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Resumo

A complexidade inerente aos programas concorrentes, resultante das variações na ordem de

execução dos eventos do programa, abre a porta a vários tipos de erros de concorrência. Os

erros de concorrência são particularmente dif́ıceis de depurar e corrigir. Em primeiro lugar, a

natureza não-determinista destes erros torna a sua reprodução uma tarefa árdua. Em segundo, é

complicado isolar a causa raiz de um erro de concorrência devido ao elevado número de operações

e interações entre os fios de execução nas execuções com falha. Por último, as execuções onde

o erro se manifesta são dif́ıceis de capturar, visto que geralmente resultam de intercalamentos

de operações muitos espećıficos que se manifestam raramente. Em consequência, os programas

concorrentes são muitas vezes instalados com erros de concorrência latentes que podem originar

falhas e degradar a fiabilidade dos sistemas em produção.

A presente tese aborda os três desafios acima mencionados, relacionados com a depuração

dos erros de concorrência, focando-se em programas concorrentes com memória partilhada. Em

particular, esta tese propõe:

• Uma técnica para reproduzir erros de concorrência através da combinação de mecanismos

de gravação parcial cooperativa com análise estat́ıstica.

• Uma técnica, baseada numa análise diferencial entre intercalamentos de fios de execução

erróneos e corretos, para diagnosticar automaticamente a causa raiz de falhas em progra-

mas concorrentes.

• Uma técnica para expor erros de concorrência latentes em sistemas em produção através da

exploração de variações no entrelaçamento de operações e no fluxo de controlo de execuções

corretas.

Foram desenvolvidos protótipos que concretizam as técnicas supracitadas. Com recurso

uma extensa avaliação experimental, esta tese mostra que as técnicas desenvolvidas são eficazes,

eficientes e que se comparam favoravelmente com outras soluções do estado da arte.





Abstract

The inherent complexity of concurrent programs, due to the variation of the ordering of

program events across executions, opens the door for various types of concurrency bugs. Con-

currency bugs are notoriously hard to debug and fix. First, the non-deterministic nature of

concurrency bugs makes their reproduction challenging. Second, it is hard to isolate the root

cause of a concurrency error due to the large number of thread operations and interactions

among them in failing schedules. Finally, failing schedules are difficult to expose because they

usually result from very specific thread interleavings, which manifest rarely. As a consequence,

concurrent programs are often shipped with latent concurrency bugs that can originate failures

in production and degrade the systems’ reliability.

This thesis addresses these three challenges related to concurrency bugs, focusing on shared-

memory multithreaded programs. In particular, we develop:

• A technique to replay concurrency bugs by combining cooperative partial logging and

in-house statistical analysis.

• A technique based on differential analysis of failing and non-failing schedules to automat-

ically diagnose the root cause of failures in concurrent programs.

• A technique to expose latent concurrency bugs in deployed programs by exploring varia-

tions in the schedule and control-flow behavior of non-failing executions.

We have built prototypes that implement all the aforementioned techniques. Through an

extensive evaluation, we show that our tools are effective, efficient, and compare favorably to

previous state-of-the-art solutions.
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1Introduction

The advent of the multicore era brought concurrency to the forefront of software develop-

ment. By having threads executing simultaneously on different cores, concurrent programs1 can

increase on performance. As such, concurrent software has become very appealing for a wide

range of domains including scientific computing, network servers, mobile devices, and desktop

applications.

Unfortunately, writing correct (i.e., without programming errors, also called bugs) and reli-

able concurrent software is much more difficult than writing its sequential counterpart [Kramer

2007]. Contrary to sequential software, whose space of possible states depends essentially on the

program’s input and the execution environment, the state space in concurrent software is sub-

stantially larger. In addition to inputs and variations in the execution environment, concurrent

programs contain threads that interact by reading from and writing to shared memory locations.

The number of possible interleavings between these thread operations is often extremely large

and increases significantly the size of the state space of the program. The increased complexity

of multithreaded programs makes them more prone to concurrency bugs (i.e., errors in code that

permit multithreaded schedules that result in undesirable behavior), which are very challenging

to understand and debug.

To address the issues of debugging concurrent programs, this thesis proposes techniques

that ease the developers’ task of diagnosing and fixing concurrency bugs.

1.1 Problem Statement

Concurrency bugs pose a number of challenges that make their debugging notoriously hard.

We enumerate the main challenges of concurrency bugs below.

1In this thesis, we assume that the term concurrent program refers to a shared-memory multithreaded program.
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1. Concurrency bugs are difficult to replay. Without proper synchronization, operations in

different threads may non-deterministically adhere to different execution schedules and,

consequently, produce different results. Although most schedules are correct, some failing

schedules can lead to undesirable behavior, like a crash or data corruption. When develop-

ers observe such a failure, the common procedure is to employ cyclic debugging, i.e., they

iteratively re-execute the program in an effort to reproduce the error and narrow down

its root cause. However, failures due to concurrency bugs typically result from complex

thread schedules with low probability of occurrence, which hinders the task of reenacting

a failing execution.

2. Concurrency bugs are hard to diagnose. The key to debugging is understanding a failure’s

root cause, i.e., the set of event orderings that are necessary for the failure to occur. The

number of events that comprise a root cause is typically small [Lu, Park, Seo, & Zhou

2008; Burckhardt, Kothari, Musuvathi, & Nagarakatte 2010], but it is often unclear which

events in a full schedule are truly relevant. Any operation in any thread may have led to

the failure and blindly analyzing a full schedule is a metaphorical search for a needle in a

haystack. Even if the programmer finds the root cause, they still must understand how to

change the code in such a way the problematic events do not execute in the failure-inducing

order, which is also difficult.

3. Concurrency bugs are challenging to expose. As referred before, the subset of thread

orderings that lead to a failure often corresponds to a tiny portion of the space of possible

execution schedules, and those few failing schedules may manifest rarely. Furthermore,

the variation in the schedule in a failing execution may cause a variation in the execution’s

data-flow, and, subsequently, in its control-flow. Such schedule-dependent branches further

complicate the task of uncovering failing schedules, because one has to explore not only

the space of possible thread schedules for a given execution path, but also the space of

different execution paths. Since this huge search space makes complete exhaustive testing

infeasible, some failures will likely manifest in production. Failures in deployed systems are

not harmless though: they have resulted in severe material costs [Associated Press 2004;

NIST 2002], multiple security vulnerabilities [CVEdetails 2016; Sakurity 2016; Yang, Cui,

Stolfo, & Sethumadhavan 2012], and, worse, in the loss of human lives [Leveson & Turner

1993].



1.2. SUMMARY OF CONTRIBUTIONS 3

Uncovering and debugging concurrency bugs in production systems exacerbates the afore-

mentioned challenges. For example, it has been shown that the time required by a programmer

to understand and fix an error in occurring “in the field” is directly related to the ability of

reproducing it in-house [Kasikci, Schubert, Pereira, Pokam, & Candea 2015; Lu, Park, Seo,

& Zhou 2008]. Bug reproducibility can be addressed by record and replay techniques [Huang,

Liu, & Zhang 2010; Zhou, Xiao, & Zhang 2012; Yang, Yang, Xu, Chen, & Zang 2011], which

trace information during production runs to later allow reproducing the failure deterministi-

cally. Unfortunately, fully recording a multithreaded execution in impractical, because it incurs

high runtime overhead [Huang, Liu, & Zhang 2010; Yang, Yang, Xu, Chen, & Zang 2011]. This

means that any concurrency debugging technique designed for production systems must judi-

ciously track runtime information.

The work in this thesis aims at addressing the three aforementioned problems of concurrency

bugs in the context of deployed programs. More concretely, this thesis proposes novel techniques

to, respectively, replay, diagnose, and expose concurrency bugs in production environments. To

cope with the runtime performance overhead challenge, we leverage the observation that software

in production is usually executed by a large number of users. Hence, the mechanisms proposed in

this thesis rely on cooperative tracing schemes that exploit the coexistence of multiple instances

of the same concurrent program. The underlying intuition is simple: to share the burden of

logging among those instances, by having each instance tracking only a subset of the necessary

data (e.g., the thread access ordering to shared memory locations).

In sum, the main goal of this thesis is to design, implement, and evaluate novel coopera-

tive techniques that allow replaying, diagnosing, and exposing concurrency bugs in production

systems, with tolerable recording overhead.

1.2 Summary of Contributions

The contributions of this thesis tackle the three challenges of concurrency debugging outlined

in the previous section with techniques that use information captured from multiple production

runs. For each challenge, we enumerate the contributions of this thesis below.

1. To address the challenge of deterministically replaying in-production concurrency bugs,

this thesis proposes a novel cooperative record and replay approach, which relies on sta-



4 CHAPTER 1. INTRODUCTION

tistical techniques to i) detect similarities among partial logs (independently captured by

different user instances of the same program), as well as ii) find combinations of partial

logs that produce a full log capable of reproducing the failure.

2. To address the problem of isolating the root cause of in-production failures, this thesis

proposes a novel differential schedule projection (DSP) technique that precisely pinpoints

the events that were responsible for a failure by isolating the important control and data-

flow changes between a failing and a non-failing schedule.

3. To tackle the challenge of exposing latent concurrency bugs in deployed programs, this

thesis proposes a novel production-guided search that uncovers failing schedules by explor-

ing variations in the schedule and control-flow behavior of multiple non-failing production

runs.

1.3 Summary of Results

We have built prototypes of all the techniques mentioned in the previous section, and eval-

uated them using both benchmark and real-world concurrency bugs. This section overviews the

our main results, whereas Chapters 3, 4, and 5 provide a detailled description of the techniques

we have developped and a complete report of their evaluation.

1. We have implemented and evaluated CoopREP, a cooperative record and replay frame-

work, on both standard benchmarks for multithreaded applications and real-world appli-

cations. The results highlight that CoopREP can successfully replay concurrency bugs

involving tens of thousands of memory accesses, while reducing recording overhead with

respect to state-of-the-art non-cooperative logging schemes by up to 13x (and by 3x on

average).

2. We have implemented and evaluated Symbiosis, a root cause diagnosis system based on

novel differential schedule projections (DSPs), using buggy real-world software and bench-

marks. The findings of the experiments show that, in practical time, Symbiosis generates

DSPs that both isolate the small fraction of event orders and data-flows responsible for

the failure, and show which event reorderings prevent failing. In terms of root cause di-

agnosis accuracy, DSPs contain 90% fewer events and 96% fewer data-flows than the full
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failure-inducing schedules. Moreover, we conducted a user study that provides evidence

that, by allowing developers to focus on only a few events, DSPs reduce the amount of

time required to pinpoint the failure’s root cause and find a valid fix.

3. We have implemented and evaluated Cortex, a system that exposes concurrency bugs via

production-guided path and schedule exploration, on popular benchmarks and real-world

applications. The results demonstrate that Cortex is able to expose failing schedules with

only a few (more precisely, 1 to 15) perturbations to non-failing executions, and takes a

practical amount of time (less than 22% overhead).

1.4 Publications

Some of the results presented in this thesis have been published as follows:

• Nuno Machado, Paolo Romano, and Lúıs Rodrigues. “Lightweight Cooperative Logging for

Fault Replication in Concurrent Programs”. In Proceedings of the International Conference

on Dependable Systems and Networks (DSN ’12), 2012, ACM.

• Nuno Machado, Brandon Lucia, and Lúıs Rodrigues. “Concurrency Debugging with Dif-

ferential Schedule Projections”. In Proceedings of the International Conference on Pro-

gramming Language Design and Implementation (PLDI ’15), 2015, ACM.

• Nuno Machado, Brandon Lucia, and Lúıs Rodrigues. “Concurrency Debugging with Differ-

ential Schedules Projections”. In ACM Transactions on Software Engineering and Method-

ology (TOSEM), Vol. 25, No. 2, Article 14, 2016, ACM.

• Nuno Machado, Brandon Lucia, and Lúıs Rodrigues. “Production-guided Concurrency

Debugging”. In Proceedings of the International Symposium on Principles and Practice of

Parallel Programming (PPoPP ’16), 2016, ACM.

1.5 Thesis Roadmap

The rest of this thesis is structured as follows. Chapter 2 presents the background concepts

on concurrency debugging and surveys prior work on this topic. Chapters 3, 4, and 5 describe
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and evaluate CoopREP, Symbiosis, and Cortex, respectively. Chapter 6 concludes this thesis

by summarizing its main findings and presenting directions for future work.



2Background and Related

Work

This chapter presents the main concepts, challenges, and systems that served as inspiration

for the work presented in this thesis. We start by describing the most common types of con-

currency bugs, which are also the ones that are addressed by the techniques proposed in this

dissertation. Then, we discuss the related work on concurrency debugging, by dividing it into

three main categories according to their purpose: record and replay systems, root cause diagno-

sis systems, and bug exposing systems. We note that a comprehensive listing of the literature

on each category is outside the scope of this thesis. Instead, we focus on describing some of

the most prominent solutions proposed over the years to address the challenges of debugging

concurrent programs. Finally, throughout this chapter, we also identify the limitations of prior

work that motivated our contributions.

2.1 Types of Concurrency Bugs

Multithreaded executions are characterized by having multiple threads running concurrently

on different cores. Although threads execute their own instructions individually, they can in-

teract with each other by reading values from and writing values to shared memory locations.

Therefore, the value returned by a given read operation can either be the result of a previous

write in the same thread or a write in another thread. Since the order in which the different

threads perform their operations is not defined a priori, the global thread schedule of a mul-

tithreaded execution may non-deterministically vary from run to run, and even yield different

results for the same input. Figure 2.1 illustrates this fact by depicting a multithreaded program

with two threads (T1 and T2) that compete to execute a region of code guarded by a shared

variable free (initially set to true).

Supposedly, only one thread should be able to enter the critical section during a program’s

run. However, depending on the thread interleaving, the program can reach an incorrect state
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T1

if(free){
    free = false
    print("T1 wins!")
}

if(free){
    

    free = false
    print("T2 wins!")
}

T2

Output:
T1 wins!
T2 wins!

Ti
m
e

Execution 1

(initially free = true)
T1

if(free){
    

    free = false
    print("T1 wins!")
}

if(free){
    free = false
    
    print("T2 wins!")
}

T2

Output:
T2 wins!

Execution 2

(initially free = true)

Figure 2.1: Two executions of the same concurrent program with different schedules and outputs.
Instructions in light gray do not execute.

where both threads enter the critical section, as depicted in Execution 1 of Figure 2.1. Here, the

two threads execute the branch condition with free equals to true, which allows them to enter

the critical section and print the output message. On the other hand, in the second execution

(Execution 2), T2 enters the critical section and sets free to false prior to T1 evaluating the

conditional clause, thus preventing T1 to enter the guarded region. As such, the output of the

program for execution 2 contains only the message printed by T2.

To enforce an order between blocks of operations in different threads, developers resort to

synchronization [Lampson & Redell 1980; Hoare 1974]. More formally, one says that synchro-

nization operations allow establishing a happens-before relationship between events in different

threads [Lamport 1978]. Consider two operations A and B, respectively in two threads T1 and

T2. If the memory effects of T1 performing A become visible to T2 before T2 executes B, then

A happens-before B.

The happens-before order of an execution schedule, either due to operations executing in the

same thread or due to synchronization, determines the read-write linkage for shared variables,

i.e., to which write operation corresponds the value read by each read operation. Figure 2.2

represents a variation of the program in Figure 2.1 that relies on synchronization to constraint

the orderings of thread operations and read-write linkages permitted in the program’s execution.

The executions depicted in Figure 2.2 show that the synchronization operations (i.e., lock()

and unlock()) guarantee that the possible thread schedules always correspond to the correct
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T1

lock()
if(free){
    free = false
    print("T1 wins!")
}
unlock()

lock()
if(free){
    free = false
    print("T2 wins!")
}
unlock()

T2

Output:
T1 wins!

Ti
m
e

Execution 1

(initially free = true)
T1

lock()
if(free){
    free = false
    print("T1 wins!")
}
unlock()

lock()
if(free){
    free = false
    print("T2 wins!")
}
unlock()

T2

Output:
T2 wins!

Execution 2

(initially free = true)

Figure 2.2: Example of multithreaded program that uses synchronization operations to enforce
order between threads. Instructions in light gray do not execute.

scenario, where only one thread is indeed allowed to enter the critical section during the exe-

cution. Hence, the outcome illustrated in execution 1 of Figure 2.1 can no longer occur in the

program of Figure 2.2. Despite that, executions 1 and 2 in Figure 2.2 still demonstrate that

both threads have the opportunity to “win the race” and execute the protected region of code.

The reason is because, albeit determining the order of other operations in a program’s run,

synchronization operations themselves may be accessed in a non-deterministic way.

Although the variation in the timing in which threads arrive at synchronization points

(or access other shared memory locations) is often intended and beneficial (because it allows

improving the performance of the program by executing parallel tasks on different cores), it

might sometimes lead to undesirable outcomes. In fact, one can say that the programmer’s

difficulty to reason about the inherent non-determinism of concurrent programs is the main

source of concurrency bugs. Concurrency bugs are errors in code that permit multithreaded

schedules that result in misbehavior (like a crash or data corruption). Concurrency bugs result

from code with misplaced synchronization points and incorrect patterns of accesses to shared

variables by different threads. In the following sections, we discuss the most common types of

concurrency bugs, namely data races, atomicity violations, ordering violations, and deadlocks.
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2.1.1 Data Races

A data race occurs whenever i) there are two concurrent, unsynchronized (i.e., not ordered

by a happens-before relationship) accesses to the same shared memory location, and ii) at least

one of the accesses is for writing. For example, Figure 2.1 contains a data race on free, as

both threads can read from and write to this shared variable without being protected by any

synchronization operation.

People in the research community have somewhat divergent opinions on how to classify

data races. While some usually distinguish between “harmful” and “benign” data races [Kasikci,

Zamfir, & Candea 2012; Narayanasamy, Wang, Tigani, Edwards, & Calder 2007; Naik, Aiken,

& Whaley 2006], others take a stronger position and argue that any code that permits a data

race is incorrect and, thus, all data races should be deemed concurrency bugs [Boehm 2011].

The distinction between “harmful” and “benign” data races stems from the disambigua-

tion between the terms data race and race condition. Data races are characterized by the

precise definition provided above, thus, they can be accurately detected via automated mech-

anisms [Kasikci, Zamfir, & Candea 2012]. In contrast, a race condition can be defined as a

violation of the program’s correctness due to an erroneous timing or ordering of the events in

the execution schedule [Regehr 2011; Kasikci 2013]. Since this definition depends on semantic

program-level invariants, one may not always be able to accurately detect race conditions.

Data races and race conditions are often linked: many race conditions are due to data

races, and many data races lead to race conditions. In fact, all harmful data races can be

considered race conditions. However, it should be noted that the concepts of data races and

race conditions do not always overlap, nor one is the subset of the other. As an example, consider

the two executions presented in Figure 2.3. Note that the ordering of the thread operations of

each execution causes the respective assertion to fail. The reason is because x = 0 when T1

reaches the assertion, which violates the condition x > 0. The two execution schedules are

race conditions because the failure is due to a particular thread interleaving that violates a

program invariant. However, conversely to the execution in Figure 2.3.a, the execution depicted

in Figure 2.3.b does not include a data race, because the writes by T1 and T2 to x are protected

by locks, as well as the read of x within the assertion. A more thorough distinction between

data races and race conditions can be found in Regehr [2011].
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T1
x = 1

assert(x > 0)
    

x = 0

T2
lock()
x = 1
unlock()  

lock()
assert(x > 0)
unlock()  
    

lock()
x = 0
unlock()

a) race condition with data race b) race condition without data race

T1 T2

Figure 2.3: Two executions with race conditions from different programs. Execution a) includes
a data race, whereas execution b) does not. Instructions in light gray do not execute, as they
happen after the failure.

The claim that all data races are harmful [Boehm 2011] builds upon the observa-

tion that most popular programming language specifications (e.g., C [Committee 2010] and

C++ [Committee & Beker 2011]) do not provide clearly defined semantics for programs with

data races at the source code level. The reason for such undefined semantics is to allow com-

pilers to perform optimizations that reorder instructions, without being overly constrained by

the language. Unfortunately, since those optimizations may break the code of programs with

data races in arbitrary ways [Boehm 2011], according to the specifications of these languages,

not only any code that permits a data race is considered buggy, but also no data race is deemed

as benign.

Yet another reason for the aforementioned strong position about data races is related to

the architecture memory model upon which the program executes. An architecture’s memory

model [Goodman 1989; Sewell, Sarkar, Owens, Nardelli, & Myreen 2010; Price 1995] deter-

mines: i) how threads interact through shared memory, ii) the value retrieved by a shared

memory access, iii) the timing at which a variable update becomes visible to other threads,

and iv) what assumptions hold when one is writing a program or applying some program opti-

mization. When writing a program, developers typically assume a sequentially consistent (SC)

memory model [Lamport 1979]. Under sequential consistency, the operations of each thread

execute according to the program order, and the same order of operations is observed by all

threads. However, in order to achieve better performance, most architecture memory models

provide consistency guarantees that are more relaxed than SC. Relaxed consistency allows some
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hardware/compiler aggressive optimizations to modify the order of thread operations, which may

cause different threads to observe different execution schedules. As such, since reasoning about

data races running on weak memory models is extremely hard for humans, some researchers

consider wiser to classify all data races as harmful.

For the purpose of this thesis, we consider that only data races that lead to failures under a

sequentially consistent memory model (i.e., data races that are race conditions) are concurrency

bugs.

2.1.2 Atomicity Violations

Atomicity violations are another common class of concurrency bugs. Atomicity violations

are intimately related to the concepts of atomicity and serializability, which we introduce below.

• Atomicity is a property of a multithreaded program segment that allows a sequence of

operations from a thread to be perceived by other threads as if it has executed instanta-

neously. This means that other threads either observe all the results of the atomic sequence

of operations or none of them. In other words, threads can never see the result of some

instructions of the atomic sequence and not of others.

• Serializability is a property about a multithreaded execution, which guarantees that the

result of the execution of a set of atomic sequences of operations is equivalent to that of

some sequential execution of those atomic segments.

To enforce atomicity in a region of code, developers must enclose that block of instructions

in a critical section. Critical sections can be implemented by means of synchronization (e.g., via

locks). However, if the developer omits or misplaces the synchronization points, the operations

intended to execute atomically can be incorrectly interleaved by other thread operations on

the same shared variables, thus causing an atomicity violation [Lucia, Devietti, Strauss, & Ceze

2008]. In other words, an atomicity violation occurs when regions of code that are supposed to

execute atomically do not, due to an buggy implementation of the critical sections. The race

conditions in Figure 2.3 are atomicity violations: the program fails because the write to x and

the assertion check in T1 should have executed atomically, but were erroneously interleaved

by the write in T2. Note that an atomicity violation may or may not involve a data race, as
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demonstrated by Figure 2.3. Either way, a possible fix to this bug consists in encompassing T1’s

operations in a single critical section.

If the thread schedule in a concurrent execution alters the outcome of a region of code

that was intended to be atomic, then such execution is said to be unserializable. Violations of

atomicity and violations of serializability are thus related in the sense that schedules that lead to

atomicity violations are unserializable. In fact, prior work has demonstrated that if an execution

is proved to be serializable (with respect to some specified atomic regions), then there are no

atomicity violations [Xu, Bod́ık, & Hill 2005; Flanagan & Freund 2004; Flanagan, Freund, & Yi

2008; Lu, Tucek, Qin, & Zhou 2006].

In this thesis, we are only concerned with atomicity violations that are race condi-

tions, i.e., that lead to failures, such as a crash or hang. Therefore, unlike some previous

work [Flanagan, Freund, & Yi 2008], we do not treat any violation of serializability as an atom-

icity violation. The reason is because programs may have violations of serializability that do

not result in erroneous behavior.

2.1.3 Ordering Violations

Ordering violations are concurrency bugs that occur when the order in which two groups

of operations (from different threads) should execute is reversed [Lu, Park, Seo, & Zhou 2008].

Similarly to atomicity violations, we also consider ordering violations as race conditions.

Figure 2.4 shows an ordering violation. The initialization of object o in T1 should always

happen before the method call in T2, as illustrated by Figure 2.4a. However, due to the absence

of synchronization, the program permits the failing schedule depicted in Figure 2.4b, in which

T2 attempts to perform the method invocation before o is initialized.

T1
Obj o = new Obj()

    
o.use()

T2

Obj o = new Obj()

    

o.use()

a) correct execution order b) ordering violation

T1 T2

Figure 2.4: Example of an ordering violation. Execution a) depicts the correct schedule, whereas
execution b) fails because the operations execute in the wrong order. Instructions in light gray
do not execute, as they happen after the failure.
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Ordering violations can be fixed using synchronization in such a way that the correct order is

enforced in all executions. However, since this kind of concurrency bug is not related to atomicity

problems, it typically does not suffice to add or change locks to fix an ordering violation. In fact,

even if one removes the data race in Figure 2.4b by wrapping the operations of both threads

within a lock, the ordering violation may still occur. In turn, a possible way to fix the bug

in Figure 2.4 would be adding a memory barrier or, alternatively, a guard condition to T2

that checks the state of o, in order to guarantee that o.use() is executed only after the object

initialization.

2.1.4 Deadlocks

A deadlock occurs when two or more operations indefinitely wait for each other to release

a previously acquired resource (e.g., a lock or monitor). Figure 2.5 contains an example of a

deadlock bug. The code in Figure 2.5a simulates a money transfer between two bank accounts.

The method implements a critical section (by acquiring the locks for the source and destination

accounts) in order to make sure that only a single thread is allowed to change the balances of

the two accounts at a time.

transfer(Account src, Account dest, int value)
{
      src.Lock();
      dest.Lock();

      if(src.balance >= value){
          src.balance -= value;  
          dest.balance += value;
       }

       dest.Unlock();
       src.Unlock();
}

A.Lock()

B.Lock()
    

B.Lock()

A.Lock()

a) b) T1: transfer(A,B,10)   ;   T2: transfer(B,A,10)   

T1 T2

T2 waits 
for T1 to 
release 
A's lock

deadlock

T1 waits 
for T2 to 
release 
B's lock

Figure 2.5: Example of a deadlock. a) source code of a method that transfers money between
two accounts; b) T1 and T2 are in a deadlock because each one of the threads needs to acquire
a resource that belongs to the other thread.

However, if two threads attempt to simultaneously run method transfer on two accounts A

and B in opposite order, the execution of the program can hang due to a deadlock. As showed in

Figure 2.5b, if T1 executes transfer(A,B,10) and T2 runs transfer(B,A,10), both threads will try

to acquire the locks in reverse order. Hence, it can happen that T2 acquires the lock for account
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B right after T1 has acquired the lock for account A, thereby yielding a deadlock scenario where

both threads wait indefinitely for the other thread to release their lock.

Although the strategies employed to fix deadlock bugs are not usually straightforward [Lu,

Park, Seo, & Zhou 2008], the concurrency bug in Figure 2.5 can be easily corrected by replacing

the two account locks by a single global lock (albeit at the cost of performance degradation).

2.1.5 Other Concurrency Bugs

There are other kinds of concurrency bugs in addition to the ones discussed in the previous

sections, namely livelocks [Musuvathi, Qadeer, Ball, Basler, Nainar, & Neamtiu 2008] and errors

involving thread interactions via shared resources other than shared memory [Laadan, Viennot,

Tsai, Blinn, Yang, & Nieh 2011]. Nevertheless, we opted for focusing on data races, atomicity

and ordering violations, and deadlocks, because they are arguably the most pervasive types

of concurrency bugs [Lu, Park, Seo, & Zhou 2008] and the target of the debugging techniques

presented in this thesis.

2.2 Record and Replay Systems

Record and replay (R&R) tools help developers to overcome the problems associated with

the reproduction of concurrent executions, namely those raised by non-determinism. Concretely,

the R&R approach allows re-executing a multithreaded program, obtaining the exact same

behavior as the original execution. R&R can be useful for a wide range of applications, namely

fault tolerance [Bressoud & Schneider 1995], security [Joshi, King, Dunlap, & Chen 2005; Chow,

Garfinkel, & Chen 2008], and testing [Musuvathi, Qadeer, Ball, Basler, Nainar, & Neamtiu

2008]. However, in the context of this thesis, we are interested in R&R techniques for debugging

purposes, in particular, to reproduce failures caused by concurrency bugs.

Reenacting a previous run is possible as long as all non-deterministic factors that have

an impact on the program’s execution are replayed in the same way [Park, Zhou, Xiong, Yin,

Kaushik, Lee, & Lu 2009]. Record and replay operates in the following two phases:

1. Record phase. Consists of capturing data regarding non-deterministic events

(e.g., thread schedule, network and disk inputs, the order of asynchronous events, etc.)
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into a trace file.

2. Replay phase. The application is re-executed consulting the trace file to guarantee the

replay of the non-deterministic events according to the original execution.

Unfortunately, obtaining a high fidelity replay of a multithreaded execution (on a multicore

environment) incurs an extremely high recording overhead (10x-100x) [Park, Zhou, Xiong, Yin,

Kaushik, Lee, & Lu 2009]. On the other hand, the less information is collected, the harder it will

be to deterministically reproduce the failure. Thereby, the main challenge of R&R systems lies

in finding the sweet spot between recording overhead and bug reproducibility guarantees. Over

the past decades, a large body of research has been devoted to explore the tradeoffs between

these two factors in the context of R&R for multiprocessors. This section overviews some of

these prior efforts by dividing them into two broad categories: hardware-assisted recording and

software-only recording. We defer to the literature for a more comprehensive analysis of the

related work in R&R (e.g., [Pokam, Pereira, Danne, Yang, & Torrellas 2009; Chen, Zhang, Guo,

Li, Wu, & Chen 2015]).

2.2.1 Hardware-Assisted Recording

Bacon & Goldstein [1991] proposed one of the first hardware-based mechanisms for multi-

processor replay by attaching a hardware instruction counter to cache-coherence messages to

identify memory sharing. Although fast, this mechanism produces a large log.

Later, new hardware extensions were proposed to achieve more efficient record and replay.

Flight Data Recorder (FDR) [Xu, Bodik, & Hill 2003] focuses on recording enough information

to re-construct the last second of the whole-system execution prior the failure. Like Bacon

& Goldstein’s scheme, FDR snoops the cache-coherence protocol, but it improves the former

scheme by using a modified version of the Netzer’s transitive reduction algorithm [Netzer 1993]

to reduce the number of memory races traced.

BugNet [Narayanasamy, Pokam, & Calder 2005] uses FDR’s mechanism to record inter-

thread dependencies, but, unlike FDR, does not aim at providing whole-system replay. Instead,

BugNet logs only the first read from shared memory in each checkpoint interval, or when a

data race is detected, into a hardware-based dictionary. This is enough to guarantee the de-
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terministic re-execution of application-level failures, as well as allow each thread to be replayed

independently.

DeLorean [Montesinos, Ceze, & Torrellas 2008] are hardware-assisted R&R approaches,

where instructions are atomically executed by processors as blocks (or chunks), similarly to

transactional memory or thread-level speculation. This way, DeLorean only needs to log the

block commit order, rather than the global thread interleaving.

Hardware-assisted approaches, although appealing due to their low recording overhead, have

the drawback of relying on expensive and intrusive hardware modifications. Despite some ef-

forts to reduce hardware complexity [Montesinos, Hicks, King, & Torrellas 2009; Honarmand,

Dautenhahn, Torrellas, King, Pokam, & Pereira 2013], all the aforementioned techniques are

still solely available on simulations. For that reason, most recent research has been focused on

software-only approaches.

2.2.2 Software-Only Recording

Software-only R&R systems can be broadly classified as order-based or search-based. In the

following, we discuss some of the most prominent solutions proposed over the years for each one

of the two categories.

Order-based. Order-based approaches log and reproduce the ordering of critical events, such

as shared-memory accesses or synchronization operations. InstantReplay [LeBlanc & Mellor-

Crummey 1987] was one of the earliest attempts to achieve software-only order-based deter-

ministic replay on multiprocessors. InstantReplay assigns a version number to shared memory

objects and uses the CREW (concurrent-reader-exclusive-writer) protocol to implement version

updates. At runtime, whenever a thread reads from/writes to a shared object, it stores the

corresponding version into its own trace file.

SMP-Revirt [Dunlap, Lucchetti, Fetterman, & Chen 2008] operates on multiprocessor virtual

machines and leverages commodity hardware page protection to detect races between multiple

CPUs, instead of instrumenting every shared memory access. By tracking dependencies at page-

level granularity, this approach works well in applications with coarse-grained data sharing,

resulting in less than 10% performance degradation for up to 2 cores. However, for 4 cores and

applications with fine-grained data sharing or false sharing, the performance of SMP-ReVirt
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drops significantly (>400% runtime overhead). Scribe [Laadan, Viennot, & Nieh 2010] proposes

a number of optimizations in order to mitigate thrashing caused by frequent transfers of page

ownership and improve the performance of multi-processor tracking. Concretely, Scribe defines

a minimal ownership retention interval and forbids ownership transitions during the interval

time. This technique allows relieving the contention among threads, but makes it harder to

capture atomic violation bugs during recording.

DejaVu [Choi & Srinivasan 1998] uses a global clock to log the total order of threads accesses

to shared memory in multithreaded Java applications. Although efficient in an uniprocessor

environment, this approach is not practical for multicores platforms, as the contention in the

single global lock imposes heavy performance slowdown.

JaRec [Georges, Christiaens, Ronsse, & De Bosschere 2004] drops the need for global or-

dering and uses a Lamport’s clock [Lamport 1978] to record the synchronization order. This

technique allows reducing both the log size and the runtime overhead, but has the downside of

requiring the program to be free of data races in order to guarantee a correct replay. This con-

straint makes JaRec’s approach unattractive for debugging real-world concurrent applications,

because data races are among the most common types of concurrency bugs [Lu, Park, Seo, &

Zhou 2008].

Chimera [Lee, Chen, Flinn, & Narayanasamy 2012] also builds upon the insight that it

suffices to record the synchronization order to provide deterministic multiprocessor replay for

data-race-free programs. Chimera addresses JaRec’s limitations by performing a whole-program

static data race detection to identify potential data races. To cope with false positives, Chimera

instruments pairs of potentially racing instructions with a coarse-grained weak-lock mechanism,

which provides sufficient guarantees to allow deterministic replay while relaxing the synchro-

nization overhead imposed by traditional locks.

LEAP [Huang, Liu, & Zhang 2010] is a R&R Java system that introduced the idea of tracing

the thread interleaving with respect to each individual shared memory location. In particular,

LEAP associates an access vector to each shared field or synchronization variable to stores the

identifiers of the threads that access that variable at runtime. This way, one gets local-order

vectors of thread accesses performed on individual shared variables, instead of a global-order

vector. LEAP relies on a conservative static analysis to identify shared variables, thus it is not

capable of distinguishing accesses to the same field of different object instances. As a result,



2.2. RECORD AND REPLAY SYSTEMS 19

LEAP incurs large unnecessary contention overhead for programs that instantiate the same class

multiple times. ORDER [Yang, Yang, Xu, Chen, & Zang 2011] mitigates LEAP’s contention

issues by recording and replaying shared accesses at object instance granularity, instead of class

granularity.

CARE [Jiang, Gu, Xu, Ma, & Lu 2014] strives to reduce the amount of information recorded

by exploiting thread access locality. CARE maintains a per-thread cache that buffers the most

recent values read from shared variables, and only tracks the exact read-write linkages for vari-

ables being written with different values. Similarly to CARE, Light [Liu, Zhang, Tripp, &

Zheng 2015] recently proposed capturing solely the relevant flow dependencies between reads

and writes. To achieve this, Light maintains the last write access to a shared memory location

such that when the location is read, the flow dependence is recorded into a thread-local buffer.

The flow dependencies, along with the thread local orders (which are not logged because they

can be easily inferred), are encoded as scheduling variables in a constraint system. Light then

uses a Satisfiability Modulo Theories (SMT) solver to solve the constraints and derive a feasible

replay schedule.

Search-based. Search-based approaches tradeoff high-fidelity bug reproducibility (offered by

order-based solutions) for reduced record cost. These approaches typically capture incom-

plete information at runtime and, then, apply post-recording inference mechanisms to con-

struct a valid failing schedule. Since an exhaustive search of the thread interleaving space is

NP-complete [Gibbons & Korach 1997], search-based techniques essentially vary in the kind of

information tracked during recording and in the strategy employed to explore the state space.

ESD [Zamfir & Candea 2010] proposed execution synthesis, a technique that does not require

any tracing during the original execution and, therefore, incurs no runtime overhead. ESD

leverages the core dump and the bug report from the failed run to synthesize program failures

via symbolic execution (we further discuss symbolic execution in Section 2.4.1). To address the

state space explosion problem, ESD relies on static analysis and heuristics to synthesize races

and deadlocks. Despite being attractive for performance-sensitive applications, ESD can incur

high inference times, as heuristics can suffer of lack of precision. Moreover, ESD requires the

core dump of the application, which may not always be available.

ODR [Altekar & Stoica 2009] provides output determinism, meaning that it aims at inferring

an execution with the same output as the production run, but not necessarily with the same
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schedule. To this end, ODR traces both the program inputs and outputs, the synchronization

order, and a sample of the thread execution path. As ODR does not record the outcomes of

data races, it has to infer them in order to successfully reproduce the failure. This is achieved

by employing heuristics that leverage the information recorded to explore the space of possible

schedules and find one whose output is identical to that of the original execution. Despite that,

ODR’s inference time can still be too long to be practical (more than 24 hours in some cases).

PRES [Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009] focus on guaranteeing best-

effort probabilistic replay. The underlying idea consists of minimizing the recording overhead

during production runs, at the cost of an increase in the number of attempts to replay the

bug during diagnosis. Similarly to ODR, PRES logs a partial trace of the original execution

(dubbed sketch), which does not include the order of racy instructions. PRES reconstructs

the complete failing schedule by relying on an intelligent offline replayer to search the space of

possible data race outcomes that also conform with the sketch. To efficiently explore the state

space, PRES leverages feedback produced from each failed attempt to guide the subsequent one.

This mechanism often allows to successfully replay bugs in a few number of attempts.

Stride [Zhou, Xiao, & Zhang 2012] achieves search-based deterministic replay by recording

bounded read-write linkages and then inferring an equivalent execution schedule in polynomial

time. Inspired by the CREW semantics, Stride uses extra synchronization only to track the

exact order of shared write operations. For read operations, Stride stores the latest version of

the write that the read can possibly link to (i.e., the bounded linkage). This bounded linkage

allows the post-recording search to focus only on the writes with older versions for reconstructing

a complete schedule equivalent to the original one.

Recently, CLAP [Huang, Zhang, & Dolby 2013] proposed an R&R approach based on guided

symbolic execution and SMT constraint solving. Instead of capturing runtime information re-

garding the thread interleaving, CLAP traces the path that each thread executes locally. The

purpose of tracing the control-flow choices is to guide the symbolic execution directly through

the failure-inducing path, thus avoiding the need to explore multiple possible executions paths,

as done in ESD [Zamfir & Candea 2010]. During symbolic execution, CLAP gathers symbolic

information about accesses to shared memory and path conditions, with the purpose of encod-

ing a constraint model that represents the possible thread schedules that lead to the failure.

CLAP then feeds the constraint model into an SMT solver, which outputs the order of thread
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operations that cause the program to fail.

2.2.3 Limitations of Previous Work and Opportunities

Prior work on record and replay have explored several different tradeoffs between recording

overhead and bug reproducibility guarantees. Despite that, all the previous solutions still strive

to capture all the necessary information for bug replay from a single execution. For order-based

techniques this typically means incurring higher overhead to guarantee that all relevant details

for reproducing the error at the first attempt are tracked. For search-based techniques, taking

into account solely one execution typically results in longer inference phases.

However, in practice, software is executed several times by multiple users [Candea 2011].

Thus, one could leverage the large number of production runs to achieve more cost-effective

R&R. In this thesis, we built upon this observation and take a step forward towards finding

the sweet spot between recording overhead and bug reproducibility guarantees. We introduce

cooperative record and replay, a search-based technique that further reduces the logging overhead

by distributing the information to be traced across multiple instances of the program. Chapter 3

describes cooperative record and replay in detail, as well as CoopREP, which is the framework

we built to implement our technique.

2.3 Root Cause Diagnosis Systems

We define a root cause of a failure as the sequence of events that lead the program to fail,

such that when the event ordering is changed or prevented from happening, the failure does not

recur [Wilson, Dell, & Anderson 1993]. In this section, we review a variety of techniques that

have been proposed over the years to aid developers understand the root causes of failures and

debug their underlying bugs. Since this has been an extensively studied topic, our description is

mostly focused on solutions that diagnose concurrency bugs. We classify these techniques into

three types: pattern analysis, statistical analysis, and other approaches. The section ends by

setting the contributions provided by this thesis in the state of the art of root cause diagnosis.
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2.3.1 Pattern Analysis

Pattern analysis approaches [Park, Vuduc, & Harrold 2010; Lucia, Ceze, & Strauss 2010;

Lu, Tucek, Qin, & Zhou 2006] search an execution, dynamically or by reviewing a log, for

problematic patterns of memory accesses.

AVIO [Lu, Tucek, Qin, & Zhou 2006] relies on an offline training phase to learn benign

data access patterns, in order to later report erroneous access interleavings in monitored runs.

Falcon [Park, Vuduc, & Harrold 2010] and Unicorn [Park, Vuduc, & Harrold 2012] improve

AVIO’s accuracy by computing statistical suspiciousness scores.

ColorSafe [Lucia, Ceze, & Strauss 2010] assigns variables into “color sets” and then performs

serializability checks on colors rather than on individual variables to detect and isolate single-

and multi-variable atomicity violations. Although often effective, pattern analysis solutions have

the drawback of missing bugs that do not fit the known patterns.

2.3.2 Statistical Analysis

Cooperative approaches diagnose concurrency failures via statistical analysis over informa-

tion gathered from a large number of user instances of the program. Cooperative bug isolation

(CBI) [Liblit, Aiken, Zheng, & Jordan 2003] pioneered this approach for sequential bugs. CBI

uses lightweight instrumentation to sample both failing and successful production runs, cap-

turing execution predicates (e.g., variable values and control-flow properties). CBI then applies

statistical inference to find which predicates are most likely to be related to a failure. Cooperative

crug isolation (CCI) [Jin, Thakur, Liblit, & Lu 2010] extends CBI to support concurrency errors,

namely by coordinating sampling across different threads in order to track interleaving-related

predicates.

PBI [Arulraj, Chang, Jin, & Lu 2013] and LBRA/LCRA [Arulraj, Jin, & Lu 2014] also

monitor production runs and employ statistical techniques to isolate the root cause of sequential

and concurrency bugs. These systems leverage hardware features, such as performance counters

and short-term memory, to diagnose the failure with low overhead. Unlike PBI, LBRA/LCRA

does not perform sampling, but requires custom hardware extensions. Furthermore, due to the

hardware limited capacity to store event traces, LBRA/LCRA only works well for bugs where

the root cause is close to the failure point.
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Bugaboo [Lucia & Ceze 2009] collects context-aware communication graphs that represent

inter-thread communications via shared memory and uses statistical analysis to report anoma-

lous communication events. Recon [Lucia, Wood, & Ceze 2011] improves the accuracy of Buga-

boo’s communication graphs with information about the actual interleavings that comprise the

root cause of the bug.

More recently, Gist [Kasikci, Schubert, Pereira, Pokam, & Candea 2015] introduced failure

sketching, which is an automated debugging technique that provides developers with a high-

level explanation (denoted failure sketch) of a failure occurred in production. A failure sketch

reports the instructions that result in misbehavior and summarizes the differences between failing

and successful runs. Gist builds failure sketches via in-house static program analysis and in-

production cooperative statistical analysis. To achieve lightweight runtime tracing, Gist relies

on Intel Processor Trace [Intel Corporation 2013] and hardware watchpoints.

2.3.3 Other Approaches

Delta debugging [Zeller & Hildebrandt 2002] is a technique that isolates failure-inducing

inputs in sequential programs by systematically narrowing the differences between passing and

failing executions. The work of Choi & Zeller [2002] extends this technique to pinpoint the

buggy portion of a multithreaded schedule by combining delta debugging with R&R and ran-

dom schedule jitter. Triage [Tucek, Lu, Huang, Xanthos, & Zhou 2007] uses checkpointing to

repeatedly replay the moment of failure and applies delta debugging along with dynamic slicing

to perform failure diagnosis at the user site. DrDebug [Wang, Patil, Pereira, Lueck, Gupta, &

Neamtiu 2014] is similar to Triage in that it also uses dynamic slicing for root cause diagnosis.

However, DrDebug relies on R&R instead of checkpointing to reproduce the error, and is not

limited to debugging concurrency bugs on single processors, like Triage.

Sherlog [Yuan, Mai, Xiong, Tan, Zhou, & Pasupathy 2010] combines program analysis with

logs from failed production runs to automatically generate useful control- and data-flow in-

formation to help developers diagnose the root causes of errors, without requiring neither the

reproduction of the failure nor any knowledge about the log’s semantics.

Yet another approach to root cause diagnosis is computing unsatisfiable cores with Satis-

fiability Modulo Theories (SMT) solvers. The unsatisfiable core is the subset of constraints in
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constraint system that make such formulation impossible to solve (i.e., there is no feasible solu-

tion that allows satisfying all the constraints in the model). Unsatisfiable cores can be used to

isolate bugs by feeding an SMT solver with a constraint model (representing a correct execution

of the program) and a failure-inducing constraint (e.g., an assertion violation). Since the two

sets of constraints will conflict, as one requires the program not to fail and the other requires the

failure to occur, the SMT solver will output unsatisfiable. In addition, the solver also indicates

the conflicting constraints (i.e., the unsatisfiable core), which represent the root cause of the

failure.

BugAssist [Jose & Majumdar 2011] pioneered the use of UNSAT cores to isolate errors

in software programs, although it only supports sequential bugs. ConcBugAssist [Khoshnood,

Kusano, & Wang 2015] extended BugAssist to handle bugs in multithreaded programs, as well as

generate automated repairs by casting the binate covering problem as a constraint formulation.

However, ConcBugAssist has the drawback of requiring model checking the entire program and

compute all possible schedules that prevent the failure, which is hard to do in practice.

2.3.4 Limitations of Previous Work and Opportunities

As mentioned before, root cause diagnosis techniques based on pattern analysis cannot

isolate bugs that do not fit the erroneous patterns. On the other hand, solutions that rely on

statistical analysis are general, but have the downside of requiring many failing and non-failing

execution traces to be able to accurately pinpoint the events that lead to the failure.

In this thesis, we also leverage the insight that a failing schedule typically deviates from a

non-failing schedule in only a few critical ways to propose a novel technique to precisely pinpoint

the root cause of concurrency bugs, denoted differential schedule projection (or DSP, for short).

A key advantage of our approach is that it requires only a single failing execution, does not rely

on statistical reasoning nor is limited to bug patterns, and produces precise results. Chapter 4

describes differential schedule projections in detail, as well as Symbiosis, which is the system

that employs this technique to zero in on the root cause of concurrency bugs.
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2.4 Bug Exposing Systems

Bug exposing systems perform explorative testing with the goal of uncovering failures in

software. Testing is typically performed along two dimensions: space of possible inputs and

space of possible schedules. For sequential bugs, it suffices to explore the former search space

for an input that causes the program to fail. However, for concurrency bugs, one usually has to

explore the two dimensions, in order to find both an input that leads the execution to the faulty

portion of code and a thread schedule that triggers the failure.

Much work has been conducted in the past to generate comprehensive sets of inputs to

provide code and specification coverage [Beizer 1990]. Most of this work is also applicable to

concurrent programs, albeit with some extensions to increase code coverage [Sen & Agha 2006a].

On the other hand, finding a failing schedule still remains a challenging problem: the subset

of thread orderings that lead to the failure often corresponds to a tiny portion of the space of pos-

sible execution schedules. Moreover, the existence of schedule-sensitive branches (i.e., branches

whose decision may vary depending on the actual interleaving of concurrent threads) further

complicates the task of exposing failing schedules, because one has to explore not only the space

of possible thread schedules for a given execution path, but also the space of different control-flow

paths.

Since the huge search space of multithreaded programs makes complete exhaustive testing

infeasible, bug exposing systems employ techniques to prune the search space and guide the

exploration towards paths and schedules that are most likely to expose bugs. In the following,

we discuss some prior work on concurrency testing, dividing the contributions into three broad

categories: symbolic execution, systematic testing, and other approaches. We end the section by

identifying the main limitations of these approaches, which this thesis intends to address.

2.4.1 Symbolic Execution

Symbolic execution [King 1976] is a testing technique that consists in executing a program

replacing concrete input values by symbolic variables. A symbolic variable represents a set of

possible concrete values. Assignments to and from symbolic variables and operations involving

symbolic variables produce results that are also symbolic. When an execution reaches a branch

dependent on a symbolic variable, it spawns two identical copies of the execution state – one in



26 CHAPTER 2. BACKGROUND AND RELATED WORK

which the branch is taken, and another in which the branch is not taken. Spawned copies con-

tinue independently along these different paths and the process repeats for every new symbolic

branch. Each path has a path constraint, encoding all branch outcomes on that path. Thus, the

path constraint determines the possible set of concrete values for symbolic variables that lead

execution down a particular path. When a path terminates or hits a bug, a test case can be gen-

erated by solving the current path constraint for concrete values. Excluding non-deterministic

factors, such test case can be later used to re-execute the program, making it follow the same

path and hit the same bug.

The ultimate goal of symbolic execution is to explore all feasible control-flow paths of a pro-

gram [Myers & Sandler 2004]. The classic approach to symbolic execution consists in performing

depth-first exploration of the paths using backtracking [Visser, Pǎsǎreanu, & Khurshid 2004].

For large or complex programs, however, it becomes computationally intractable to maintain

a precise state and solve the constraints required for an exhaustive exploration. To address

the path explosion problem, researchers have proposed a number of search heuristics (such as

random path selection [Cadar, Dunbar, & Engler 2008], state memoization [Godefroid 2007], and

concrete test monitoring [Tillmann & De Halleux 2008]), as well as techniques to parallelize the

state exploration [Bucur, Ureche, Zamfir, & Candea 2011].

Another approach to address the limitations of symbolic execution based testing is concolic

(concrete + symbolic) execution. Concolic execution [Godefroid, Klarlund, & Sen 2005; Burnim

& Sen 2008] uses concrete and symbolic values simultaneously to explore distinct behaviors that

may result from executing a program with different data inputs. The key idea is to run the

program on some concrete input values and perform dynamic symbolic execution with the goal

of gathering symbolic constraints at branch statements that may lead to alternate behaviors.

The concrete execution is also used to simplify symbolic expressions that cannot be handled by

the constraint solver.

Symbolic and concolic execution approaches have been mostly applied to find bugs in se-

quential programs [Cadar, Dunbar, & Engler 2008; Godefroid, Klarlund, & Sen 2005; Tillmann

& De Halleux 2008; Burnim & Sen 2008]. Despite that, some recent efforts have made progress

in extending classic symbolic/concolic execution tools to support multithreaded programs and

concurrency testing. For instance, CUTE [Sen, Marinov, & Agha 2005] and jCUTE [Sen & Agha

2006b] (CUTE for Java) combine concolic execution with dynamic partial order reduction to
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systematically generate both test inputs and thread schedules. In the presence of data races,

these systems generate new tests by either fixing the schedule and re-executing the program for

a new input, or by keeping the same input and reordering the events involved in a data race to

exercise a new schedule.

Con2colic testing [Farzan, Holzer, Razavi, & Veith 2013] leverages concolic execution to

test concurrent programs with code coverage guarantees. Starting from a given initial input

and thread interleaving, this system explores the state space by systematically forcing reads

by a thread to return the value written by writes on another threads in order to produce new

execution interleavings. The feasibility of a newly generated schedule is checked by means of a

constraint solver. Con2colic testing is sound and complete (within the limitations of concolic

execution), being only bounded by the time and space available to perform the computation. For

this reason, con2colic testing can also be classified as a systematic testing system. We present

systematic testing in the following section.

2.4.2 Systematic Testing

Systematic concurrency testing (SCT), also known as stateless model checking, consists in

repeatedly executing a multithreaded program, controlling the ordering of thread operations

so that a different interleaving is explored on each execution. This procedure goes on until

all schedules have been explored, or until a time or schedule threshold is reached. Systematic

testing has the advantage of being highly automatic, incurring no false positives, and allowing

to replay a bug by enforcing the schedule that triggered it.

Since exploring all possible executions schedules of a program is intractable, due to the

exponential nature of the search space, SCT techniques essentially differ on the strategy used

to cope with schedule explosion. The two most widely adopted approaches to SCT are partial

order reduction (POR) and schedule bounding. We now discuss each approach in more detail.

Partial Order Reduction. Systems that apply POR aim at reducing the number of schedules

that need to be explored without false negatives, by exploring only one of each group of partial-

order-equivalent set of executions [Godefroid 1996]. Persistent/stubborn set POR [Godefroid

1996; Valmari 1991] uses static analysis to compute, for each visited state, a provably-sufficient

subset of the enabled transitions to be explored next, guaranteeing that the unselected transitions
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do not interfere with the execution of those being selected. Unlike persistent set POR, sleep

set POR [Godefroid 1991] exploits information about the past of the search instead of the static

structure of the program.

To address the inherent imprecision of static analysis and further alleviate state-space ex-

plosion incurred by the previous techniques, Flanagan et al [2005] proposed dynamic partial

order reduction (DPOR). DPOR tracks dependencies between threads at runtime, rather than

relying on a static conservative estimate of dependencies, to identify backtracking points where

alternative paths in the state space need to be explored.

Although effective, the reduction achieved by POR and DPOR is limited by the happens-

before relation, meaning that these techniques cannot reduce redundant interleavings that have

different happens-before relation.

Schedule bounding. Schedule bounding techniques limit the set of schedules examined during

testing, while preserving schedules that are likely to induce bugs. Depth bounding [Godefroid

1997] defines a maximum threshold on the number of steps (i.e., synchronization or shared mem-

ory accesses) allowed in an execution. Context bounding [Qadeer & Rehof 2005; Musuvathi &

Qadeer 2007a; Musuvathi, Qadeer, Ball, Basler, Nainar, & Neamtiu 2008; Yu, Narayanasamy,

Pereira, & Pokam 2012] bounds the number of context switches in an execution, thus allow-

ing threads to execute an arbitrary amount of steps between context switches. Delay bound-

ing [Emmi, Qadeer, & Rakamarić 2011] bounds the amount of times a schedule can deviate from

the interleaving defined by a given deterministic scheduler.

Note that, during concurrency testing, the bound on preemptions or delays can be increased

iteratively, which permits exploring all schedules in the limit. However, the purpose of schedule

bounding techniques is to explore bug-inducing schedules within a reasonable resource budget.

As final remark, it should be mentioned that some recent efforts have also attempted to

combine POR with schedule bounding, achieving interesting results [Musuvathi & Qadeer 2007b;

Coons, Musuvathi, & McKinley 2013].

2.4.3 Other Approaches

Among the vast body of work on non-systematic bug exposing techniques, we now present

some prominent examples as follows.
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RaceFuzzer [Sen 2008] attempts to expose harmful data races by randomly deciding the

outcome of racing accesses (reported by a static data race detector) during testing runs.

AtomFuzzer [Park & Sen 2008] relies on annotations provided by developers to dynamically

check for atomicity violations in multithreaded programs. AtomFuzzer uses a random sched-

uler to choose an arbitrary thread to run at every program state, favoring interleavings that

correspond to atomicity violation execution patterns. DeadlockFuzzer [Joshi, Park, Sen, & Naik

2009] follows the same approach, but is directed towards exposing deadlock bugs.

CTrigger [Park, Lu, & Zhou 2009] handles state space explosion when exploring execution

schedules by focusing the search on unserializable interleavings, which have low probability of

occurring outside a controlled environment and typically result in atomicity violations.

PCT [Burckhardt, Kothari, Musuvathi, & Nagarakatte 2010] uses a priority-based random-

ized scheduler that finds concurrency bugs of depth d with a probabilistic guarantee after every

run of the program. Here, the depth of a bug is defined as the minimum number of schedul-

ing constraints that are sufficient to trigger the bug. This means that bugs with higher depth

will occur in fewer schedules and, therefore, will be harder to find. SKI [Fonseca, Rodrigues,

& Brandenburg 2014] extended the PCT algorithm to support interruptions with the goal of

testing operating system kernels.

ConSeq [Zhang, Lim, Olichandran, Scherpelz, Jin, Lu, & Reps 2011] computes static slices

to identify shared memory reads that are likely to affect potential failing statements (e.g., as-

sertions). ConSeq then records and replays correct runs and injects delays during re-executions

in order to exercise suspicious interleavings that may uncover concurrency bugs.

MUVI [Lu, Park, Hu, Ma, Jiang, Li, Popa, & Zhou 2007] focuses on extracting multi-variable

access correlations through the analysis of variable access patterns and the examination of what

variables are usually read or written together. Doing this, MUVI is then able to find semantic

and multi-variable concurrency errors.

MCR [Huang 2015] uses an approach based on constraint solving to expose concurrency

bugs. Starting from an initial thread interleaving (dubbed seed interleaving), this system is able

to simultaneously check properties and search for failures in all schedules that are equivalent

(i.e., with the same causal data-flow) to the seed interleaving. This is achieved by encoding all

the possible orderings of thread operations in the seed interleaving as an SMT constraint system,
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and use a solver to solve the constraints. To further explore the state space, MCR iteratively

generates new non-redundant schedules by enforcing read operations to return different values.

MCR then uses the newly generated schedules as seed interleavings for subsequent iterations.

Yet another approach to testing multithreaded programs is test synthesis. Test synthesis

receives a suite of sequential tests as input, and analyzes the traces from these sequential ex-

ecutions with the objective of generating bug-inducing multithreaded tests. Omen [Samak &

Ramanathan 2014], Narada [Samak & Ramanathan 2015], and Intruder [Samak, Ramanathan,

& Jagannathan 2015] use this approach to automatically synthesize tests aimed at exposing

deadlocks, races, and atomicity violations, respectively. Test synthesis techniques, however, still

require multithreaded tests to be executed and analyzed with dynamic detectors (e.g., [Flanagan,

Freund, & Yi 2008; Park, Vuduc, & Harrold 2010]) to find the concurrency bugs.

2.4.4 Limitations of Previous Work and Opportunities

The bug exposing techniques discussed in this section strive to fully cover the execution

state space. However, due to the enormous number of possible schedules, it is often impractical

to uncover all concurrency bugs during in-house testing. As a consequence, some failures may

surface in production due to latent failing schedules in the shipped software.

To prevent the (potentially) catastrophic effects of in-production failures [Leveson & Turner

1993] and increase the reliability of deployed systems, this thesis proposes production-guided

schedule search. Production-guided schedule search is a cooperative technique to expose path

and schedule dependent failures by exploring variations in schedule and control-flow behavior in

non-failing executions observed in deployment. By leveraging information from production runs,

as well as symbolic execution and SMT constraint solving, production-guided schedule search is

able to synthesize executions to guide the search for concurrency bugs. Moreover, by targeting

failing schedules that are similar to non-failing production runs, production-guided search helps

cope with the large execution search space, thus being a useful complementary technique to

classic in-house testing approaches.

Chapter 5 provides a comprehensive description of production-guided schedule search, as

well as Cortex, the system that implements this technique.
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Summary

This chapter discussed the background concepts and some of the previous work most related

to concurrency debugging. More concretely, we overviewed the state-of-the-art systems in the

areas of record and replay, root cause diagnosis, and bug exposing. In the next chapters, we

introduce and detail our contributions to each one of these three areas of concurrency debugging.
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3
CoopREP: Cooperative

Record and Replay of

Concurrency Bugs

As discussed in Chapter 2, record and replay (R&R) systems allow re-executing a multi-

threaded program deterministically, thus being useful to debug hard-to-reproduce concurrency

errors. The main challenge faced by R&R solutions is to achieve low-overhead recording, while

providing bug reproducibility guarantees.

We argue that one can further reduce the runtime slowdown incurred by either order-

based or search-based R&R techniques (see Section 2.2.2 in Chapter 2), by devising cooperative

logging schemes that exploit the coexistence of multiple instances of the same program. The

underlying intuition is simple: to share the burden of logging among multiple instances of the

same (buggy) deployed program, by having each instance tracking accesses to a random subset

of shared variables. The partial logs collected from production runs can then be statistically

analyzed offline in order to identify those partial logs whose combination maximizes the chances

to successfully replay the bug.

In this chapter, we introduce CoopREP (standing for Cooperative Record and rEPlay), a

search-based record and replay framework that leverages cooperative logging performed by mul-

tiple user instances.1 Collaborative partial logging allows to substantially reduce the overhead

imposed by the instrumentation of the code, but raises the problem of finding the combination

of logs capable of replaying the failure. We tackle this issue by proposing several innovative

statistical metrics, as well as two heuristics aimed at guiding the search of partial logs to be

combined and used during the replay phase.

Cooperative record and replay is orthogonal to the previous R&R approaches in that one

can apply our technique regardless of the kind of execution details captured at runtime. Our

experiments show that CoopREP benefits classic order-based solutions by reducing the overhead

of capturing the complete execution schedule in a single production run, although potentially

1For simplicity of description we use the terms user instance of a program and instance interchangeably in
this chapter.
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sacrificing the guarantee of immediate bug replay. For search-based solutions, which already

trace partial information at runtime, CoopREP offers the possibility of further reducing the

record cost, while still achieving similar bug replay ability.

This chapter is structured as follows. Section 3.1 introduces CoopREP, describing in detail

its architecture. Section 3.2 presents the statistical metrics used to measure similarity between

partial logs. Section 3.3 describes the two heuristics, which leverage the similarity metrics to

merge partial logs and replay concurrency bugs. Section 3.4 shows how the heuristics fit in

CoopREP’s execution flow. Section 3.5 presents the results of the experimental evaluation.

Finally, the chapter concludes with a summary of its main points.

3.1 CoopREP Overview

This section describes CoopREP, a framework that provides failure replication for concurrent

programs, based on cooperative recording and partial log statistical combination.

3.1.1 System Architecture

Figure 3.1 depicts the overall architecture of CoopREP, which entails five components: i)

the logging profile generator, ii) the transformer, iii) the recorder, iv) the statistical analyzer,

and v) the replayer. We now describe each one of these components in detail.

Logging Profile Generator. The logging profile generator receives the target program as input

and identifies the points in the code that should be monitored at runtime. The resulting logging

profile is then sent to the transformer. Note that this profile is, in fact, a partial logging profile,

because it contains only a subset of all the relevant events required to replay the concurrent

execution.

Logging profiles can comprise different kinds of information (e.g., function return values,

basic blocks, shared accesses). However, we are mainly interested in capturing thread access

orderings to synchronization variables (e.g., locks and Java monitors), as well as to class and

instance variables that can be manipulated by multiple threads. To locate these shared program

elements (SPEs), CoopREP uses a static escape analysis denoted thread-local objects analy-
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Figure 3.1: Overview of CoopREP’s architecture and execution flow.

sis [Halpert, Pickett, & Verbrugge 2007] from the Soot2 framework. Since accurately identifying

shared variables is generally an undecidable problem, this technique computes a sound over-

approximation, i.e., every shared access to a field is indeed identified, but some non-shared

fields may also be classified as shared [Huang, Liu, & Zhang 2010].

Transformer. The transformer is responsible for instrumenting the program. It consults the

logging profile to inject event-handling runtime calls to the recorder component. The transformer

also instruments the instructions regarding thread creation and end points of the program. User

instances will then execute a given instrumented version of the program, instead of the original

one.

In order to ensure consistent thread identification across all executions, we follow an ap-

proach similar to that of jRapture [Steven, Chandra, Fleck, & Podgurski 2000]. The underlying

idea of this approach is that each thread should create its children threads in the same order,

even though there may not be a consistent global order among all threads.

Concretely, we instrument the thread creation points and modify the new Java thread

identifiers by new identifiers based on the parent-children order relationship. To this end, each

thread maintains a local counter to store the number of children it has forked so far. Whenever

a new child thread is forked, its identifier is defined by a string containing the parent thread’s

ID concatenated with the value of the local counter at that moment. For instance, if a thread ti

forks its j-th child thread, which in turn forks its k-th thread, then the latter thread’s identifier

will be ti:j:k.

2http://www.sable.mcgill.ca/soot
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Recorder. There is a recorder per user instance. The recorder monitors the execution of the

instance and captures the relevant information into a log file. Then, when the execution ends

or fails, the user sends its partial log to the statistical analyzer.

CoopREP can be configured to trace different kinds of information, but in this dissertation

we employ the technique used by LEAP [Huang, Liu, & Zhang 2010] to track the thread inter-

leaving.3 In particular, we associate each shared program element (SPE) with an access vector

that stores, during the production run, the identifiers of the threads that read from/write to

that SPE. For instance, if a shared variable x is accessed twice by a thread T1 and then once

by a thread T2 during an execution, then the access vector for x is [1, 1, 2].

Using this technique, one gets several vectors with the order of the thread accesses performed

on individual shared variables, instead of a single global-order vector. This provides lightweight

recording, but relaxes faithfulness in the replay, as it allows the re-ordering of non-causally

related memory accesses during the re-execution of the program. Still, it has been shown that

this approach does not affect the correctness of the replay (a formal proof of the soundness of

this statement can be found in [Huang, Liu, & Zhang 2010]).

Conversely to LEAP, CoopREP’s recorder does not log access vectors for all the SPEs of

the program. Instead, each user traces accesses to only a subset of the total amount of SPEs,

as defined in the partial logging profile. In addition to access vectors, each CoopREP’s partial

log also contains a flag indicating the success or failure of the execution (successful executions

can be useful for the statistical analysis, as we will see in Section 3.4).

Assuming that the program is executed by a large population of users, this mechanism

allows not only gathering access vectors for the whole set of SPEs with high probability, but

also reduce the performance overhead incurred by each user instance with respect to full logging.

Statistical Analyzer. The statistical analyzer is responsible for collecting and analyzing the

partial logs recorded during production runs (from both successful and failing executions) in

order to produce a complete replay trace, capable of yielding an execution that triggers the

bug observed at runtime. The statistical analyzer comprises two sub-components: the candidate

generator and the replay oracle, as depicted in Figure 3.2.

3In Section 3.5, we also evaluate CoopREP using a search-based record and replay approach, in addition to
the order-based approach used by LEAP.
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Figure 3.2: Detailed view of the statistical analyzer component.

The candidate generator employs one of our two novel heuristics (see Section 3.3) to identify

similarities in partial logs and pinpoint those that are more likely to be successfully combined in

order to reproduce the failure. In other words, the candidate generator tries to aggregate partial

logs into smaller clusters, such that each cluster contains logs resulting from similar production

runs. The similarity among production runs is evaluated by means of several statistical metrics

(see Section 3.2). The rationale is that partial logs resulting from similar executions are likely to

provide compatible information with respect to the thread interleaving that leads to the bug.4

To generate a complete replay log, the statistical analyzer combines the access vectors from the

partial logs within the same cluster.

The resulting candidate replay log (containing access vectors for all the SPEs of the program)

is then sent to the replay oracle. The replay oracle is responsible for checking the effectiveness

of the replay log in terms of bug reproducibility. Concretely, the oracle enforces an execution

that respects the schedule defined in the replay candidate trace and checks whether the error

is triggered or not. This is achieved by controlling the execution interleaving with the help of

semaphores for suspending and resuming threads on demand.

In case the bug is not reproduced, the replay oracle asks the candidate generator for another

candidate trace, and the procedure is repeated until the bug is successfully replayed or until

the maximum number of attempts to do so is reached. This search procedure is detailed in

Section 3.4.

Considering that the candidate replay log is composed of access vectors collected from

4In this thesis, we assume that all partial logs from failing executions refer to the same bug. In practice, one
may cope with applications that suffer of multiple bugs by distinguishing them using additional meta data, such
as the line of code in which the bug manifested or the type of exception that the bug generated.
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independent executions, the resulting execution schedule might be infeasible, meaning that the

replay oracle will fail to fully enforce the thread execution order specified in the replay log.

In this case, the re-execution of program will hang, as none of the threads will be allowed to

perform its subsequent access on an SPE. CoopREP copes with this issue by using a simple, yet

effective, timeout mechanism, which terminates immediately the execution replay as soon as it

detects that all threads are prevented from making progress.

CoopREP also needs to deal with the case in which the the bug is not triggered, although

the replay oracle is able to fully enforce the thread interleaving indicated in the replay log. For

crash failures, CoopREP simply detects the absence of the exception. On the other hand, in

order to detect generic incorrect results, CoopREP requires programmers to provide information

regarding the failure symptoms (e.g., by specifying predicates on the application’s state that can

be dynamically checked via assertions).

Replayer. Once the statistical analyzer produces a feasible replay log, the developers can

then use the replayer to re-execute the application and observe the bug being deterministically

triggered in every run. This allows developers to re-enable cyclic debugging, as they can run

the program repeatedly in an effort to incrementally refine the clues regarding the error’s root

cause.

Observing the architecture depicted in Figure 3.1, one can identify two main challenges in the

cooperative record and replay approach: i) how to devise the partial recording profiles, and ii)

how to combine the partial logs recorded during production runs to generate a feasible failure-

inducing replay trace. The next sections show how we address these two issues, giving special

emphasis to the techniques devised to merge partial logs.

3.1.2 Partial Log Recording

CoopREP is based on having each user instance recording accesses to only a fraction of the

entire set of SPEs in the program. The subset of SPEs to be traced is defined by the logging

profile generator prior to the instrumentation of the target program instances. The logging

profile generator relies on a probabilistic scheme that selects a subset of the total SPEs using

a uniform random distribution. The cardinality of the set of SPEs logged by CoopREP is a

parameter configurable by the developer. This approach has the benefit of being extremely
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lightweight and ensuring statistical fairness, i.e., on average, all SPEs have the same probability

of being traced by a user instance. Thus, each instance has the same probability of logging

SPEs that are very frequently/rarely accessed. As we will show in Section 3.5.5, this factor has

a significant impact on the actual recording overhead of a given instance.

We believe that it would be relatively straightforward to increase the flexibility of the infor-

mation recorded, either by re-instrumenting the program at the user’s site or by extending the

current recording framework to support SPE adaptive tracing (based, for example, on hints pro-

vided by the developer or on code analysis techniques [Machado, Romano, & Rodrigues 2013]).

3.1.3 Merge of Partial Logs

Another major challenge of using partial recording (and the main focus of the work in this

chapter) is how to combine the collected partial logs in such a way that the resulting thread

interleaving leads to a feasible execution, capable of reproducing the bug during the replay

phase.

In general, the following factors can make partial log merging difficult to achieve: i) the bug

can result from a complex interleaving of multiple threads; ii) the combination of access vectors

from different failing executions may enforce a thread schedule that leads to a non-failing replay

execution; iii) the combination of access vectors from different failing executions may enforce a

thread order that leads to an infeasible replay execution; iv) the number of possible combinations

of access vectors grows very quickly (in the worst case factorially) with the number of partial logs

available, which renders blind brute-force search approaches impractical in such a vast space.

To exemplify factors i) and ii), consider the multithreaded program with a concurrency bug

depicted in Figure 3.3. This program has two threads and four shared variables (pos, countR,

countW, and threads). If the program follows the execution indicated by the arrows, it will

violate the assertion at line 7. This error is an atomicity violation: thread 1 increments the

position counter after inserting a value in the array (pos++ at line 4) but, before incrementing

the counter countW (line 5), it is interleaved by thread 2, which sets both variables to 0 (lines

10 and 11). As such, when thread 1 reaches the assertion, the condition will fail because pos = 0

and countW = 1.

Let us now consider the scenario depicted in Figure 3.4. We can see that both user instances
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Figure 3.3: Example of an atomicity violation bug. Accesses to shared variables are depicted in
bold.
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Figure 3.4: Example of a scenario where two failing partial logs originate a replay log that does
not trigger the bug.

record partial logs corresponding to failing executions (user A traces accesses to SPEs threads and

pos, whereas user B records countW and countR). However, the complete replay log that results

from merging the two partial logs enforces a successful execution, which does not reproduce the

bug observed in the production run.

In the following sections, we show how CoopREP addresses the challenges related to both

partial log incompatibility and vastness of the search space. First, we propose three metrics

to compute similarity between partial logs. Then, we describe two novel heuristics that exploit

these metrics to generate a failure-inducing replay log in a small number of attempts.
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3.2 Similarity Metrics

CoopREP uses similarity metrics to quantify the amount of information that different par-

tial logs have in common. Similarity can hold values in the [0,1] range and the rationale for

the classification of the similarity between two partial logs is related to their number of SPEs

with similar access vectors (i.e., SPEs for which the logs have observed exactly the same or a

very alike thread interleaving at runtime). Hence, the more SPEs with equal access vectors the

partial logs have, the closer to 1 their similarity is.

We propose three metrics to measure partial log similarity: Plain Similarity (PSIM ), Dis-

persion Similarity (DSIM ), and Dispersion Hamming Similarity (DHS ). Briefly, PSIM and

DSIM differ essentially on the weight given to the SPEs of the program. On the other hand,

DSIM and DHS weigh SPEs in the same way, but DHS uses a more fine-grained method than

DSIM to compare access vectors.

We now describe each similarity metric in detail. Table 3.1 summarizes the formal notation

that will be used to define the metrics.

Table 3.1: Notation used to define the similarity metrics.
Notation Description

S Set of all SPEs of the program.

Sl Subset of SPEs traced by partial log l.

AV

Set of all access vectors recorded for all SPEs by
all partial logs. (AV∗ indicates the set of different
access vectors recorded for all SPEs by all partial
logs.)

AVs
Set of all access vectors recorded for SPE s by all
partial logs.
(AV∗s indicates the set of different access vectors
recorded for SPE s by all partial logs.)

l.s Access vector recorded for SPE s by partial log l.

Commonl0,l1 = {s | s ∈ Sl0 ∩ Sl1}
Intersection of SPEs recorded by both partial logs
l0 and l1.

Equal l0,l1 = {s | s ∈ Commonl0,l1 ∧ l0.s = l1.s}
Intersection of SPEs with identical access vectors
recorded by both partial logs l0 and l1.

Diff l0,l1 = {s | s ∈ Commonl0,l1 ∧ l0.s 6= l1.s}
Intersection of SPEs with different access vectors
recorded by both partial logs l0 and l1.
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3.2.1 Plain Similarity

Let l0 and l1 be two partial logs, their Plain Similarity (PSIM ) is given by the following

equation:

PSIM (l0, l1) =
#Equal l0,l1

#S
×
(

1−
#Diff l0,l1

#S

)
(3.1)

where #Equal l0,l1 , #S, and #Diff l0,l1 denote the cardinality of the sets Equal l0,l1 , S, and

Diff l0,l1 , respectively. The first factor of the product computes the fraction of SPEs that have

equal access vectors. The second factor penalizes the similarity value in case the partial logs

have common SPEs with different access vectors (otherwise, #Diff l0,l1 will be 0 and the value

of the first factor will not be affected).

Note that PSIM is equal to 1 only when both logs are complete and identical, i.e., when

they have recorded access vectors for all the SPEs of the program (Sl0 = Sl1 = S) and those

access vectors are equal for both logs (l0.s = l1.s,∀s ∈ S). This implies that, for any two partial

logs, their Plain Similarity will always be smaller than 1. However, the greater this value is, the

more similar the two partial logs are.

Finally, it should be noted that functions Equal l0,l1 and Diff l0,l1 can be implemented very

efficiently by comparing pairs of partial logs using the hashes of their access vectors.

3.2.2 Dispersion Similarity

In opposition to PSIM, Dispersion Similarity (DSIM ) does not assign the same weight to

all SPEs. Instead, it takes into account whether a given SPE exhibits many different access

vectors across the collected partial logs or not. We refer to this property as dispersion.

The dispersion of an SPE depends, essentially, on the number of concurrent and unsynchro-

nized accesses to shared memory existing in the target program, as well as on the number of

threads. The reason is twofold. On the one hand, the thread interleaving of a given concurrent

execution is heavily affected by memory races (see Section 2.1). On the other hand, the more

threads the program has, the greater the number of possible outcomes for each memory race

is. For instance, in Figure 3.3, we can see that shared variables pos, countW, and countR are
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subject to data races, as their accesses in both threads are not synchronized. As a consequence,

the access vectors for these variables may easily contain different execution orders.

To capture the dispersion of a particular SPE, comparatively to the other SPEs of the

program, we define an additional metric denoted overall-dispersion. This metric corresponds to

the ratio between the number of different access vectors logged for a given SPE and the whole

universe of different access vectors collected for all SPEs (across all instances). More concretely,

we compute the overall-dispersion of an SPE s as follows:

overallDisp(s) =
#AV∗s
#AV∗

(3.2)

Note that the result of this metric varies within the range [0,1]. Also, note that overallDisp

assigns larger dispersion to SPEs that tend to exhibit different access vectors across the collected

partial logs. As an example, assume that we have two SPEs – x and y – and two partial logs

containing identical access vectors for SPE x (say x1) and different access vectors for SPE y (say

y1 and y2). In this case we would have overallDisp(x) = 1
3 , and overallDisp(y) = 2

3 .

With overall-dispersion, we now define Dispersion Similarity as follows. Let l0 and l1 be two

partial logs. The Dispersion Similarity (DSIM) between l0 and l1 is given by the equation:

DSIM (l0, l1) =
∑

x∈Equal l0,l1

overallDisp(x)×

1−
∑

y∈Diff l0,l1

overallDisp(y)

 (3.3)

Using overall-dispersion as weight in DSIM, we can bias the selection towards pairs of logs

that have similar access vectors for SPEs that are often subject to different access interleavings.

The rationale is that two partial logs having in common the same “rare” access vector, for a

given SPE, are more likely to have been captured from compatible production runs.

3.2.3 Dispersion Hamming Similarity

Both PSIM and DSIM metrics rely on a binary comparison of access vectors, i.e., the

access vectors are either fully identical or not (see Equations 3.1 and 3.3). However, it can

happen that two access vectors have the majority of their values identical, differing only on a



44 CHAPTER 3. COOPREP

few positions. For instance, let us consider three access vectors: A = [1, 1, 1, 1], B = [1, 1, 1, 0],

and C = [0, 0, 0, 0]. It is obvious that, despite being all different, A is more similar to B than to

C.

To capture the extent to which two partial logs differ, we defined another similarity metric,

called Dispersion Hamming Similarity (DHS). This metric is defined as follows.

Let l0 and l1 be two partial logs, their Dispersion Hamming Similarity is given by the

following equation:

DHS (l0, l1) =
∑

s∈Common l0,l1

hammingSimilarity(l0.s, l1.s)× overallDisp(s) (3.4)

where Commonl0,l1 is the set of SPEs recorded by both partial logs l0 and l1 (see Table 3.1),

hammingSimilarity(l0.s, l1.s) gives the value (normalized to range [0,1]) of the Hamming simi-

larity of the access vectors logged for SPE s in partial logs l0 and l1, and overallDisp(s) measures

the relative weight of SPE s in terms of its overall-dispersion (see Equation 3.2).

Hamming similarity is a variation of the Hamming distance [Hamming 1950] used in several

disciplines, such as telecommunication, cryptography, and information theory. Hamming dis-

tance is employed to compute distance between strings and can be defined as follows: given two

strings s1 and s2, their Hamming distance is the number of positions which differ in the corre-

sponding symbols. In other words, it measures the minimum number of substitutions needed

to transform s1 into s2. On the other hand, Hamming similarity corresponds to the number of

equal positions between s1 and s2.

As previously referred, in the context of CoopREP, we apply Hamming similarity to access

vectors rather than strings.5 As such, it might happen that two access vectors being compared

have different sizes. We address this issue by augmenting the shorter vector with a suffix of N

synthesized thread IDs (different from the ones in the larger vector), where N is equal to the

size difference of the two access vectors.

5Additional metrics based on edit distance would be potentially usable, but, for the work in this chapter, we
opted for metrics with more efficient computation.
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3.2.4 Trade-offs among the Metrics

In this section, we compare the three partial log similarity metrics in terms of their time

complexity and accuracy.6 The need for greater accuracy can arise when the overall-dispersion

weight values are not well balanced across the SPEs. This happens when some SPEs have

identical access vectors in almost every partial log, while other SPEs exhibit access vectors that

are equal (or very alike) only in a small subset of partial logs. As such, the ability to accurately

identify those small subsets of similar partial logs becomes crucial to generate a feasible replay

log.

Let S be the number of SPEs in a log and L the maximum length of an access vector

recorded. Beginning with Plain Similarity, this metric compares the hashes of all overlapping

SPEs between the two partial logs. Since the metric has to find the set of overlapping SPEs

between the two logs in order to perform the hash comparison, it has a time complexity of O(S2).

In terms of accuracy, one may argue that PSIM provides poor accuracy, since it assumes that

every SPE has the same importance. Consequently, PSIM can be considered to be a simple and

baseline metric to capture partial log similarity.

Dispersion Similarity also executes in O(S2) time, because, like PSIM, it solely compares

hashes7. However, DSIM provides more accuracy than PSIM, as it assigns different weights to

SPEs.

Finally, Dispersion Hamming Similarity is expected to further improve the accuracy provided

by DSIM, by allowing to compare access vectors at a finer granularity, and not just by means of

a binary classification (i.e., equal or different). Unfortunately, this increase in accuracy comes

at the cost of a larger execution time, because DHS requires comparing each position of the

access vectors instead of just comparing their hashes, as done in PSIM and DSIM. As such,

DHS executes with O(S2 · L) complexity.

In sum, each one of the three metrics represent a particular trade-off between computation

time and accuracy. Section 3.5.2 provides an empirical comparison of the similarity metrics to

6We consider accuracy to be related to the granularity degree used to measure similarity between access vectors.
For example, measuring similarity at the level of the access vector as a whole (i.e., by comparing their hashes) is
more coarse-grained than measuring similarity at the level of each position of the access vector. Therefore, the
former is less accurate than the latter.

7We are disregarding the time to calculate SPEs’ overall-dispersion, as this computation is performed only
once, at the beginning of the statistical analysis.
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further assess the benefits and limitations of each one.

3.3 Heuristics to Merge Partial Logs

As mentioned in Section 3.1.3, testing all possible combinations of partial logs to find one

capable of successfully reproducing the non-deterministic bug is impractical. To cope with this

issue, we have developed two novel heuristics, denoted Similarity-Guided Merge (SGM) and

Dispersion-Guided Merge (DGM). The goal of the heuristics is to optimize the search among all

possible combinations of partial logs (from failing executions) and guide it towards combinations

that result in an effective (i.e., bug-inducing) replay log.

Both heuristics operate by systematically picking a partial log to serve as basis to reconstruct

a complete trace of the failing execution. To find this base partial log, the heuristics rank the

partial logs in terms of relevance. Thereby, the heuristics differ essentially in the strategy

employed to compute and sort the partial logs according to their relevance.

SGM considers the most relevant partial logs to be the ones that maximize the chances of

being completed with information from other similar partial logs. The rationale is that if there

is a group of partial logs with high similarity among themselves, then it should probably mean

that they were captured from compatible production runs.

On the other hand, DGM focuses on finding partial logs whose SPEs account for higher

overall-dispersion. The rationale is that, by ensuring the compatibility of the most disperse SPEs

(because they were traced from the same production run), DGM maximizes the probability of

completing the missing SPEs with access vectors that tend to be common across the partial

logs. The downside of DGM is that its most relevant partial logs are less likely to have other

potential similar partial logs to be combined with. Exactly because the dispersion of the SPEs

in the relevant partial log is high, the access vectors for these SPEs are rarely occurring in other

logs and, therefore, are not good matching points. This fact can hinder the effectiveness of the

DGM heuristic when the capacity of the partial logs is not sufficient to encompass all the SPEs

with high overall-dispersion.

In the following sections, we further describe SGM and DGM by detailing their two operation

phases: computation of relevance and generation of the next candidate replay log. Next, we

discuss the advantages and drawbacks of each heuristic. Finally, we present a general algorithm
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Algorithm 1: sgm.computeRelevance

Input: PLogs: set with partial logs collected during production runs.
simMetric: metric used to measure similarity between partial logs.

Output: MostRelevant : sorted set containing complete logs in descending order of
relevance.

1 MostRelevant = ∅
2 for baseLog ∈ PLogs do
3 simSum = 0
4 simLogs = 0
5 KNN ← simMetric.computeKNN(baseLog)
6 while KNN.hasNext() do
7 nLog ← KNN .next()
8 simSum += simMetric.measureSimilarity(baseLog, nLog)
9 baseLog .fillMissingSPEs(nLog)

10 end
11 relevance = simSum/KNN.size()
12 MostRelevant .addBasedOnRelevance(baseLog, relevance)

13 end
14 return MostRelevant

Algorithm 2: sgm.genNextReplayLog

Input: MostRelevant : sorted set containing complete logs in descending order of
relevance.

Output: replayLog : a complete execution trace ready to be replayed.

1 replayLog ← MostRelevant .next()
2 return replayLog

(employed by the statistical analyzer) that can leverage any of the two heuristics to successfully

replay concurrency bugs.

3.3.1 Similarity-Guided Merge

Computation of Relevance. SGM classifies a partial log as being relevant if it is considered

similar to many other partial logs. More formally, this corresponds to computing, for each

partial log l, the following value of Relevance:

Relevance(l) =

∑
l′∈kNN l

Similarity(l, l′)

#kNN l
(3.5)

where kNN l is a set containing l’s k-nearest neighbors (in terms of similarity) that suffice to
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fill l’s missing SPEs, and Similarity(l, l′) is one of the three possible similarity metrics (PSIM,

DSIM, or DHS ). Note that kNN l contains, at most, one unique partial log (the most similar)

per missing SPE in l, which means that #kNN l will always be smaller or equal than the number

of missing SPEs in l. Also, if several partial logs have the same similarity with respect to l and

fill the same missing SPE, kNN l will pick one of them at random.

Unfortunately, in order to be able to compute Relevance(l), SGM needs to measure the

similarity between all possible pairs of partial logs. This happens because, for any partial log l,

the composition of set kNN l is only accurately known after measuring the similarity between l

and all the remaining partial logs. The whole process to compute partial logs’ relevance in SGM

is presented in Algorithm 1.

For a given base partial log baseLog, SGM starts by computing the set of k-nearest neighbors

KNN (line 5). Then, SGM fills the missing SPEs in baseLog with the information recorded by

the partial logs in KNN, while calculating the corresponding relevance of the base partial log

(lines 6-11). Note that the relevance of baseLog corresponds to the average similarity between

baseLog and the partial logs contained in KNN (line 11). Finally, SGM stores the newly complete

baseLog in MostRelevant, which is a set containing the complete logs sorted in descending order

of their relevance (line 12).

Generation of the Next Candidate Replay Log. The generation of the next candidate re-

play log in SGM is straightforward. Since, during the computation of the relevance values, SGM

already combines partial logs and generates complete execution traces (line 9 in Algorithm 1),

it just needs to iteratively pick replay logs from the set of most relevant logs. Algorithm 2

illustrates this procedure.

3.3.2 Dispersion-Guided Merge

Computation of Relevance. DGM classifies a partial log as being relevant if it contains SPEs

with high overall-dispersion. The Relevance of a partial log l in DGM is computed as follows:

Relevance(l) =
∑
s∈Sl

overallDisp(s) (3.6)

By identifying partial logs that have traced the most disperse SPEs, DGM attempts to
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Algorithm 3: dgm.computeRelevance

Input: PLogs: set with partial logs collected during production runs.
Output: MostRelevant : set containing partial logs sorted in descending order of their

relevance.

1 MostRelevant = ∅
2 for baseLog ∈ PLogs do
3 dispSum = 0
4 for spe ∈ baseLog.getSPEs() do
5 dispSum += spe.getOverallDisp()
6 end
7 MostRelevant .addBasedOnRelevance(baseLog,dispSum)

8 end
9 return MostRelevant

Algorithm 4: dgm.genNextReplayLog

Input: MostRelevant : set containing partial logs sorted in descending order of their
relevance.
simMetric: metric used to measure similarity between partial logs.

Output: replayLog : a complete execution trace ready to be replayed.

1 replayLog ← MostRelevant .next()
2 KNN ← simMetric.computeKNN(replayLog)
3 while ! replayLog.isComplete() ∧ KNN.hasNext() do
4 nLog ← KNN .next()
5 replayLog .fillMissingSPEs(nLog)

6 end
7 return replayLog

decrease the chances of completing the missing SPEs with non-compatible access vectors. Algo-

rithm 3 shows how DGM computes relevance for a set of partial logs.

DGM computes the relevance of a given base partial log baseLog by summing the overall-

dispersion values of the SPEs recorded by baseLog (lines 2-6). DGM then stores the base partial

log in the sorted set MostRelevant according to the computed relevance (line 7).

Generation of the Next Candidate Replay Log. Algorithm 4 describes how DGM generates

new replay logs. In opposition to SGM, DGM does not combine partial logs when computing

their relevance. As a consequence, after picking the base partial log to build the next candidate

replay trace, DGM has still to identify its k-nearest neighbors (line 2). Once the set of k-nearest

neighbors KNN is computed, DGM then fills the missing SPEs in the base partial log with the

information recorded by the logs in KNN (lines 3-6).
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threads1 = [1]
pos1 = [1,1,1,1,2,1]
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base log

Figure 3.5: Example of the modus operandi of the two heuristics (SGM and DGM ), using
DSIM as similarity metric. The gray lines in the partial logs indicate the access vectors that
were observed in the corresponding production run but not traced.

As final remark, note that the similarity metrics are orthogonal to the heuristics. For instance,

DGM, although using overall-dispersion to calculate the relevance values, can employ any simi-

larity metric (i.e., PSIM, DSIM, or DHS ) to compute the set of nearest neighbors for the base

partial log.

3.3.3 Example

To better illustrate how the two heuristics operate, let us see an example. On the left side

of Figure 3.5, we have six failing partial logs collected from user instances running the program

in Figure 3.3. Notice that each partial log recorded only two of the four SPEs of the program

(traced SPEs are depicted in black and the observed, but not recorded, SPEs are represented in

gray). The subscript number in each SPE identifier indicates the hash of its respective access

vector (e.g., pos1 6= pos2).

As shown at the center of Figure 3.5, there are eight different access vectors in to-

tal: threads1, pos1, pos2, pos3, countW1, countW2, countR1, and countR2. Therefore,

we obtain the following values of dispersion for the four SPEs: overallDisp(threads) = 1/8,

overallDisp(pos) = 3/8, overallDisp(countW) = 2/8, and overallDisp(countR) = 2/8.

Let us consider DSIM as similarity metric in this example (see Equation 3.3). We now

describe how SGM and DGM operate to produce a complete replay log using the partial logs

depicted in Figure 3.5.

SGM. This heuristic first calculates the similarity among the partial logs (see the similarity ma-
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trix at the center-bottom of Figure 3.5). For example, both logs A and D traced the same access

vector countW1 for their single overlapping SPE countW, hence DSIM(A,D) = DSIM(D,A) =

2/8.

Next, SGM computes the k-nearest neighbors for all partial logs and ranks them according

to their value of relevance. The k-nearest neighbors for each log are marked with shaded cells

in the similarity matrix at the center-bottom of Figure 3.5. For instance, the nearest neighbors

for partial log A are partial logs D and E, because these are the logs exhibiting higher similarity

to A that suffice to fill A’s missing SPEs.

Recall from Section 3.3.1 that the most relevant log in SGM is considered to be the one

with highest average similarity to the partial logs in the nearest neighbors set. The box at the

bottom-right of Figure 3.5 shows the logs sorted in descending order of their relevance for SGM.

As we can see, log A is the most relevant one (note that Relevance(A) = (2/8 + 1/8)/2 = 3/16)

and, therefore, is chosen as the base partial log. The first candidate replay log in SGM will thus

be composed by partial log A augmented with access vector pos1 from D and countR1 from E.

DGM. This heuristic considers the relevance of partial logs to be the sum of their SPEs’ overall-

dispersion. The table at the center-top of Figure 3.5 reports the relevance value for the partial

logs in DGM. Since there are several partial logs with the highest value of relevance, namely B,

C, and D, DGM simply picks one at random. Let us follow the alphabetical order and pick B

as the base log. Given that B does not have any particular similar partial log (the similarity

between B and any other partial log is 0, as reported in the similarity matrix in Figure 3.5), DGM

fills B’s missing SPEs with access vectors from other partial logs randomly picked (say A and

C ). Thereby, the candidate replay log for DGM will be composed by partial log B augmented

with access vector threads1 from A and countR2 from C.

Finally, note that both replay logs produced by the heuristics allow for triggering the bug.

3.3.4 Trade-offs among the Heuristics

We now analyze the complexity of the heuristics in terms of the time they take to compute

the relevance of partial logs and generate a replay log.

Recall from Section 3.2.4 that measuring the similarity between two partial logs requires

either S2 steps or (S2 · L) steps depending on the similarity metric used (where S is equal to
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the number of SPEs in a logs and L indicates the maximum number of entries of the access

vectors being compared). For the sake of simplicity, let us denote the complexity of computing

the similarity between two partial logs by simMetric(m), where m ∈ {PSIM, DSIM, DHS} is

one of the three similarity metrics presented in Section 3.2. In addition, let N be the number

of partial logs collected across all user instances.

To compute the relevance of a given partial log, the SGM heuristic needs to calculate

the similarity between that log and the N − 1 remaining logs, which results in complexity

O(N ·simMetric(m)). Consequently, computing the relevance for all partial logs will have time

complexity O(N2 · simMetric(m)). Furthermore, inserting a log in the sorted set of the most

relevant logs requires log(N) steps. Therefore, the overall complexity of SGM, using similarity

metric m for sorting partial logs according their relevance, is O(N2·simMetric(m)·log(N)).

Regarding the generation of a new replay log, SGM incurs O(1) complexity as it simply

needs to return the next most relevant log from the sorted set (see Algorithm 2).

On the other hand, the DGM heuristic computes each partial log’s relevance by simply

summing the overall-dispersion of its SPEs, which requires S steps. Considering all partial logs,

this procedure is executed N times. Therefore, the complexity of DGM to compute the set of

most relevant partial logs is O(N · S · log(n)). In turn, when generating a replay log, DGM has

also to measure the similarity between the base partial log and all the other logs. This requires

computing the similarity between N − 1 partial logs, which results in an overall complexity of

O(N2·simMetric(m)) in the worst case scenario.

We now compare the two heuristics in terms of their benefits and limitations in replaying

concurrency bugs via partial log combination.

SGM has the advantage of quickly identifying clusters of similar partial logs. This is useful

when the majority of partial logs exhibits SPEs with different access vectors. In this scenario,

finding a couple of partial logs with identical (or very alike) access vectors means that there is a

high probability that their combination yields a feasible and effective replay log. The drawback

of this heuristic is its additional complexity to rank the partial logs in terms of relevance.

DGM, on the other hand, has the key benefit of quickly computing the relevance of partial

logs. Moreover, it is also effective when the number of SPEs traced by each partial log is

sufficient to encompass all SPEs with high overall-dispersion. This means that, for a given base
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partial log, the remaining non-recorded SPEs should exhibit common access vectors. Hence, the

replay log can be trivially produced by simply merging the base log with any other partial log

(the example for DGM in Figure 3.5 illustrates this scenario). However, when the number of

high-disperse SPEs is greater than the size of the partial log, DGM is not as effective as SGM

because the partial logs with higher SPE overall-dispersion tend to have few similar partial logs

(e.g., partial log B in Figure 3.5 does not have similar partial logs at all).

3.4 Statistical Analyzer Execution Mode

After discussing the similarity metrics and the heuristics, we now describe how all these

components fit together in CoopREP’s execution flow. Algorithm 5 depicts the pseudo-code of

the general algorithm employed by the statistical analyzer (see Section 3.1.1) to systematically

combine partial logs in order to find a replay log capable of reproducing the bug. The algorithm

receives a similarity metric and a heuristic as input, and starts with the candidate generator

ranking the partial logs according to their relevance value (line 2). Next, the candidate generator

builds a candidate replay log (line 6), following the strategies described in Sections 3.3.1 and

3.3.2, respectively for Similarity-Guided Merge and Dispersion-Guided Merge heuristics.

At the end of this process, the replay oracle enforces the schedule defined by the candidate

replay log and verifies whether the bug is reproduced or not (line 7). If it is, the goal has been

achieved and the algorithm ends. If it is not, the candidate generator produces a new replay

log and sends it to the replay oracle for a new attempt. This procedure is repeated while the

bug has not been replayed (i.e., hasBug = false) and the candidate generator has more replay

logs to be attempted. It should be referred that, in the worst case scenario, where all the replay

logs generated by the heuristic fail to trigger the bug, the algorithm switches to a brute force

mode. Here, all possible access vectors (collected by the partial logs) are tested for each missing

SPE of the base partial log (lines 10-12), until the error is triggered or the maximum number of

attempts to reproduce the bug is reached (i.e., replayOracle.reachedMaxAttempts() = True).

Corner Case: Partial Logs with 1 SPE. A special case in the cooperative record and

replay approach occurs when the developer defines recording profiles that result in partial logs

tracing information for a single SPE. This particular scenario, although minimizing the runtime

overhead, hampers the goal of combining access vectors from potentially compatible partial
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Algorithm 5: Statistical Analyzer’s algorithm to produce a complete replay log via par-
tial log combination.

Input: PLogs: set with partial logs collected from production runs.
heuristic: heuristic to merge partial logs (it can be either sgm or dgm)
simMetric: metric used to measure similarity between partial logs.

Output: replayLog : a complete execution trace ready to be replayed.

1 // Compute relevance
2 MostRelevant ← candidateGen.computeRelevance(PLogs, heuristic, simMetric)

3 // Generate the next candidate replay log and attempt to replay the bug
4 hasBug = false
5 while ! hasBug ∧ candidateGen.hasNextReplayLog() do
6 replayLog ← candidateGen.genNextReplayLog(MostRelevant, heuristic, simMetric)
7 hasBug ← replayOracle.replay(replayLog)

8 end

9 // Brute Force attempts
10 while ! hasBug ∧ ! replayOracle.reachedMaxAttempts() do
11 for all partial logs, test all possible combinations of access vectors to fill the missing

SPEs and check whether the bug is reproduced
12 end
13 return replayLog

logs. Since partial logs with 1 SPE either do not overlap at all or overlap in their single SPE, it

becomes pointless to apply the similarity metrics and the heuristics.

To address this issue, we compute the correlation between the bug and each access vector

individually using a statistical indicator named BugCorrelation. BugCorrelation is adapted

from the scoring method proposed by Liblit et al [2003] that, in addition to failing executions,

leverages information from successful executions. Concretely, we classify access vectors based

on their Sensitivity and Specificity, i.e., based on whether they account for many failed runs and

few successful runs. BugCorrelation is then computed as the harmonic mean between Sensitivity

and Specificity, thus allowing the identification of access vectors that are simultaneously highly

sensitive and specific.

Let Ftotal be the total number of partial logs, resulting from failing executions, that have

traced a given SPE s. For an access vector v, let F (v) be the number of failing partial logs that

have recorded v for s, and let S(v) be the number of successful partial logs that have recorded

v for s. The three aforementioned statistical indicators are then calculated as follows.
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Sensitivity(v) =
F (v)

Ftotal
(3.7)

Specificity(v) =
F (v)

S(v) + F (v)
(3.8)

BugCorrelation(v) =
2

1
Sensitivity(v) + 1

Specificity(v)

(3.9)

In summary, the higher the BugCorrelation value, the more correlated with the bug the

access vector is. Therefore, when partial logs contain only one SPE, the candidate generator

computes the statistical indicators for each SPE and builds a complete log by merging the

access vectors that exhibit higher BugCorrelation. If there is more than one access vector with

the highest value of BugCorrelation for a given SPE, different combinations are tested. However,

if the bug does not manifest after these attempts, the candidate generator switches to a brute

force mode, where it tests all possible combinations of access vectors as in Algorithm 5.

3.5 Evaluation

The main goal of CoopREP is to reproduce concurrency bugs with lower overhead than

previous approaches, using cooperative logging and partial log combination. In this context, we

are interested in evaluating CoopREP by answering the following questions:

• Which similarity metric provides the best trade-off between accuracy, execution time, and

scalability? (Section 3.5.2)

• Which CoopREP heuristic replays the bug in fewer attempts? How do the heuristics

compare to previous state-of-the-art deterministic replay systems? (Section 3.5.3)

• How does CoopREP’s effectiveness vary with the number of logs collected? (Section 3.5.4)

• How much runtime overhead reduction can CoopREP achieve with respect to other classic,

non-cooperative logging schemes? (Section 3.5.5)

• How much can CoopREP decrease the size of the logs generated? (Section 3.5.6)
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3.5.1 Experimental Setting

We implemented a prototype of CoopREP in Java, using Soot8 to instrument the target

applications. We have also implemented two other state-of-the-art record and replay systems

on top of CoopREP for comparison with their respective original, non-cooperative versions: i)

LEAP [Huang, Liu, & Zhang 2010], which uses a classic order-based strategy to record informa-

tion, and ii) PRES [Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009], a search-based system.

Similarly to CoopREP’s approach, PRES only traces partial logs at runtime and, then, uses

a post-recording exploration technique to produce a failure-inducing execution trace. Unlike

CoopREP though, PRES does not combine logs from multiple user instances. As such, the

version of CoopREP combined with PRES further reduces the amount of information that the

original PRES version traces, by distributing it across multiple user instances of the program.

Since PRES’s code is not publicly available, we tried to reimplement it as faithfully as possible,

according to the details given in [Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009].

Regarding CoopREP’s partial logging profiles, we varied the percentage of the total SPEs

logged in each run according to three different coverage configurations – 25%, 50%, and 75%.

In addition, we also considered the extreme case where partial logs only have one SPE. For

each configuration, we used 500 partial logs from different failing executions, plus 100 additional

partial logs from successful runs (used to compute the statistical indicators for the 1SPE case).

To fairly compare the recording configurations, partial logs were generated from complete logs by

randomly picking the amount of SPEs corresponding to the coverage configuration’s percentage.

The maximum number of attempts of the heuristics to reproduce the bug was set to 500.

Note that, following the 500 tries, one may resort to the brute force approach. Since we have

verified, in our experiments, that brute force partial log combination brought no added value to

the heuristics, we opted for reporting the results of the experimental evaluation solely up to the

threshold of 500 replay attempts (see Section 3.5.3).

As a final remark, in the following sections, we assume the order-based version of CoopREP

(i.e., using LEAP on top of CoopREP) for the experiments, unless mentioned otherwise.

All the experiments were conducted in a machine Intel Core 2 Duo at 3.06 GHz, with 4 GB

of RAM and running Mac OS X. However, the logs were evenly recorded from four different

8http://www.sable.mcgill.ca/soot/
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machines: three of them with 4 GB of RAM, running Mac OS X, but with processors Intel Core

2 Duo at 2.26 GHz, 2.66 GHz, and 3.06 GHz, respectively; and the last one equipped with an 8

core processor AMD FX 8350 at 4GHz, 16 GB of RAM, running Ubuntu 13.04.

3.5.2 Similarity Metrics Comparison

The goal of the first question is to evaluate how effective CoopREP is in replaying concur-

rency bugs, and assess which partial log similarity metric – Plain Similarity (PSIM), Dispersion

Similarity (DSIM), or Dispersion Hamming Distance (DHS) – exhibits the best trade-off be-

tween accuracy and execution time. To this end, we used several programs from the IBM

ConTest benchmark suite [Farchi, Nir, & Ur 2003a], which contain various types of concurrency

bugs.9 Table 3.2 describes these programs in terms of their number of SPEs, the total number

of shared accesses, the failure rate, and the bug pattern according to Farchi et al. [Farchi, Nir,

& Ur 2003a].

Table 3.2: ConTest benchmark programs.

Program #SPE
#Total Failure Bug

Accesses Rate Description

BoundedBuffer 15 525 1% deadlock (notify instead of notifyAll)

BubbleSort 11 52495 2% atomicity violation (wrong/no lock)

BufferWriter 6 130597 35% atomicity violation (wrong/no lock)

Deadlock 4 12 12% deadlock

Manager 5 2368 28% atomicity violation (wrong/no lock)

Piper 8 580 6% ordering violation (missing condition for wait)

ProducerConsumer 8 576 15% data race

TicketOrder 9 6662 2% atomicity violation (wrong/no lock)

TwoStage 5 27103 1% atomicity violation (two-stage)

Accuracy. In these experiments, we are interested in evaluating the impact of the metrics’

accuracy on the effectiveness of CoopREP. Table 3.3 reports the number of attempts required

by the SGM heuristic, using each the three metrics, to replay the bug for the configurations

previously mentioned (25%, 50%, and 75%). We omit the results for DGM heuristic because

they show similar trends.

By analyzing Table 3.3, we can see that, apart from program Manager, all three metrics

allow the heuristic to replay the bugs for at least one recording scheme. Despite that, PSIM is

9We restrict our analysis to ConTest programs that have at least 4 SPEs.
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Table 3.3: Number of attempts required by the SGM heuristic, using the three similarity metrics,
to replay the ConTest benchmark bugs. The X indicates that the heuristic failed to replay
the bug within the maximum number of attempts. The “-” indicates that the corresponding
configuration resulted in an 1SPE case and, therefore, it is not applicable for metric comparison.

Program
25% 50% 75%

PSIM DSIM DHS PSIM DSIM DHS PSIM DSIM DHS

BoundedBuffer 233 1 1 1 1 1 1 1 1

BubbleSort 482 482 482 372 372 372 256 256 256

BufferWriter X X X X X X 17 13 13

Deadlock - - - 1 1 1 1 1 1

Manager - - - X X X X X X

Piper X X X 133 1 1 1 1 1

ProducerConsumer X X X 287 19 19 6 6 6

TicketOrder X X X 93 43 43 47 25 25

TwoStage - - - 466 15 15 62 10 10

generally less efective than DSIM and DHS, as shown by the results for Piper, ProducerCon-

sumer, TicketOrder, and TwoStage (especially for a coverage of 50%). These results confirm our

insight about the positive effect of taking into account SPE dispersion when measuring partial

log similarity.

Another interesting observation is concerned with the variation of the bug replay ability

of the SGM heuristic across the benchmarks, regardless of the similarity metric. For instance,

even when partial logs contain 75% of the total number of SPEs, the bug in program BubbleSort

was only reproduced at the 256th attempt. On the other hand, the error in BoundedBuffer was

replayed almost always at the 1st attempt. This is due to the dispersion of the SPEs that, when

very high, hampers heavily the combination of compatible partial logs. We will go deeper into

how SPE dispersion affects the bug replay ability in Section 3.5.3.

Finally, note that the number of attempts to replay the bug increases with the decrease of

the number of SPEs per partial log, as expected.

Execution Time. In order to understand which metric provides the best trade-off between

accuracy and execution time, we have also measured the time required by the heuristic to

compute the relevance of all the 500 partial logs collected. The outcomes of these experiments

are presented in Table 3.4. Recall that, for SGM, calculating the relevance requires computing

the similarity between every pair of partial logs. Hence, the results in Table 3.4 also account for

these computations.

By analyzing the table, we can see that DHS exhibits, as expected, the worst performance,
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Table 3.4: Execution time (in seconds) to compute the relevance of 500 logs in SGM, for each
similarity metric.

Program
25% 50% 75%

PSIM DSIM DHS PSIM DSIM DHS PSIM DSIM DHS

BoundedBuffer 2.24 2.27 3.45 2.54 2.6 3.79 2.62 2.77 4.04

BubbleSort 31.78 32.70 53.59 64.9 69.16 155.99 88.84 92.43 252.19

BufferWriter 584.68 604.41 702.56 1371.95 1605.48 1937.79 1516.41 2082.03 3532.38

Deadlock - - - 1.85 1.89 2.02 2.40 2.47 2.52

Manager - - - 4.87 4.75 20.44 8.85 9.31 30.17

Piper 2.04 2.53 3.26 2.74 3.11 5.98 2.95 3.52 9.79

ProducerConsumer 2.1 2.24 3.79 2.18 2.53 4.84 2.45 2.73 8.33

TicketOrder 5.99 6.64 12.57 10.16 10.68 28.6 11.77 11.86 47.60

TwoStage - - - 7.50 7.45 31.08 8.64 9.11 44.93

by being up to 5.2x slower than PSIM for TwoStage (when logging 75% of the SPEs). In turn,

DSIM typically achieves almost the same execution time as PSIM, which can be explained by

the fact that the computation of overall-dispersion for each SPE is performed only once, at the

beginning of the analysis. For this reason, we believe DSIM to be the most cost-effective metric

to measure similarity between partial logs.

Table 3.4 also shows that computation time is greatly affected by the number of shared

accesses in the program (which are indicated in Table 3.2). For instance, BufferWriter is simul-

taneously the program with the highest number of accesses (>130K) and the highest computation

time (almost one hour for the 75% scheme using DHS ). However, it should be noted that the

values reported in Table 3.4 encompass the time required to load the logs into memory, create

the objects and data structures used by CoopREP, as well as compute the similarity between

the partial logs. Given that the task of computing similarity can be easily performed in parallel

or even in the cloud (which does not happen in our current prototype), we conducted some

additional experiments to further assess the computational cost and the scalability of the three

metrics. We present these experiments in the following section.

Scalability. To assess the scalability of the metrics, we measured the amount of time required

to compare two partial logs using each one of the three similarity metrics. Table 3.5 reports

these results for logs of sizes ranging from 1KB to 1GB, as well as the bootstrapping time for

each case (i.e., the time required to load the logs into memory and create the data structures

used by CoopREP).

From Table 3.5, it is easily observed that the great majority of the execution time in
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CoopREP’s statistical analysis is devoted to bootstrapping. Moreover, it is possible to see

that this value increases linearly with the size of the logs being analyzed.

On the other hand, the cost to measure similarity using either PSIM or DSIM metrics is

practically unaffected by the size of the logs being compared, because these metrics use hashes of

the access vectors to compute the similarity value. As such, one can conclude that these metrics

are very scalable and efficient. The same does not apply to DHS because it needs to compare

every single position of the access vector and, thus, its computation time depends heavily on

the size of the log. For instance, DHS took around 40s to compare a single pair of logs of 1GB.

In summary, the results in Table 3.5 provide further evidence that DSIM is the similarity

metric that exhibits better trade-off between effectiveness and efficiency.

Table 3.5: Time (in seconds) required by the three metrics to measure similarity between two
partial logs.

Log Size
Execution Time (s)

Bootstrapping PSIM DSIM DHS

1 KB 0.031 0.001 0.001 0.002

10 KB 0.139 0.001 0.001 0.010

100 KB 0.477 0.003 0.004 0.014

1 MB 1.712 0.004 0.007 0.032

10 MB 17.037 0.005 0.008 0.489

100 MB 119.413 0.016 0.022 4.121

1 GB 1202.054 0.024 0.032 40.078

3.5.3 Heuristic Comparison

We are now interested in evaluating the ability to replay bugs of our merging heuristics with

respect to state-of-the-art order-based and search-based techniques. We denote by CoopREPL

the version of CoopREP that applies cooperative record and replay to LEAP [Huang, Liu, &

Zhang 2010], and by CoopREPP the version of CoopREP that implements PRES’s approach.

To a smaller extent, we are also interested in comparing the Similarity-Guided Merge heuris-

tic against the Dispersion-Guided Merge heuristic to assess which one replays the bug in fewer

attempts. Finally, we also aim at investigating bug reproducibility for the 1SPE case, in which

CoopREP uses statistical indicators to merge partial logs that have traced only one SPE.

Regarding the test subjects, besides the programs of the ConTest benchmark suite (see

Table 3.2), we used four concurrency bugs from real-world applications, also used in previous
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Table 3.6: Real-world concurrency bugs used in the experiments.

Program #SPE
#Total Failure Bug

Accesses Rate Description

Cache4j 4 129 15% atomicity violation

Derby#2861 14 2509 5% atomicity violation

Tomcat#37458 22 89 16% atomicity violation

Weblech 5 54 1% atomicity violation

work [Huang, Liu, & Zhang 2010; Huang & Zhang 2012; Sen 2008; Lucia, Wood, & Ceze 2011].

These applications are described in Table 3.6 in terms of number of SPEs, number of shared

accesses, failure rate, and bug-pattern. Cache4j is a fast thread-safe implementation of a cache

for Java objects; Derby is a widely used open-source Java RDBMS from Apache (in the ex-

periments we used bug #2861 from Derby’s bug repository); Tomcat is a widely-used JSP and

servlet container (in the experiments we used bug #37458 from Tomcat’s bug repository); and

Weblech is a multithreaded web site download and mirror tool. Notice that, albeit these ap-

plications have thousands of lines of codes and many shared variables, Table 3.6 reports solely

the SPEs experienced by each application’s bug test driver. Similarly to previous works [Huang,

Liu, & Zhang 2010; Huang & Zhang 2012; Sen 2008; Lucia, Wood, & Ceze 2011], we use test

drivers to facilitate the manifestation of the failure. Despite that, some bugs are still very hard

to experience (e.g., Weblech).

3.5.3.1 CoopREPL vs LEAP (order-based)

Table 3.7 reports the number of attempts, required by each heuristic, to replay the bench-

mark bugs. Note that LEAP is a pure order-based system and, thus, is able to replay all bugs

at the first attempt.

An overall analysis of Table 3.7 shows that CoopREPL is able to replay all bugs except

Manager. Moreover, in 11 of the 12 cases, the bug was reproduced at the first attempt (for at

least one recording scheme), which proves the efficacy of the heuristics in combining compatible

partial logs.

Comparing now SGM and DGM against each other, Table 3.7 shows that DGM tends to be

more effective than SGM, especially when partial logs record a higher percentage of SPEs. To

better understand why this happens, let us observe the benchmarks’ SPE individual-dispersion
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Table 3.7: Number of replay attempts required by CoopREPL with 1SPE, SGM, and DGM
(both heuristics using DSIM metric). The X indicates that the heuristic failed to replay the
bug within the maximum number of attempts. The “-” indicates that the corresponding config-
uration resulted in an 1SPE case and, therefore, it is not applicable to the heuristics. Shaded
cells highlight the CoopREPL scheme with best trade-off between effectiveness and amount of
information recorded.

Program 1SPE
SGM + DSIM DGM + DSIM

25% 50% 75% 25% 50% 75%

BoundedBuffer X 1 1 1 3 1 1

BubbleSort X 482 372 256 1 1 1

BufferWriter X X X 13 X X 97

Deadlock 1 - 1 1 - 1 1

Manager X - X X - X X

Piper X X 1 1 X 32 1

ProducerConsumer X X 19 7 X 1 1

TicketOrder X X 43 25 X 9 1

TwoStage X - 15 10 - 1 1

Tomcat#37458 1 1 1 1 1 1 1

Derby#2861 X X X 59 X X 1

Weblech 1 - 1 1 - 1 1

Cache4j 1 - 1 1 - 1 1

depicted in Figure 3.6.10 Here, individual-dispersion corresponds to the ratio between the num-

ber of different access vectors logged for a given SPE and the total number of access vectors

collected for that SPE (across all instances).11 It is computed as follows:

individualDisp(s) =
#AV∗s
#AVs

(3.10)

The first conclusion that can be drawn from the figure is that programs with high average

SPE individual-dispersion – BufferWriter and Manager – are also the ones for which replaying

the bug was harder. In particular, the logs collected for Manager contained different access

vectors for all SPEs of the program, which clearly represents unfavorable conditions for a partial

log combination approach (in fact, none of the heuristics was able to reproduce the bug, as

indicated in Table 3.7). On the other hand, programs with low SPE dispersion (such as Deadlock

and Tomcat) were easily replayed by both heuristics, as well as when partial logs contained only

a single SPE (see the “1SPE” column in Table 3.7). This confirms our insight that CoopREP’s

10For the sake of readability and to ease the comparison, Figure 3.6 presents only the individual-dispersion
values for the full logging configuration.

11Note that individual-dispersion differs from overall-dispersion (see Equation 3.2) because it accounts for
different access vectors recorded for a particular SPE, rather than for the whole set of SPEs.
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Figure 3.6: Average SPE individual-dispersion value for the benchmarks, with a full LEAP
logging scheme. The error bars indicate the minimum and the maximum values observed.

bug replay ability depends on the program’s SPE dispersion.

Figure 3.6 also shows that the SPE individual-dispersion is highly variant in most test cases

(Deadlock, Cache4j, and Tomcat are the exceptions). This means that these programs have,

simultaneously, SPEs for which the partial logs have recorded always the same access vector,

and SPEs for which the partial logs have traced (almost) always different access vectors. Under

these circumstances, DGM was clearly more effective than SGM, because it was able to pick, as

the most relevant partial log, the one that had traced all the most disperse SPEs. This fact is

particularly evident for programs BubbleSort, TicketOrder, and Derby, for the 75% recording

scheme. These results support our claim that tracing all SPEs with very high dispersion in the

same partial log increases the likelihood of filling the remaining non-recorded SPEs with very

common (and, thus, compatible) access vectors.

However, DGM did not always outperform SGM : for the BufferWriter and Piper programs,

SGM exhibited better effectiveness. This can be explained by the fact that, for these cases, the

capacity of the partial logs was not sufficient to encompass all SPEs with high dispersion. As

a consequence, DGM ended up having several partial logs with the same relevance value and

simply picked one at random for each attempt (moreover, the majority of these most relevant

logs did not have any similarity with the remaining partial logs). In opposition, SGM was able

to quickly identify subsets of similar partial logs and, thus, generate a feasible replay log in fewer

attempts.
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3.5.3.2 CoopREPP vs PRES (search-based)

To further assess the benefits and limitations of cooperative logging, we also implemented a

version of CoopREP, denoted CoopREPP , using the approach proposed by PRES [Park, Zhou,

Xiong, Yin, Kaushik, Lee, & Lu 2009], a state-of-the-art search-based record and replay system

for C/C++ programs.12

PRES shares CoopREP’s idea of minimizing the recording overhead during production runs

at the cost of an increase in the number of attempts to replay the bug during diagnosis. As

referred in Section 2.2.2, PRES first traces a sketch of the original execution and, then, performs

an offline guided search to explore different combinations of (non-recorded) thread interleavings.

To cope with the very large dimension of the space of possible execution schedules, PRES

leverages feedback produced from each failed attempt to increase the chances of finding the

bug-inducing ordering in the subsequent one.

The authors of PRES have explored five different sketching techniques that imply different

trade-offs between recording overhead and reproducibility. Starting from a baseline logging

profile that traced only input, signals and thread scheduling, the authors performed experiments

with different sketches that incrementally record more information, namely the global order of

synchronization operations, system calls, functions, basic blocks, and shared-memory operations,

respectively. In this work, we opted for implementing a version of CoopREP that employs

the PRES-BB recording scheme (which logs the global order of basic blocks containing shared

accesses), as it provides a good trade-off between effectiveness and overhead according to the

results reported in [Park, Zhou, Xiong, Yin, Kaushik, Lee, & Lu 2009]. We also thought of

testing with a slightly more relaxed scheme, namely PRES-SYNC (which only traces the global

order of synchronization operations) but, since our test cases have very few synchronization

variables (0 to 3), we considered that applying a cooperative logging technique to this case

would not be very interesting.

Concretely, PRES-BB logs the order in which threads access basic blocks containing opera-

tions on shared variables into a single vector. To allow for cooperative logging, we changed this

recording scheme to treat each basic block (accessing shared variables) as an SPE, which means

that CoopREPP traces a distinct access vector for each shared basic block. During replay phase,

12We implemented a version of PRES in Java for the experiments.
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Table 3.8: Number of replay attempts required by PRES-BB, CoopREPP with 1SPE, SGM, and
DGM (both heuristics using DSIM metric). Column #SPEs indicates the number of basic blocks
that contain accesses to shared variables. The X indicates that the heuristic failed to replay
the bug within the maximum number of attempts. The “-” indicates that the corresponding
configuration resulted in an 1SPE case and, therefore, it is not applicable to the heuristics.
Shaded cells highlight the CoopREPP scheme with best trade-off between effectiveness and
amount of information recorded.

Program #SPEs PRES-BB 1SPE
SGM + DSIM DGM + DSIM

25% 50% 75% 25% 50% 75%

BoundedBuffer 22 1 1 1 1 1 1 1 1

BubbleSort 14 1 1 1 1 1 1 1 1

BufferWriter 9 1 X X 4 4 10 2 1

Deadlock 3 1 1 - 1 1 - 1 1

Manager 13 1 X X X X X X X

Piper 12 1 X 4 1 1 6 3 1

ProducerConsumer 20 1 X 1 1 1 6 2 1

TicketOrder 14 2 X X 316 218 X 6 2

TwoStage 9 1 X X X 44 X X 1

Tomcat#37458 32 3 X X X 6 X X 3

Derby#2861 15 X X X X X X X X

Weblech 7 1 X 1 1 1 1 1 1

Cache4j 6 1 X 1 1 1 1 1 1

we first generate a complete log using CoopREPP ’s heuristics and then apply PRES’s replay

scheme.

Table 3.8 compares both CoopREPP ’s and PRES’s post-recording exploration techniques

against each other, by focusing the evaluation on the number of replay attempts performed by

each technique.

Similarly to the previous section, CoopREPP exhibits very good effectiveness. In particular,

CoopREPP was able to replay all bugs with the same number of attempts as PRES-BB, apart

from program Manager (though achieving an average reduction of log size of 3x, as we shall

discuss in Section 3.5.6). Besides Manager, CoopREPP was also not able to reproduce the bug

in Derby, but this error was not replayed by PRES-BB either.

Comparing now the two heuristics against each other, Table 3.8 shows once again that DGM

tends to achieve better results than SGM (the former performed equally to or better than the

latter in 11 of the 13 cases).

Another interesting observation is that CoopREPP required fewer replay attempts than

CoopREPL for some test cases, namely BufferWriter, BubbleSort, and Piper. If we observe
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Figure 3.7: Average SPE individual-dispersion value for the benchmarks, with a full PRES-BB
logging scheme. The error bars indicate the minimum and the maximum values observed.

the SPE individual-dispersion for PRES-BB for these programs (depicted in Figure 3.7), it is

possible to see that the corresponding values are smaller than those of Figure 3.6.

We believe that this is the effect of considering SPEs as basic blocks with accesses to

shared variables instead of shared variables themselves. Here, access vectors that previously

encompassed all accesses to a given shared variable, now become scattered across different basic

blocks. As a consequence, if a given basic block contains only accesses to a single shared variable,

it will have fewer accesses in PRES-BB than its corresponding shared variable in LEAP, which

results in a lower individual dispersion.

However, the opposite scenario might occur as well. If a basic block encompasses accesses to

multiple shared variables, its resulting SPE individual dispersion is expected to increase. This is

visible, for instance, in programs TwoStage and TicketOrder, which exhibited higher individual

dispersion in Figure 3.7 and required more attempts to replay the bug in Table 3.8 than in

Table 3.7.

3.5.3.3 Partial Log Combination vs Bug Correlation

We now compare the heuristics for partial log combination against the approach of tracing

only one SPE per partial log and using the statistical indicators to measure correlation between

the error and the access vectors (see Section 3.4). From the results shown in Tables 3.7 and 3.8,

one can conclude that the former approach is clearly more effective for most cases. In fact, the

1SPE approach was rarely able to replay the bug in our experiments, apart from the programs
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Table 3.9: Number of the attempts required by SGM and DGM to replay the bugs in programs
Deadlock, BoundedBuffer, and Piper when varying the number of partial logs collected. The X
indicates that the heuristic failed to replay the bug within the maximum number of attempts.
The “-” indicates that the corresponding configuration resulted in an 1SPE case and, therefore,
it is not applicable to the heuristics.

#Logs
Deadlock BoundedBuffer Piper

25% 50% 75% 25% 50% 75% 25% 50% 75%

SGM

16 - 1 1 X X 1 X X X
32 - 1 1 X 1 1 X X 32
64 - 1 1 X 1 1 X X 6

128 - 1 1 3 1 1 X X 15
256 - 1 1 1 1 1 X X 1
512 - 1 1 1 1 1 X 1 1

DGM

16 - 1 1 X X 1 X X X
32 - 1 1 X 1 1 X X 1
64 - 1 1 X 1 1 X X 1

128 - 1 1 34 1 1 X X 1
256 - 1 1 6 1 1 X X 1
512 - 1 1 3 1 1 X 32 1

with very low average SPE individual-dispersion. Nevertheless, for this kind of programs, 1SPE

becomes an appealing approach to adopt, as it provides the lowest runtime overhead, as we will

see in Section 3.5.5.

3.5.4 Variation of Effectiveness with the Number of Logs Collected

Our third research question regards the impact of varying the number of logs collected on the

number of attempts required to replay the bug. To this end, we chose three of the benchmarks

bugs, successfully reproduced by both heuristics (for CoopREPL), that provide a representative

set of different average individual-dispersion values: Deadlock, BoundedBuffer, and Piper. For

each one of these programs, we ran both SGM and DGM with a number N of (randomly chosen)

partial logs, where N ∈ {16, 32, 64, 128, 256, 512}. Once again, we varied the percentage of SPEs

logged as in the previous section.

Table 3.9 reports the outcomes of the experiments. As expected, the results show that bugs

of programs with low average individual-dispersion (such as Deadlock) can be easily reproduced

even when gathering a small number of logs. On the other hand, as the average individual-

dispersion increases, the reproducibility of the program through partial logging schemes becomes

much more challenging, thus requiring a greater number of partial logs to deterministically

trigger the bug. Program Piper reflects this scenario well, as it was only possible to replay the
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bug with less than 75% of the total SPEs when logging 512 partial logs.

The results for Piper highlight another interesting observation: an increase in the number

of partial logs collected does not always imply a decrease in the number of attempts needed

to reproduce the error (see column 75% of Piper for SGM in Table 3.9). This because, for

programs with higher average individual-dispersion, having more partial logs also might increase

the chances of making “wrong choices”. For instance, SGM took more attempts to find a bug-

inducing replay log with 128 partial logs than with 64, basically because there were more partial

logs considered relevant that ended up not being compatible with the partial logs in the k-nearest

neighbor set.

Finally, note that these results provide additional evidence to support the claim that DGM

is more effective than SGM when the partial logs trace a larger number of SPEs (e.g., Piper

with 75% recording coverage). Once again, this is because DGM is able to quickly identify the

partial logs that have traced all the most disperse SPEs.

3.5.5 Runtime Overhead

In this section we analyze the performance benefits achievable via CoopREP’s approach

with respect to non-cooperative logging schemes, such as LEAP and PRES-BB. To this end,

we compared CoopREPL’s and CoopREPP ’s recording overhead respectively against that of

LEAP’s and PRES-BB’s for the benchmark programs.

For each test case, we measured the execution time by computing the arithmetic mean

of five runs. For CoopREP schemes, we computed the average value for the three different

configurations of logging profiles (each profile configuration with five runs, as well).

3.5.5.1 CoopREPL vs LEAP

Figure 3.8 reports the runtime overhead on the programs of Table 3.7. Native execution

times range from 0.01s (for BubbleSort) to 1.2s (for Weblech).

From the figure, it is possible to see that CoopREPL always achieves lower runtime degrada-

tion than LEAP. However, the results also highlight that overhead reductions are not necessarily

linear. This is due to the fact that some SPEs are accessed much more frequently than others.
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Figure 3.8: Runtime overhead (in %) of CoopREPL and LEAP, for the benchmark programs.
The error bars indicate the minimum and the maximum values observed.

Since the instrumentation of the code is performed statically, the load in terms of thread accesses

may not be equally distributed among the users, as already referred in Section 3.1.2.

Figure 3.8 also shows that it is typically more beneficial to use partial logging in scenarios

where full logging has a higher negative impact on performance. The most notorious cases are

BufferWriter, TicketOrder, and TwoStage, which are also among the applications with more SPE

accesses (see Table 3.2). For example, in TwoStage, LEAP imposes a performance overhead of

116% on average, while CoopREPL incurs only 42% overhead on average when recording half

the SPEs (which is sufficient to successfully replay the bug).

3.5.5.2 CoopREPP vs PRES-BB

We now compare the recording overhead between PRES-BB and CoopREPP . Figure 3.9

plots our results.

Once again, CoopREPP exhibits always lower runtime slowdown than PRES-BB, although

the reductions are not linear with the decrease in the partial logging percentage. Similarly to

LEAP, the benchmarks for which the benefits of CoopREPP are more prominent are those that

incur higher recording overhead, namely BubbleSort, BufferWriter, TicketOrder, and TwoStage.

In particular, for BubbleSort, PRES-BB imposes an overhead of 276%, whereas CoopREPP -
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Figure 3.9: Runtime overhead (in %) of CoopREPP and PRES-BB, for the benchmark programs
of Table 3.8. The error bars indicate the minimum and the maximum values observed.

1SPE incurs only 21% overhead on average and still reproduces the error.

3.5.5.3 Summary

To easily analyze the trade-off between effectiveness and recording overhead for the different

approaches, we now match the most effective scheme for each system (as reported in Tables 3.7

and 3.8) to the corresponding average runtime penalty. The outcomes are reported in Table 3.10.

Recall that LEAP is able to replay the bug at the first attempt for all test cases. For the cases

where either PRES-BB or CoopREP were not able to reproduce the bug, we simply report the

highest average recording overhead observed.

As shown by Table 3.10, CoopREP reduces the average recording overhead of PRES-BB and

LEAP by 39% and 21% on average, respectively, while still being effective in replaying the failure

for all benchmarks except for Manager and Derby (solely when using PRES-BB approach). In

light of these results, we advocate the benefits of the cooperative record and replay approach

with respect to other state-of-the-art approaches.
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Table 3.10: Average runtime overhead incurred by the most effective CoopREP schemes for
both PRES-BB and LEAP (according to Tables 3.7 and 3.8).

Program PRES-BB
Best of

LEAP
Best of

CoopREPP CoopREPL

BoundedBuffer 22% (1SPE) 11% 42% (SGM-25%) 15%

BubbleSort 276% (1SPE) 21% 50% (DGM-25%) 23%

BufferWriter 149% (DGM-75%) 131% 68% (SGM-75%) 40%

Deadlock 5% (1SPE) 1% 2% (1SPE) 1%

Manager 37% (X) 34% 38% (X) 29%

Piper 60% (SGM-50%) 26% 14% (SGM-50%) 12%

ProducerConsumer 51% (SGM-25%) 22% 52% (DGM-50%) 30%

TicketOrder 109% (DGM-75%) 67% 111% (DGM-75%) 69%

TwoStage 128% (DGM-75%) 98% 116% (DGM-50%) 42%

Tomcat#37458 6% (DGM-75%) 4% 12% (1SPE) 2%

Derby#2861 95% (X) 51% 52% (DGM-75%) 43%

Weblech 12% (DGM-25%) 4% 12% (1SPE) 2%

Cache4j 43% (DGM-25%) 17% 23% (1SPE) 5%

AVERAGE 76% 37% 45% 24%

3.5.6 Log Size

We now quantify the benefits achievable by CoopREP with respect to LEAP and PRES in

terms of space overhead. To measure CoopREP’s space overhead, we computed the average size

of 10 partial logs picked at random, for each of the partial logging schemes.

3.5.6.1 CoopREPL vs LEAP

Figure 3.10 reports the sizes of the logs generated by LEAP and CoopREPL for the different

benchmarks.

Unsurprisingly, the space overhead follows a trend that is analogous to that observed for the

performance overhead: logs generated by CoopREPL are always smaller than those produced by

LEAP, although it is possible to observe a significant variance in the log size for some programs.

For instance, programs such as BubbleSort and BufferWriter have simultaneously partial logs

with much smaller and very similar size comparing to those of LEAP. As in the performance

overhead assessment, this variance is due to the heterogeneity in the frequency of accesses to

SPEs. Figure 3.11 depicts this phenomenon, by plotting the average and variance of the number

of SPE accesses for each benchmark.

From the analysis of Figure 3.11 it is possible to verify that programs with high variance in

the log size correspond to those that also have high variance in the number of accesses per SPE.
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Figure 3.10: Log size reduction achieved by the various CoopREPL partial logging schemes with
respect to LEAP. The error bars indicate the minimum and the maximum values observed.

For instance, BubbleSort has an SPE with only 2 accesses and another with more than 49700

accesses.

3.5.6.2 CoopREPP vs PRES-BB

Figure 3.12 depicts the log sizes for PRES-BB and CoopREPP . The results are similar to

those observed in Figure 3.10, i.e., programs with greater disparity in SPE access frequency

exhibit higher variance in partial log sizes. Also, for the programs containing more shared

accesses, the benefits of partial logging are more clear. For example, in BubbleSort, a complete
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Figure 3.12: Log size reduction achieved by the various CoopREPP partial logging schemes with
respect to PRES-BB. The error bars indicate the minimum and the maximum values observed.

PRES-BB log has 1.2MB, whereas the average log size for CoopREPP -1SPE has 63KB on

average (and 535KB at most), which suffices to replay the bug.

3.5.6.3 Summary

Table 3.11 presents, for each benchmark, the log size reduction achievable by CoopREP’s

most effective scheme with respect to PRES-BB and LEAP. The results in the table also support

our claim about CoopREP being more cost-effective than full logging solutions. In particular,

CoopREP produced logs that are, on average, 3x smaller than those generated by both PRES-BB

and LEAP.

3.5.7 Discussion

In this section, we summarize the findings of our experiments by answering the research

questions that motivated this evaluation study.

− Which similarity metric – PSIM, DSIM, or DHS – provides the best trade-off in terms of

accuracy, execution time, and scalability?

The experiments presented in Section 3.5.2 reveal that DSIM (Dispersion Similarity) is, at
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Table 3.11: Average size of the partial logs generated by the most effective CoopREP schemes
for both PRES-BB and LEAP (according to Tables 3.7 and 3.8).

Program PRES-BB
Best of

LEAP
Best of

CoopREPP CoopREPL

BoundedBuffer 45KB (1SPE) 4KB 6KB (SGM-25%) 3KB

BubbleSort 1.2MB (1SPE) 63KB 600KB (DGM-25%) 209KB

BufferWriter 214KB (DGM-75%) 164KB 3.3MB (SGM-75%) 988KB

Deadlock 500B (1SPE) 400B 500B (1SPE) 400B

Manager 29KB (X) 19KB 107KB (X) 23KB

Piper 17KB (SGM-50%) 8KB 7KB (SGM-50%) 5KB

ProducerConsumer 15KB (SGM-25%) 27KB 8KB (DGM-50%) 4KB

TicketOrder 72KB (DGM-75%) 57KB 71KB (DGM-75%) 53KB

TwoStage 138KB (DGM-75%) 111KB 52KB (DGM-50%) 33KB

Tomcat#37458 3.4KB (DGM-75%) 3.1KB 3KB (1SPE) 2KB

Derby#2861 171KB (X) 116KB 27KB (DGM-75%) 20KB

Weblech 2KB (DGM-25%) 400B 2KB (1SPE) 600B

Cache4j 3KB (DGM-25%) 1KB 3KB (1SPE) 900B

AVERAGE 148KB 44KB 318KB 103KB

least for the considered set of benchmarks, the most cost-effective metric to measure similarity

between partial logs. Comparing to PSIM, DSIM allowed CoopREP to reproduce the bug in

the same or in a smaller number of attempts for all 9 test cases, thus providing more accuracy

for a similar execution time.

Comparing to DHS, albeit DSIM has shown the same bug replay ability, it required much

lower execution time to compute the similarity of a pair of partial logs. In fact, DSIM was up

to 1252x faster than DHS to measure similarity for 1GB logs.

− Which CoopREP heuristic replays the bug in fewer attempts? How do the heuristics compare

to previous state-of-the-art deterministic replay systems?

Section 3.5.3 evaluates CoopREP’s effectiveness by providing a three-fold comparison. First,

we compared the effectiveness of the two CoopREP heuristics: SGM and DGM. Next, we

compared CoopREP against LEAP and PRES-BB in terms of bug replay ability. Finally, we

compared the partial log combination approach against that of tracing only one SPE per partial

log and producing a complete replay log by computing the access vectors most correlated to the

error.

The results of the first comparison show that DGM tends to be more effective than SGM

(the former replayed the bug in fewer attempts than the latter in 10 out of 39 test cases, whereas

the opposite scenario was only verified in 3 of the 39 cases). In particular, DGM was able to
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reproduce the failure in very few attempts (more precisely, just 1 attempt for most cases) when

the information included in the partial partial logs encompassed all the most disperse SPEs.

When this did not happen, SGM was a better choice to find a feasible replay log, because it

was quicker in pinpointing groups of similar partial logs.

The results of the second comparison show that CoopREP achieves similar replay ability to

LEAP and PRES-BB. In fact, CoopREPL (i.e., CoopREP combined with LEAP) was able to

reproduce the error at the first attempt for 11 out of the 13 benchmarks. In turn, CoopREPP

(i.e., CoopREP combined with PRES-BB) was always able to match the same number of replay

attempts as the corresponding non-cooperative PRES-BB solution.

The results of the third comparison show that using heuristics to combine partial logs is

clearly better than using the 1SPE approach for the large majority of the cases. However,

if the program exhibits identical access vectors for almost all SPEs (i.e., has a very low SPE

dispersion), then tracing only one SPE per partial log and using statistical indicators is sufficient

to typically reproduce the failure at the first attempt.

− How does CoopREP’s effectiveness vary with the number of logs collected?

Section 3.5.4 evaluates the impact of varying the number of logs collected on the number

of attempts required by CoopREP heuristics to replay the bug. The results show that, for

programs with low SPE dispersion, the number of logs does not affect the effectiveness of the

heuristics. However, for programs with high SPE dispersion, the smaller the number of collected

logs, the more difficult it becomes to replay the bug. Concretely, for the program with highest

SPE dispersion in our experiments, the bug was only replayed with less than 500 partial logs

when each partial log contained 75% of the total SPEs of the program.

− How much runtime overhead reduction can CoopREP achieve with respect to other classic,

non-cooperative logging schemes?

The results described in Section 3.5.5 show that CoopREP is, indeed, able to achieve lower

recording overhead than previous solutions. For the most effective recording configuration in

each test case, CoopREP incurred lower runtime penalty than both PRES-BB and LEAP.

Overall, CoopREP imposed, on average, 3x less overhead than PRES-BB (achieving a maximal

reduction of 13x) and LEAP (achieving maximal reduction of 6x).
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− How much can CoopREP decrease the size of the logs generated?

The results for the space overhead presented in Section 3.5.6 follow an analogous trend to

those of the runtime overhead: CoopREP generated smaller logs when compared to PRES-BB

and LEAP. Concretely, for a similar bug replay ability, CoopREP’s partial logs were, on average,

3x smaller than the logs produced by PRES-BB and LEAP.

Summary

This chapter addressed the challenge of deterministically replaying concurrency bugs for

debugging purposes. We introduced CoopREP, a system that provides failure replication of

concurrent programs via cooperative logging and partial log combination. CoopREP achieves

significant reductions of the overhead incurred by other state-of-the art systems by letting each

instance of a program trace only a subset of its shared programming elements (e.g., variables or

synchronization primitives). CoopREP relies on several innovative statistical analysis techniques

aimed at guiding the search of partial logs to combine and use during the replay phase.

The evaluation study, performed with third-party benchmarks and real-world applications,

highlighted the effectiveness of the proposed technique, in terms of its ability to successfully

replay non-trivial concurrency bugs, as well as its performance advantages with respect to non-

cooperative logging schemes.

Although CoopREP is useful to debug concurrency bugs by overcoming their non-

deterministic nature, it still does not provide any hints with respect to the actual events that

caused the failure. In the next chapter, we address the issue of isolating the root cause of

concurrency bugs by proposing differential schedule projections.



4
Symbiosis: Root Cause

Isolation with Differential

Schedule Projections

The ability to deterministically reproduce a failure is undoubtedly useful for debugging

concurrency bugs. However, re-enacting a failing schedule per se does not provide any clues on

the exact events that caused the program to fail. Since any operation in any thread may have

led to the failure, blindly analyzing a full schedule to isolate the root cause of the bug often

remains a daunting task.

In this chapter, we present Symbiosis, a system that helps finding and understanding a

failure’s root cause, as well as fixing the underlying bug. Symbiosis starts from a failing schedule

and uses symbolic execution and SMT constraint solving to generate a very similar non-failing

schedule. Then, Symbiosis applies a differential analysis to report only the important ordering

and data-flow differences between failing and non-failing schedules. These differences are data-

flows between operations in the failing execution that do not occur in the correct execution and

vice versa. We call the output of our novel debugging approach a differential schedule projection

(DSP).

DSPs simplify debugging for two main reasons. First, by showing only what differs between

a failing and non-failing schedule, the programmer is exposed to a very small number of relevant

operations, rather than a full schedule. Second, DSPs illustrate not only the failing schedule,

but also the way the execution should behave, if not to fail. Seeing the different event orders

side-by-side helps understand the failure and, often, how to fix the bug.

We believe DSPs to be a significant improvement with respect to more traditional debugging

approaches, such as cyclic debugging (i.e., iteratively re-execute a program’s failing execution in

an attempt to understand the bug and narrow its root cause). Furthermore, Symbiosis produces

a DSP from a single failing schedule, enabling its use for in-production failures that manifest

rarely. This contrasts to prior work [Lucia & Ceze 2013; Kasikci, Schubert, Pereira, Pokam,

& Candea 2015] that relies on statistical inference and, therefore, needs to capture information

from a significant amount of failing executions in order to isolate the bug’s root cause effectively.
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Our evaluation in Section 4.3 shows that DSPs have, on average, 90% fewer events than full

schedules and shows qualitatively, with case studies, that DSPs help understand failures and fix

bugs. Furthermore, we conducted a user study with 48 participants to further support the claim

that DSPs allow for faster bug diagnosis.

The rest of the chapter is organized as follows. Section 4.1 describes the Symbiosis system

in detail, namely its components and how it operates to produce DSPs. Section 4.2 reports the

implementation details. Section 4.3 presents the results of both the experimental evaluation

and the user study, and discusses the main findings. Finally, Section 4.3.3.4 summarizes this

chapter’s main points.

4.1 Symbiosis

In this section, we start by presenting an overview of Symbiosis and how it operates. Then,

we describe in detail each component of our system.

4.1.1 Overview

Symbiosis is a technique for concisely reporting the root cause of a failing multithreaded

execution, alongside a non-failing, alternate execution of the events that make up the root cause.

Symbiosis produces differential schedule projections, which reveal bugs’ root causes and aid in

debugging. Symbiosis has six phases (see Figure 4.1):

1. Static Analysis. Symbiosis starts by performing a static program analysis with two goals.

The first goal is to instrument the beginning of each basic block in the program to trace the

control-flow path followed in a concrete execution. The second goal is to identify shared variables.

Non-private (i.e., shared) variables and local variables derived from those variables are marked

as symbolic. Marking shared variables as symbolic is a pre-requisite to Symbiosis’s symbolic

trace collection and generation mechanism (described next).

2. Symbolic trace collection. In a concrete failing program run, Symbiosis traces the se-

quence of basic blocks executed by each thread independently. The per-thread path profiles are

used to guide symbolic execution, producing a set of per-thread traces with symbolic information

(e.g., path conditions and read-write accesses to shared variables).
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Figure 4.1: Overview of Symbiosis.

3. Failing schedule generation. Symbiosis produces a Satisfiability Modulo Theories (SMT)

constraint formula over the information in the symbolic execution traces. The formula includes

constraints that represent each thread’s path, as well as the failure’s manifestation, memory

access orderings, and synchronization orderings. The solution to the SMT formula corresponds

to a complete, failing, multithreaded execution. In other words, this solution specifies the

ordering of events that triggers the error.

4. Root cause generation. Symbiosis produces an SMT formula corresponding to the sym-

bolic traces, but specifies that the execution should not fail, by negating the failure condition.

Combined with the constraints representing the order of events in the full, failing schedule, the

SMT instance is unsatisfiable. The SMT solver produces an UNSAT core that contains the

constraints representing the execution event orders that conflict with the absence of the failure.

Since those event orders are necessary for the failure to occur, they comprise the failure’s root

cause sub-schedule.

5. Alternate schedule generation. Symbiosis examines each pair of events from different

threads in the root cause sub-schedule. For each pair, Symbiosis produces a new SMT formula,

identical to the one used to find the root cause, but with constraints implying the ordering

of the events in the pair reversed. When Symbiosis finds an instance that is satisfiable, the

corresponding schedule is very similar to the failing schedule 1, but does not fail. Symbiosis

1 By similar we mean that the alternate schedule comprises the same events as the failing schedule and adheres
to the same execution path.
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reports the alternate, non-failing schedule that is identical to the failing schedule, but with the

pair of events reordered.

The experimental results in Section 4.3 indicate that this technique is effective, as Symbiosis

was able to find a non-failing schedule by reordering less than 10 pairs of events for 10 out of 13

test cases.

6. Differential schedule projection generation. Symbiosis produces a differential schedule

projection by comparing the failing schedule and the alternate, non-failing schedule. The DSP

shows how the two schedules differ in the order of their events and in their data-flow behavior.

Additionally, as the reordered pair from the alternate non-failing schedule eliminates an event

order necessary for the failure to occur, it can be leveraged by a dynamic failure avoidance

system [Lucia & Ceze 2013] to prevent future failures.

To better illustrate the main concepts of Symbiosis, we use a running example that consists

of the modified version of Pfscan file scanner studied in prior work [Elmas, Burnim, Necula,

& Sen 2013]. A slightly simplified snippet of the program’s code is depicted in Figure 4.2a.

The program uses three threads. The first thread enqueues elements into a shared queue. The

two other threads attempt to dequeue elements, if they exist. A shared variable, named filled,

records the number of elements in the queue. The code in the get function checks that the queue

is non-empty (reading filled at line 10), decreases the count of elements in the queue (updating

filled at line 20), then dequeues the element.

The code has a concurrency bug because it does not ensure that the check and update of

filled execute atomically. The lack of atomicity permits some unfavorable execution schedules

in which the two consumer threads both attempt to dequeue the queue’s last element. In that

problematic case, both consumers read that the value of filled is 1, passing the test at line 10.

One of the threads proceeds to decrement filled and dequeue the element. The other reaches

the assertion at line 19, reads the value 0 for filled, fails, terminating the execution. Figure 4.2b

shows the interleaving of operations that leads to the failure in a concrete execution.

The next sections show how Symbiosis starts from a concrete failing execution (like the one

in Figure 4.2b), computes a focused root cause, and produces a DSP to aid in debugging.
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1   put(elem){ 
2      filled = 0;
3      lock();
4      filled++; 
5      enqueue(elem);
6      unlock();
7   } 

08   elem get(){ 
09      lock();
10      if(filled > 0){
11          unlock(); 
12         //other code
13     }
14      else {
15          unlock(); 
16          return null;
17      }
18      lock();
19      assert(filled > 0);
20      filled--;
21      elem = dequeue();
22      unlock();
23      return elem;
24   } 

Thread T0
2  filled = 0;
3  lock();
4  filled++; //filled == 1
5  enqueue(elem);
6  unlock();

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }

18  lock();
19  assert(filled > 0);
20  filled--; //filled == 0
21  elem = dequeue();
22  unlock();

18  lock();
19  assert(filled > 0);FAIL

Thread T1 Thread T2

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }

a) Source Code b) Original Failing Interleaving

2  filled = 0;
3  lock();
4  filled++; 
5  enqueue(elem);
6  unlock();

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }
18  lock();
19  assert(filled > 0);

execution path symbolic trace
Wfilled@0.2 = 0
L@0.3
Rfilled@0.4 ; Wfilled@0.4 = filled@0.4 + 1

U@0.6

execution path symbolic trace
L@2.9
Rfilled@2.10
U@2.11

L@2.18
Rfilled@2.19

Path conditions:
filled@2.10 > 0
filled@2.19 <= 0

c) Symbolic Traces

Path constraints (φpath):
filled1.10 > 0 ∧ filled1.19 > 0 ∧ filled2.10 > 0 

Failure constraint (φbug):
filled2.19 ≤ 0

Synchronization constraints (φsync):
   (U0.6 < L1.9 ∧ U0.6 < L2.9 ∧ U0.6 < L1.18 ∧ U0.6 < L2.18)
∨ (L0.3 > U1.11 ∧ (L2.9 > U0.6 ∨ U2.11 < L1.9) ∧ ...)
∨ (L0.3 > U1.22 ∧ (L2.9 > U0.6 ∨ U2.11 < L1.18) ∧ ...) ...

Read-Write constraints (φrw):
(filled0.4 = 0 ∧ W0.2 < R0.4 ∧ (W1.20 < W0.2 ∨ W1.20 > R0.4))
∨ (filled0.4 = filled1.20 − 1 ∧ W1.20 < R0.4 
         ∧ (W0.2 < W1.20 ∨ W0.2 > R0.4)
         ∧ ...)
∨ ...

Memory Order constraints (φmo):
   (W0.2 < L0.3 < R0.4 < W0.4 < U0.6)
∧ (L1.9 < R1.10 < U1.11 < ...)
∧ (L2.9 < R2.10 < U2.11 < ...)

d) Failing Constraint Model (Φfail)

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }
18  lock();
19  assert(filled > 0);
20  filled--;
21  elem = dequeue();
22  unlock();

execution path symbolic trace
L@1.9
Rfilled@1.10
U@1.11

L@1.18
Rfilled@1.19
Rfilled@1.20 ; Wfilled@1.20 = filled@1.20 – 1

U@1.22

Path conditions:
filled@1.10 > 0
filled@1.19 > 0

T0

T1

T2

Figure 4.2: Running example. a) Source code. b) Concrete failing execution. c) Per-thread
symbolic execution traces. d) Failing Constraint Model.

4.1.2 Symbolic Trace Collection

Like CLAP [Huang, Zhang, & Dolby 2013], Symbiosis avoids the overhead of directly record-

ing the exact read-write linkages between shared variables that lead to a failure. Instead,

Symbiosis collects only per-thread path profiles from a failing, concrete execution. As in prior

work [Huang, Zhang, & Dolby 2013], Symbiosis’s path profile for a thread consists of the sequence

of executed basic blocks for that thread in the failing execution.

Symbiosis uses the per-thread path profiles to guide a symbolic execution of each thread

and to produce each thread’s separate symbolic execution trace. Symbolic execution normally

explores all paths, following the path along both branch outcomes. Symbiosis, in contrast, guides

the symbolic execution to correspond to the per-thread path profiles by considering only paths

that are compatible with the basic block sequence in the profile. As symbolic execution proceeds,
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Symbiosis records information about control-flow, failure manifestation, synchronization, and

shared memory accesses in each per-thread symbolic execution trace. Together, the traces are

compatible with the original, failing, multithreaded execution.

Each per-thread symbolic execution trace contains four kinds of information. First, each

trace includes a path condition that permits the failure to occur. A trace’s path condition

is the sequence of control-flow decisions made during the thread’s respective execution. Sec-

ond, the trace for the thread that experienced the failure must include the event that failed

(e.g., the failing assertion). Third, the trace must record synchronization operations, noting

their type (e.g., lock, unlock, wait, notify, fork, join, etc.), and the synchronization variable

involved (e.g., the lock address), if applicable. Fourth, the trace must record loads from and

stores to shared memory locations. A key aspect of the shared memory access traces is that

these are symbolic: loads always read fresh symbolic values and stores may write either symbolic

or concrete values. Recall from Section 2.4.1 that a symbolic value holds the last operation that

manipulated a value. Also, a symbolic value may, itself, be an expression that refers to other

symbolic or concrete values.

Figure 4.2c illustrates a symbolic trace collection for our running example: it shows the exe-

cution path followed by each thread for the failing schedule in Figure 4.2b and the corresponding

symbolic trace produced by Symbiosis. Each path condition in the trace represents a control-

flow outcome in the original execution (e.g., filled@2.10 > 0 denotes that thread T2 should read

a value greater than zero from filled at line 10). Thread T2’s trace includes the assertion that

leads to the failure. Each trace includes both symbolic and concrete values in their memory

access traces, as well as synchronization operations from the execution. Note that we slightly

simplified the threads’ traces to keep the figure uncluttered. enqueue and dequeue also access

shared data but we only show operations that manipulate filled and perform synchronization

because they are sufficient to illustrate the failure.

Symbiosis can leverage any technique for collecting concrete path profiles and generating

symbolic traces. In our implementation of Symbiosis that targets C/C++, we use a technique

very similar to the front-end of CLAP [Huang, Zhang, & Dolby 2013]: Symbiosis records a basic

block trace and uses KLEE to generate per-thread symbolic traces conformant with the block

sequence. Symbiosis for Java uses Soot [Vallée-Rai, Co, Gagnon, Hendren, Lam, & Sundaresan

1999] to instrument the program collect path profiles and JPF [Visser, Pǎsǎreanu, & Khurshid
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2004] for symbolic execution. The implementation details are described in Section 4.2.

4.1.3 Failing Schedule Generation

The symbolic, per-thread traces do not explicitly encode the multithreaded schedule that

led to the failure. Symbiosis uses the information in the symbolic traces to construct a system

of SMT constraints that encode information about the execution. The solution to those SMT

constraints corresponds to a multithreaded schedule that ends in failure and is compatible with

each per-thread symbolic trace.2 This section describes how the constraints are computed.

The SMT constraints refer to two kinds of unknown variables, namely the value variables for

the fresh symbolic symbols returned by read operations and the order variables that represent

the position of each operation from each trace in the final, multithreaded schedule. We notate

value variables as vart.l, meaning the value read from variable var by thread t at line l. We

notate order variables as Opt.l, meaning the order of instruction Op executed by thread t at

line l, where Op can be a read (R), write (W), lock (L), unlock (U), or other synchronization

operations such as wait/signal (our notation differs slightly from [Huang, Zhang, & Dolby 2013]

for clarity).

Figure 4.2d shows part of the system of SMT constraints generated by Symbiosis for our

running example from the symbolic traces presented in Figure 4.2c. The system, denoted Φfail,

can be decomposed into five sets of constraints:

Φfail = φbug ∧ φpath ∧ φsync ∧ φrw ∧ φmo (4.1)

where φbug encodes the occurrence of the failure, φpath encodes the control-flow path executed

by each thread, φsync encodes possible inter-thread interactions via synchronization, φrw en-

codes possible inter-thread interactions via shared memory, and φmo encodes possible operation

reorderings permitted by the memory consistency model. The following paragraphs explain how

Symbiosis derives each set of constraints from the symbolic execution traces.

2Note that technique used by Symbiosis to obtain a failing schedule is orthogonal to its ability to perform
root cause isolation. Thus, we could have also used CoopREP along with a general R&R technique to generate
the failing schedule and then apply Symbiosis (namely steps 4, 5, and 6 of Figure 4.1). However, since Symbiosis
relies on symbolic execution and SMT constraint solving to produce DSPs, we opted for using CLAP’s approach
to generate the failing schedule to begin with.
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Failure Constraint (φbug) The failure SMT constraint expresses the failure’s necessary condi-

tions. The constraint is an expression over value variables for symbolic values returned by some

subset of read operations (e.g., those in the body of an assert statement). Figure 4.2d shows

φbug for the running example, representing the sufficient condition for the assertion in thread

T2 to fail.3

Path Constraint (φpath) The path SMT constraint encodes branch outcomes during symbolic

execution. Symbiosis gathers path conditions by recording the branch outcomes along the basic

block trace from the concrete path profile. A thread’s path constraint is the conjunction of the

path conditions for the execution of the thread in the symbolic trace. The φpath constraint is

the conjunction of all threads’ path constraints. Each conjunct represents a single control-flow

decision by constraining the value variables for one or more symbolic operands. In our running

example, the shared variable filled is symbolic, resulting in a φpath with three conjuncts. The

three conjuncts express that the value of filled should be greater than 0 when thread T1 executes

lines 10 and 19, as well as when thread T2 executes line 10. Figure 4.2d shows φpath for our

example.

Synchronization Constraints (φsync) There are two types of synchronization constraints:

partial order constraints and locking constraints.

Partial order constraints represent the partial order of different threads’ events resulting

from start/exit/fork/join/wait/signal operations. Concretely, start, join, and wait operations

are ordered with respect to fork, exit, and signal operations, respectively. The constraints

for start/fork and exit/join are easy to model, as they exhibit a single mapping: the start

event of a child thread must always occur after the corresponding fork operation in the parent

thread, whereas the exit event of a child thread must always occur before the corresponding join

operation in the parent thread. Let St represent the start event of a thread t, Et the exit event

of thread t, Ftp,tc the fork operation of child thread tc by parent thread tp, and Jtp,tc the join

operation of thread tc by thread tp. Their partial order constraints for these operations are then

written as follows:

3 For calls to external libraries, we also mark the result of the calls as symbolic (Section 4.2).
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Ftp,tc < Stc

Etc < Jtp,tc

The constraints for wait and signal, in contrast, are a little more complex. Similarly to

CLAP [Huang, Zhang, & Dolby 2013], we use a binary variable that indicates whether a given

signal operation is mapped to a wait operation or not. This is necessary because each signal

operation can signal exactly one wait operation, although in theory it can be mapped to all

wait operations on the same object. Let SG be the set with the signal operations sg on a given

object and letWT be the set of wait operations wt on the same object, but belonging to a thread

different from that of sg. Also, let Sg and Wt denote the order of sg and wt, respectively, and

bsgwt be the binary variable denoting whether sg is mapped to wt or not. The corresponding

partial order constraints are the following:

(
∨

∀sg∈SG
Sg < Wt ∧ bsgwt = 1)

∧ ∑
wt∈WT

bsgwt ≤ 1

The constraints above state that, if a signal operation sg is mapped to a wait operation

wt (i.e., bsgwt = 1), then sg must occur before wt and sg cannot signal any other wait operation

rather than wt (i.e.,
∑

wt∈WT b
sg
wt ≤ 1).

Locking constraints represent the mutual exclusion effects of lock (L) and unlock (U) opera-

tions. Let P denote the set of locking pairs on a given locking object and consider a particular

pair L/U . The locking constraints entail the possible orderings between L/U and all the re-

maining pairs in P and are written as follows:

∧
∀L′/U ′∈P

U < L′ ∨

∨
∀L′/U ′∈P

(U ′ < L ∧
∧

∀L′′/U ′′∈P, L′′/U ′′ 6=L′/U ′
U < L′′ ∨ U ′′ < L′)
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The constraint above is a disjunction of SMT expressions representing two possible cases.

In the first case, L/U is the first pair acquiring the lock and, therefore, U happens before L′.

In the second case, L/U acquires the lock released by another pair L′/U ′, hence U ′ happens

before L. Moreover, for any other pair L′′/U ′′, either L′′ acquires the lock after U or L′ acquires

the lock released by U ′′. Figure 4.2d shows a subset of the locking constraints for our running

example that involve the lock/unlock pair of thread T0 (L0.3, U0.6).

Read-Write Constraints (φrw) Read-write SMT constraints encode the matching between

read and write operations that leads to a particular read operation reading the value written by

a particular write operation. Read-write constraints model the possible inter-thread interactions

via shared memory. A read-write constraint encodes that, for any read operation r on a shared

variable v, if r is matched to a write w of the same variable, then the order variable (and hence

execution order) for all other writes on v is either smaller than that of w or greater than that of

r. The constraint also implies that r’s value variable takes on the symbolic value written by w.

Note that read-write SMT constraints are special in that they affect order variables and value

variables.

Let rv be the value returned by a read r on v, and let W be a set of writes on v. Using R

to denote the order of r and Wi the order of write wi in W, φrw can be written as follows:

∨
∀wi∈W

(rv = wi ∧ Wi < R
∧

∀wj∈W,wj 6=wi

Wj < Wi ∨ Wj > R)

For instance, in our running example, thread T0 reads filled at line 4. If T0 reads 0 at

that point, then the most recent write to filled must be the one at line 2. The matching

between that read and write implies that the order of the write must precede the read operation

(i.e., W0.2 < R0.4), and that all the other writes to filled (e.g., W1.20) either occur before W0.2

or after R0.4. The same reasoning is also applied for the remaining reads of the program on

symbolic variables.

Memory Order Constraints (φmo) The memory-order constraints specify the order in which

instructions are executed in a specific thread. Although is possible to express different memory

consistency models [Huang, Zhang, & Dolby 2013], in this thesis we opted not to focus on

relaxed memory ordering, instead focusing on sub-schedule generation and differential schedule

projections. Therefore, we encode memory order constraints for sequential consistency (SC)
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only, meaning that statements in a thread execute in program order. For the running example

in Figure 4.2b, the memory order constraint requires that operations in thread T0 respect the

constraint W0.2 < L0.3 < R0.4 < W0.5 < U0.6.

4.1.4 Root Cause Generation

Each order variable referred to by an SMT constraint represents the ordering of two program

events from the separate single-threaded symbolic traces. A binding of truth values to the SMT

order variables corresponds directly to an ordering of operations in the otherwise unordered,

separate, per-thread traces. Solving the constraint system binds truth values to variables, pro-

ducing a multithreaded schedule. The constraint system includes a constraint representing the

occurrence of the failure, so the produced multithreaded schedule manifests the failure (φbug).

Solving the generated SMT formulae, Symbiosis produces a full, failing, multithreaded schedule

φfsch. The entire multithreaded schedule may be long, complex, and may contain information

that is irrelevant to the root cause of the failure. Symbiosis uses a special SMT formulation

to produce a root cause sub-schedule that prunes some operations in the full schedule, but pre-

serves event orderings that are necessary for the failure to occur. To compute the root cause

sub-schedule, Symbiosis generates a new constraint system, denoted Φroot, that is designed to

be unsatisfiable in a way that reveals the necessary orderings. Symbiosis leverages the ability of

the SMT solver to produce an explanation, of why a formula was unsatisfiable, to report only

those necessary orderings.

To build the root cause sub-schedule SMT formula, Symbiosis logically inverts the failure

constraint, effectively requiring the failure not to occur (i.e., ¬φbug). Symbiosis adds constraints

to the formula that directly encode the event orders in φfsch (i.e., the full, failing schedule that

was previously computed). The complete root cause sub-schedule formula is then written as

follows:

Φroot = ¬φbug ∧ φpath ∧ φsync ∧ φrw ∧ φmo ∧ φfsch (4.2)

The original SMT formula that Symbiosis used to find the full failing schedule considers all

possible multithreaded schedules that are consistent with the symbolic, per-thread schedules. In

contrast, the root cause sub-schedule SMT formula adds the failing schedule φfsch constraint,
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accommodating only the full failing schedule. Combining the inverted failure constraint and the

ordering constraints for the full failing schedule yields an unsatisfiable constraint formula: the

inverted failure constraint requires the failure not to occur and the failing schedule’s ordering

constraints require the failure to occur.

When an SMT solver, like Z3, attempts to solve the unsatisfiable formula, it produces an

unsatisfiable (UNSAT) core, which is a subset of constraint clauses that conflict, leaving the

formula unsatisfiable. The UNSAT core for Φroot encodes the subset of clauses that conflict

because the φfsch requires the failure to occur and ¬φbug requires the failure not to occur. The

event orderings that correspond to those conflicting constraints are the ones in φfsch that imply

φbug. Those orderings are a necessary condition for the failure; their corresponding constraints,

together with ¬φbug are responsible for the unsatisfiability of Φroot. Reporting the sub-schedule

corresponding to the UNSAT core yields fewer total events than are in the full, failing schedule,

yet includes event orderings necessary for the failure.

Figure 4.3a shows a possible failing schedule produced by the constraint system correspond-

ing to the execution depicted in Figure 4.2d. The failure constraint φbug requires the corre-

sponding execution to manifest the failure. The generated path and memory access constraints

are compatible with the failure and the system is satisfiable, producing the failing execution

trace shown (φfsch). Note that Symbiosis inserts a synthetic unlock event (U2.20) in the model,

in order to preserve the correct semantics of synchronization constraints (see Section 4.2).

In Figure 4.3b, the failure constraint is negated, requiring the corresponding execution not

to manifest the failure (i.e., filled2.19 > 0 and the assertion at line 19 does not fail). On the

other hand, φfsch satisfies only the data-flows encoded in φrw that correspond to the failing

schedule, which means that R2.19 is forced to receive the value written by W1.20. Consequently,

filled2.19 becomes 0 instead of greater than 0, as required by the negated failure constraint (note

that R2.19 defines the value of filled2.19 read by the assertion). Since both sub-formulae φfsch

and ¬φbug conflict with each other, the solver yields unsatisfiable for this model. Alongside,

the solver outputs the UNSAT core containing the subset of constraints of φfsch that conflict

with ¬φbug (see Figure 4.3b). Note that the UNSAT core shows why Φroot is unsatisfiable: the

negated failure constraint conflicts with the subset of ordering constraints from φfsch that cause

filled to be less than 0 when thread 2 executes line 19.

In our experience, the UNSAT core produced by Z3 is typically not minimal (although it
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a) Failing Schedule Generation
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φpath ∧ φsync ∧ φmo ∧ φrw ∧ φbug[filled2.19 ≤ 0]

b) Root Cause Sub-schedule Generation
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φfsch ∧ ¬φbug[filled2.19＞0]

UNSAT Core: (L1.18 < R1.19 < R1.20 < W1.20 
 < U1.22 < L2.18 < R2.19 < (U2.20) ) ∧ ¬φbug

Reports UNSAT

d) DSP Generation

φfsch: W0.2 < L0.3  < R0.4 <  W0.4 < U0.6 < L1.9 
< R1.10 < U1.11 < L2.9 < R2.10 < U2.11 < L1.18 < R1.19 
< R1.20 < W1.20 < U1.22 < L2.18 < R2.19 < (U2.20)

c) Alternate Sub-schedule Generation

reorder pair
in φfsch to
produce φinvsch

Candidate Pairs:
(L1.18 , R2.19)
(W1.20 , R2.19)
(U1.22 , R2.19)
... φinvsch: W0.2 < L0.3  < R0.4 <  W0.4 < U0.6 < L1.9 

< R1.10 < U1.11 < L2.9 < R2.10 < U2.11 < L2.18< R2.19 
< (U2.20) < L1.18 < R1.19 < R1.20 < W1.20 < U1.22 

SMT Solver

φpath ∧ φsync ∧ φmo ∧ φrw ∧
φinvsch ∧ ¬φbug[filled2.19 > 0]

φinvsch is a valid alternate 
non-failing schedule

is SAT?

failing schedule
   ...                
                L2.9 
                R2.10 
                U2.11 
        L1.18
        R1.19 
        R1.20 
        W1.20 
        U1.22 
                L2.18 
                R2.19 
                (U2.20)

alternate schedule
 W0.4
                L2.9 
                R2.10 
                U2.11 
                L2.18 
                R2.19 
                (U2.20)        
        L1.18
        R1.19 
        R1.20 
        W1.20 
        U1.22 
                

filled == 0

filled == 1

should be atom
ic

Figure 4.3: Root cause and alternate schedule generation. a) Possible failing schedule produced
by the SMT solver for the constraint system in Figure 4.2d ((U2.20) represents a synthetic
unlock event). b) Root cause sub-schedule, which corresponds to the UNSAT core produced
by the solver. c) Candidate pair reordering and respective alternate schedule. d) Differential
Schedule Projection generated by Symbiosis.

is always an overapproximation of the root cause). As a result, while helpful, an UNSAT core

alone is not sufficient for debugging and necessitates a differential schedule projection to isolate

a bug’s root cause.

4.1.5 Alternate Schedule Generation

In addition to reporting the bug’s root cause, Symbiosis also produces alternate, non-failing

schedules. These alternate schedules are non-failing variants of the root cause sub-schedule,

with the order of a single pair of events reversed. Alternate schedules are the key to build-

ing differential schedule projections (Section 4.1.6). Symbiosis generates alternate, non-failing

schedules after it identifies the root cause. To generate an alternate schedule, Symbiosis selects

a pair of events from different threads that were included in the bug’s root cause. Symbiosis

then generates a new constraint model, like the one used to identify the root cause. We call this

model Φalt. The Φalt model includes the inverted failure constraint. The model also includes

a set of constraints, denoted φinvsch, that encode the original full, failing schedule, except the

constraint representing the order of the selected pair of events is inverted. Inverting the order

constraint for the pair of events yields the following new constraint model.

Φalt = ¬φbug ∧ φpath ∧ φsync ∧ φrw ∧ φmo ∧ φinvsch (4.3)

The new Φalt model corresponds to a different, full execution schedule in which the events
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in the pair occur in the order opposite to that in the full, failing schedule. If this new model

is satisfiable, then reordering the pair of events in the full, failing schedule produces a new

alternate schedule in which the failure does not manifest, as shown in Figure 4.3c.

If there are many event pairs in the root cause, then Symbiosis must generate and attempt

to solve many constraint formulae. Symbiosis systematically evaluates a set of candidate pairs

in a fixed order, choosing the pair separated by the fewest events in the original schedule first.

The reasoning behind this design choice is that events in a pair that are further apart are less

likely to be meaningfully related and, thus, less likely to change the failure behavior when their

order is inverted. The experimental results in Section 4.3.3 show that this heuristic is effective

for most cases.

By default, we configured Symbiosis to stop after finding a single alternate, non-failing

schedule. However, the programmer can instruct Symbiosis to continue generating alternate

schedules, given that studying sets of schedules may reveal useful invariants [Lucia, Wood, &

Ceze 2011].

Arbitrary operation reorderings may yield infeasible schedules. Reordering may change

inter-thread data flow, producing values that are inconsistent with a prior branch dependent on

those values. The inconsistency between the data and the execution path makes the execution

infeasible. Symbiosis produces only feasible schedules by including path constraints in its SMT

model. If a reordering leads to inconsistency, the SMT path constraints become unsatisfiable

and Symbiosis produces no schedule. We denote this property as feasibility.

Moreover, our event pair reordering technique has the property of guaranteeing that, if there

exists a feasible alternate schedule that adheres to the original execution path and prevents the

failure, Symbiosis finds it. We denote this property as 1-Recall.4

The feasibility and 1-Recall properties are proved in the following paragraphs.

4Similarly to the definition in the field of information retrieval, we use recall to denote the fraction of relevant
solutions (i.e., solutions that prevent the failure and adhere to the same path constraints as the failing schedule)
that Symbiosis successfully outputs. The 1-Recall property, thus, indicates that all solutions output by Symbiosis
are relevant.
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4.1.5.1 Alternate Schedule Feasibility

Intuitively, what we want to show is that any alternate schedule, resulting from a reordering

of events in a failing schedule, is feasible if deemed as satisfiable by Symbiosis’s solver. To

formally define the feasibility of a schedule, we rely on the concept of (sequential) consistency

proposed in [Herlihy & Wing 1990] and adapt the notation used in [Huang, Meredith, & Rosu

2014]. Hence, a schedule is considered feasible if it is sequentially consistent.

Consider a schedule σ to be a sequence of events e. Events are operations performed by

threads on concurrent objects (e.g., shared variables, locks, etc) for data sharing and synchro-

nization purposes. A concurrent object is behaviorally defined by a set of atomic operations

and by a serial specification of its legal computations, when performed in isolation [Herlihy &

Wing 1990]. For instance, a shared variable is a concurrent object containing read and write

operations, whose serial specification states that each read returns the value of the most recent

write.

Let σe denote the prefix of schedule σ up to e (inclusive): if σ = σ1eσ2, then σe is σ1e.

Moreover, let σ[op,var,thread] represent the restriction of σ to events involving operations of type

op, on variable var, by thread thread. For instance, σ[R,∗,1] represents the projection of schedule

σ to read operations performed by thread 1 on all shared variables; σ[W,v,∗] consists of the

restriction of σ to write operations on shared variable v by any thread; etc.

An alternate schedule of σ is a schedule σ′ that exhibits the same per-thread schedules as

σ, but permits different orders of events from different threads: σ′[∗,∗,t] = σ[∗,∗,t], for each thread

t.

Schedule σ is (sequentially) consistent iff σ[∗,o,∗] satisfies o’s serial specification for any con-

current object o [Herlihy & Wing 1990]. More formally, a schedule σ is sequentially consistent

when it meets the following requirements:

Read Consistency. A read event returns the value written by the most recent write

event on the same variable. Formally, if e is a read event in σ on variable v, then data(e) =

data(lastwrite(σe[W,v,∗])), where data(e) gives the value returned by the read event e, and

data(lastwrite(σe[W,v,∗])) is the last value written to variable v in σe.

Lock Mutual Exclusion. Each unlock (U) event is preceded by a lock (L) event on the
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same lock object by the same thread, and a locking pair cannot be interleaved by any other L

or U event on the same object. Formally, for any lock object l, if σ[∗,l,∗] = e1e2...en then ek = L

for all odd indexes k ≤ n, ek = U for all even indexes k ≤ n, and thread(ek) = thread(ek+1) for

all odd indexes k with k < n.

Must Happen-Before. Let start(t)/exit(t) be the first/last event of thread t. Then, a

start event in a thread t′ can only occur in σ after t′ is forked by thread t, i.e., for any event e =

start(t′) in σ, σ[∗,∗,t′] begins with e and there exists precisely one fork(t, t′) event in σe. Similarly,

a join event in a thread t can only occur in σ after t′ has ended, i.e., for any event e = exit(t′)

in σ, σ[∗,∗,t′] terminates with e and there exists precisely one join(t, t′) event in σe.

Note that branch conditions do not have serial specifications, hence they can affect the

control flow of an execution, but not the consistency of its schedule. However, since we do not

have information regarding operations in other execution paths rather than the one captured

in the concrete trace, we conservatively assume that an alternate schedule must have the same

control flow as the failing schedule (except for the assertion corresponding to the bug condition).

Therefore, we can say that an alternate schedule is feasible iff it meets the aforementioned

consistency requirements and adheres to the branch conditions of the failing schedule. We now

prove the following theorem:

Theorem 1 (Feasibility). Given a feasible failing schedule σ, any alternate schedule σ′ that is

satisfiable by Symbiosis’s solver is feasible.

Proof. To prove the theorem above, we will first show that any alternate schedule that satis-

fies our SMT constraint model in Equation 4.3 is sequentially consistent, i.e., it provides read

consistency, lock mutual exclusion, and must happen-before properties. Then, we will show that

any alternate schedule that is considered satisfiable by Symbiosis’s solver, also satisfies the same

path conditions as the failing schedule.

The read consistency property requires that a read event returns the value written by the

most recent write event on the same variable. In our constraint model, this property holds

from the read-write constraints. As shown in Section 4.1.3, the read-write constraints encode

all possible linkages between reads and writes in the symbolic traces. This means that, for

a given read event e on a shared variable v, the read-write formulae include a disjunction of

constraints encoding the mapping between the value returned by e and all the existing writes
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on v. Hence, considering rv to be the value returned by e in a schedule σe (i.e., rv = data(e)),

there always exists a write wl such that wl = data(lastwrite(σe[W,v,∗])). In other words, wl is the

most recent write on v with respect to e and satisfies the following constraint: rv = wl ∧Wl <

Re
∧
∀wj∈W,wj 6=wl

Wj < Wl ∨ Wj > Re, where capital letters signify order variables, i.e., Wl

and Re indicate the order of write wl and read event e in schedule σ, respectively.

The lock mutual exclusion property holds from the locking constraints in our SMT model, as

they encode the mutual exclusion effects of the acquisition and release of lock objects. To prove

this, we show that any locking order that satisfies our locking constraint formulae is of form

L1U1L2U2LkUk...LnUn, ∀k≤n, with thread(Lk) = thread(Uk), as required by the lock mutual

exclusion property. Recall the locking constraints for a locking pair L/U on a lock object l in a

thread t 5, as shown in Section 4.1.3:

i)
∧

∀L′/U′∈P

U < L′ ∨

ii)
∨

∀L′/U′∈P

(U ′ < L ∧
∧

∀L′′/U′′∈P, L′′/U′′ 6=L′/U′

U < L′′ ∨ U ′′ < L′)

According to our SMT constraint system, it must be the case that either i) L/U is the first

locking pair in the schedule or ii) it acquires the lock on l released by a previous locking pair

L′/U ′ (and, here, all the other locking pairs either occur before L′/U ′ or after L/U). Let k

denote the order in which the pair L/U holds the lock in a given schedule, i.e., Lk/Uk is the kth

pair acquiring the lock in the schedule. If k = 1, then Lk/Uk is the first pair acquiring the lock

on l (i.e., L1/U1), which means that the portion of the locking constraint formula for L1/U1

that will be true is i): U1 < L2 ∧ U1 < L3 ∧ ... ∧ U1 < Ln.

In turn, when 1 < k ≤ n, the pair Lk/Uk will acquire the lock released by

the pair Lk−1/Uk−1, thus satisfying the constraint sub-formula ii) instead: Uk−1 <

Lk
∧
∀1≤j≤n,j 6=k,j 6=k−1, Uk < Lj ∨ Uj < Lk−1. However, note that, when k = n, the constraint

will be of type: U1 < Ln ∧ U2 < Ln ∧ ... ∧ Un−1 < Ln, meaning the pair Ln/Un is the last one

acquiring the lock.

In sum, since the constraints enforce that a given pair Lk/Uk can only acquire the lock

released by a single pair Lk−1/Uk−1, it follows that each locking pair will have a unique value of

5Note that our locking constraints operate over the locking pairs extracted from each thread’s symbolic traces,
therefore it is always the case that thread(L) = thread(U) for every pair L/U .
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k, i.e., a unique position in the schedule. Therefore, any global locking order that satisfies our

locking constraints is of the form L1U1L2U2LkUk...LnUn,∀k≤n.

The must happen-before property follows directly from the partial order constraints described

in Section 4.1.3: the operations St, Et, Ftp,tc, Jtp,tc correspond, respectively, to the events

start(t), exit(t), fork(t, t′), and join(t, t′) mentioned in the beginning of this section. Therefore,

the partial order constraints in our SMT model directly encode the necessary happen-before

guarantees required for a schedule to be sequentially consistent according to [Herlihy & Wing

1990].

4.1.5.2 Alternate Schedule 1-Recall

In addition to feasibility, another important property that we are interested in proving is

the 1-Recall property of Symbiosis with respect to finding alternate, non-failing schedules via

event pair reordering. The 1-Recall property can be defined as the following theorem:

Theorem 2 (1-Recall). Given a failing schedule σ, let A be the set of feasible alternate schedules

of σ that adhere to the same execution path and prevent the failure. Let S be the set of alternate

schedules output by Symbiosis.6 If |A| ≥ 1, then |S| ≥ 1 ∧ S ⊆ A.

Proof. Informally, the above theorem states that, given a feasible failing schedule σ, if there

exists a feasible (non-failing) alternate schedule σ′, then Symbiosis will find it.

We divide the proof of the theorem in three steps. First, we define the condition necessary

and sufficient that any alternate schedule σa ∈ A must verify in order not to trigger the fail-

ure. Second, we show that any alternate schedule σ′ output by Symbiosis meets this condition

(i.e., S ⊆ A). Third, we show that, if there exist feasible alternate schedules that prevent the

failure, Symbiosis finds at least one of them (i.e., |A| ≥ 1⇒ |S| ≥ 1).

For a given failing execution, let F be the minimal set of events that are sufficient to trigger

the concurrency failure, σ[F ] be the projection of the failing schedule σ to the events in F

(i.e., σ[F ] is the minimal ordered sequence of events that causes the concurrency failure), and

σa[F ] be the projection of the alternate schedule σa ∈ A to the events in F .

6We say that an alternate schedule is output by Symbiosis iff it is deemed as satisfiable by the solver.
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It has been shown that if σa[F ] 6= σ[F ], then σa does not trigger the failure [Lucia & Ceze

2013]. This result has been named Avoidance-Testing Duality and, informally, states that, given

any ordered sequence of events that trigger a concurrency failure, it suffices to perturb just one

pair of events to avoid the failure [Lucia & Ceze 2013].

Since, for any alternate schedule σa ∈ A, σa[F ] 6= σ[F ] must hold, to prove that S ⊆ A, using

the result above, we only need to show that ∀σ′∈S , σ′[F ] 6= σ[F ].

Consider R to be the set of events belonging to the root cause produced by the constraint

formula Φroot (see Equation 4.2). Recall that Symbiosis generates alternate schedules by (ex-

haustively) selecting pairs of events from R to be inverted in the original failing schedule.

Let σ′ = invert(σ, ej , ek) be the alternate schedule σ′ that Symbiosis produces by re-

ordering the jth and kth events in σ, with j < k. Considering tk as the thread of event ek

(i.e., tk = thread(ek)) and rewriting σ = e1e2...ej−1ejej+1...ek−1ekek+1...en as σ = αejβekγ,

then σ′ = invert(σ, ej , ek) = αβ[∗,∗,tk]ekejβ \ β[∗,∗,tk]γ. Here, β[∗,∗,tk] corresponds to the events

by thread tk that occur between ej and ek in σ, and β \ β[∗,∗,tk] corresponds to the set of events

β excluding the events in β[∗,∗,tk]. In other words, the alternate schedule σ′ is computed by

placing ek right before ej , as well as all the events, belonging to the same thread of ek, that

occur between ej and ek in the failing schedule σ.

Let now efjandefk be a pair of events selected by Symbiosis to be inverted, such that

efj , efk ∈ F . Note that we know that ∃ej ,ek∈R : ej , ek ∈ F because the UNSAT core output

by the solver (which corresponds to R) always contains, at least, the events belonging to the

minimal sequence of events that leads to the bug. Therefore, F ⊆ R and ∃ej ,ek∈R : ej , ek ∈ F

holds by construction.

If σ[F ] = αfefjβfefkγf is the minimal ordered sequence of events that causes σ to

fail, and σ′ = invert(σ, efj , efk) is the alternate schedule output by Symbiosis, then σ′[F ] =

αfβf [∗,∗,thread(efk )]
efkefjβf \ βf [∗,∗,thread(efk )]γf . Thus, σ′[F ] 6= σ[F ] is true and σ′ ∈ A.

On the other hand, note that, for all event pairs ej , ek ∈ R and σ′′ = invert(σ, ej , ek), if

ej , ek 6∈ F , then σ′′[F ] = σ[F ] will hold and the solver will yield unsatisfiable. Thus, σ′′ 6∈ S and

it is not output by Symbiosis.

Finally, we prove that |A| ≥ 1 ⇒ |S| ≥ 1 by contradiction. Suppose |A| ≥ 1 and S = ∅,

then it must be the case that there is a feasible non-failing, alternate schedule σa that verifies
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the condition σa[F ] 6= σ[F ] and is not obtainable by reordering pairs of events in R (given

that Symbiosis attempts to invert all pairs of events in R). However, if σa is not the result of a

reordering of events in R, then it does not comprise events from F (since F ⊆ R). Consequently,

σa cannot belong to A, because it does not include the same set of events nor adheres to the

same execution path as the original failing schedule σ, as required by the definition of A. This

contradicts our assumption.

As final remark, note that Symbiosis requires the alternate, non-failing schedule to adhere

to the same control-flow as the original failing schedule. This means that, for concurrency bugs

whose root cause is related to schedule-sensitive branches [Huang & Rauchwerger 2015] (i.e., for

path- and schedule-dependent bugs), Symbiosis is not able to produce an alternate schedule. In

Chapter 5, we show how to generate alternate, non-failing schedules that follow an execution

path different than that of the failing schedule.

4.1.6 Differential Schedule Projection Generation

Differential schedule projection (DSP) is a novel debugging methodology that uses root

cause sub-schedules and non-failing alternate schedules. The key idea behind debugging with a

DSP is to show the programmer the salient differences between failing, root cause schedules and

non-failing, alternate schedules. Examining those differences helps the programmer understand

how to fix the bug, rather than helping them understand the failure only, like techniques that

solely report failing schedules.

Concretely, a DSP consists of a pair of sub-schedules decorated with several pieces of addi-

tional information. The first sub-schedule is the root cause sub-schedule, which is the source of

the projection. The second sub-schedule is an excerpt from the alternate, non-failing schedule,

which is the target of the projection.

The order of memory operations differs between the schedules and, as a result, the outcome

of some memory operations may differ. A read may observe a different write’s result in one

schedule than it observed in another, or two writes may update memory in a different order

in one schedule than in another, leaving memory in a different final state. These differences

are precisely the changes in data-flow that contribute to the failure’s occurrence. Symbiosis
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highlights the differences by reporting data-flow variations: data-flow between operations in the

source sub-schedule that do not occur in the target sub-schedule and vice versa.

To simplify its output, Symbiosis reports only a subset of operations in the source and

target sub-schedules. An operation is included if it makes up a data-flow variation or if it is

one of a pair of operations that occur in a different order in one sub-schedule than in the other.

Alternate, non-failing schedules vary in the order of a single pair of operations, so all operations

that precede both operations in the pair occur in the same order in the source and target sub-

schedules. Symbiosis does not report operations in the common prefix, unless it is involved in a

data-flow variation. By selectively including only operations related to data-flow and ordering

differences, a DSP focuses programmer attention on the changes to a failing execution that lead

to a non-failing execution. Understanding those changes are the key to changing the program’s

code to fix the bug. For instance, the DSP in Figure 4.3d shows that the data-flow W 1.20 →

R2.19 (in φfsch) changes to W 0.4 → R2.19 (in φinvsch). This data-flow variation is the failure’s

root cause. In addition, note that, by reordering the events, the DSP also suggests that the

block of operations L2.9–(U2.20) should execute atomically, which indeed fixes the bug.

4.1.7 DSP Optimization: Context Switch Reduction

The SMT solver does not take into account the number of context switches when solving

the failing constraint system. As a consequence, the failing schedule produced may exhibit a

fine-grained entanglement of thread operations, which hinders analysis. Although DSPs help

obviate most of the interleaving complexity by pruning the common portions between the failing

and the alternate schedules, they may still depict unnecessary data-dependencies. Figure 4.4a

illustrates this scenario.

The program in the figure contains two threads (T1 and T2), three shared variables (x, y,

and z) and an assertion that checks whether x 6= 0. The DSP in Figure 4.4a shows a possible

failing schedule and depicts the data-flow variations with respect to the corresponding alternate

schedule. We can see that the DSP highlights differences in the data-flow for shared variables

x, y, and z, although solely the one for x is indeed related to the bug’s root cause. Note that,

for this example, the alternate schedule is produced by inverting the event x = 0 (in T2) with

assert(x!=0) (in T1).
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Figure 4.4: Context Switch Reduction. a) DSP without context switch reduction; b) DSP with
context switch reduction. Arrows depict execution data-flows.

To mitigate the amount of irrelevant data-dependencies in DSPs, we apply a pre-processing

stage to reduce the number of context switches in the failing schedule, prior to the generation

of the alternate schedule. Since finding the minimal number of context switches that triggers a

failure is NP-hard [Jalbert & Sen 2010], we developed an algorithm inspired in Tinertia [Jalbert

& Sen 2010], which is a trace simplification heuristic that runs in polynomial time with respect

to the size of the trace. Our context switch reduction (CSR for short) algorithm is described in

Algorithm 6. We study the impact of CSR in DSP generation in Section 4.3.3.3.

The CSR algorithm receives a failing schedule σ and the constraint system Φfail (see Equa-

tion 4.1) as input. All the context switch reduction actions are applied to σcur, and whenever

the schedule σtmp, resulting from the application of an action, satisfies the constraint system

Φfail, that schedule is stored into σcur.

CSR starts by initializing σcur to the input schedule σ and then enters the main loop (lines 2-

16). In lines 4-9, the algorithm does a forward pass over the schedule and applies the moveUpSeg

action for each event e in the schedule (line 5). This action operates at the thread segment 7 level,

therefore it has an effect only if e is the last operation of the segment (otherwise it just proceeds

to the next event). When e is in the tail of the segment, moveUpSeg finds the next thread

segment after e that is executed by the same thread and merges it with the thread segment

that contains e. If this move produces a schedule that still satisfies the constraint model (line

6), then we have successfully found a schedule with one context switch less, and store it into

σcur (line 7). As an example of this action, consider the event x = 1 in the failing schedule of

Figure 4.4a. If we apply moveUpSeg to this event, its thread segment will be augmented with

7We consider a thread segment to be a maximal sequence of consecutive events by the same thread.
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Algorithm 6: Context Switch Reduction (CSR)

Input: failing schedule σ; constraint system Φfail
Output: failing schedule σcur with the number of context switches (potentially) reduced

1 σcur ← σ
2 repeat
3 σold ← σcur
4 for i = 1 to |σcur| do
5 σtmp ← moveUpSeg(σcur, i)
6 if solve(Φfail, σtmp) is satisfiable then

7 σcur ← σtmp
8 end

9 end
10 for i = |σcur| to 1 do
11 σtmp ← moveDownSeg(σcur, i)
12 if solve(Φfail, σtmp) is satisfiable then

13 σcur ← σtmp
14 end

15 end

16 until numCS(σold) ≤ numCS(σcur);
17 return σcur

the next thread segment by the same thread (i.e., y = 1). The schedule resulting from this

move will then be x = 1; y = 1; x = 0; (...).

The next step of the CSR algorithm does a backwards pass over the schedule and applies

the moveDownSeg action for each event e in the schedule (lines 10-15). Symmetrically to move-

UpSeg, moveDownSeg looks for the previous thread segment before e that is executed by the

same thread and merges it with the thread segment that contains e. Hence, moveDownSeg

only has an effect if e is the first action of the thread segment. This technique is particularly

helpful to eliminate context switches in the presence of partial order invariants. For instance,

consider two thread segments A and B of thread T1, interleaved by a segment C of thread T2.

If B contains a join event and C contains an exit event, moveUpSeg will yield unsatisfiable

when pulling B upwards to be merged with A, because B cannot occur before C. In contrast,

moveDownSeg will be valid because A can be merged down with B and execute after C without

breaking the partial order invariant.

At the end of each iteration of the main loop, CSR computes the number of context switches

of σcur (given by numCS(σcur)) and compares this value to that of σold. If σcur contains fewer

context switches than σold, then the algorithm proceeds to further simplify σcur. Otherwise,
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CSR terminates and returns σcur as the simplified schedule.

Figure 4.4b shows the DSP obtained after applying the CSR algorithm to the failing schedule

in Figure 4.4a. We can see that the single data-flow variation that is now depicted is the one

that explains the failure.

It should be noted that Symbiosis could also leverage other trace simplification techniques,

which do not rely on SMT solver invocations. For example, SimTrace [Huang & Zhang 2011]

is a static technique that reduces the number of context switches in an execution schedule by

computing a graph of dependences of the events in the schedule.

4.2 Implementation

In this section, we discuss the implementation details of Symbiosis.

4.2.1 Instrumenting Compiler and Runtime

Our Symbiosis prototype implements trace collection for both C/C++ and Java programs.

C/C++ programs are instrumented via an LLVM function pass. Java programs are instru-

mented using Soot [Vallée-Rai, Co, Gagnon, Hendren, Lam, & Sundaresan 1999], which injects

path logging calls into the program’s bytecode. Like CLAP, we assign every basic block with a

static identifier and, at the beginning of each block, we insert a call to a function that updates

the executing thread’s path. The function logs each block as the tuple (thread Id, basic block Id)

whenever the block executes. The path logging function is implemented in a custom library that

we link into the program. Although our prototype is fully functional, it has not been fully opti-

mized yet. For instance, lightweight software approaches (e.g., Ball-Larus [Ball & Larus 1994])

or a hardware accelerated approaches (e.g., Vaswani et al [2005] and Intel PT [Intel Corporation

2013]) could also be used to improve the efficiency of path logging. The Symbiosis prototype is

publicly available at https://github.com/nunomachado/symbiosis.

4.2.2 Symbolic Execution and Constraint Generation

Symbiosis’s guided symbolic execution for C/C++ programs has been implemented on top of

KLEE [Cadar, Dunbar, & Engler 2008]. Since KLEE does not support multithreaded executions,

https://github.com/nunomachado/symbiosis
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similarly to CLAP, we fork a new instance of KLEE’s execution to handle each new thread

created. We also disabled the part of KLEE that solves path conditions to produce test inputs

because Symbiosis does not use them. For Java programs, we have used Java PathFinder

(JPF) [Visser, Pǎsǎreanu, & Khurshid 2004]. In this case, we have disabled the handlers for

join and wait operations to allow threads to proceed their symbolic execution independently,

regardless of the interleaving. Otherwise, we would have to explore different possible thread

interleavings when accessing these operations, in order to find one conforming with the original

execution.

Additionally, we made the following changes to both symbolic execution engines. First, we

ignore states that do not conform with the threads’ path profiles traced at runtime, which allows

to guide the symbolic execution along the original paths alone. Second, we generate and output

a per-thread symbolic trace containing read/write accesses to shared variables, synchronization

operations, and path conditions observed across each execution path.

Consistent thread identification. Symbiosis must ensure that threads are consistently named

across the original failing execution and the symbolic execution. Similarly to CoopREP, in

Symbiosis we use a technique that relies on the observation that each thread spawns its children

threads in the same order, regardless of the global order among all threads (see Section 3.1.1).

Symbiosis instruments thread creation points, replacing the original PThreads/Java thread iden-

tifiers with new identifiers based on the parent-children order relationship. For instance, if a

thread ti forks its jth child thread, the child thread’s identifier will be ti:j .

Marking shared variables as symbolic. Precisely identifying accesses to shared data, in

order to mark shared variables as symbolic, is a difficult program analysis problem, which is

orthogonal to our work. Although it is possible to conservatively mark all variables as sym-

bolic, varying the number of symbolic variables varies the size and complexity of the constraint

system. For C/C++ programs we manually marked shared variables as symbolic. We also

marked variables symbolic if their values were the result of calls to external libraries not sup-

ported by KLEE. For Java programs, we use Soot’s thread-local objects (TLO) static escape

analysis strategy [Halpert, Pickett, & Verbrugge 2007], which soundly over-approximates the set

of shared variables in a program (i.e., some non-shared variables might be marked shared). At

instrumentation time, Symbiosis logs the code point of each shared variable access. During the

symbolic execution, whenever JPF attempts to read or write a variable, it consults the log to
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check whether that variable is shared or not. If so, JPF treats the variable as symbolic.

Comparing the two approaches, manually identifying the shared variables is clearly more

complex and tedious than employing a static analysis, as it requires a careful inspection of the

code. Nevertheless, we opted for following the former approach in our prototype for C/C++

applications, because we were not familiar with a thread escape analysis, similar to that of Soot,

for this kind of programs. Alternatively, one could employ static data race detectors to identify

shared variables [Voung, Jhala, & Lerner 2007], although these often suffer from false positives.

Locks held at failure points. If a thread holds a lock when it fails, a reordering of operations

in the critical region protected by the lock may lead to a deadlocking schedule. Other threads

will wait indefinitely attempting to acquire the failing thread’s held lock because the failing

thread’s execution trace includes no release. We skirt this problem by adding a synthetic lock

release for each lock held by the failing thread at the failure point. The synthetic releases allow

the failing thread’s code to be reordered without deadlocks.

4.2.3 Schedule Generation and DSPs

We implemented failing and alternate schedule generation, as well as differential schedule

projections, from scratch in around 4K lines of C++ code. After building the SMT constraint

formula, Symbiosis solves it using Z3 [De Moura & Bjørner 2008]. Symbiosis then parses Z3’s

output to obtain the solution of the model, or the UNSAT core, when generating the root cause

sub-schedule. Finally, to pretty-print its output, Symbiosis generates a graphical report (using

Graphviz 8) showing the differences between the failing and the alternate schedules.

4.3 Evaluation

Our evaluation of Symbiosis focuses on answering the following three questions:

• How efficient is Symbiosis in collecting path profiles and symbolic path traces? (Sec-

tion 4.3.1)

• How efficient is Symbiosis in solving its SMT constraint formulae? (Section 4.3.2)

8http://www.graphviz.org
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• How useful are DSPs to diagnose and fix concurrency bugs? (Section 4.3.3)

We substantiate our results with characterization data and several case studies, using buggy

multithreaded C/C++ and Java applications, including both real-world and benchmark pro-

grams. We used four C/C++ test cases: Crasher, a toy program with an atomicity violation;

StringBuf, a C++ implementation of a bug in the Java JDK1.4 StringBuffer library, devel-

oped in prior work [Flanagan & Qadeer 2003]; BBuf, a shared buffer implementation [Huang,

Zhang, & Dolby 2013]; Pfscan, a real-world parallel file scanner adapted for research by Elmas

et al. [Elmas, Burnim, Necula, & Sen 2013]; and Pbzip2, a real-world, parallel bzip2 compres-

sor.9 We used four Java programs: Cache4j, a real-world Java object cache, driven externally

by concurrent update requests; and three tests from the IBM ConTest benchmarks [Farchi, Nir,

& Ur 2003b]: Airline, Bank, and TwoStage. Columns 1-4 of Table 4.1 describe the test cases.

We evaluated the scalability of Symbiosis for Pbzip2 and Cache4j by varying the size of

their workload. For Pbzip2, we compressed input files of different sizes: 80KB (small), 2.6MB

(medium), and 16MB (large). For Cache4j, we re-ran its test driver, for update loop iteration

counts of 1 (small), 5 (medium), and 10 (large). In some cases, we inserted calls to the sleep

function, changing event timing and increasing the failure rate. Our work is not targeting the

orthogonal failure reproduction problem [Huang, Zhang, & Dolby 2013], so this change does not

taint our results. We ran our C/C++ experiments on an 8-core, 3.5Ghz machine with 32GB of

memory, running Ubuntu 10.04.4. For Java we used a dual-core i5, 2.8Ghz CPU with 8GB of

memory, running OS X.

9In our experiments, we used a C version of Pbzip2 from previous work [Kasikci, Zamfir, & Candea 2012].
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Table 4.1: Benchmarks and performance. Column 2 shows lines of code; Column 3, the number of threads; Column 4, the number of
shared program variables; Column 5, the number of accesses to shared variables; Column 6, the overhead of path profiling; Column 7, the
size of the profile in bytes; Column 8, the symbolic execution time; Column 9, the number of SMT constraints; Column 10, the number
of unknown SMT variables; Column 11, the time in seconds to solve the SMT system.

Application LOC #Threads
#Shared #Shared Profiling Log Symbolic #SMT #SMT SMT

Variables Accesses Overhead Size Time Constraints Variables Time

C
/
C

+
+

Crasher 70 6 4 266 25.4% 458B 0.02s 22295 400 1m2s

StringBuf 151 2 5 69 16.7% 632B 0.05s 423 102 1s

BBuf 377 5 11 143 34.4% 920B 13s 2710 239 8s

Pfscan 830 5 9 74 6.6% 3.8K 1.87s 678 131 1s

Pbzip2 (S)

1942 9 14

176 2.5% 1.7K 11.16s 1361 289 1s

Pbzip2 (M) 367 1.3% 2.6K 36.17s 6771 564 26s

Pbzip2 (L) 1156 2.5% 9.4K 7m11s 514548 2866 15h15m

J
av

a

Airline 108 8 2 36 22% 262B 1.30s 2670 84 1s

Bank 125 3 3 115 12.4% 788B 1.56s 8250 197 2s

TwoStage 123 4 4 49 14.8% 196B 2.53s 264 88 1s

Cache4j (S)

2344 4 7

28 7.3% 366B 1.64s 122 51 1s

Cache4j (M) 1247 8.6% 17K 4.56s 303626 1810 51s

Cache4j (L) 1411 9.3% 24K 4.76s 1142120 2051 1h25m
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4.3.1 Trace Collection Efficiency

We measured the time and storage overhead of path profiling relative to native execution and

the time cost of symbolic trace collection. Columns 6-10 of Table 4.1 report the results, averaged

over five trials. Symbiosis imposes a tolerable path profiling overhead, ranging from 1.3% in

Pbzip2 (medium) to 25.4% in Crasher. Curiously, the runtime slowdown is smaller for real-

world applications (Pfscan, Pbzip2, and Cache4j) than for benchmarks. The reason is that the

latter programs have more basic blocks with very few operations, making block instrumentation

frequent. The space overhead of path profiling is also low, ranging from 196B (TwoStage) to

24K (Cache4j). Moreover, Symbiosis collects symbolic traces in just a few seconds for most test

cases. The only exception is Pbzip2 (large), which took KLEE around seven minutes to finish.

JPF quickly produced the symbolic traces for all programs.

4.3.2 Constraint System Efficiency

The last three columns of Table 4.1 describe the SMT formulae Symbiosis built for each test

case. The table also reports the amount of time Symbiosis takes to solve its SMT constraints

with Z3, yielding a failing schedule. The data show that solver time is very low (i.e., seconds) in

most cases. Solver time often grows with constraint count, but not always. Cache4j (large) has

more than double the constraints of Pbzip2 (large), but was around 11 times faster. Figure 4.5

helps explain the discrepancy by showing the composition of the SMT formulations by constraint

type. Pbzip2 has many locking and read-write constraints, while Cache4j has many read-write

constraints, but no locking constraints. The solution to locking constraints determines the

execution’s lock order, constraining the solution to read-write constraints. The formulation’s

complexity grows not with the count, but the interaction of these constraint types.

Symbiosis’s SMT solving times are practical for debugging use. To produce a DSP, Symbiosis

requires only a trace from a single, failing execution and does not require any changes to the

code or input. We argue that our experiments are realistic because a programmer, when debug-

ging, often has a bug report with a small test case that yields a short, simple execution. The

data suggest that Symbiosis handles such executions very quickly (e.g., Pbzip2 (small), Cache4j

(medium) ). Moreover, debugging is a relatively rare development task, unlike compilation,

which happens frequently. As such, giving Symbiosis minutes or hours to help solve hard bugs
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Figure 4.5: Breakdown of the SMT constraint types.

(like Pbzip2 (large)) is reasonable. Additionally, Symbiosis could use parallel SMT solving, like

CLAP or incorporate lock ordering information, like [Bravo, Machado, Romano, & Rodrigues

2013], to decrease solver time.

4.3.3 Differential Schedule Projections Effectiveness

Symbiosis produces a graphical visualization of its differential schedule projections (DSPs)

as a graph with specific identifying information on nodes and edges that reflects source code lines

and variables. This information includes schedule variations, as well as data-flow variations.

In this section, we are interested in assessing the effectiveness of DSPs to diagnose concur-

rency failures. To this end, we first evaluate the efficacy of DSPs in isolating the root cause of

the benchmark bugs. Second, we use case studies to further illustrate how DSPs can be used

to understand and fix those bugs. Third, we investigate the impact of using context switch

reduction when generating DSPs. Finally, we present a user study that assesses the benefits of

DSPs over full failing schedules for concurrency bug diagnosis.

4.3.3.1 Root Cause Isolation Efficacy

To evaluate the efficacy of DSPs in isolating the bug’s root cause, we compared the number

of program events and data-flow edges in the differential schedule projection against those of
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Table 4.2: Differential schedule projections. Columns 2 is the number of event pairs reordered
to find a satisfiable alternate schedule (#Alt. Pairs). Column 3 shows the number of events
in the failing schedule (#Events Fail Sch.) and Column 4 shows the number of events in the
corresponding differential schedule projection (#Events DSP). Column 5 shows the number of
data-flow edges in the failing schedule (#D-F Fail Sch.) and Column 6 shows the number
of data-flow variations in the differential schedule projection (#D-F DSP). Columns 4 and 6
also show the percent change compared to the full schedule. Column 7 shows the number of
operations involved in the data-flow variations (#Ops to Grok). Columns 8-9 show whether the
differential schedule projection explains the failure, and whether it directly points to a fix of the
underlying bug in the code.

Application
#Alt. #Events #Events #D-F #D-F Ops. Expla- Finds
Pairs Fail Sch. DSP (∆%) Fail Sch. DSP (∆%) to Grok natory? Fix?

Crasher 27 287 9 (↓97) 107 1 (↓99) 3 Y Y

StringBuf 9 73 15 (↓80) 28 1 (↓96) 3 Y Y

BBuf 3 157 19 (↓88) 79 1 (↓99) 3 Y Y

Pfscan 5 93 16 (↓83) 32 1 (↓97) 3 Y Y

Pbzip2 (S) 1 206 4 (↓98) 29 1 (↓97) 3
Y NPbzip2 (M) 1 397 3 (↓99) 82 1 (↓99) 3

Pbzip2 (L) 2 1223 168 (↓86) 264 2 (↓>99) 5

Airline 1 58 6 (↓90) 25 2 (↓92) 6 Y Y

Bank 181 124 31 (↓75) 72 2 (↓97) 5 Y Y

TwoStage 14 60 3 (↓95) 27 1 (↓96) 3 Y Y

Cache4j (S) 1 39 12 (↓69) 11 2 (↓82) 6
Y NCache4j (M) 1 1257 10 (↓>99) 552 1 (↓>99) 3

Cache4j (L) 1 1422 5 (↓>99) 628 1 (↓>99) 3

full, failing executions computed by Symbiosis.

Table 4.2 summarizes our results. The most important result is that Symbiosis’s differential

schedule projections are simpler and clearer than looking at full, failing schedules. Symbiosis

reports a small fraction of the full schedule’s data-flows and program events in its output –

on average, 90% fewer events and 96% fewer data-flows. By highlighting only the operations

involved in the data-flow variations, Symbiosis focuses the programmer on just a few events (3

to 6 in our tests). Furthermore, all events Symbiosis reports are part of data-flow or event orders

that dictate the presence or absence of the failure. DSPs depict those events only, simplifying

debugging.

Symbiosis finds an alternate, non-failing schedule after reordering few event pairs – just 1 in

many cases (e.g., Cache4j, Pbzip2). Symbiosis reorders one pair at a time, starting from those

closer in the schedule to failure, and the data show that this usually works well. Bank is an

outlier – Symbiosis reordered 181 different pairs before finding an alternate non-failing schedule.

The bug in this case is an atomicity violation that breaks a program invariant that is not checked
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until later in the execution. As a result, Symbiosis must search many pairs, starting from the

failure point, to eventually reorder the operations that cause the atomicity violation.

Note that, even if a failure occurs only in the presence of a particular chain of event orderings,

it suffices to reorder any pair in the chain to prevent that failure. As mentioned in Section 4.1.5.2,

this phenomenon is called the Avoidance-Testing Duality, and is detailed in previous work [Lucia

& Ceze 2013].

4.3.3.2 Differential Schedule Projections Case Studies

This section uses case studies to illustrate how differential schedule projections focus on

relevant operations and help understand each failure.

StringBuf is an atomicity violation first studied in [Flanagan & Qadeer 2003] and its DSP

is depicted in Figure 4.6a. T1 reads the length of the string buffer, sb, while T2 modifies it.

When T2 erases characters, the value T1 read becomes stale and T1’s assertion fails . The DSP

shows that the cause of the failure is T2’s second write, interleaving T1’s accesses to sb.count.

Moreover, Symbiosis’s alternate schedule suggests that, for T1, the write on value len and the

verification of the assertion should execute atomically in order to avoid the failure. For this

case, this is actually a valid bug fix.

BBuf contains producer/consumer threads that put/get items into/from a shared buffer for a

given number of times. This program has an atomicity violation that allows consumer threads

to get items from the buffer, even when it is empty. Figure 4.6b illustrates this failure: after

getting an item from the buffer, consumer thread T1 prepares to get another one, but first

checks whether the buffer is empty (i.e., if(bbuf->head!=bbuf->rear)). As the condition is

true, T1 proceeds to consume the item, but it is interleaved by T2 in the meantime, which

consumes the item first and updates the value of bbuf->head. This causes T1 to later violate

the assertion that enforces the buffer invariant. The alternate schedule in Figure 4.6b shows

that executing atomically the two blocks that, respectively, check the conditional clause and the

assertion prevents the failure.

Pbzip2 is an order violation studied in [Jalbert & Sen 2010]. Figure 4.6c shows Symbiosis’s

DSP that illustrates the failure’s cause. T1, the producer thread, communicates with T2 the

consumer thread via the shared queue, fifo. If T1 sets the fifo pointer to null while the consumer
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Failing Schedule Alternate Schedule

FAIL

sb.count = newCount;
len = sb.count;

T1 T2

sb.count -= eraseCount

assert(len <= sb.count)
...

...
sb.count = newCount;

len = sb.count;

T1 T2

sb.count -= eraseCount;

assert(len <= sb.count)
...

...

a) StringBuf

OK

fifo = NULL
if(allDone == 1) {

assert(fifo!=NULL)  
unlock(fifo->mut) fifo = NULL

if(allDone == 1) {

assert(fifo!=NULL)  
unlock(fifo->mut)

fifo = queueInit(...)
T1 T2 T1 T2

FAIL ...
OK

c) Pbzip2

......

T1 T2 T1 T2

accounts[id] += sum;
tmp1 = BankTotal;
BankTotal = tmp1 + sum;

assert(accountsTotal == BankTotal);

accounts[id] += sum;
tmp2 = BankTotal;

BankTotal = tmp2 + sum;
...

FAIL

accounts[id] += sum;
tmp1 = BankTotal;
BankTotal = tmp1 + sum;

assert(accountsTotal == BankTotal)

accounts[id] += sum;
tmp2 = BankTotal;
BankTotal = tmp2 + sum;

OK

d) Bank

...

T1 T2 T1 T2

inTryBlock = true

inTryBlock = false
_sleep = false

...

assert(inTryBlock==true)
...

FAIL

inTryBlock = true

inTryBlock = false
_sleep = false

assert(inTryBlock==true)
...

OK...

e) Cache4j

_sleep = true
if(_sleep){

_sleep = true
if(_sleep){

fifo = queueInit(...)
...

lock(bbuf->mut)
assert(bbuf->head != bb->rear)
*item = bbuf->buf[bbuf->head]

b) BBuf

bbuf->head = (bbuf->head+1)%...
unlock(bbuf->mut)

lock(bbuf->mut)
if(bbuf->head!=bbuf->rear) 

unlock(bbuf->mut)
lock(bbuf->mut)

bbuf->head = (bbuf->head+1)%...
unlock(bbuf->mut)

T1 T2 T1 T2

...

FAIL

...

...

bbuf->head = (bbuf->head+1)%...
unlock(bbuf->mut)

lock(bbuf->mut)
if(bbuf->head!=bbuf->rear) 

unlock(bbuf->mut)
lock(bbuf->mut)
assert(bbuf->head != bb->rear)
*item = bbuf->buf[bbuf->head]

lock(bbuf->mut)

bbuf->head = (bbuf->head+1)%...
unlock(bbuf->mut)

...

...

...

...

OK

Figure 4.6: Summary of Symbiosis’s output for some of the test cases. Arrows depict data-flows
and dashed boxes depict regions that Symbiosis suggests to be executed atomically.

thread is still using it, T2’s assertion fails. The alternate schedule in Figure 4.6b, explains the

failure because reordering the assignment of null to fifo after the assertion prevents the failure.

The DSP is, thus, useful for understanding the failure. However, to fix the code, the programmer

must order the assertion with the null assignment using a join statement. The DSP does not

provide this suggestion, so, despite helping explain the failure, it does not completely reveal how

to fix the bug.

Bank is a benchmark in which multiple threads update a shared bank balance. It has an

atomicity violation that leads to a lost update. Figure 4.6d shows the DSP for the failure:

T1 and T2 read the same initial value of BankTotal and subsequently write the same updated
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value, rather than either seeing the result of the other’s update. The final assertion fails, because

accountsTotal, the sum of per-account balances, is not equal to BankTotal. The Figure shows

that Symbiosis’s DSP correctly explains the failure and shows that eliminating the interleaving

of updates to BankTotal prevents the failure. It is noteworthy that in this example the atomicity

violation is not fail-stop and happens in the middle of the trace. Scanning the trace to uncover

the root cause would be difficult, but the DSP pinpoints the failure’s cause precisely.

Cache4j has a data race that leads to an uncaught exception when one thread is in a try block

and another interrupts it with the library interrupt() function [Sen 2008]. JPF doesn’t support

exception replay, so we slightly modified its code, preserving the original behavior, by replacing

the exception with an assertion about a shared variable. Figure 4.6e shows that in our version of

the code, inTryBlock indicates whether a thread is inside a try-catch block or not, the assertion

inTryBlock == true replaces the interrupt() call. The program fails when T1 is interrupted

outside a try block as in the original code. The schedule variations reported in the DSP

explain the cause of failure – if the entry to the try block (i.e., inTryBlock = true) precedes

the assertion, execution succeeds; if not, the assertion fails. The involvement of exceptions

makes the fix for this bug somewhat more complicated than simply adding atomicity, but the

understanding that the DSP provides points to the right part of the code and illustrates the

correct behavior.

4.3.3.3 Impact of Context Switch Reduction

We evaluate the impact of the Context Switch Reduction (CSR) algorithm presented in

Section 4.1.7. To this end, we ran Symbiosis with and without CSR and compared: i) the

number of context switches of the failing schedule generated, ii) the number of event pairs

reordered to find a satisfiable alternate schedule, and iii) the number events and data-flows in

the DSPs produced.

Table 4.3 reports the results of our experiments. The most prominent observation is that

our CSR algorithm is indeed effective in reducing the number of context switches (the failing

schedules have 63% less context switches, on average). Table 4.3 also shows that, when using

CSR, Symbiosis is able to find a satisfiable alternate schedule with less event pair reorderings

in three of the test cases (Crasher, Pfscan, and Bank).

On the other hand, DSPs produced by Symbiosis with CSR tend to have slightly more
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Table 4.3: Context Switch Reduction Efficacy. Column #CS indicates the number of schedule
context switches; #Alt Pairs is the number of event pairs reordered to find a satisfiable alternate
schedule; #Events DSP and #D-F DSP show, respectively, the number of events and number
of data-flow in the corresponding differential schedule projection. Time CSR indicates the total
amount of time required to perform the context switch reduction algorithm. Shaded cells indicate
the cases where Symbiosis achieves better results with CSR than without.

Application
Without CSR With CSR

#CS
#Alt. #Events #D-F

#CS
#Alt. #Events #D-F Time CSR

Pairs DSP DSP Pairs DSP DSP (Solver Calls)

Crasher 104 27 9 1 34 21 9 1 19m33s (166)

StringBuf 7 9 15 1 4 9 15 1 2s (14)

BBuf 35 3 19 1 10 6 19 1 14s (40)

Pfscan 23 5 16 1 9 3 16 1 9s (32)

Pbzip2 (S) 74 1 4 1 14 1 7 1 14s (59)

Pbzip2 (M) 151 1 4 1 22 1 7 1 4m58s (163)

Pbzip2 (L) 292 1 4 1 36 1 7 1 5h11m (353)

Airline 28 1 6 2 8 1 8 2 5s (33)

Bank 6 181 31 2 4 154 46 2 6s (9)

TwoStage 16 14 3 1 4 14 6 1 2s (15)

Cache4j (S) 4 1 12 2 4 1 12 2 <1s (2)

Cache4j (M) 21 1 10 1 7 1 10 1 6m50s (25)

Cache4j (L) 29 1 5 1 7 1 5 1 16m19s (29)

events than those produced without CSR. The reason is because CSR produces schedules with

more coarse-grained thread segments (i.e., comprising more events) and our current DSP imple-

mentation does not eliminate events from the same thread segment that occur in-between two

events involved in data-flow variations.

Another observation worth noting from Table 4.3 is that DSPs with CSR do not exhibit any

reductions in terms of data-flow variations with respect to DSPs without CSR. The reason is

because the feasible alternate schedules produced by Symbiosis are mainly the result of reordering

a event from a thread (typically the one corresponding to the failure condition) with an event

from another thread that is close in the schedule. Hence, most data-flows do not change after

reordering the event pair, even if the failing schedule has unnecessary context switches.

Regarding the amount of time required to perform CSR (shown in the last column of Ta-

ble 4.3), it is possible to see that Symbiosis took only a couple of seconds for most cases.

However, for Pbzip2 (L) this time exceed 5 hours. The reason is because the failing schedule

for this program contained a significant number of context switches, which required the CSR

to invoke the solver several times (353 to be precise). Moreover, since the constraint model for

Pbzip2 (L) is also the one with most constraints, each solver call becomes particularly costly.
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In conclusion, despite CSR being effective in reducing the number of context switches in

a failing schedule, our experiments show that this does not imply a reduction in the number

of events and data-flow variations reported in the DSPs. Furthermore, since performing CSR

can be costly for some programs, we argue that computing the DSP with the original failing

schedule should probably be the most cost-effective approach for the majority of the cases.

4.3.3.4 User Study

To assess how useful for debugging a DSP is, compared to full failing schedule, we conducted

a user study.

Participants. We recruited 48 participants, including 21 students (6 undergraduate, 9 masters,

6 doctoral) from Instituto Superior Técnico, 24 masters students from University of Pennsylva-

nia, 1 doctoral student from Carnegie Mellon University, and 2 software engineers (with three

years of experience in industry), to individually find the root cause of a given concurrency bug.

Study Design. The participants were randomly divided into two groups according to the type

of debugging aid they were going to use in the experiment: the full schedule of a failing execution

or the DSP for the same failing schedule.

Fifteen participants took the study in a proctored session. The remaining 33 participants

received the study by email and returned it by email on completion.

Pior to initiating the experiment, each participant had access to a tutorial example that

explained how the respective debugging aid could be used to find the root cause of a concurrency

bug in a toy program. The goal of the tutorial was to guarantee that each participant knew how

to read and understand its debugging aid (i.e., the full failing schedule or the DSP) beforehand.

For the experiment, we provided each participant with the source code of a multithreaded

program with a concurrency bug. This bug was a simplified version of the StringBuf error

used in the previous sections and consisted of an atomicity violation that caused the failure of

an assertion (the assertion included two conditions of which only one fails). In addition, each

participant was given its corresponding debugging aid: the full schedule of a failing execution

or the DSP for the same failing schedule.

The experiment consisted in analyzing the debugging aid and the program’s source code,

and answer a short survey with five questions. First, we asked which conjunct of the assertion



4.3. EVALUATION 113

condition was violated (allowing us to screen for wrong answers). Second, we asked the partici-

pant to write up to three sentences describing what caused the assertion to fail. Then, we asked

the participant to rate, on a scale of 1 to 5, the difficulty of diagnosing the concurrency bug, as

well as their experience in debugging multithreaded programs. Finally, we asked the participant

to report the time they took to find the bug by choosing one of four intervals of time: 0-4min,

5-9min, 10-14min, and ≥15min.

Results. We analyze these results according to three different criteria, which are discussed

below.

• Correctness. Do the participants correctly identified the root cause of the assertion viola-

tion? Does the type of debugging aid have an impact in the success rate?

• Bug Difficulty. Does the type of debugging aid have an impact in the self-reported bug

difficulty?

• Diagnosis Time. Does the type of debugging aid have an impact in the time required to

diagnose the bug? Are there other factors that significantly influence the diagnosis time

(e.g., the participant’s debugging experience)?

To support the conclusions of the user study, we performed a statistical analysis over the

obtained data. Concretely, for each criterion, we started by computing the correlation coefficient

between the variables being analyzed (e.g., identifying the correct root cause of the bug and using

DSP as debugging aid). For the cases where the correlation coefficient indicated a statistically

significant relationship between the variables, we also performed a t-test over the samples to

further support that claim.

Correctness. We considered that participants had a correct answer when they correctly

identified the failing conjunct in the assertion condition and provided a satisfactory explanation

to the bug’s root cause.

From the 48 participants, 38 answered correctly. In particular, the participants that received

the DSP showed a slightly higher percentage of correct answers in comparison to those that

received the full failing schedule (74% against 71%, respectively).

To statistically evaluate the relationship between the type of debugging aid and the cor-
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Figure 4.7: User Study Results (considering solely correct answers). a) Impact of the type of
debugging aid in self-reported bug difficulty (1 means very easy, 5 means very hard); b) Impact
of the type of debugging aid (full schedule/DSP) in diagnosis time.

rectness of the answer, we calculated the point-biserial correlation coefficient 10 between these

two variables. We considered the variable debugging aid to have value 0 for the DSP and 1 for

the full failing schedule. For the correctness of the answer, we considered 0 to indicate that the

response is incorrect and 1 to indicate that it is correct.

The correlation value between the debugging aid variable and the correctness of the answer

is -0.030, which means that there is no statistically significant correlation between the two

variables. The negative value of the coefficient shows that there is a slight trend for people using

the DSP to answer correctly more often than people with full failing schedules though.

Given that the majority of the participants successfully found the root cause of the bug,

we believe that, for (somewhat) simple concurrency bugs, having any kind of debugging aid is

indeed helpful for debugging.

Bug Difficulty. We are interested in understanding whether participants doing the experi-

ment with DSPs would find the bug easier to debug or not. Figure 4.7a depicts the values for

bug difficulty reported by the participants according to their type of debugging aid. From the

figure, it is not possible to extract a clear trend, although we can see that no participant using

DSPs rated the bug above 3, whereas two participants with the full schedule classified the bug

10We opted for using the point-biserial correlation coefficient to compute the correlation because the debugging
aid variable is naturally dichotomous, i.e., it corresponds to either using the DSP or the full failing schedule.
The variable representing the correctness of the answer is also naturally dichotomous, as the answer can only be
considered correct or incorrect. Note that the correlation coefficient varies between -1 and 1, where -1 (1) indicates
a very strong negative (positive) correlation between the variables, and 0 indicates that there is no correlation at
all between the variables.
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as 4.

We computed the correlation coefficient for these two variables and obtained the value

0.010, which indicates there is indeed no statistically significant correlation between the type

of debugging aid and the bug difficulty. However, the value of the coefficient points out a slim

positive relationship between using the full schedule and finding the bug harder to diagnose.

Similarly, the correlation coefficient for the participants’ experience and the bug difficulty

(which has value -0.048) shows that there is no statistically significant correlation between these

two variables, although the tendency for this case is that participants with more experience tend

to find the bug easier than less experienced participants.

Diagnosis Time. Figure 4.7b) reports the participants’ diagnosis time according to the type

of debugging aid (full schedule or DSP) they received. The figure shows that participants that

received the DSP tended to diagnose the bug in less time. To statistically evaluate this claim,

we calculated the point-biserial correlation coefficient between type of debugging aid and the

amount of time to diagnose the bug. Once more, we considered the variable debugging aid to

have value 0 for the DSP and 1 for the full failing schedule.

The correlation value between the debugging aid variable and diagnosis time is 0.416, which

means that, with a 99% confidence level, there is a significant positive relationship between

these two variables. This indicates that using the full failing schedule is correlated to a greater

amount of time to find the bug. In other words, the correlation supports the claim that using a

DSP allows for faster bug diagnosis, as we expected.

We also performed a Welch’s t-test to check whether the means of our two samples (the DSP

sample vs. the full schedule sample) are statistically significantly different. A significant result

for this test indicates that the sampled means correspond to different underlying populations,

and, as our data suggests, that the DSP sample mean is smaller than the failing schedule

sample mean. Let M0 be the mean of the diagnosis times for the DSP tests, and M1 the mean

of the diagnosis times for the full failing schedule tests. We consider the null hypothesis to be

“M0 = M1” and we test whether to reject the hypothesis.

The t-test’s two-tailed reference value of tp with 24 degrees of freedom11 and a 95% confi-

11The number of degrees of freedom was calculated using the Welch-Satterthwaite equation for the Welch’s
t-test.
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dence level (p < 0.05) is 2.064. Evaluating the Welsh’s t-test for our data, t = -2.281. Since

2.064 < |-2.281| and, consequently, tp < t, we can reject the null hypothesis and conclude that

M0 6= M1. This result shows that there is a statistically significant decrease in debugging time

using a DSP, compared to using a failing schedule.

Finally, we computed the Pearson’s correlation coefficient between participants’ self-reported

experience in debugging multithreaded programs and the diagnosis time, in order to assess

whether the experience was also a significant factor in the diagnosis time or not. The correlation

coefficient for this case showed that there was only an extremely weak, negative relationship

between debugging experience and diagnosis time. This means that participants that reported

higher experience tend to find the bug slightly faster than participants with less experience,

although the difference is not statistically significant.

In summary, regarding the benefits of DSPs over full failing schedules, the main findings of our

user study show that:

• Correctness. There is a slim correlation between using DSPs and a correct bug diagnosis,

although it is not statistically relevant.

• Bug Difficulty. There is a slight correlation between using DSPs and finding the bug easier

to debug, although it is not statistically relevant.

• Diagnosis Time. There is a statistically significant correlation between using DSPs and a

faster diagnosis time.

Thus, in our study, all users had a similar perception of the difficulty of the bug at hand (which

is not surprising, given that the intrinsic “hardness” of a bug is somehow independent of the

tools used to find it). Furthermore, in both groups, approximately the same percentage of

users were able to found the correct answer (which suggests that both groups had a similar

ability/experience to recognize the right answer). Still, the group using DSPs was able to

perform the diagnosis faster, which supports our claim that Symbiosis can reduce the debugging

time.

Threats to validity. To simplify the study, we designed the whole experiment to be supported

solely by textual material. As such, we crafted the experiment’s concurrency bug in such a way

that it could be solved in a practical time of 20 minutes, by a person not familiar with the
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program’s source code. This fact might have diminished the debugging time difference between

using a DSP and a full schedule because all participants, regardless of debugging aid, may have

taken substantial time to understand the code. We expect that the observed difference in de-

bugging time would be greater if the participant was already familiar with the code, eliminating

the fixed time cost for understanding the code.

The diagnosis time for the participants in the offsite (email) setting was self-reported, which

might be subject to some inaccuracies. Despite that, we observed that the results from the

offsite setting are consistent with those onsite (the proctored session).

Since the self-reported debugging experience was not measured using exact metrics, it might

be biased towards each participant’s self-perception of what it means to be an expert in debug-

ging multithreaded programs. In fact, the values obtained do not always match with education

level of the participants (for instance, there was a doctoral student who reported an experience

level of 1 and an undergraduate who reported an experience level of 3). To mitigate this threat,

we computed the correlation coefficients for the diagnosis time and the bug difficulty using the

education level instead of the self-reported experience. We observed similar results and, thus,

concluded that self-reported experience was a valid factor to take into account.

Summary

This chapter described Symbiosis, a novel system that gets to the bottom of concurrency

bugs. Symbiosis reports focused root cause sub-schedules, eliminating the need for a programmer

to search through an entire execution for the bug’s root cause. Symbiosis also reports novel

alternate, non-failing schedules, which help illustrate why the root cause is the root cause and

how to avoid failures. Our novel differential schedule projection (DSP) approach links the root

cause and alternate schedules to data-flow information, giving the programmer deeper insight

into the bug’s cause than path information alone. An essential part of Symbiosis’s mechanism is

the use of an SMT solver and, in particular, its ability to report the part of a formula that makes

it unsatisfiable. Symbiosis carefully constructs a deliberately unsatisfiable formula so that the

conflicting part of that formula is the bug’s root cause.

We built two Symbiosis prototypes, one for C/C++ and one for Java. We used them to

show that for a variety of real-world and benchmark programs from the debugging literature
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that Symbiosis isolates bugs’ root causes and providing differential schedule projections that

show how to fix those root causes.

Symbiosis, however, needs to observe a failing execution and requires the alternate non-

failing schedule to adhere to the original control-flow path in order to be able to generate the

DSP. In the next chapter, we address these issues by presenting a technique denoted production-

guided schedule search.



5
Cortex: Exposing

Concurrency Bugs via

Production-Guided Search

As mentioned in Section 2.4, the exponential nature of the space of possible schedules of

a multithreaded program renders current explorative testing techniques impractical to uncover

all failing schedules in a program. As a consequence, software is commonly shipped with latent

concurrency bugs that may only manifest in deployment.

When a failure occurs, systems such as CoopREP and Symbiosis can be used to help debug

its underlying bug. However, concurrency errors often stem from a very specific execution path

and interleaving, which may happen rarely.

In this chapter, we aim at exposing and isolating concurrency bugs without ever needing

to observe a failing execution. We leverage the observation that a failing schedule typically

deviates in only a few critical ways from a non-failing schedule (as also shown in Chapter 4).

Our main insight is to expose new failing schedules by perturbing the order of events and certain

branch outcomes in a non-failing schedule. We further leverage abundant production runs of a

program on deployed systems to guide our search of the enormous space of possible execution

schedules [Candea 2011]: our production-guided search for a failing schedule targets schedules

very similar to a non-failing schedule observed in production.

We present Cortex1, a system that helps exposing and understanding concurrency bugs using

traces from normal, non-failing production executions. Cortex starts by cooperatively collecting

a set of per-thread path profiles from one or more production runs. Similarly to Symbiosis, each

profile is used to guide a symbolic execution of the program producing a symbolic event trace for

each thread that is compatible with the original execution’s control-flow. Cortex combines an

execution’s per-thread symbolic traces to implement production-guided search for a new, failing

execution – one that may depend on both schedule and path conditions.

1We have named our system Cortex after the cerebral cortex, which is a part of the human brain that receives
and processes information from neurons to control several functions of the human body. Likewise, our system
leverages information from multiple production runs to expose concurrency bugs.
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Cortex’s production-guided search is a novel approach to selecting a path and schedule.

Starting from the computed symbolic execution, Cortex systematically reorders events in the

schedule and inverts the outcome of certain branches, with a preference for executions that

are most similar to the original. Cortex determines if a perturbed execution is feasible using

a constraint system for a Satisfiability Modulo Theories (SMT) solver. The constraint system

encodes synchronization, data-flow, event ordering, and the occurrence of a failure. If the

SMT formulation is satisfiable, the execution that Cortex generated is feasible and the system

reports the new failure. If the SMT formulation is infeasible, Cortex moves on to a different

perturbation of the execution’s schedule and branching behavior. Cortex favors executions that

vary only slightly from the original, observed execution, putting its focus on failures that very

nearly manifested in a previous execution.

Like in Chapter 4, we consider failures to be violations of assertions in the code. We argue

that it is common for developers to ship code with assertions. For instance, Google pervasively

uses tracing and assertions throughout live, production datacenter code via Dapper [Sigelman,

Barroso, Burrows, Stephenson, Plakal, Beaver, Jaspan, & Shanbhag 2010]. Also, recent work

showed that invariants can often be derived automatically [Kusano, Chattopadhyay, & Wang

2015], which broadens the applicability of Cortex.

In addition to exposing failing schedules, Cortex is also able to isolate the failure’s root cause,

even if it results from schedule-dependent branches. Schedule-dependent branches are branches

whose decision may vary depending on the actual scheduling of concurrent threads [Huang &

Rauchwerger 2015]. Failures resulting from schedule-dependent branches further exacerbate the

challenge of diagnosing the bug, because the programmer must reason about different events in

a failing execution and in a non-failing one.

Cortex leverages production-guided search to extend our work on differential schedule pro-

jections (see Chapter 4) and compute differential path-schedule projections (DPSPs). DPSPs

zero in on the root cause of failures that stem from schedule-dependent branches by reporting

the differences between a failing and a non-failing schedule, including variations in their event

orderings, data-flow behavior, and control-flow decisions.

Our evaluation in Section 5.5 shows that Cortex is able to find failing schedules in con-

current programs by perturbing very few branch conditions. Moreover, we show that Cortex’s

production-guided search reduces the number of attempts to expose concurrency bugs by up
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to three orders of magnitude with respect to previous state-of-the-art concurrency testing tech-

niques [Huang 2015; Coons, Musuvathi, & McKinley 2013].

The rest of the chapter is organized as follows. Section 5.1 introduces the problem of path-

and schedule-dependent concurrency bugs. Section 5.2 describes the Cortex system, namely

its architecture and the production-guided search technique used to find failing schedules. Sec-

tion 5.3 provides a concrete example that illustrates how Cortex employs production-guided

search to expose a concurrency bug that depends on schedule-sensitive branches. Section 5.4

discusses the implementation details. Section 5.5 presents the experimental evaluation results.

Finally, we conclude the chapter by summarizing its main findings and contributions.

5.1 Path- and Schedule-Dependent Bugs

The variation in the schedule of a multithreaded program’s execution may cause a variation

in the execution’s data flow, and subsequently, its control-flow. Such schedule-sensitive branches

are often unintended by the developer and may even result in failures [Huang & Rauchwerger

2015].

We denote concurrency bugs that stem from schedule-sensitive branches path- and schedule-

dependent. As an example of a path- and schedule-dependent bug, consider the toy multi-

threaded program in Figure 5.1. In the example, T1 and T2 access four shared variables (x, y,

w, and z). The program fails when it executes the schedule 8-1-2-3-4-9-10-5-6-7, which causes the

value of x at line 7 to be 0 and violate the assertion. All non-failing schedules for this program

exhibit a different control-flow path than the failing schedule, because the code must not execute

line 6 to guarantee that x > 0 at line 7. Note that a failing execution requires a variation from

the correct execution in both the order of events and the control-flow path executed.

As mentioned in Section 4.1.5, Symbiosis does not handle path- and schedule-dependent

bugs, as its alternate schedules are required to adhere to the original control-flow of the original

execution. Moreover, Symbiosis needs a trace from a failing execution to work, which might be

hard to obtain in some cases. For instance, we ran the program in Figure 5.1 10,000 times and

it did not fail a single time.

In the remaining of this chapter, we show how Cortex couples production-guided search

with symbolic execution and SMT solving ideas from Symbiosis to expose and isolate path- and
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T1
1:  if(z > 0)
2:      w++
3:  x = 1
4:  y = 1
5:  if(y == 0)
6:      x--
7:  assert(x > 0)      

  8:  z = 1
  9:  if(w > 0)
10:      y = 0

T2
(initially x = y = w = z = 0)

Figure 5.1: Example of a multithreaded program with a path- and schedule-dependent bug.

schedule-dependent bugs, namely the one in Figure 5.1, without the need to observe a failing

execution.

5.2 Cortex

Cortex is an automated system for exposing and debugging path- and schedule-dependent

failures in multithreaded programs. In contrast with other systems, Cortex does not need to

observe a failed execution to isolate a failure. Instead, Cortex starts from a concrete, non-failing

execution and explores alternative executions with only minor variations in their schedule and

path from the non-failing schedule. Using an initial, non-failing execution from production

turns Cortex’s execution space exploration into a production-guided search for new failures. The

exposed failures represent behavior that nearly happened in the observed execution, and is,

thus, more likely to happen in some future execution. Like Symbiosis, Cortex summarizes only

the differences between the exposed failing execution and the original non-failing execution to

clearly isolate the root cause of the failure to the developer.

Cortex operates in four main steps: static analysis, trace collection, production-guided search,

and root cause isolation. These steps are illustrated in Figure 5.2 and described in the following

sections.

5.2.1 Static Analysis and Symbolic Trace Collection

Cortex follows the same approach as Symbiosis to capture thread symbolic traces. Con-

cretely, Cortex starts by performing static program analysis and generating per-thread symbolic
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Collection 2

Figure 5.2: Overview of Cortex. 1) Cortex starts by instrumenting the program in order to allow
capturing per-thread path profiles at runtime. 2) Cortex uses the path profiles, collected from
multiple production runs, to guide a symbolic execution of the program and produce per-thread
symbolic event traces that adhere to the original executions’ control-flow. 3) Cortex leverages
symbolic traces and SMT constraint solving to conduct a production-guided search for a new
failing execution that may depend on both schedule and path conditions. 4) Whenever Cortex
successfully uncovers a new failing schedule, it computes a differential path-schedule projection
(using the uncovered failing schedule and a non-failing schedule) to isolate the underlying bug.

traces. During static analysis, Cortex instruments the program to capture the threads’ execution

path at runtime and identifies shared variables to later be marked as symbolic.

Given the infeasibility of exhaustively exploring all possible executions of a program, Cortex

narrows the exploration to favor those paths that are most alike those observed in production.

To this end, Cortex collects per-thread path profiles from the large number of production runs

executed by the user instances of the program.

Production runs with the same control-flow output identical traces. However, paths with

different control-flow may execute in production. Cortex can collect a variety of paths from

multiple, different executions, potentially from distinct machines and execution environments.

This form of cooperative path collection enables Cortex to leverage the execution diversity in

multiple deployments to gather a representative collection of traces.

Cortex then uses symbolic execution to generate per-thread, symbolic traces from the col-

lected, per-thread, concrete traces. As in Symbiosis, Cortex guides each thread’s symbolic

execution by its path trace. In other words, the symbolic execution proceeds solely across

the execution path indicated by its corresponding path profile. Hence, instead of exploring all

control-flow paths, as in a conventional symbolic execution, the symbolic execution in Cortex

only follows branches taken in the original run. Cortex thus generates per-thread symbolic traces

containing the same control-flow, synchronization, and shared memory accesses as the original,
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production run.

Cortex maintains a database of per-thread symbolic traces generated from any set of ob-

served, per-thread concrete traces. Cortex organizes the traces in its database to facilitate its

downstream search, using the executions’ control-flow. Concretely, Cortex denotes a branch

outcome as a binary value, with a 1 for branches taken and a 0 for branches not taken. An

execution path is, thus, uniquely defined by a string of bits.

For example, consider a symbolic trace for thread T1 in Figure 5.2 with path id 10. This path

id indicates that the thread followed an execution path corresponding to the conditions [z>0]

and [¬(y==0)]. Note that the 0 in the path id means that the corresponding path condition

evaluates false during the execution, hence the negation symbol in the condition [¬(y==0)].

5.2.2 Production-Guided Search

After gathering the path profiles from production runs and generating their corresponding

per-thread symbolic traces, Cortex starts its search for alternate, failing executions. Figure 5.3

illustrates Cortex’s search procedure.

Cortex’s search is guided by production in two ways. The first way is schedule exploration,

during which Cortex searches multithreaded executions compatible with the set of per-thread

symbolic traces from some observed execution. If schedule exploration fails to surface any new

failures, for any traces in Cortex’s database, Cortex uses execution synthesis as a second form

of production-guided search. Cortex synthesizes new multithreaded executions by modifying

the control-flow behavior in one or more of the threads’ traces. Cortex then performs schedule

exploration on the new synthesized execution.

5.2.2.1 Schedule Exploration

Given a combination of per-thread, symbolic path traces — from either a production run or

a synthesized execution — Cortex checks if any interleaving of operations that make up those

paths leads to a failure. First, Cortex selects an assertion from the trace at random. Next, Cortex

builds a Φfail constraint model (from Section 4.1.3) with the symbolic information contained in

the traces and the condition in the assertion (which corresponds to the bug constraint φbug).
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Figure 5.3: Detail of production-guided schedule search.

Cortex uses an SMT solver to check the satisfiability of the generated constraints. If the

model is satisfiable, then the solver outputs the failing schedule. If the constraints are unsat-

isfiable, then there is no schedule that leads to a failure of the selected assertion for the given

control-flow trace. Cortex applies this schedule exploration procedure to each execution in its

database, reporting newly exposed failures as they manifest.

Note that only performing schedule exploration on executions observed in production will

only expose strictly schedule-dependent failures. However, Cortex is not limited to these failures

only, because it goes beyond schedule exploration with its execution synthesis technique.

5.2.2.2 Execution Synthesis

Execution synthesis generates new per-thread control-flow traces corresponding to entirely

novel executions by making small perturbations in the control-flow observed in production runs.

By synthesizing new executions with control-flow variations, and then applying schedule ex-

ploration to those synthesized executions, Cortex can expose new failures that are path- and

schedule-dependent.

Synthesizing executions presents two main challenges: i) how to decide which alternate

execution to synthesize, and ii) how to obtain per-thread symbolic traces for the alternate

execution to be synthesized. Cortex addresses the first challenge with a novel heuristic denoted

branch condition flipping. The heuristic perturbs the original control-flow observed during some

production run, generating one or more new per-thread traces. Cortex addresses the second

challenge using a combination of its trace database and symbolic execution. If Cortex has

already observed some execution in which a thread followed the perturbed control-flow path,
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Cortex uses the per-thread symbolic trace for that path that is in its database. In contrast,

if Cortex has not observed the perturbed path in some prior execution, then it synthesizes a

new symbolic path trace by running a symbolic execution, guided by the perturbed control-flow

trace.

Synthesizing a Control-flow Path. Cortex’s synthesizes a new control-flow path by inverting

path conditions on an existing path that are within a given distance from the selected assertion.

To identify the path conditions corresponding to the branches closest to the assertion, Cortex

selects an execution from its database and generates a non-failing, multithreaded schedule using

the following constraint model Φok :

Φok = ¬φbug ∧ φpath ∧ φsync ∧ φrw ∧ φmo (5.1)

This model is pretty much identical to the Φfail constraint system (see Equation 4.1), apart

from the φbug constraint, which is negated in this case to allow generating a non-failing schedule.

However, despite negating the failure constraint, note that Φok differs from Φroot (Equation 4.2)

and Φalt (Equation 4.3) because it does not add constraints referring to a particular schedule to

the constraint system (i.e., Φok does not strive to check the satisfiability of a single execution

interleaving), as done by the latter two formulations.

After solving the constraints, Cortex examines the resulting schedule and selects the D

branches closest to the assertion as candidates for inversion.

Cortex’s path synthesis heuristic generates paths that are most similar to the original path

trace first, generating new paths in order of deviation from the original. The first paths that the

heuristic synthesizes are ones with a single branch outcome flipped, and Cortex gives priority to

paths in which the flipped branch is closer to the assertion. Next, the heuristic generates new

paths with two branch flips, again, prioritizing new paths with shorter total distance between

branch flips and the assertion. Cortex’s path synthesis heuristic continues considering complexes

of increasingly many branch inversions up to the configurable threshold number D.

Figure 5.4a illustrates Cortex’s path synthesis technique. There are two threads, T1 and

T2, and three branch conditions ( A and B belong to T1, and C belongs to T2). According to

the non-failing schedule in Figure 5.4a, the closest branch to the assertion is A , followed by B
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assert //ok

C
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Figure 5.4: Branch condition flipping. Arrows and dashed arrows represent conditional and
unconditional control-flow, respectively. Thicker arrows represent the execution path followed
by the thread.

and C . The figure also shows that the path conditions in the threads’ symbolic traces are 10

(i.e., taken, not taken) and 1 (i.e., taken), respectively for T1 and T2.

Figure 5.4b depicts the first branch condition that Cortex attempts to flip, namely A . As

a result, Cortex generates a new control-flow path for T1 containing 11, while the trace for

T2 remains the same. Later, the path synthesis heuristic may generate another control-flow

path by flipping the outcome of multiple branches. Figure 5.4c illustrates a case where Cortex

simultaneously flips branches B and C , resulting in a path for T1 containing 00 and a path for

T2 containing 0.

After synthesizing a new control-flow path, Cortex needs a new symbolic trace for the newly

synthesized path. Cortex can either find an existing symbolic trace, or synthesize a new symbolic

trace.

Finding a Symbolic Trace. The easiest way for Cortex to obtain a symbolic trace that is

compatible with a newly synthesized control-flow path is to look for one in its database of traces

collected from any prior, production execution. A compatible trace from the database must

have an identical prefix of branch outcomes as the original, unperturbed trace, but must have

the opposite outcome for the branch or branches flipped by the path synthesis heuristic.

When there is more than one compatible, symbolic trace in the database, Cortex considers

each of them in turn, up to a maximum of N possible traces, and in ascending order of their path
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length. The tuple (D,N) allows tuning the search in terms of the number of different branches

conditions flipped and the number of possible traces that are attempted for each branch flip. A

high D means that Cortex flips path conditions far from the assertion, and a high N indicates

that Cortex explores many paths with a common prefix.

Synthesizing a Symbolic Trace. When there is no trace in the database that matches a

newly synthesized control-flow path, Cortex synthesizes a compatible trace using guided symbolic

execution. Cortex uses the newly synthesized control-flow path to guide a symbolic execution

of the thread up to, and including the flipped branch or branches. After reaching the flipped

branch in the symbolic execution, Cortex has no information about which control-flow path to

follow. Cortex allows the symbolic execution to run freely, exploring all paths, as in classical

symbolic execution [King 1976; Cadar, Dunbar, & Engler 2008; Visser, Pǎsǎreanu, & Khurshid

2004]. We heuristically stop the symbolic execution when it reaches the assertion or program

exit along any path. We also stop symbolic execution after a configurable threshold timeout, to

prevent the path explosion problem from hindering Cortex.

As an example, consider the scenario where Cortex has to synthesize the symbolic trace for

T1 required in Figure 5.4b. Cortex would run the program symbolically, forcing T1 to take the

branch 1 for the path condition B , as well as for path condition A . As T1’s execution ends

with the assertion right after A , Cortex would output a symbolic trace for T1 that is compatible

with the previously unobserved control-flow path 11.

5.2.3 Root Cause Isolation

Like prior systems on systematic concurrency testing [Huang 2015; Flanagan & Godefroid

2005], Cortex is able to report a newly exposed failing schedule, but unlike prior systems,

Cortex also reports a concise summary of the failure’s root cause. To summarize a failure’s

root cause, Cortex computes and reports a differential path-schedule projection (DPSP). DPSPs

are an extension to differential schedule projections, presented in Chapter 4. Cortex computes

DPSPs by analyzing an exposed failing execution and the original, non-failing execution that

it was derived from. A DPSP reports the salient differences between the failing and non-

failing schedule, including variation in their event orderings, data-flow behavior, and control-flow

decisions. The key difference between DPSPs and the DSPs is that the latter do not incorporate

differences in control-flow between a failing and a non-failing execution, while, critically, DPSPs
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include those differences.

Cortex produces the DPSP by computing a “diff” of the failing schedule against the non-

failing schedule. To compute a DPSP, Cortex first compares the traces and prunes a prefix of

operations common to both the failing and non-failing schedule. Cortex then examines data-

flow in both traces and reports only data-flow edges that exist in one trace, but not the other.

Control-flow variations are highlighted as data-flow variations involving operations that only

executed in one trace, but not the other. DPSPs are helpful for debugging, because they allow

developers to see only a very small number of relevant operations and data movement events,

rather than forcing them to pore over a full execution schedule. Furthermore, DPSPs illustrate

the failure alongside a very similar, but non-failing execution. The side-by-side comparison helps

understand the failure and aids in debugging.

5.3 Running Example

This section synthesizes the entire Cortex debugging workflow using a detailed running

example. Figure 5.5 shows how Cortex automatically computes the root cause of the failure in

Figure 5.1.

Static analysis. Cortex’s static analysis identifies and instruments basic blocks and shared

variables. Figure 5.5a shows the program’s control-flow graph. In the example code, z, w, y,

and x are marked as symbolic.

Symbolic trace collection. The program executes in production, potentially many times, and

a path profile for each thread is collected from each execution. From the path profiles, Cortex

produces symbolic traces via symbolic execution. In particular, Cortex identifies each branch

condition evaluated by each thread (enclosed in square brackets in Figure 5.5a) and symbolic

execution follows those branches according to the path profile. Figure 5.5b shows the per-

thread symbolic traces for three non-failing, production runs with different execution paths.2

For instance, T11:10 indicates that the trace for thread T1 of production run 1 followed the

control-flow path 10 (i.e., taken, not taken). After producing the per-thread, symbolic traces,

Cortex stores them in its trace database, depicted in Figure 5.5c as a prefix tree.

2In fact, the symbolic traces of Figure 5.5 are similar to those depicted in Figure 4.2c. However, here, we opted
for not representing the actual variable symbolic symbols to improve readability.
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T1

1:  [z > 0]
2:      w++
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4:  y = 1
5:  [¬(y == 0)]
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Figure 5.5: a) Schematic view of the program in Figure 5.1: boxes represent basic blocks, arrows
depict conditional jumps (0 means false and 1 means true), dashed arrows depict unconditional
jumps, round shapes represent the program’s exit points, and [z > 0] represents a path condition;
b) Per-thread symbolic traces path for three different correct production runs. T11:10 indicates
that the trace for thread T1 from production run 1 has path id 10; c) Trace database, with per-
thread path ids organized into prefix trees. The node label “-” indicates the root of the prefix
tree. d) Production-guided schedule search employed by Cortex to find the failing schedule. SST
stands for synthesized symbolic trace.

Production-guided search. Figures 5.5d.1-d.6 illustrate how Cortex uses production-guided

search to expose a failing schedule from the non-failing, production schedules in its trace

database.

First, Cortex tries to obtain a failing schedule by exploring the schedules that are compatible

with the per-thread traces from production runs that are in the trace database. Cortex applies

its schedule exploration algorithm (see Section 5.2.2.1) to production runs 1, 2 and 3. In this

example, there is no failing schedule that simply interleaves the per-thread traces from any

execution. Instead, Cortex needs to explore alternate executions that it derives from the observed

executions via execution synthesis.

Cortex begins its search by arbitrarily selecting production run 2, which includes traces T12

and T22. Using the traces from this execution, Cortex generates a non-failing schedule by calling

out to the SMT solver (Figure 5.5d.1). Cortex examines the non-failing schedule to identify the

branches that are closest to the assertion. In the example, these branches are A , B (from trace

T12) and C (from T22).
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In Figure 5.5d.2, Cortex explores a different execution path by flipping the branch condition

A . The resulting path prefix is thus obtained by inverting the second bit in the path of trace

T12, i.e., by changing the path condition 10 to the path condition 11. Cortex checks its database

for a symbolic trace for T1 with the path prefix 11, but, in this example, there is no such path

in the database. Consequently, Cortex needs to synthesize a new symbolic trace for T1 with

that prefix using symbolic trace synthesis.

Symbolic trace synthesis produces a symbolic trace T1:11. Cortex uses the generated trace,

together with T22, to synthesize a new execution that we refer to as “run 4”. Cortex performs

schedule exploration on run 4, checking for interleavings of its threads’ operations that lead to

a failure. The solver, however, yields unsatisfiable when evaluating the constraint system that

encodes schedule exploration. The execution is infeasible because there is no feasible data-flow

that allows the value of y at line 5 to be 0.

To continue its search for a feasible schedule, Cortex again applies its path synthesis heuristic

to generate a new control-flow path to explore (Figure 5.5d.3). The next branch to flip is B

from trace T12:10, which corresponds to the path 00. Cortex finds that its trace database for

T1 already contains a trace with that path prefix (namely T13). Cortex uses the trace that

it found, alongside trace T22, to synthesize a new execution (“run 5”). Cortex then performs

schedule exploration on run 5, continuing its search for a feasible, failing alternate schedule.

Cortex proceeds according to this approach. When schedule exploration yields no failing

schedule, Cortex synthesizes a new path, finds or synthesizes a new symbolic trace, creates

a new execution, and re-applies schedule exploration. Figure 5.5d.4 and Figure 5.5d.5 show

subsequent applications of the approach, which consist of runs 6 and 7, respectively. Note that,

in Figure 5.5d.5, Cortex inverts the outcome of two branches, instead of a single branch because,

at this point in its search, it has exhausted all options involving only a single branch inversion.

In Figure 5.5d.6, Cortex identifies a feasible, failing schedule for a newly synthesized execu-

tion that includes a synthesized symbolic trace for T1 (previously generated in run 4), and T21.

The traces for T1 and T2 in the execution for which there is a failing schedule are the result of

inverting the outcome of both branches A and C . Note that without Cortex’s unique ability

to explore both schedule and path variations, this failure would not have been exposed.

Root cause isolation. With the failing and non-failing schedules that are the result of

production-guided search, Cortex generates the DPSP depicted in Figure 5.6. On the left side
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T1
2:      w++
3:  x = 1
4:  y = 1

5:  [y == 0]
6:      x--
7:  assert(x > 0)      

  9:  [w > 0]
10:      y = 0

T2

Failing scheduleNon-failing schedule

T1

2:      w++
3:  x = 1
4:  y = 1
5:  [¬(y == 0)]
7:  assert(x > 0)      

init:  w = 0
  9:  [¬(w > 0)]

T2

Figure 5.6: Differential path-schedule projection.

is the non-failing schedule and on the right is the failing schedule. The DPSP does not show

operations that the two schedules have in common, highlighting instead only the parts of the

execution trace that are different. The DPSP illustrates (in the bold lines) which control-flow

outcomes differ between the schedules. The arrows in the figure indicate data-flow edges that

exist in one schedule, but not in the other. Together these properties of the DPSP show the

root cause of the failure: the failure is attributable to a change in the order of operations in

the schedule, the data-flow changes resulting from those ordering changes, and the control-flow

changes stemming from the changes in data-flow.

In particular, the example shows that the branch condition [w>0], which evaluates false in

the non-failing schedule, becomes true in the failing schedule, because w at line 9 reads the value

1 (written by T1 at line 2) rather than the initial value 0. Consequently, T2 executes line 10 and

sets y to 0, allowing branch condition [y==0] to be true at line 5. In contrast, in the non-failing

schedule, T1 takes the branch outcome corresponding to the condition ¬[y==0], because y at

line 5 necessarily reads the value 1 written at line 4.

Finally, the DPSP shows that the assertion failure in the failing schedule is due to the value

of x being decremented by T1 at line 6. Conversely, the execution ends successfully in the

non-failing schedule because the read of x at line 7 returns the value 1, written at line 3.

Note that Symbiosis simply reorders events in the failing schedule to obtain an alternate,

non-failing schedule and produce a differential schedule projection. As such, Symbiosis would

not be able to generate a DPSP like the one of Figure 5.6, because the failing schedule and

the non-failing schedule for this case comprise not only sequences of different events, but also

differing path conditions.
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5.4 Implementation

We implemented a prototype of Cortex for Java programs. We use Soot [Vallée-Rai, Co,

Gagnon, Hendren, Lam, & Sundaresan 1999] to perform the static analysis of Java bytecode,

namely to inject probes at the beginning of each basic block that allow recording the path profile

at runtime. Moreover, as in the previous chapters, we leverage Soot’s thread-local objects (TLO)

escape analysis to compute a sound over-approximation of the set of shared variables in Java

programs. For each access on a shared variable we log an entry into a trace file containing the

variable’s reference and the source code line. Cortex consults the trace file during symbolic

execution to identify which operations should to treat symbolically.

Cortex’s production-guided schedule search and DPSP generation were implemented in

around 1,200 lines of C and C++ code that extended our prototype of Symbiosis. In par-

ticular, we extended Symbiosis to i) efficiently store symbolic traces from multiple production

runs, ii) expose strictly schedule-dependent, as well as path- and schedule-dependent concur-

rency bugs using traces from non-failing executions, and iii) perform symbolic trace synthesis

during multiple path exploration.

Cortex organizes its database of per-thread path traces, represented as bit strings, into tries

(i.e., prefix trees). Tries are typically used for string retrieval and contain one node for every

common prefix of stored strings. In Cortex’s implementation, if strings representing two different

traces share a prefix of n bits, the corresponding executions followed the same path until the nth

branch decision. Cortex’s use of a trie to store traces minimizes the storage required for large

numbers of traces collected from production.

Cortex uses Java PathFinder (JPF) [Visser, Pǎsǎreanu, & Khurshid 2004] for symbolic

execution and Z3 [De Moura & Bjørner 2008] to solve SMT constraints. We modified Java

PathFinder to integrate it with the other parts of Cortex. First, when generating symbolic

traces for the production run per-thread path profiles, we ignore states that do not conform

with execution path traced at runtime. This allows guiding the symbolic execution along the

original paths only. Second, when synthesizing new symbolic traces, we force JPF to follow

original path solely up to the branch condition flip point. After that, JPF switches to the tra-

ditional mode, where it explores all branches for each condition on symbolic variables, using a

breadth-first search heuristic. In this mode, we also set a timeout to the exploration, in order
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to cope with path explosion.

Our Cortex prototype assumes that bugs in programs are expressed in the code as assertion

invariants. Assuming that production software contains assertions is reasonable, as many ma-

jor industrial environments use production assertions and tracing [Sigelman, Barroso, Burrows,

Stephenson, Plakal, Beaver, Jaspan, & Shanbhag 2010]. In our experiments, we added these

assertions when they were not initially present. For cases where the error had the following form

on the left, we inject the assertion as indicated on the right:

if(cond){ if(cond){

//error assert(false)

} //error

else{ }

... else{

} assert(true)

...

}

Since JPF does not support arrays of symbolic length, we have also modified these cases in

our experiments to have a constant size, without affecting the original buggy behavior of the

program.

A prototype of Cortex is publicly available at http://github.com/nunomachado/

cortex-tool.

5.5 Evaluation

Our evaluation of Cortex focuses on answering the following three questions:

• How efficient is Cortex in collecting symbolic traces from production runs? (Section 5.5.1)

• How effective is Cortex’s production-guided search in finding concurrency bugs? (Sec-

tion 5.5.2 and Section 5.5.3)

• How effective is Cortex in isolating the root cause of concurrency bugs? (Section 5.5.4)

http://github.com/nunomachado/cortex-tool
http://github.com/nunomachado/cortex-tool
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We evaluated Cortex on the wide variety of multithreaded benchmarks shown in Table 5.1.

These benchmarks have been used in prior work on concurrency debugging [Farchi, Nir, & Ur

2003b; Huang 2015; Flanagan & Qadeer 2003; Huang & Rauchwerger 2015]. We used 11 pro-

grams from the IBM ConTest benchmark suite [Farchi, Nir, & Ur 2003b]; StringBuf, a test driver

of a bug in the Java JDK1.4 [Huang 2015]; ExMCR, a micro-benchmark used by J. Huang et

al. [Huang 2015] to illustrate the benefits of MCR against other stateless model checking tech-

niques. We have also tested with two real-world application bugs, namely Pool (which consists

of a data race in Apache Commons Pool) and Cache4j (uncaught exception due to a data race).

When presenting results, we sort test cases by “difficulty”, i.e, benchmarks with fewer branches

and smaller search spaces appear first in the tables.

We modeled the data collection of a production environment by executing each program 100

times and ensuring that none of the 100 executions triggered the bug. From these production

runs, we generated non-failing, symbolic traces and applied production-guided search to expose

a failing schedule for each benchmark. Once again, for Cache4j, we have experimented with

different workloads to assess the scalability of the constraint solving phase. Concretely, we re-

ran this test case by varying the worker thread’s update loop to have 1 (small), 5 (medium),

and 10 (large) iterations.

The experiments were conducted on an 8-core, 3.5Ghz machine with 32GB of memory,

running Ubuntu 10.04.4.

5.5.1 Trace Collection Efficiency

The most important result is that for all of the benchmarks that we considered, Cortex

exposed a new failing execution based on a small handful of observed, non-failing schedules, and

did so in a practical amount of time. Table 5.1 reports the time and storage overhead imposed

by Cortex on production runs to capture path profiles, as well as the time required to compute

symbolic trace collection. We report average time values across all executions (concrete and

symbolic) for each benchmark.

Cortex’s path profiling overhead ranges from from 2.4% in Loader to 21.7% in Cache4j

(L). The overhead is tolerable, even for production, and similar to other prior work in this

area [Machado, Lucia, & Rodrigues 2015; Huang, Zhang, & Dolby 2013]. Better software path
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Table 5.1: Benchmarks and performance. LOC stands for lines of code, #Threads is the number
of threads, Profiling Overhead indicates the runtime slowdown due to path profiling, Log Size
shows the size of the path profiles, Symbolic Execution indicates the time required to perform
symbolic execution, #Branches is number of branches, and #Shared Events is number of shared
variable accesses, in each benchmark.

Program LOC #Threads
Profiling Log Symbolic

#Branches
#Shared

Overhead Size Execution Events

Account 373 5 18.1% 1KB 0.6s 1 244

Critical 76 3 17.3% 260B 0.59s 4 36

ExMCR 95 3 17.1% 170B 0.42s 4 56

PingPong 388 6 18.9% 226B 0.47s 5 66

Piper 280 5 18.6% 470B 1.11s 12 182

Airline 136 8 9.1% 252B 2.53s 15 77

Garage 554 7 6.7% 105KB 56.50s 22 284

BubbleSort 376 6 13.4% 1KB 0.59s 24 161

Manager 219 5 16.4% 1.4KB 0.79s 56 331

Loader 146 11 2.4% 4KB 0.91s 56 386

StringBuf 1339 3 19.9% 1KB 1.13s 65 331

TicketOrder 246 4 9.5% 892B 0.85s 69 354

BufWriter 272 5 20.4% 4.8KB 4.84s 89 1245

Pool 10K 3 2.5% 960B 1.4s 21 198

Cache4j (S) 2.3K 4 18.4% 3KB 1.02s 51 541

Cache4j (M) 2.3K 4 20% 15KB 2.01s 233 2364

Cache4j (L) 2.3K 4 21.7% 21KB 3.47s 309 3105

profiling [Ball & Larus 1994] or hardware support [Vaswani, Thazhuthaveetil, & Srikant 2005]

are orthogonal techniques that would reduce this overhead.

Regarding space overhead, Cortex produces traces with sizes ranging from 170B in ExMCR

to 105KB in Garage. The symbolic execution time is typically low as well: JPF produced a

symbolic trace in less than one minute for all programs. The programs with larger path profiles

are also the ones with more shared symbolic events (e.g., BufWriter and Garage). Garage has a

long trace and symbolic execution time because it uses busy waiting.

5.5.2 Bug Exposing Efficacy

Table 5.2 reports experimental results that allow assessing Cortex’s efficacy in finding failing

schedules. Columns 3 and 4 of the table together show that Cortex was able to find a failing

schedule for all programs, including ones with failures dependent on both the path and schedule

(“path- and schedule-dependent”). We now characterize Cortex’s ability to expose new failures.

Strictly schedule-dependent bugs. Column 3 of Table 5.2 shows that schedule explo-

ration alone works for only 8 out of the 17 benchmarks, namely Account, PingPong, Air-

line, StringBuf, BufWriter, and the three Cache4j scenarios. The reason schedule search
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alone is adequate for these benchmarks is that these eight cases include assertions of the form

if(cond){assert(false)} else{assert(true)}. Cortex finds the failing schedule via sched-

ule exploration alone because the failures depend only on strictly schedule-dependent data flow

to cond.

Efficiency of production-guided search. Column 4 in Table 5.2 shows that production-

guided search finds a failing schedule for our path- and schedule-dependent bugs. Column 5

shows the number of branch outcome inversions Cortex performed to expose each failure. 3

out of 9 cases required inverting only the single closest branch to the assertion. This outcome

supports our observation that failing executions are lurking in production, and that perturbing

production executions is an effective search strategy for these otherwise elusive failures. The

need for branch inversions, even in our production-guided search reinforces the fact that schedule

exploration alone is insufficient.

Production run diversity. Collecting a diversity of production executions expedites Cortex’s

search for failures because it populates the trace database with traces, obviating the more costly

execution synthesis step. Column 2 of Table 5.2 shows how many distinct non-failing executions

Cortex observed during 100 runs of each benchmark. For all benchmarks except BufWriter and

Pool, less than 50% of the collected executions are distinct. The data suggest that, even in

small numbers of runs, executions are diverse and Cortex can leverage a large trace database in

a large deployment.

Search parameters. The column labelled as (D,N) characterizes parameters used during

Cortex’s search for failures. Programs for which Cortex finds the failure with a single branch

flip exhibit the pair (1,1) for (D,N). For those programs, Cortex exposed a bug by inverting

the outcome of the single branch that was closest to the assertion.

In contrast, in Critical, ExMCR, Garage, BubbleSort, Loader, and Pool the optimal value

for (D,N) varies significantly. For Critical, Cortex found the failing schedule after inverting two

branch conditions (the two closest to the assertion) and performed schedule exploration using

three different symbolic traces for each one of the two paths. For ExMCR, Cortex was able to

find the failing execution in 6 attempts, but in this case it required 6 different combinations of

branch inversions. Note that the number of attempts is actually greater than the product of

the search parameters (D,N) for ExMCR, because Cortex needed to flip a combination of two
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Table 5.2: Bug Exposing Results. Column 2 shows the number of different correct production
runs observed; Column 3 marks bug found by schedule exploration only; Columns 4-8 provide
details of production-guided search; Last column depicts the average time to solve the corre-
sponding satisfiable SMT system.

Program
#Different Schedule- Path- and Schedule-Dependent SMT
Production Dependent

Tries (D,N)
#Branches #Synthesized Solving

Runs Only Flipped Traces Time

Account 1 3 29s

Critical 23 3 6 (2,3) 2 4 <1s

ExMCR 1 3 6 (4,1) 6 6 <1s

PingPong 39 3 <1s

Piper 33 3 1 (1,1) 1 1 1s

Airline 3 3 <1s

Garage 2 3 9 (3,4) 6 6 2s

BubbleSort 26 3 4 (4,1) 4 4 <1s

Manager 39 3 1 (1,1) 1 0 9s

Loader 1 3 11 (11,1) 11 10 25s

StringBuf 12 3 9s

TicketOrder 47 3 1 (1,1) 1 0 1s

BufWriter 57 3 2h56m

Pool 59 3 17 (5,4) 15 8 1s

Cache4j (S) 11 3 5s

Cache4j (M) 29 3 1h30m

Cache4j (L) 37 3 2h8m

branches simultaneously in order to trigger this failure.3 Garage required fewer attempts than

D × N . The reason is that Cortex selected traces for some attempts that included redundant

execution paths. Cortex discarded the redundant paths and found a failing schedule using the

4th trace for the 6th combination of branch flips.

For BubbleSort and Loader, Cortex experimented with only one trace per branch inversion,

but it searched through 4 and 11 branch inversions, respectively, to compute the failing schedule.

Pool, in turn, was the program for which Cortex required more tries and flips of branch conditions

to expose the failure. This is because the only combination of branch inversions that allowed

finding the failing schedule corresponded to flipping simultaneously the 4th and 5th branches

closest to the assertion.

In conclusion, these results show that search parameters (D,N) affect significantly the

number of attempts that production-guided schedule search requires to expose the concurrency

bug.

Solving Time. The last column of Table 5.2 reports the average amount of time that the SMT

3We note that there are 2D − 1 different combinations of branch condition flips that can be attempted for a
given search parameter D.
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solver took to solve the constraint system (this value comprises only the case when the solver

yielded satisfiable, because reporting unsatisfiable took at most 3 seconds for our test cases).

The data shows that solving time is low for most cases, i.e., a couple of seconds. The exception

are benchmarks BufWriter, Cache4j (M), and Cache4j (L). Once more, this is due to the higher

number of shared events in these programs. In particular, the solver took almost 3 hours for

BufWriter, because the SMT constraint formulation for this program contains more than 920K

read-write constraints and more than 6.5K locking constraints, which have a big impact in the

solving time for this kind of constraint systems [Huang, Zhang, & Dolby 2013; Machado, Lucia,

& Rodrigues 2015].

5.5.3 Cortex Compares Favorably to Systematic Testing

Unlike Cortex, systematic testing techniques search by fully exploring the space of possible

executions. We directly compared Cortex to two state-of-the-art systematic testing techniques,

namely MCR [Huang 2015] and iterative context bounding with dynamic partial order reduction

(ICB-DPOR) [Coons, Musuvathi, & McKinley 2013]. Similarly to Cortex, MCR uses an SMT

constraint-based approach to efficiently explore the space of possible schedules of a multithreaded

execution in search for concurrency bugs. In particular, MCR starts from a concrete seed

interleaving and builds a maximal causal model that allows checking correctness properties on

all execution schedules equivalent to that seed interleaving. To further explore the state space,

MCR iteratively generates new non-redundant schedules by enforcing read operations to return

different values during a re-execution of the program. MCR then uses the newly generated

schedules as seed interleavings for subsequent iterations.

On the other hand, ICB-DPOR simply bounds the number of thread preemptions that

can occur when systematically exercising different execution schedules, thus not accounting for

redundant interleavings (i.e., interleavings that produce the same values for read operations).

Our goal is to show that Cortex examines fewer executions before exposing a failure than

other approaches. We reproduce results for MCR and ICB-DPOR reported by J. Huang [Huang

2015] for the subset of benchmarks that have been used with all three systems. Table 5.3 reports

the comparison.

The data show that, for most cases, Cortex searches orders of magnitude fewer executions
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Table 5.3: Comparison between Cortex and other systematic concurrency testing techniques.
Data for MCR and ICB-DPOR as reported by J. Huang [Huang 2015] (“*” indicates bugs that
are schedule-dependent only). Shaded cells indicate the cases where Cortex outperforms the
other systems.

Program
#Attempts to find failing schedule
Cortex MCR ICB-DPOR

Account* 1 2 20

ExMCR 6 46 3782

PingPong* 1 2 37

Airline* 1 9 19

BubbleSort 4 4 400

StringBuf* 1 2 10

Pool 17 3 6

than ICB-DPOR, and considerably fewer than MCR. The standout is ExMCR; ExMCR is a

micro-benchmark that was designed to be adversarial to systematic concurrency testing systems.

Cortex exposes the bug after searching just 6 executions, substantially outperforming both other

systems.

The only benchmark where Cortex required more attempts to find the failing schedule than

the other approaches was Pool. As mentioned before, for this program, Cortex was only able

to trigger the failure after inverting the 4th and 5th branches at the same time. Hence, Cortex

ended up spending time exploring combinations of branch flips that, despite being closer to the

assertion, were ineffective to expose the failing schedule.

We believe the aforementioned scenario to be infrequent in practice, as shown by the out-

comes of the other benchmarks. Therefore, we argue that the results in Table 5.3 further support

our observation production-guided search is effective.

5.5.4 Differential Path-Schedule Projections Efficacy

We computed DPSPs for all of our benchmarks, using observed (and synthesized) non-

failing schedules and corresponding failing schedules exposed by Cortex. We evaluated DPSPs

by comparing the number of data-flows and events in the DPSPs to those in full schedules.

Table 5.4 summarizes our results.

The data show that DPSPs are simpler than full, failing schedules. DPSPs include only

the salient differences between the failing and the correct executions, directing the developer’s

attention towards the most relevant events and the data-flows involved in the root cause of the

failure. On average, Cortex produced DPSPs with 83% fewer data-flows and 50% fewer events
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Table 5.4: DPSP conciseness. Reduction achieved by Cortex in terms of number of data-flows
and events with respect to full failing schedules (“*” indicates bugs that are schedule-dependent
only).

Program
#Data-flows #Data-flows DPSP #Events #Events DPSP

Full (%Reduction) Full (%Reduction)

Account* 139 6 (↓96%) 244 58 (↓76%)

Critical 13 7 (↓46%) 36 13 (↓64%)

ExMCR 16 8 (↓50%) 56 39 (↓30%)

PingPong* 16 1 (↓94%) 66 5 (↓92%)

Piper 57 2 (↓96%) 182 51 (↓72%)

Airline* 29 3 (↓90%) 77 18 (↓77%)

Garage 139 26 (↓81%) 284 235 (↓17%)

BubbleSort 69 15 (↓78%) 161 144 (↓11%)

Manager 142 32 (↓77%) 331 220 (↓34%)

Loader 179 21 (↓88%) 386 281 (↓27%)

StringBuf* 115 1 (↓99%) 331 40 (↓88%)

TicketOrder 183 45 (↓75%) 354 290 (↓18%)

BufWriter* 745 95 (↓87%) 1245 1216 (↓2%)

Pool 73 34 (↓53%) 198 123 (↓38%)

Cache4j (S)* 211 1 (↓99.5%) 541 11 (↓98%)

Cache4j (M)* 862 3 (↓99.7%) 2364 1371 (↓42%)

Cache4j (L)* 1139 3 (↓99.7%) 3105 1094 (↓65%)

than full schedules. Considering benchmarks with path- and schedule-dependent bugs alone,

the average reduction values are 72% and 35%, respectively for data-flows and events. These

results provide evidence that DPSPs are a useful asset for root cause diagnosis, not only for

schedule-dependent only failures, but also for path- and schedule-dependent failures.

Summary

This chapter presented Cortex, a system that is not only able to find concurrency bugs

in programs, but also helps the programmer in identifying their root cause. For this, Cortex

generates differential path-schedule projections (DPSPs) that capture the differences between

non-failing and failing executions, even when threads follow different paths in each execution.

These DPSPs have from 46% to 99% less data-flows than full failing executions, strongly sim-

plifying the task of identifying the branches that are involved in the bug.

Contrary to most previous work, Cortex does not require a failure to be observed in produc-

tion to avoid exploring the full space of possible executions. Instead, it is able to use non-failing

executions from production runs as a starting point for exploration, generating synthetic execu-

tions that are likely to expose a bug (when it exists). Interestingly, with the benchmarks used

in this work, Cortex was able to generate failing executions after a few (more precisely, from
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just 1 to 15, and 4 on average) cleverly guided branch flips.



6Final Remarks

Concurrent programming is of paramount importance to take advantage of the pervasive

parallel computer architectures. Unfortunately, the inherent complexity of concurrent programs

opens the door for various types of concurrency bugs. Concurrency bugs are notoriously hard

to debug and fix. First, the inherent non-deterministic nature of concurrency bugs makes their

reproduction challenging. Second, it is hard to isolate the root cause of a concurrency error

due to the large number of thread operations and interactions among them in failing schedules.

Finally, failing schedules are difficult to expose because they usually stem from very specific

thread interleavings, which manifest rarely. As a consequence, concurrent programs are often

shipped with concurrency bugs that can originate failures in production and degrade the systems’

reliability.

In this thesis, we develop techniques for the replay, root cause diagnosis and exposing of

concurrency bugs in deployed programs. In particular, this dissertation introduces:

• A novel cooperative record and replay approach that leverages collaborative partial logging

and in-house statistical techniques to effectively combine partial logs and produce a full

log capable of reproducing the failure.

• A novel differential schedule projection technique that uses symbolic constraint solving to

spot the important control-flow and data-flow changes between a failing and a non-failing

schedule, which comprise the failure’s root cause.

• A novel production-guided schedule search that uncovers failing schedules by exploring

variations in the schedule and control-flow behavior of non-failing executions.

Chapters 3–5 describe in detail the aforementioned techniques. We have built prototypes

for all the techniques described in this thesis and showed, by means of experimental evaluations,

that our solutions are effective, efficient, and compare favorably to previous state-of-the-art
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systems. We believe that the techniques proposed in this thesis open a number of interesting

questions that can be subject of further research. We outline future work as follows.

• Informed Partial Logging. The cooperative record and replay approach (described in Chap-

ter 3) relies on random partial logging. Although often effective, randomly distributing

the information to be recorded across multiple instances of the program disregards some

issues (e.g., load balancing, log overlapping, and shared variable dependencies) that may

impact the efficiency and efficacy of our technique. Our early results on this line of research

have shown that, for instance, by taking into account factors such as correlation of shared

variables and log overlapping when devising the partial log strategy, one can achieve anal-

ogous replay capabilities with a significantly smaller number of user instances [Machado,

Romano, & Rodrigues 2013]. Also, we believe that other types of static analysis (namely,

program slicing and dependency analysis) could benefit cooperative record and replay.

• Non-Assertion Bugs. The constraint systems we use in Chapters 4 and 5 to uncover failing

schedules and generate the DPSPs assume that failures manifest as assertion violations.

Although assertions are commonly placed in code during development, concurrency bugs

might not always be expressed as invariant failures. One could address this issue by

extending these constraint models to check for other type of concurrency bugs (e.g., data

races [Huang 2015] or deadlocks) in addition to assertion violations.

• Long Executions. As shown in our experiments in Chapters 4 and 5, when the execution

has a large number of shared events, the SMT solver can take a long time to solve the

constraint system. For long executions, this problem is exacerbated and it can become

hard to expose a failing schedule in a reasonable amount of time.

To improve the scalability of the constraint solving phase, one could capture lightweight

information, namely via cooperative partial logging (see Chapter 3), regarding the thread

orderings observed at runtime. This data could then be used to prune the constraint model

(by fixing some read-write linkages), without compromising the ability to expose failing

schedules.

• Privacy. The work in this thesis relies on information captured from executions occurring

in deployed programs. As such, for some cases, the data collected from the user instances

may contain sensitive information. Although privacy concerns are outside the scope of this
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thesis, we believe that our techniques could benefit from anonymization mechanisms. For

instance, in the context of root cause isolation, it would be interesting to investigate if a

given failure could still be triggered by a thread interleaving in a slightly different path,

thus allowing to anonymize the original control-flow executed by the end user [Matos,

Garcia, & Romano 2015].

• Automated Bug Fixing. Although automated bug fixing is a complex and open research

problem [Khoshnood, Kusano, & Wang 2015; Jin, Zhang, Deng, Liblit, & Lu 2012], we

argue that the information provided by our differential path-schedule projections could

be leveraged to automatically generate patches for concurrency bugs. For example, to fix

atomicity violations, one could inject synchronizations operations to avoid the erroneous

interleaving reported in the DPSP.

• Distributed Systems Debugging. Many of the concurrency problems addressed in this thesis

also affect large-scale distributed systems, such as distributed databases, scalable comput-

ing frameworks, and social media platforms [Leesatapornwongsa, Lukman, Lu, & Gunawi

2016]. However, as distributed systems typically run complex distributed protocols on hun-

dreds/thousands of independent machines, they are prone to concurrency bugs stemming

from other non-deterministic factors not addressed in this thesis (e.g., message arrivals,

node crashes, reboots, and timeouts). Nevertheless, we believe that some of our techniques

(namely, the differential path-schedule projections) could be also generalized to diagnose

concurrency bugs in distributed environments, as long as the idiosyncratic factors of this

kind of applications are possible to model as SMT constraints.
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