording

of 15 SPEs, which account for a total of 61 accesses. This is due to the fact that we used a test

unit (JUnit) to trigger the bug, therefore the transformer only instruments the SPEs accessed

during the execution of the JUnit class. The use of a driver can be considered as an useful asset,

since it allows to circumscribe the really needed SPEs to replay the bug, which is better in terms

of scalability (one avoids to instrument all the unnecessary SPEs of the program).

4.3.3.2 Results

Table 4.5 shows the number of attempts of the Similarity-Guided Merge heuristic (using

both Plain Similarity and Dispersion-based Similarity) to replay the Tomcat#37458 bug, when

recording 25%, 50%, and 75% of the SPEs.

Program
Plain Similiarity

Dispersion-based
Similarity

25% 50% 75% 25% 50% 75%

Tomcat#37458 2 1 1 1 1 1

Table 4.5: Number of the attempts required by the heuristic to replay Tomcat#37458 bug.

4http://tomcat.apache.org/
5https://issues.apache.org/bugzilla/show bug.cgi?id=37458
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From the analysis of Table 4.5, it can be verified that our heuristic could easily replay the

bug. In fact, one can say that this is a relatively simple error in terms of complexity, as can be

proved by the SPE dispersion ratios illustrated in Figure 4.3. This means that practically all

the 500 execution logs collected resulted from production runs originating very similar thread

interleavings.

Figure 4.3: SPE dispersion ratios for the Tomcat#37458 bug, when logging all the SPEs of the
program.

4.4 Overheads

This section analyzes the overheads related to the performance degradation and to the size

of the logs generated, during the recording phase. Both types of overheads are measured for the

programs of both ConTest and Java Grande Forum benchmarks, as well as for the Tomcat bug.

It should be noted that, to measure the performance overhead, the program was instrumented

three times for each partial recording scheme (in order to test with different subsets of SPEs

recorded) and, for each of these times, the average value of three samples of the execution time

was collected. In turn, the log size was measured by computing the average size of ten partial

log samples for each recording scheme.
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4.4.1 ConTest Benchmark

4.4.1.1 Performance Overhead

Figure 4.4 depicts the performance overheads of the tested programs. As one can note, by

using partial recording, CoopLEAP achieved always lower runtime degradation than standard

LEAP (which corresponds to the recording configuration of 100% in Figure 4.4).

Figure 4.4: Performance overheads for the ConTest benchmark programs. Standard LEAP
corresponds to the recording configuration of 100%.

As one can see, the overhead with respect to the original full recording configuration is de-

creasing as expected by a factor almost equal to 75%, 50%, and 25%, according to the homonym

partial recording configuration, respectively. The decreases are just not completely linear be-

cause some SPEs are accessed more times than others. Given that the instrumentation of the

code is performed statically, the load balance in terms of thread accesses may not be equally

distributed among the users, as previously referred in Section 3.3. This implies that the impact

of logging x% of the SPEs will not necessarily mean a reduction of x% in both performance

overhead and log size. In fact, sometimes the reduction may be greater than expected, but

other times may be lower.

Another observation is that the advantage of using partial logging is obviously higher in

those scenarios where the usage of full logging has a higher negative impact on performance.
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The most notorious case is BubbleSort, which is the application with more overall ac-

cesses (see Table 4.3). In BubbleSort, LEAP imposed a performance overhead of 26%, while

CoopLEAP only slowed down the execution time by 20.2%, 13.3%, and 9.8%, when recording

75%, 50%, and 25% of the SPEs, respectively. In turn, Piper is the program with less number

of accesses and where the gains were lower. For Piper, CoopLEAP achieved a runtime overhead

of 6.9% for Cleap-25%, whilst LEAP made the program 9.3% slower.

Similarly, for the remaining programs, the best improvements were achieved when recording

only 25% of the SPEs. With this configuration, comparing to LEAP, CoopLEAP obtained exe-

cution overheads 3.13x, 3.06x, and 2.63x better, for the programs ProducerConsumer, Manager,

and TwoStage, respectively. Finally, from an overall analysis of the table, it can be verified that,

when using Cleap-25%, the runtime penalties are always less than 10%, which is an acceptable

value for real world applications, according to previous works in the topic (Park, Zhou, Xiong,

Yin, Kaushik, Lee, & Lu 2009; Jin, Thakur, Liblit, & Lu 2010).

4.4.1.2 Log Sizes

Regarding the size of the logs produced in the recording phase, Figure 4.5 depicts the results

obtained for the ConTest benchmark applications tested, in terms of the ratio between the size

of the logs generated by the partial recording configurations and the size of the logs generated

by LEAP.

It can be noted that the log size ratios also follow the linear decreasing trend observed in

the performance overhead plots. Here, Manager was the program in which CoopLEAP shown

a reduction ratio more similar to the one expected by decreasing proportionally the recording

percentage (the log size ratios were 0.22, 0.52, and 0.83 when recording 25%, 50%, and 75% of the

SPEs, respectively). The same applies to ProducerConsumer for the latter two configurations,

with log size ratios of 0.51 and 0.74, respectively for Cleap-50% and Cleap-75%.

In turn, BubbleSort was the program where the log sizes decreased faster for Cleap-50%

and Cleap-75% (the log size ratios for these configurations, with reference to LEAP, were 0.36

and 0.62, respectively). However, the reduction obtained when moving from Cleap-50% to

Cleap-25% was not too significant, as Cleap-25% had a log size ratio of 0.35. This is due to

the fact that the largest fraction of accesses is confined to a single SPE, which was recorded the

same number of times for the ten logs measured for these configurations.
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Figure 4.5: Log size ratios for the ConTest benchmark programs with respect to the log size
generated by LEAP. Standard LEAP corresponds to the recording configuration of 100%.

On the other hand, Piper was the application where decreasing the percentage of logged

SPEs led to smaller reductions of the log sizes. This is again explainable by the heterogeneity

in the size of the access vectors associated with the various SPEs. In this application, recording

25% of the SPEs only led to a log size ratio of 0.55.

4.4.2 Tomcat

4.4.2.1 Performance Overhead

Figure 4.6 illustrates the performance overhead for Tomcat. Observing the figure, one can

conclude that once more CoopLEAP reduced the performance overhead proportionally to the

percentage of logged SPEs. It only required 0.9%, 1.4%, and 2.8% of additional execution time,

respectively when using Cleap-25%, Cleap-50%, and Cleap-75%, whilst LEAP degraded

the performance time in 4.7%.

4.4.2.2 Log Sizes

Given that replaying bug Tomcat#37458 implies very few thread accesses to shared vari-

ables, the logs obtained with partial recording are only a couple of bytes smaller than the logs
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Figure 4.6: Performance overheads for the Tomcat program. Standard LEAP corresponds to
the recording scheme of 100%.

generated by LEAP. Hence, one obtained log size ratios of 0.90, 0.91, and 0.95 when recording

25%, 50%, and 75% of the SPEs, respectively. This depends on the fact that the data structures

used to store the SPEs have a minimum fixed cost associated with the access vectors’ metadata,

which is independent of the actual number of entries stored in the access vector. Given that

with this benchmark, the number of entries stored in each access vector is extremely limited (5

on average), the size of the log is dominated by the metadata. Therefore, the impact of partial

logging ended to be less significant.

4.4.3 Java Grande Forum Benchmark

4.4.3.1 Description

The Java Grande Forum6 was a community initiative to promote the use of Java for so-called

“Grande” applications, which are typically computationally intensive science and engineering

applications requiring high-performance computers. In this line, it was developed a suite of

benchmarks to measure different execution environments of Java against each other and native

code implementations.

6http://www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks/
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Given that Java Grande Forum Benchmark does not have known bugs, it only was used in

our experiments to assess the benefits and limitations of CoopLEAP when compared to LEAP,

on demanding computing environments. Table 4.6 describes the benchmark programs used in

terms of number of SPEs and the overall number of times that they are accessed. For the sake

of readability, in the next sections, the results of the tests performed are presented in tables,

since the values obtained vary within a large scale.

Program SPEs Total Accesses

Raytracer 16 2.56×109

SparseMatmult 8 5.08×107

SOR 8 1.99×106

Montecarlo 15 1.50×105

Series 8 2.00×104

Table 4.6: Description of the Java Grande Forum benchmark programs used in the experiments.

4.4.3.2 Performance Overhead

Table 4.7 contains the experiments with respect to the performance overhead measured

when tracing the SPEs with the previous logging configurations.

Program Performance Overhead
25% 50% 75% LEAP

Raytracer 9566.7% 17452.1% 44610.6% 92908.4%

SparseMatmult 598.2% 1725.5% 2505.1% 2606.7%

SOR 1.1% 2.0% 2.4% 2.7%

Montecarlo 1.5% 2.3% 3.7% 7.3%

Series 0.1% 0.4% 2.3% 6.5%

Table 4.7: Performance overheads for the Java Grande Forum benchmark programs.

Once more, one can verify that there is always a decrease of the performance overhead of

CoopLEAP when compared to standard LEAP. The most preponderant case is Series, where

CoopLEAP achieved a runtime degradation 65x and 16x smaller than LEAP, for Cleap-25%

and Cleap-50%, respectively. These reductions are explained by the fact the majority of the

accesses are confined to only two of the eight SPEs of the program. Hence, when those specific

SPEs are not traced, the imposed overhead is automatically lower. However, for this program,
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even the worst case overhead was not very significant.

On the other hand, for Raytracer, one can note that both CoopLEAP and LEAP still

incur in a heavy performance overhead, as a result of the high number of accesses performed to

the SPEs. Nonetheless, once more CoopLEAP brought visible improvements, reducing LEAP

penalties by 9.7x, 5.3x, and 2.1x when logging 25%, 50%, and 75% of the SPEs, respectively.

This scenario is similar to that of SparseMatmult, where CoopLEAP achieved decreases of

4.4x and 1.5x (for Cleap-25% and Cleap-50%, respectively) when compared to the runtime

degradation of LEAP. This trend also holds for the remaining programs, however with less

significant overheads.

4.4.3.3 Log Sizes

Concerning the log size ratios with respect to LEAP, the results are shown in Figure 4.7.

Figure 4.7: Log size ratios for the Java Grande benchmark programs with reference to log size
generated by LEAP (which corresponds to the recording scheme of 100%).

From the figure analysis, the benefits of partial logging are clear. The most evident case

is SOR, where the log sizes when using Cleap-25% account for only 0.1% of LEAP’s log size.

For SOR with both Cleap-50% and Cleap-75%, the ratios were 0.33 and 0.67, respectively,

which is even smaller than the expected. In fact, for all the benchmark programs, there was

a high heterogeneity in the size of the access vectors of the program SPEs, which significantly
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influenced the actual reduction in the log sizes. As already discussed in Section 4.4.1.1, this

can lead to higher (as in Raytracer and SparseMatMult) or lower (as in Series when using

Cleap-75%) reductions of the log size, and motivates future research in how one can equally

distribute the information to be recorded among the different clients.

4.5 Discussion

From the evaluation described in the previous sections, one can conclude that, in general,

the Similarity-Guided Merge heuristic is capable of replaying concurrency errors in the presence

of a significant universe of partial logs. However, the bug replay capacity is clearly hampered

when dealing with complex applications, i.e. applications with many SPEs and, more important,

with a large amount of shared accesses. In fact, when almost each partial log, out of the 500

different logs examined, presented a different execution interleaving (which led to SPEs with

a dispersion ratio close to 1), our heuristic was not able to successfully reproduce the bug.

However, this might be addressed by having a larger population of users, where the probability

of finding similar logs will be higher. We schedule this experiments as future work.

Regarding the two types of Similarity metrics, Dispersion-based Similarity outperformed

Plain Similarity when the dispersion weight was not well distributed across all the program

SPEs, i.e. when there were few SPEs that accounted for many different access vectors, while the

others exhibited almost always the same execution interleaving, as observed in the TwoStage

application of the ConTest benchmark. In turn, Plain Similarity achieved better results when

the weight distribution does not shown relevant disparities across the SPEs of the program. It

should be also remarked the importance of the heuristic threshold, to avoid the creation of groups

of similars with little compatible partial logs. Our experiments highlight the need of having a

better way of setting the threshold in place of being a static value, since it may vary according

to the application. A possible solution is to define the threshold at runtime, by analyzing the

SPEs’ weight and defining the minimum acceptable log similarity according to it.

In terms of the overhead imposed by both CoopLEAP and standard LEAP, one can con-

clude that the former always presented smaller degradations, both in terms of log sizes and

performance. Furthermore, the smaller the recording percentage, the smaller were the over-

heads. However, the reduction was not always proportional to percentage decrease, as the SPEs
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had different number of accesses.

Unfortunately, for computationally intensive applications, both the time and space over-

heads imposed by CoopLEAP are still very high to be acceptable. This brings the need of

finding new solutions to further minimize the recording penalties. A possible line of research

could be the partial recording of the access vectors content, in addition to the SPEs.

4.6 Summary

This chapter presented the experimental study based on different benchmarks and a real

world application. It began with a in-house developed micro-benchmark, which served two main

purposes, namely, assessing the impact of increasing the number of threads and SPEs on the

bug replay capacity of the Similarity-Guided Merge heuristic. Next, some applications from the

IBM ConTest benchmark and a real bug from Tomcat were used to further test the bug replay

capacity of our heuristics. In addition, all these applications served also as a basis to evaluate

the benefits of both metrics of Similarity (Plain Similarity and Dispersion-based Similarity).

Then, a comparative analysis between CoopLEAP and LEAP was made, regarding both

the performance overheads imposed and the size of the logs generated by the two solutions. For

this analysis, we used the ConTest benchmark, the Tomcat bug example, and the Java Grande

Forum benchmark. Finally, the results obtained were briefly discussed.
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5Conclusion
5.1 Conclusions

With the advent of multi-processors, it becomes appealing to develop parallel software pro-

grams that take full advantage of the available computing resources and achieve better perfor-

mance. However, writing and debugging concurrent programs is a very challenging task because

of their non-deterministic nature, i.e. running the same program several times may lead to

different outcomes for each run. The deterministic replay technique addresses this problem,

as it provides a faithful reproduction of the original run. Unfortunately, deterministic replay

comes with very expensive overheads, since it requires recording all sources of non-determinism

to achieve the original program behavior.

To address this problem, this thesis proposes a scheme to reduce the amount of information

that a given program instance is required to store to support deterministic replay. To this end,

the thesis introduced CoopLEAP, a system based on LEAP (Huang, Liu, & Zhang 2010) that

provides fault replication of concurrent programs, based in cooperative recording and partial

log combination. To avoid a brute force approach to find a compatible combination of partial

logs, capable of successfully replaying the bug, we also developed a heuristic, denoted Similarity-

Guided Merge. The Similarity-Guided Merge heuristic employs statistical metrics adapted from

previous work on statistical debugging (Liblit, Naik, Zheng, Aiken, & Jordan 2005), but it also

introduces novel ones. Specifically, two novel statistical metrics were presented in this thesis,

namely Similarity (accounts for the similarity degree between two partial logs) and Relevance

(accounts for the likelihood of a partial log being completed by compatible information). In the

particular case of Similarity, two versions were also proposed: Plain Similarity and Dispersion-

based Similarity, according to whether the shared program elements (SPEs) are considered to

have the same importance or not, respectively.

With the objective of assessing the bug replay capacity of the Similarity-Guided Merge
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heuristic, an experimental study was performed using bugs from benchmarks and from a real

world application. In the tests, three recording schemes were used, corresponding to record-

ing 25%, 50%, and 75% of all SPEs. The experimental study was also aimed at evaluating

CoopLEAP against standard LEAP in terms of the runtime overheads imposed.

From the evaluation results, the benefits from partial recording are clear, as CoopLEAP

could always reduce both performance degradations and log sizes produced by LEAP. Further-

more, it was shown that the Similarity-Guided Merge heuristic can successfully replay concur-

rency bugs by combining information traced by different partial logs. Unfortunately, in the

presence of more complex programs (where almost every faulty execution presents a different

thread interleaving), the heuristic exhibited limitations in replaying the bug within the maximum

number of attempts set.

Concerning the two types of Similarity metrics, one can conclude that Dispersion-based

Similarity is more suitable for programs where only a fraction of the SPEs presents high disper-

sion (i.e. many different thread access interleavings across the executions), while the remainder

fraction stays identical. On the other hand, when dealing with applications with no relevant

disparities in the dispersion of the SPEs, Plain Similarity is possibly the best approach.

5.2 Future Work

The bug replay capacity and the performance of the Similarity-Guided Merge heuristic

presented in this thesis should be further experimented and evaluated in more complex and

realistic scenarios, with also a larger number of partial logs collected. Further evaluation should

mainly focus on the impact of applications with longer execution times and several thousands of

lines of code, which produce larger and more complex logs. In this context, the implementation

of a lightweight checkpointing mechanism would also be an useful asset, since it might not be

convenient to replay the whole program execution concerning the long replay time and the large

log size. Thereby, using checkpoints, one could only replay the program from the last checkpoint

to the recording end point.

Regarding partial logging schemes, in this thesis, we only relied on recording a certain

percentage of SPEs of the program (selected randomly). Thereby, an interesting direction for

future work is to study and develop new partial logging schemes. For instance, to take into
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account load balancing, to define a small subset of fixed SPEs to be recorded by all users, and/or

to set pre-defined subsets of SPEs for different users (allowing to get a quorum when collecting

the partial logs), would all be interesting criteria to star with. In terms of the similarity degree

between partial logs, this thesis covered statistical metrics that consider two access vectors to be

similar only when their content is strictly the same. However, this can be a too restrict criterion

for all cases, hence new statistical metrics should be studied (e.g. euclidean or edit distances

between access vectors, to determine how much distinct they are).

Finally, the results of the experimental study suggest that using static thresholds when

building the groups of similar partial logs is not the best approach. In this line, one should

consider on using adaptive thresholds, which would leverage on SPE dispersion or on other

metric that allow to better capture the reproducibility complexity of the program.
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