
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Fault-Tolerant Renaming

in Synchronous Message-Passing Systems

Oksana Denysyuk

Supervisor: Doctor Lúıs Eduardo Teixeira Rodrigues

Thesis approved in public session to obtain the PhD degree in

Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury
Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Michel Marc Raynal

Doctor Lúıs Eduardo Teixeira Rodrigues

Doctor António Manuel Pacheco Pires

Doctor Carlos Miguel Ferraz Baquero Moreno

Doctor Alexandre Paulo Lourenço Francisco

2014

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Fault-Tolerant Renaming

in Synchronous Message-Passing Systems

Oksana Denysyuk

Supervisor: Doctor Lúıs Eduardo Teixeira Rodrigues

Thesis approved in public session to obtain the PhD degree in

Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Michel Marc Raynal, Full Professor, Université de Rennes 1, France

Doctor Lúıs Eduardo Teixeira Rodrigues, Professor Catedrático, do Instituto Superior Técnico,

da Universidade de Lisboa

Doctor António Manuel Pacheco Pires, Professor Catedrático, do Instituto Superior Técnico,

da Universidade de Lisboa

Doctor Carlos Miguel Ferraz Baquero Moreno, Professor Auxiliar, da Escola de Engenharia,

da Universidade do Minho

Doctor Alexandre Paulo Lourenço Francisco, Professor Auxiliar, do Instituto Superior Técnico,

da Universidade de Lisboa

Funding Institutions

Fundação para a Ciência e a Tecnologia

2014

Resumo

Os problemas de coordenação são centrais no desenvolvimento de sistemas distribúıdos.

Esta tese aborda o problema de coordenação designado por renomeação. Neste problema,

um conjunto de processos, com identificadores pertencentes a um vasto espaço de nomes,

escolhe novos identificadores confinados a um espaço de nomes muito mais reduzido. O

problema de renomeação pode ser visto como complementar do clássico problema do

consenso distribúıdo: em vez de concordar num único valor, na renomeação todos os pro-

cessos têm de discordar de forma construtiva, escolhendo identificadores distintos dentre

um conjunto restrito de valores alvo.

A tese foca-se em sistemas distribúıdos śıncronos, onde n processos estão interligados

por uma rede totalmente conexa e comunicam exclusivamente através da troca de men-

sagens. Neste contexto, estudam-se soluções para a renomeação na presença de falhas por

paragem e na presença de falhas arbitrárias.

Denote-se por t o número máximo de processos que pode falhar. Considerando falhas

por paragem, a tese mostra que, recorrendo a fontes de aleatoridade, a renomeação pode

ser resolvida em O(log log n) rondas com alta probabilidade em sistemas onde t < n.

Em contraste, os algoritmos deterministas necessitam de Ω(log n) rondas [CHT99]. Por-

tanto, o nosso resultado implica que os algoritmos probabiĺısticos de renomeação podem

superar algoritmos deterministas por um factor exponencial em n. Considerando falhas

arbitrárias, a tese mostra que os algoritmos probabiĺısticos podem resolver renomeação

em O(log n) rondas com alta probabilidade para t < n (em contraste, os algoritmos de-

terministas necessitam de um número ilimitado de rondas [OBG08]). Estes resultados

implicam que o recurso à aleatoriedade é uma técnica poderosa para resolver o problema

i

da renomeação.

Ainda no contexto de falhas arbitrárias, a tese aborda pela primeira vez o problema da

renomeação com preservação de ordem. Nesta variante do problema de renomeação, os

processos recebem novos nomes que respeitam a ordem dos seus identificadores originais.

A tese mostra que renomeação com preservação de ordem pode ser resolvida em O(log n)

rondas, para t < n/3. Adicionalmente, a tese mostra que renomeação com preservação

de ordem pode ser resolvida em O(1) rondas quando n > t2 + 2t. Finalmente, a tese

demonstra que este problema é imposśıvel de resolver para t ≥ n/3; a impossiblidade

aplica-se tanto a algoritmos deterministas, como a algoritmos com recurso a aleatoriedade.

Este resultado de impossibilidade implica uma separação entre o problema de renomeação

original e o problema com preservação de ordem no modelo de falhas arbitrárias.

ii

Abstract

Exploring the power and limitations of different coordination problems has always been at

the heart of the theory of distributed computing. This thesis addresses the coordination

problem called renaming, in which processes start with ids from a large namespace and

output new names from a small namespace. Renaming can be seen as a dual to the

classical consensus problem: instead of agreeing on a unique value, in renaming correct

processes must disagree in a constructive way, by picking distinct values (names) from an

appropriate range of values.

We focus on synchronous message-passing systems, where n processes are arranged in a

fully connected network and communicate by sending messages. We show that, with resort

to randomization, renaming can be solved in O(log log n) rounds with high probability,

if up to t < n may fail by crashing (t is an upper bound on the number of faults). In

contrast, deterministic algorithms require Ω(log n) rounds [CHT99]. Thus, our result

implies that randomized renaming algorithms can outperform deterministic algorithms

by an exponential factor. When considering Byzantine faults, we show that randomized

algorithms can solve renaming in O(log n) rounds with high probability, while tolerating

up to t < n Byzantine faults (in contrast, deterministic algorithms require unbounded

time [OBG08]). These results imply that randomization is a powerful and necessary

technique in solving renaming.

Finally, this thesis is the first to address order-preserving renaming in the context of

Byzantine faults. In order-preserving renaming, processes must output new names in the

order of their original ids. We show that renaming can be solved in O(log n) rounds, if

up to t < n/3 processes may be Byzantine. We also show that order-preserving renaming

iii

can be solved in O(1) rounds if the maximum number of Byzantine faults is bounded by

the formula n > t2 + 2t. On the negative side, we show that order-preserving renaming

cannot be solved if t ≥ n/3; the impossibility applies to both deterministic and randomized

algorithms. This result establishes a separation between the resiliency of renaming and

order-preserving renaming algorithms in the Byzantine fault model.

iv

Palavras-Chave

Keywords

Palavras-Chave

Renomeação

Renomeação com preservação de ordem

Tolerância a falhas

Algoritmos probabiĺısticos

Algoritmos distribúıdos

Sistemas śıncronos de transmissão de mensagens

Problemas de coordenação

Falhas por paragem

Falhas arbitrárias

Teoria da computação distribúıda

Keywords

Renaming

Order-preserving renaming

Fault-tolerance

Randomized algorithms

Distributed algorithms

v

Synchronous message-passing systems

Coordination problems

Crash faults

Byzantine faults

Theory of distributed computing

vi

Acknowledgments

The author was partially supported by Fundação para a Ciência e Tecnologia (FCT) via

the individual Doctoral grant SFRH/BD/69653/2010, via project PEPITA (PTDC/EEI-

SCR/2776/2012), and via the INESC-ID multi-annual funding through the PIDDAC Pro-

gram fund grant, under project PEst-OE/EEI/LA0021/ 2013.

vii

viii

Contents

1 Introduction 1

1.1 Renaming . 1

1.2 Summary of Contributions . 3

1.2.1 Renaming with Crash Faults . 3

1.2.2 Renaming with Byzantine Faults 5

1.2.3 Order-Preserving Renaming with Byzantine Faults 7

1.3 Outline of the Thesis . 9

2 Related Work 13

2.1 Renaming in Synchronous Systems . 13

2.1.1 Renaming with Crash Faults . 14

2.1.2 Renaming with Byzantine Faults 15

2.1.3 Order-Preserving Renaming with Crash Faults 16

2.1.4 Discussion . 17

2.2 Other Related Problems . 18

2.2.1 Balls into Bins . 18

2.2.2 Randomized Symmetry Breaking 19

3 Model and Definitions 21

3.1 Basic System Model . 21

3.2 Fault Models . 22

3.2.1 Crash Faults . 22

ix

3.2.2 Byzantine Faults . 22

3.3 Cryptographic Techniques . 23

3.4 Problem Statement . 24

3.4.1 Renaming . 24

3.4.2 Order-Preserving Renaming . 25

3.5 Complexity Measures . 25

4 Renaming with Crash Faults 27

4.1 Balls-into-Leaves Algorithm . 28

4.1.1 Tight Renaming using Balls-into-Leaves 34

4.1.2 Correctness . 34

4.2 Complexity Analysis . 36

4.2.1 Bounding the Number of Balls at a Node 37

4.2.2 Bounding the Number of Balls on a Path 40

4.2.3 The Impact of Crashes on Round Complexity 44

4.2.4 Experimental Evaluation . 45

4.3 Early Terminating Extension . 45

5 Renaming with Byzantine Faults 49

5.1 Renaming with the Non-Rushing Adversary 50

5.2 Renaming with the Rushing Adversary . 59

5.2.1 Case of t = 1 . 59

5.2.2 General Case of t > 1 . 60

6 Order-Preserving Renaming with Byzantine Faults 63

6.1 Algorithm for n > 3t . 64

6.1.1 Id Selection Phase . 65

6.1.2 Approximation Phase . 68

6.1.3 Correctness . 70

6.1.4 Complexity Analysis . 78

x

6.2 Algorithm for n > t2 + 2t with 7 Rounds and Tight Namespace 78

6.3 Algorithm for n > t2 + 2t with Only 2 Rounds 79

6.3.1 Correctness . 82

6.3.2 Complexity Analysis . 83

6.4 Impossibility Result for n ≤ 3t . 83

7 Conclusions 89

Bibliography 92

xi

xii

List of Figures

4.1 One phase of execution . 29

4.2 Notation and facts from probability theory used in the proofs. 38

4.3 Closer look at a path in a possible configuration 41

6.1 Indistinguishable executions for n = 3 and t = 1. 84

xiii

xiv

List of Tables

1.1 Round complexity of renaming in synchronous message-passing systems. . 11

1.2 Round complexity of order-preserving renaming in synchronous message-

passing systems. 12

4.1 Experimental evaluation of Balls-into-Leaves 45

xv

xvi

List of Abbreviations and Notation

AA Approximate agreement

PKI Public key infrastructure

whp with high probability

n The number of processes in the system

pi A process

t The upper bound on the number of possible faults in the system

f The number of actual faults in an execution

Nmax The largest id among the ids of all processes in the system

M The size of the target namespace

xvii

xviii

Chapter 1

Introduction

An essential requirement in distributed computing is the ability to uniquely distinguish

processes. Unfortunately, unique identifiers often come from a large namespace (e.g., IP

or MAC addresses, email addresses, hash values), which can be undesirable. For example,

in some distributed algorithms, the running time is sensitive to the numerical value of

the process ids, and large ids can significantly slow down the computation [Dij82]. In

other algorithms, unique ids are embedded in messages, and large ids can increase the

message size. These considerations motivated the renaming problem, which has become

a fundamental problem in distributed computing.

1.1 Renaming

In renaming, processes start with unique identifiers from a large namespace and output

new names from a smaller namespace. Intuitively, renaming can be seen as a dual to the

classical consensus problem: on one hand, solving consensus requires all correct processes

agree on a single value; on the other hand, renaming requires correct processes disagree

in constructive way, by picking distinct values (names) from a small range of values.

More precisely, in renaming n processes start with distinct identifiers taken from an

unbounded original namespace, and output distinct names from a smaller target names-

1

pace of size M , where M is the parameter of the problem determined a priori. If the size

of the target namespace is exactly n (which is the smallest possible), then the problem

is known as tight (or strong/perfect) renaming. When solving renaming, it is sensible to

aim at the smallest target namespace; however, as we will discuss in the related work,

tight renaming is not always possible to achieve in certain systems. Therefore, in addition

to the standard concerns about the complexity (the amount of resources it takes to solve

the problem) and resiliency (what assumptions on the number and type of faults we must

make), the size of the new namespace is also an important dimension to the renaming

problem.

In addition to renaming, this thesis addresses the order-preserving variant of the prob-

lem [ABND+90], which requires new names preserve the order of the original ids (i.e., if

the id of process pi is smaller than the id of process pj, then the new name of pi must

be smaller than the new name of pj). This variant is interesting in settings where the

original identifiers encode some additional information, such as their relative priority in

accessing a shared resource.

Though originally renaming was introduced for the message-passing model, the major-

ity of research effort has been devoted to the study of this problem in the shared memory

model, e.g. [BG93,AF02,CR10,CnR12,AACH+14]. As a result, many fundamental ques-

tions on solving renaming in the message-passing model remained unanswered.

In this thesis we focus our attention on the synchronous message-passing model and

aim at contributing to a better understanding of renaming and order-preserving renaming

problems in this model. We put the hypothesis that renaming and order-preserving re-

naming can be solved both efficiently and with high resiliency to different types of failures.

Below we summarize our findings that support this hypothesis. The material presented

in this thesis is based on the publications listed at the end of the document.

2

1.2 Summary of Contributions

In this section, we describe the main contributions of the thesis. Please see Tables 1.1

and 1.2 at the end of this chapter for a schematic summary of these results.

1.2.1 Renaming with Crash Faults

In Chapter 4, we assume that processes are prone to crashes and up to t < n processes

may crash. Previous work by Chaudhuri, Herlihy, and Tuttle [CHT99] gave an elegant

algorithm that solves tight renaming in this setting with O(log n) round complexity. The

authors also showed this to be optimal by proving an Ω(log n) lower bound for algorithms

which distinguish state through comparisons (see Chapter 2). This result concerns only de-

terministic algorithms and leaves open the possibility of achieving better, sub-logarithmic

solutions by resorting to randomization.

Randomization is a natural approach for renaming, and has been used to achieve low-

complexity solutions in the related shared-memory model, e.g. [AACH+14]. Moreover,

since renaming can be seen as an assignment problem, in which n resources (names) must

be uniquely assigned to n processes, randomized renaming is related to the extensive

line of work on randomized load balancing, e.g. [ACMR95, BKSS13, LW11b, Mit01], for

which different sub-logarithmic solutions have been proposed. Surprisingly, a careful

analysis of such sub-logarithmic solutions reveals that none of them can be used to achieve

tight renaming: they either are designed for a fault-free setting, or relax the one-to-one

allocation requirement. It is therefore an intriguing question whether randomization can

in fact be used to solve fault-tolerant tight renaming in sub-logarithmic time.

We answer this question in the affirmative. We present a new algorithm to solve

tight renaming in O(log log n) communication rounds with high probability, exponentially

faster than the optimal deterministic counterpart. The algorithm, which we call Balls-

into-Leaves, is based on the idea of arranging the target names as leaves of a binary tree;

processes start at the root of the tree, and perform repeated random choices in order

3

to disperse themselves towards leaves, while minimizing contention. We also present an

early-terminating variant, which terminates in O(log log f) rounds, where f is the actual

number of failures in the execution, which is again exponentially faster than the best

known deterministic version [AAGT12].

More precisely, our algorithm works as follows: processes (balls) start at the root of

a virtual binary tree, whose n leaves correspond to the target names. In each iteration,

each ball picks a random available leaf and broadcasts its choice; in case of collisions, a

deterministic rule is used to select a winner. The remaining balls backtrack towards the

root, stopping at the lowest node at which the ball can still find an available leaf within

the corresponding subtree. (Please see Figure 4.1 for an illustration.) Balls then iterate

this procedure, exchanging information and progressively descending in the tree.

Our main technical contribution is to show that this natural strategy is fault-tolerant,

and in fact converges extremely quickly to a perfectly balanced allocation. Our proof

argument has two parts: we first exploit the concentration properties of the binomial

distribution to bound the maximum contention on a leaf after Θ(log log n) communication

rounds to be O(polylog n), with high probability (whp). Second, we fix a root-to-leaf

path, and prove via a technical argument that all O(polylog n) balls, except at most

one, will disperse themselves off the path within the next O(log log n) rounds, again whp.

Therefore, each ball reaches a leaf within O(log log n) rounds whp.

Since the number of leaves matches the number of balls, Balls-into-Leaves solves

tight renaming. Given that comparison based deterministic algorithms take Ω(log n)

rounds [CHT99], this result establishes an exponential separation between such algo-

rithms and their randomized counterparts. (Our algorithm is also comparison-based.)

Moreover, Balls-into-Leaves guarantees deterministic termination; in particular, it will

complete in a linear number of rounds, even in unlucky runs.

We then extend the Balls-into-Leaves algorithm to ensure early termination. Roughly,

an early-terminating algorithm terminates faster when there are fewer failures, as its

running time is a function of the number f of failures rather than n. We do so by

4

introducing an initial phase that ensures that balls take advantage of a small number

of failures in this round, descending deeply into the tree. With this modification, the

algorithm terminates in O(log log f) rounds whp, where f is the actual number of crashes.

Furthermore, in a fault-free execution, it terminates in constant time.

An examination of the proof argument (in particular, the concentration properties

of the binomial distribution) suggests that our complexity upper bound for Balls-into-

Leaves is in fact tight. The main open question is therefore whether the Balls-into-Leaves

strategy is optimal for this problem. We conjecture that answering this question will

require a new lower bound technique for randomized renaming.

1.2.2 Renaming with Byzantine Faults

We then consider a more challenging Byzantine fault model. We show that, with the help

of randomization, renaming can be solved efficiently for any t < n (Chapter 5). Therefore,

our result further confirms that randomization is an important and necessary technique

for solving renaming efficiently. To our knowledge, our results are the first to address

randomized solutions for renaming in this model.

When considering randomized algorithms in the context of Byzantine faults, the litera-

ture distinguishes two adversaries with different powers. With the non-rushing adversary,

processes are forced to take steps simultaneously at the beginning of each round. There-

fore, Byzantine processes must choose messages to send in each round before learning

the random choices made by the correct processes in the same round. With the rushing

adversary, Byzantine processes may execute each step after learning about the random

choices of the correct processes. In [GY89], non-rushing and rushing adversaries are called

simultaneous and sequential, respectively. We study renaming under both adversaries.

We first note that it is possible to solve renaming using a consensus algorithm to

agree on a set of identifiers. It is also known that sometimes randomization can be used

to solve consensus [BO83] when deterministic algorithms fail [FLP85]. Thus, one might

wonder whether we could obtain an efficient randomized renaming algorithm that toler-

5

ates t < n Byzantine failures, as follows: first, obtain an efficient randomized consensus

algorithm that tolerates t < n Byzantine failures; then use this algorithm to solve renam-

ing. Unfortunately, this approach would not work: it has been shown that with Byzantine

failures and t ≥ n/3, any randomized consensus algorithm fails with probability at least

1/3 [GY89,KY86]. This result holds even with the non-rushing adversary.

We first consider the weaker non-rushing adversary. We propose an algorithm based

on a simple idea: each process randomly chooses a new id from the range {1, . . . , n} and

applies tie-breaking rules to solve collisions. We show that this algorithm terminates in

O(log n) rounds whp.

We next consider the more challenging rushing adversary. We show that our first

algorithm can tolerate up to t = 1 Byzantine failure but the algorithm fails if t > 1.

This is because, in each round, Byzantine processes can first observe the choice of a

correct process and mimic it, causing infinitely many collisions. To tackle this problem,

we use a cryptographic commitment primitive to force processes to commit to a choice

without revealing their value; this technique prevents Byzantine processes from constantly

mimicking the choices of correct processes. Using cryptographic commitment, we show

how to extend the previous algorithm to work for any t < n.

To use cryptographic commitment, we must assume a polynomially bounded adver-

sary, so that the adversary cannot break the cryptographic primitive. We believe our use

of cryptography is sensible in the following two ways. First, we do not assume a primitive

that needs a public key infrastructure (PKI). By contrast, primitives such as digital sig-

natures, which are frequently used to cope with Byzantine processes, require a PKI. The

problem is that a PKI implies that processes have the public key of all processes, but the

public key serves as a unique process id; and if processes have knowledge of unique ids

for each other, the renaming problem becomes trivial (e.g., each process sorts these ids,

and then outputs as its new name the position of its id in this sorted order).

Second, even if the adversary breaks the cryptographic primitive by luck (by guessing

the random seed used by a correct process to commit a value), the algorithm never violates

6

the properties of the renaming problem, though termination may get delayed. Even in this

case, termination is ensured with probability one. By contrast, certain algorithms that rely

on cryptography will fail with non-zero probability when the adversary is lucky [DS83].

1.2.3 Order-Preserving Renaming with Byzantine Faults

In Chapter 6, we turn our attention to the order-preserving variant of the renaming

problem.

In the synchronous model, order-preserving renaming has been previously addressed

only in the context of crash faults [Oku10]. In this algorithm, processes help each other to

pick new names by running in parallel approximate agreements (AA) on the new names.

To obtain a Byzantine tolerant algorithm, one can be tempted to resort to the classical

techniques of translating a crash-tolerant algorithm into a Byzantine-tolerant algorithm

[BN01,NT88]. However, adapting previous work to cope with Byzantine processes raises

several challenges. The first challenge is that original identifiers are not globally known

among the processes a priori. Note that with this knowledge it becomes trivial to solve

order-preserving renaming without any communication (just by sorting the set of ids and

then choosing the rank of each id as new name). However, the usual translation techniques

assume that the identifiers are known a priori to each process; and thus, these techniques

cannot be directly applied in our setting. We could further explore the possibility of

adapting those translation techniques to cope with the unknown ids and then apply them

to the crash-tolerant algorithm of Okun [Oku10]. In fact, Okun, Barak and Gafni took

this approach in designing the first Byzantine-tolerant (non order-preserving) renaming

algorithm [OBG08]. The downside of this approach is that the translation techniques

increase the round complexity by the factor of 4 and introduce a linear increase in the

message complexity because processes must broadcast and echo histories of previously

received messages.

In contrast, we present a Byzantine-tolerant algorithm that follows the structure of

the crash-tolerant algorithm of Okun [Oku10], but with some additional adaptations that

7

do not yield any increase in the message and round complexity. Our algorithm consists

of two phases:

The purpose of the first phase is to exchange the information about the ids existing in

the system. This is achieved by a 3-round id selection scheme that restricts the number

of ids in the system, despite lies by Byzantine processes. Our id selection is conceptually

similar to the Gradecast [FM88] primitive which assigns confidence levels to messages

delivered from other processes.

In the second phase, each process proposes a new name for each known id based

on the rank of this id in the ordered set of all identifiers known to this process. The

proposed names are then used as inputs into separate instances of Byzantine-tolerant

approximate agreement, one per id. Finally, each process returns as its new name the

output of the corresponding instance of AA. Byzantine-tolerant AA [DLP+86] guarantees

that the outputs are within the range of values issued by the correct processes. However,

even after the first phase, Byzantine processes can cause correct processes to propose

overlapping intervals of values for different instances of AA. Therefore, without additional

measures, the outputs of AA may not preserve the initial ordering. We solve this by

simultaneously validating messages from the same process into all concurrent instances of

AA. Interestingly, this validation does not require any additional messages.

After presenting the algorithm, we analyze its behavior when n is large compared to

t. In the lines of the work for crash-faults by Alistarh, Attiya, Guerraoui and Travers

[AAGT12], we show that the AA-based approximation phase, and thus our algorithm,

requires only a constant number of rounds to converge when n > t2 + 2t. Furthermore,

in this case it also achieves tight namespace of size n, because our id selection scheme

ensures that Byzantine processes are not able to introduce more than t identifiers.

Even in the favorable case above, the number of communication rounds can be im-

pairment for time-constrained applications. Therefore, we then address the challenge of

solving order-preserving renaming in as few communication rounds as possible. We show

that, if the number of faults is known to be restricted to n > 2t2 + t, order-preserving

8

renaming can be solved in just 2 rounds. For this purpose, we present a new algorithm

where renaming is done by having processes exchange their initial ids, perform one echoing

round, and then count the numbers of echoes to calculate new names.

After solving order-preserving renaming efficiently for different values of t < n/3,

we then ask a natural question whether it is possible to solve this problem for larger

values of t (as it is the case for the original renaming problem). We answer this question

in the negative by proving that it is impossible to solve order-preserving renaming if

t ≥ n/3, even if one could use randomized algorithms. Thus, randomization does not help

solving this problem, in contrast to original renaming. To our knowledge, this is the first

result that separates the resiliency of renaming and order-preserving renaming algorithms.

Interestingly, the impossibility applies to a target namespace of any size. The proof

reduces the case of n > 3 to the case of n = 3. It then considers a candidate algorithm for

the case n = 3 and shows that it must fail, by constructing an indistinguishability ring of

executions that violates the properties of order-preserving renaming. This technique was

applied previously to the problem of consensus with Byzantine failures [FLM85]. Here we

extend it to order-preserving renaming, which is a weaker problem and hence harder to

prove impossibility results for. In our proof, we arrange processes in a ring of size larger

than the target namespace and use the following argument to establish a contradiction:

roughly, we show that names must increase as we traverse the ring in one direction, but

this exhausts the target namespace after going around the ring.

1.3 Outline of the Thesis

In Chapter 2, we summarize the related work. In Chapter 3, we describe the model and

state the problems considered in this thesis.

In Chapter 4, we address renaming in the crash fault model. We present a renaming

algorithm for t < n, give the correctness proof and complexity analysis.

In Chapters 5 and 6, we consider the Byzantine fault model. In Chapter 5, we present

9

renaming algorithms for t < n under different adversaries, give the correctness proofs and

complexity analysis. In Chapter 6, we address the order-preserving variant of the renaming

problem. We present algorithms for different values of t < n/3, give the correctness proof

and complexity analysis. We then prove that it is impossible to solve this problem if

t ≥ n/3.

In Chapter 7, we conclude the thesis and outline the directions for future work.

10

S
y
st

e
m

M
o
d
e
l

R
o
u
n
d

C
o
m

p
le

x
it

y
R

e
fe

re
n
ce

T
y
p

e
of

F
au

lt
s

A
lg

or
it

h
m

A
d
ve

rs
ar

y
R

es
il
ie

n
cy

o
f

T
ig

h
t

R
e
n
a
m

in
g

C
ra

sh
es

D
et

er
m

in
is

ti
c

n
/a

t
<
n

Θ
(l

og
n

)
[C

H
T

99
]

R
an

d
om

iz
ed

ad
ap

ti
ve

t
<
n

O
(l

og
lo

g
n

)
w

h
p

C
h
ap

te
r

4

D
et

er
m

in
is

ti
c

n
/a

t
<
n
/3

O
(l

og
n

)
[O

B
G

08
]a

n
/a

n
/3
≤
t
<
n

Θ
(u

n
b

ou
n
d
ed

)
[O

B
G

08
]

B
y
za

n
ti

n
e

n
on

-r
u
sh

in
g

t
<
n

O
(l

og
n

)
w

h
p

C
h
ap

te
r

5,
S
ec

ti
on

5.
1

R
an

d
om

iz
ed

ru
sh

in
g

t
=

1
O

(l
og
n

)
w

h
p

C
h
ap

te
r

5,
S
ec

ti
on

5.
2

ru
sh

in
g,

t
<
n

O
(l

og
n

)
w

h
p

C
h
ap

te
r

5,
S
ec

ti
on

5.
2

co
m

p
u
ta

ti
on

al
ly

b
ou

n
d
ed

T
ab

le
1.

1:
R

ou
n
d

co
m

p
le

x
it

y
of

re
n
am

in
g

in
sy

n
ch

ro
n
ou

s
m

es
sa

ge
-p

as
si

n
g

sy
st

em
s.

a
T

h
is

is
th

e
o
n
ly

a
lg

o
ri

th
m

in
th

e
ta

b
le

th
a
t

d
o
es

n
o
t

so
lv

e
ti
gh
t

re
n
a
m

in
g

a
s

it
s

ta
rg

et
n
a
m

es
p
a
ce

is
o
f

si
ze

2
n

.

11

S
y
ste

m
M

o
d
e
l a

O
rd

e
r-p

re
se

rv
in

g
R

e
n
a
m

in
g

R
e
fe

re
n
ce

T
y
p

e
of

F
au

lts
R

esilien
cy

N
a
m

e
sp

a
ce

S
ize

R
o
u
n
d

C
o
m

p
le

x
ity

C
rash

es
t
<
n

n
Θ

(log
n

)
[O

k
u
10]

t
<
O

(√
n

)
n

O
(1)

[A
A

G
T

12]

t
<
n
/3

n
+
t−

1
O

(log
n

)
C

h
ap

ter
6,

S
ection

6.1

B
y
zan

tin
e

t
<
O

(√
n

)
n

O
(1)

C
h
ap

ter
6,

S
ection

6.2

t≥
n
/3

an
y

im
p

ossib
le

b
C

h
ap

ter
6,

S
ection

6.4

T
ab

le
1.2:

R
ou

n
d

com
p
lex

ity
of

ord
er-p

reserv
in

g
ren

am
in

g
in

sy
n
ch

ron
ou

s
m

essage-p
assin

g
sy

stem
s.

aT
h
e

resu
lts

p
resen

ted
in

th
e

ta
b
le

co
n
cern

d
eterm

in
istic

a
lg

o
rith

m
s.

T
o

o
u
r

k
n
ow

led
g
e,

n
o

ra
n
d
o
m

ized
a
lg

o
rith

m
s

h
av

e
b

een
p
ro

p
o
sed

in
th

e
litera

tu
re.

bT
h
e

im
p

o
ssib

ility
resu

lt
a
lso

a
p
p
lies

to
ra

n
d
o
m

ized
a
lg

o
rith

m
s.

12

Chapter 2

Related Work

The renaming problem and its order-preserving variant were originally introduced by

Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [ABND+90] in the asynchronous message-

passing model with crash failures. In this model consensus is known to be impossible

[FLP85], so the authors of [ABND+90] addressed the possibility of solving these new

problems in the same setting. They show that tight renaming (i.e., renaming with the

smallest namespace, of size n) is also impossible in the asynchronous model. The authors

then present a renaming algorithm with n > 2t and target namespace of size n + t −

1, and an order-preserving renaming algorithm with n > 2t and target namespace of

size 2t(n − t + 1) − 1. Both algorithms tolerate the optimal number of crashes and

the bounds on the target namespace were also shown to be optimal [ABND+90, HS99].

Subsequently, the renaming problem has been extensively studied in both message-passing

and shared memory systems. From this point, we limit the related work discussion to

synchronous message-passing systems considered in this thesis. We direct the interested

reader to [BEW11,AACH+14] for surveys on renaming in other models.

2.1 Renaming in Synchronous Systems

In synchronous systems, renaming can be solved using Reliable Broadcast [BT85,GT89]

or consensus [LSP82b]: processes can simply agree on the set of all ids existing in the

13

system and then, each process chooses as a new name the rank of its own id the the set.

This approach requires linear round complexity [DS82]. However, intuitively the renaming

problem is “weaker” than consensus. In fact, renaming is considered the simplest non-

trivial distributed computing task [CHT99]. Therefore it is tempting to search for more

efficient sublinear solutions than simply using consensus. Indeed, several such solutions

were presented for different settings. Below we summarize the prior work on renaming and

order-preserving renaming in synchronous systems prone to both crashes and Byzantine

faults.

2.1.1 Renaming with Crash Faults

Tight renaming in the synchronous message-passing model is first studied by Chaudhuri,

Herlihy, and Tuttle [CHT99]. The authors define comparison-based algorithms, which

distinguish states only through comparisons 1. In comparison-based algorithms, two pro-

cesses, for which all comparisons on their state yield the same result, are in an indistin-

guishable state and will decide on the same result. The authors show that such algorithms

are vulnerable to a “sandwich” failure pattern, which forces processes to continue in in-

distinguishable states for Ω(log n) rounds. The proof argument goes as follows. Let m be

a number such that n = 3m+1 and assume that in each round processes exchange all the

information available to them. In the first round, the “sandwich” failure pattern causes

m processes {p1, . . . , pm} with the lowest ids and m processes {p2m+2, . . . , p3m+1} with the

highest ids to fail in the following way: each surviving process pm+j ∈ {pm+1, . . . , p2m+1}

receives messages only from processes {pj, . . . , p2m+j}. As a result, each surviving process

receives 2m + 1 messages, and sees its rank in the set of all processes as m + 1. In the

following round, the same happens to the two thirds of the surviving processes and so

on. The “sandwich” failure pattern can continue for Ω(log n) rounds, keeping the surviv-

ing processes in indistinguishable states. This yields an Ω(log n)-round lower bound for

deterministic comparison-based algorithms.

1For example, in a comparison-based algorithm, processes cannot use values of their ids to decide in which
round to send a message.

14

The authors match the lower bound via an elegant algorithm [CHT99] for any t < n

that works as follows. A process chooses a new name by selecting one bit at a time,

starting with the high-order bit and working down to the low-order bit. In each round

processes exchange their ids and the intervals of new names in which they are interested.

Then, processes split the received ids in two sets, choosing 0 if their own id belongs to

the first half, or 1 otherwise, and repeat the procedure. Since each bit of a new name is

chosen in a separate round, the round complexity of the algorithm is Θ (log n).

2.1.2 Renaming with Byzantine Faults

The first paper to address the renaming problem in systems prone to Byzantine failures

is [OBG08] where Okun, Barak, and Gafni show that renaming can be solved determin-

istically for any t < n with the following algorithm: a process waits until the round

corresponding to the value of its id, then picks an available name, and sends its decision

to other processes (this algorithm is not comparison-based). The remaining processes

exclude the announced decision from the available names. Since all correct processes

have different ids, no two correct processes decide in the same round, and hence they

always choose distinct names. This algorithm, however, has an unbounded running time

because its running time depends on the values of original ids, which can be taken from

an unbounded namespace. The same paper shows that the unbounded running time is

unavoidable for deterministic renaming if t ≥ n/3.

Finally, the paper presents a renaming algorithm for t < n/3 with round complexity

of O (log n). The solution is based on the crash-tolerant renaming algorithm introduced

in [CHT99] and discussed in the previous section. More precisely, the algorithm in

[OBG08] applies a version of the automatic crash-to-byzantine translation techniques

to the algorithm in [CHT99]. The translation techniques, introduced by Neiger and

Toueg [NT88] and Bazzi and Neiger [BN01], are based on the following idea. Processes

run a crash-tolerant algorithm and, in parallel, echo all messages received in each round.

Roughly, if a message is eventually echoed by sufficiently many, n − t, processes, then

15

the message is accepted and used in the original crash-tolerant algorithm. Otherwise, the

sender of that message is considered faulty and is excluded from further communication.

Note that this procedure assumes that each message carries the sender’s id and the sender

cannot lie about its id. Thus the translation techniques of [NT88,BN01] require that the

initial ids of processes are known to every process a priori. Eliminating this assumption is

the main difficulty in adapting the translation techniques to the renaming problem. Note

that at least n− t correct processes always echo each others’ messages correctly, so their

messages are always accepted by all correct processes. However, the correct processes

must deal with the cases when the same Byzantine process announces different ids to

different correct processes. Instead of discarding messages with Byzantine ids, correct

processes may have to continue echoing them to ensure the same decision is made by all

correct processes to either accept or discard the message. As a result, the transformed

algorithm in [OBG08] may deal with more than n ids and can no longer ensure the tight

namespace; its target namespace increased to 2n.

Since the crash-to-byzantine translation techniques work for t < n/3 and have constant

round complexity overhead per translated round, the resulting transformed algorithm also

tolerates up to t < n/3 Byzantine failures and it has round complexity O (log n) rounds.

2.1.3 Order-Preserving Renaming with Crash Faults

Prior to the results produced in this thesis, we were not aware of any results on order-

preserving renaming in the Byzantine setting. Therefore, in this section we only discuss

the existing results on order-preserving renaming in systems prone to crashes.

The first crash-tolerant algorithm that solves this problem was presented by Okun

[Oku10]. The author finds a novel connection between order-preserving renaming and the

approximate agreement problem, and shows that this approach has round complexity of

O (log n). In approximate agreement (AA), processes, starting with real values as inputs,

are required to decide on values within a bounded range from each other. The algorithm in

[Oku10] uses AA to solve order-preserving renaming as follows. First, processes exchange

16

their ids, sort the received ids, and propose a new name for each id based on its rank in the

sorted list. Due to crashes, processes may have received different sets of ids and therefore

may propose different names for the same id. These discrepancies are later reduced by

running (in parallel) AA for each id: in every round, each process sends the candidate

name for each id, received the candidate names from other processes, and updates each

value by averaging all the values received for that id. After the approximate agreement

ensures that the values for the same id are within a safe distance from each other, each

process decides based on the output of AA for its own id. Since the initial discrepancies in

the proposed names are at most n, the approximate agreement requires at most O(log n)

rounds to bring the values within a small distance. Thus, the round complexity of the

algorithm is O (log n).

Recently, Alistarh, Attiya, Guerraoui and Travers [AAGT12] made the algorithm of

Okun [Oku10] early terminating, i.e. the time complexity of the algorithm depends on

f , the number of actual faults occurred in a given execution. The authors of [AAGT12]

observed that, in fact the initial discrepancies in the proposed names are at most f in an

execution with f faults. Hence, the approximate agreement converges in only O(log f)

rounds instead of O(log n). Interestingly, the authors also observed that the algorithm

can decide in constant number of rounds if the number of actual faults is bounded by

n > 2f 2. This is because in that case approximate agreement converges in a constant

number of iterations.

2.1.4 Discussion

The surveyed results show that there are settings, in which renaming can be solved effi-

ciently without resorting to costly consensus-based solutions. In particular, it was shown

that renaming can be solved in O(log n) rounds with up to t < n crashes or t < n/3

Byzantine faults. However, many interesting questions remained unanswered. For exam-

ple, the literature does not address randomized solutions for renaming. But we know from

other settings that randomization is a powerful technique in circumventing impossibility

17

results [BO83] and outperforming optimal deterministic algorithms [Bra87]. Therefore,

studying randomized solutions for renaming is essential for a more complete understand-

ing of this problem. In particular, it is interesting to investigate if randomization al-

lows circumventing the deterministic lower bounds—Ω(log n) for t < n crash faults and

Ω(unbounded) for t < n Byzantine faults—on the round complexity of renaming algo-

rithms.

Other open problems concern the order-preserving variant of renaming. In particular,

this problem had not been solved in the Byzantine setting. This thesis also addresses this

open problem.

2.2 Other Related Problems

As we have stated above, the thesis will address the use of randomization in solving renam-

ing. Randomization techniques have been used in other problems that are conceptually

similar to renaming. In the following, we discuss the related results.

2.2.1 Balls into Bins

Tight renaming can be seen as a balls-into-bins load balancing problem, where n balls

(processes) must be randomly placed into n distinct bins (names). Early work on balls-

into-bins problem addressed a scenario in which balls are placed into bins by trying

randomly in sequential order, e.g. [Gon81]. Since then, the problem has been extensively

studied in different models, e.g. [ACMR95, BKSS13, Mit01]. In particular, the closest

model to ours is the one where balls are placed by contacting bins in parallel. If, in some

round, more than one ball contacts the same bin, the bin decides which ball to accept.

The accepted balls are placed into respective bins, the rejected balls continue retrying

other bins in the following rounds until they are accepted.

Parallel balls-into-bins problem is motivated by distributed load-balancing with band-

width limitations. Therefore, in most existing solutions balls contact a limited number of

18

bins at once. It is easy to show that the naive approach, in which each ball contacts one

random bin at a time and retries if it is not accepted, requires Ω(log n) rounds whp. The

naive strategy can be improved by “the power of two choices” technique (generalized to

d choices). In this technique, each ball contacts d ≥ 2 random bins in parallel and, if it

is accepted to more than one bin, the ball chooses one of those bins. If the ball is not

accepted by any bin, it retries. This approach was shown to require Ω(
√

log n) rounds

whp [ACMR95].

Several algorithms have been proposed for this setting, e.g. [BKSS13, LW11b], which

achieve a better, sub-logarithmic complexity. Unfortunately, none of these solutions can

be used to obtain tight renaming with up to t < n crashes. This is because they either

relax the exact one-ball-per-bin requirement [LW11b], or require balls to always have

consistent views when making their choices (which cannot be guaranteed under crash

faults). For a complete survey of existing results on parallel load-balancing, we refer the

reader to [LW11a].

2.2.2 Randomized Symmetry Breaking

The randomization techniques employed in this thesis are similar to the techniques used

for breaking symmetry in distributed systems. One way of breaking symmetry is by

electing a unique leader. Several papers applied randomization techniques to the leader

election problem, e.g. [FL87, IR81, KPP+13]. A notable example in this line of research

is the work by Itai and Rodeh [IR81] that addresses symmetry breaking in anonymous

rings. The paper presents a randomized ring leader election algorithm that works as

follows. Each process randomly picks a value from a given range and sends it through

the ring. The process that has picked the largest value becomes a leader. In case of a

collision, the processes with the largest value repeat the algorithm until one process wins.

Though (as we will see in the following chapters) our techniques are similar in flavor,

these related results solve a different problem and cannot be directly translated into our

setting.

19

20

Chapter 3

Model and Definitions

In this chapter we describe the system model and formally define the main problems

addressed in the thesis.

3.1 Basic System Model

We consider a standard synchronous round-based message-passing system of n ≥ 3 pro-

cesses p1, . . . , pn, where n is known a priori. Each process has a unique identifier, originally

known only to the process itself.

We consider a fully-connected network with bidirectional links between every pair of

processes (the communication links are assumed to be reliable). The bidirectional links

of each process are numbered 1, . . . , n; there is no global assignment of processes to link

numbers, and different processes may have inconsistent link numberings. We denote by

linki(pj) the number at pi of the bidirectional link to pj. At each process, we assume

that link number n is the self-loop, and that a process knows the number of the link from

which it receives a message.

Execution proceeds in rounds; in each round, a process can send messages to its

neighbors, receive at most one message from each neighbor, and change state.

In randomized algorithms, the process obtains a fixed-length string of private random

21

bits before changing state.

3.2 Fault Models

Throughout the thesis, we assume different models of failures. We say that the failures

are controlled by an adversary. In the following we describe different adversaries that we

consider.

3.2.1 Crash Faults

In Chapter 4 we assume that processes may crash. The adversary can make any process

crash at any moment in the execution. We assume that the adversary knows the protocol

and can observe the random choices of all processes; thus, the adversary may decide which

processes fail based on the random choices of all processes (such adversary is often called

adaptive). We assume that up to t processes may crash, for any t < n. Moreover, we

assume that the crashed processes stop executing and do not recover.

3.2.2 Byzantine Faults

In Chapter 5 and Chapter 6 we assume a more powerful adversary that can corrupt up

to t processes; the corrupted processes, which we call Byzantine [LSP82a], may exhibit

arbitrary behavior and are allowed to collude among themselves. We assume that the

adversary knows the protocol, can decide which processes to corrupt at any time during

the execution, and has full control of the corrupted processes. Here, we assume that the

adversary does not have access to the private random bits of the correct processes, and

we allow the adversary to corrupt at most t processes. For each of our algorithms, we will

specify the upper bounds on t.

Since some of our algorithms are randomized, we further need to specify when the

adversary is allowed to learn the random choices of the correct processes. In particular,

22

we distinguish between rushing and non-rushing adversaries.

Non-rushing Adversary. Under the non-rushing adversary, in each round all processes

send messages simultaneously. Thus, the non-rushing adversary cannot decide the

messages to be sent during a particular round based on the messages the corrupted

processes receive from correct processes during that same round.

Rushing Adversary. Under the rushing adversary, it is pessimistically assumed that

the messages addressed to the Byzantine processes are always delivered immediately,

and that the adversary has time to inspect the messages addressed to the corrupted

processes before issuing its messages in the same round.

The adversary is allowed to eavesdrop the communication between the correct pro-

cesses. However, the adversary is unable to send messages in the name of correct processes,

or modify messages that the correct processes send.

3.3 Cryptographic Techniques

When we use cryptography in Section 5.2 of Chapter 5, we consider a computationally

bounded adversary that is limited to computing polynomially bounded functions. We

assume the availability of a cryptographic commitment scheme. Roughly speaking, cryp-

tographic commitment allows processes to commit to a value without revealing it and

then reveal a value when required. Such a scheme has two separate stages, commitment

stage and revealing stage, with the following interface for each respective stage:

• commit(value): a process generates a cryptographic commitment to a value, with-

out revealing the value.

• reveal(value): a process reveals the value, which must match the previously an-

nounced commitment.

The properties of a commitment scheme can be informally stated as follows.

23

• Hiding: it is computationally hard for the receiver to know in the commitment stage

the value to which the sender commits.

• Binding: it is computationally hard for the sender to commit more than one value

and to reveal a value that it has not committed.

For a more formal treatment, we refer the reader to [Gol01].

3.4 Problem Statement

We now present the definitions of the main problems considered in the thesis.

3.4.1 Renaming

The renaming problem can be precisely defined as follows.

Each process has an initial id in some original namespace, and it must decide on a

new name in some target namespace {1, . . . ,M}, where M ≥ n is a parameter of the

problem, such that the following conditions must hold [ABND+90]:

• Termination: Each correct process eventually decides on a new name.

• Validity: If a correct process decides, it decides on a new name in {1, . . . ,M}.

• Uniqueness: No two correct processes decide on the same new name.

For randomized algorithms, the termination property is weakened to

• Termination with probability 1: With probability 1, every correct process eventually

decides on a new name.

When M = n the problem is called tight renaming.

24

3.4.2 Order-Preserving Renaming

The stronger order-preserving variant of renaming is obtained by adding the following

property:

• Order-preserving property [ABND+90]: New names of the correct processes preserve

the order of the initial ids.

3.5 Complexity Measures

We are mainly interested in the round complexity of our algorithms, i.e., the total number

of rounds required to all correct processes terminate. For completeness, we will also

discuss the message complexity (the total number of messages sent by the processes in an

execution) and bit complexity (the total number of bits per message). For randomized

algorithms, the round complexity and message complexity are required to hold with high

probability (whp), i.e., with probability at least 1 − 1/nc, where c is an independent

constant.

In general, algorithms can have unbounded running time. In this work we are inter-

ested in efficient algorithms, whose round complexity can be bounded by a function of n,

the number of processes (this property is also known in the literature as strong termina-

tion [Dij82]). For randomized algorithms, we require the probabilistic round complexity

be bounded by a function of n.

25

26

Chapter 4

Renaming with Crash Faults

In this chapter we assume that processes may fail by crashing and up to t < n processes

may crash. In this model, the efficiency of deterministic algorithms is constrained by the

Ω(log n) lower bound on the round complexity. Therefore, to achieve better results we

resort to randomization.

As we have previously discussed, randomized renaming is related to the balls-into-bins

technique. Extending this classical technique, we propose Balls-into-Leaves, a randomized

algorithm that places n balls into n leaves of a binary tree in O(log log n) rounds whp.

At a high level, our algorithm works as follows: processes (balls) start at the root of a

virtual binary tree, whose n leaves correspond to the target names. In each iteration,

each ball picks a random available leaf and broadcasts its choice; in case of collisions, a

deterministic rule is used to select a winner. The remaining balls backtrack towards the

root, stopping at the lowest node at which the ball can still find an available leaf within

the corresponding subtree. (Please see Figure 4.2 for an illustration.) Balls then iterate

this procedure, exchanging information and progressively descending in the tree. We then

extend our algorithm to offer early termination in O(log log f) rounds whp, where f is

the number of actual failures in a given execution.

27

4.1 Balls-into-Leaves Algorithm

In this section, we describe in more detail our Balls-into-Leaves algorithm.

The algorithm treats processes as balls and target names as bins, where each ball wants

to find an exclusive bin for it. The algorithm organizes the n bins as leaves of a binary

tree of depth log n1. Balls have unique labels (the processes’ initial ids), and they can

communicate by broadcasting messages.

The algorithm at a high level. Each ball starts at the root of the tree and descends

the tree along a random path. As balls descend, they communicate with each other to

determine if there are collisions. Collisions occur if many balls try to go to the same

leaf or, more generally, if many balls try to enter a subtree without enough capacity for

them. For example, if all n balls at the root tried to enter the left subtree, they would

collide since the subtree has capacity for only n/2 balls. When balls collide, the algorithm

assigns priorities to them based in part on their unique label; balls with higher priorities

keep descending, while the others stop. Because balls pick random paths, very few collide

at higher levels, so balls quickly descend the tree and soon after find an exclusive leaf for

them.

Local tree, candidate path, remaining capacity. The binary tree has log n levels.

To finish in O(log log n) rounds whp, balls must descend many levels with a single round of

communication. To do so, each ball bi keeps a local tree, containing the current position

of each ball, including itself. Initially, all balls in the local tree of bi are at the root

(Fig. 4.1(a)). In a single round, a ball bi picks a random candidate path in its local

tree: starting with its current position, bi successively chooses the left or right subtree to

follow for each level, until the leaf is reached. The choice between left and right subtree is

weighted by the remaining capacity of each subtree (within bi’s local tree). The remaining

capacity is the number of leafs of the subtree minus the number of balls in the subtree.

Say, if one subtree has no remaining capacity, bi chooses the other with probability 1. In

1To simplify exposition, we assume n is a power of two.

28

(a) All balls start at the root

(b) All balls choose the first leaf (c) Choices are well distributed

Figure 4.1: One phase of execution

this way, bi picks the entire candidate path to the leaf locally, without communication

with other balls and without regard to collisions. Ball bi does not yet go down its path

(this will happen later). Rather, bi broadcasts its path and waits for the paths of others;

this requires a round of communication.

Collisions, priority. Once ball bi has received the candidate paths of other balls, bi can

calculate new positions of these balls. Ideally, a ball just follows its candidate path. But

bi may find that candidate paths collide: more balls may try to enter a subtree than the

subtree’s remaining capacity. In this case, bi allows balls with higher priority to proceed,

while others must stop where the collision occurs (and the rest of their candidate path

is discarded). The priority is determined by an order <R where smaller balls under <R

have higher priority.

Definition 1 (Priority Order <R). Let ηi and ηj be the current nodes of balls bi and bj.

Then,

bi <R bj ⇐⇒ (depth(ηi) > depth(ηj)) ∨ ((depth(ηi) = depth(ηi)) ∧ (bi < bj)) .

29

Under <R, balls are ordered by their depth in the tree (balls downstream ordered

first), breaking ties by their unique labels. To implement these priorities, bi iterates over

all balls b̄ in <R order; for each b̄, bi lets b̄ follow its candidate path until b̄ reaches a full

subtree—one with no remaining capacity. If b̄ is lucky, it ends up at a leaf in bi’s local

tree; otherwise, it stops at a higher level. Irrespective of where b̄ stops, the algorithm

ensures that there is enough space below to accommodate it. Because balls lower in the

tree have a higher priority, this space cannot be displaced subsequently by balls higher in

the tree. Figure 4.1 shows the local tree before and after new positions are calculated.

Failures, synchronization, termination. A ball may crash while broadcasting its

candidate path; some balls may receive this broadcast, while others do not. The result is

that the local tree of balls may diverge. To resynchronize, after bi has updated its local

tree using the candidate path, bi broadcasts its current position, and waits to learn the

position of other balls; this requires a round of communication. Based on the received

information, if necessary bi corrects the positions of balls in its local tree; if bi does not

hear from a ball in its tree, bi removes it (the ball has crashed). If bi finds that every ball

is at a leaf, it terminates. Otherwise, it picks a new candidate path for itself and repeats

the entire procedure.

Detailed pseudocode. Algorithm 1 describes the data structures and functions and

Algorithm 2 gives the detailed pseudocode. Initially, each ball bi broadcasts its label,

receives labels from other balls, and inserts them at the root of its local tree (Line 1).

Then, bi repeatedly executes the main loop (Lines 2–29); each iteration is called a phase,

and each phase has two communication rounds. In round one, bi first chooses its candidate

path (Lines 5–10) one edge at a time, where the probability of each child is the ratio of

remaining slots in either subtree (Line 6). Then bi broadcasts its path (Line 11). After

receiving the paths of others, bi iterates over the balls b̄ in <R order, to compute their

new positions. Each ball b̄ moves down its path as long as the subtree has remaining

capacity (Lines 12–18). Balls that do not announce their paths have crashed and are

removed from the local tree (Lines 19–20). In the second round (Lines 22–28), bi sends

30

its position, receives positions of other balls, and updates its local tree, again removing

balls which fail to send their positions. If all balls in the local tree have reached leaves,

bi terminates. It is easy to change the algorithm to allow a ball to terminate as soon as

it reaches a leaf. Such modification requires additional checks that have been left out in

favor of clarity.

31

Algorithm 1 Balls-into-Leaves Algorithm

Data Structures and Functions

Data Structures

• binary tree with n leaf leaves;
• pathi: an ordered set of nodes;

Operations over the tree:

• Remove(bj) removes bj from the tree;
• CurrentNode(bj): current node of bj;
• UpdateNode(bj,η): removes bj from its current node and places it at node η;
• OrderedBalls() returns a set of all balls in the tree, ordered by <R (first by their

depth in the tree, then by ids);
• RemainingCapacity(η): number of leaves in the subtree rooted at node η minus

number of balls in that subtree;
• η.LeftChild(), η.RightChild(), η.isLeaf() are operation over nodes of the tree.

Additional Functions

• First(): first element in a set;
• Next(): iterator over a set (returns the next element in a set, advancing to the

next position);
• RandomCoin(p): returns heads with prob. p, or tails with prob. (1− p).

32

Algorithm 2 Balls-into-Leaves Algorithm (continued)

Code for Ball bi

1: Initialize: broadcast 〈bi〉; ∀bj received: insert bj at the root;
2: repeat . begin Phase φ← 1, 2, 3, . . .
3: η ← CurrentNode(bi); . begin Round 1 of Phase φ
4: pathi ← {η};
5: while not η.IsLeaf() do . choose path randomly

6: coin ← RandomCoin(RemainingCapacity(η.LeftChild())
RemainingCapacity(η)

);

7: if coin = heads then η ← η.LeftChild();
8: else η ← η.RightChild();
9: pathi ← pathi t {η};

10: end while
11: broadcast 〈bi,pathi〉; . exchange paths
12: for all bj ∈ OrderedBalls() do
13: if 〈bj,pathj〉 has been received then . move balls in the priority order
14: η ← pathj.First();
15: while remainingCapacity(η)> 0 do
16: η ← pathj.Next();
17: end while
18: UpdateNode(bj,η);
19: else
20: Remove(bj);

21: end for . begin Round 2 of Phase φ
22: broadcast 〈bi,CurrentNode(bi)〉; . synchronize
23: for all bj ∈ OrderedBalls() do
24: if 〈bj,ηj〉 has been received then
25: UpdateNode(bj ,ηj);
26: else
27: Remove(bj);

28: end for
29: until ∀bj ∈ OrderedBalls(): CurrentNode(bj).IsLeaf();

33

4.1.1 Tight Renaming using Balls-into-Leaves

We now prove that the Balls-into-Leaves algorithm solves tight renaming in O(log log n)

communication rounds whp. The process with original identifier idi runs Balls-into-Leaves

for the ball labeled idi. It then returns the (left-to-right) index of the leaf where the ball

terminates, and outputs this rank as its name.

Name uniqueness follows from the fact that no two correct balls can terminate on the

same leaf (Theorem 5). Validity follows because the number of leaves is n. Termination

and complexity follow from the complexity analysis of the Balls-into-Leaves algorithm.

4.1.2 Correctness

We now prove that in the Balls into Leaves algorithm correct balls terminate at distinct

leaves.

We first notice that, at the beginning of each phase, the positions of all correct balls

are synchronized across the views. Positions are considered at the beginning of a phase.

Proposition 1. For any phase φ ≥ 1, if balls bi and bj are correct, then the tree position

of bi at ball bi is the same as the position of bi at ball bj.

Proof We proceed by induction on the phase index. At the beginning of phase 1, this

holds since all n correct balls have broadcasted their labels and have been placed at the

root in local views of all correct balls (Line 1).

For the induction step, assume by contradiction that the claim holds in φ ≥ 1, but

not in φ + 1. This is only possible if bj has not sent its position to bi in φ (Line 22 of

Algorithm 2). However, since bj is correct, bj must have executed Line 22 in phase φ.

Contradiction.

This implies the following.

Proposition 2. For any phase φ ≥ 1 and any local view, the number of correct balls in

each subtree is less or equal to the total number of balls in that subtree.

34

The priority order <R ensures that the descent of correct balls is simulated consistently

across views.

Proposition 3. For any phase φ ≥ 1, if bi and bj are correct, then either bi <R bj in

every view, or bi >R bj in every view.

Proof By Proposition 1, the position of correct balls is synchronized across the views.

Assume without loss of generality that bi < bj. Thus, by definition of the order <R,

bi <R bj in each view.

Lemma 4. For any phase φ ≥ 1, in any local view, the number of correct balls in each

subtree is less or equal to the number of leaves in that subtree.

Proof We prove the claim by induction over the phase index φ. For φ = 1, the claim

holds since all n balls are at the root of the tree.

Assume the claim is true for φ ≥ 1. Since each subtree contains at all least correct

balls (Proposition 2), and (Proposition 3), balls simulate the descent of correct balls in a

consistent order (if bj <R bk, bj is moved before bk), when bi simulates the descent of each

ball locally, every ball (including bi) stops in a subtree where it still fits among at least

all correct balls.

We now prove that the algorithm ensures that the balls terminate at distinct leaves.

Theorem 5. In the Balls-into-Leaves algorithm, correct balls terminate at distinct leaves.

Proof From Proposition 1 and Lemma 4, after correct ball bi reaches a leaf and announces

its position, all correct balls have bj at its leaf in their local views and thus never propose a

path to that leaf. By algorithmic construction, balls do not move once they have reached

the bottom.

Finite Deterministic Termination

In the following, we show that the algorithm terminates always in a finite number of

rounds.

35

Lemma 6. If no failures occur in some phase φ, at least one ball at an inner node reaches

a leaf in its local view of the tree.

Proof Let bj be the highest priority correct ball among the balls at inner nodes (not

leaves) at the beginning of φ. By algorithmic construction, bj chooses in Round 1 a path

to an empty leaf in its local view of the tree. Since by assumption no crashes occur, balls

receive identical sets of paths and move balls down in the same order. By algorithmic

construction, balls at the leaves are not moved. So, bj is the first to move down in its own

view and thus it will reach the leaf chosen by its path.

Since by Lemma 6 processes require at most n fault-free phases to reach the bottom,

and there are at most t < n faults in total, the algorithm terminates in O(n) phases

deterministically.

4.2 Complexity Analysis

In this section, we prove that Balls-into-Leaves terminates in O(log log n) rounds with

high probability.

For clarity, we first consider a failure-free execution. We then show that faults do

not slow down the progress of the protocol. (Intuitively, collisions are less likely as the

number of surviving balls decreases).

Without crashes, local views of the tree are always identical, and we therefore focus

on one local view. The analysis consists of two parts. In the first part, we show that,

after O(log log n) phases, the number of balls at each node decreases to O(log2 n). In the

second part, we consider an arbitrary path from the root to the parent of a leaf. We use

the fact that there are O(log2 n) balls at each node, and show that the path becomes

completely empty during the next O(log log n) rounds, with high probability. By a union

bound over all such paths, we obtain that the tree is empty whp.

We first prove useful invariant of Balls-into-Leaves algorithm that we call Path Isola-

tion Property. Informally stated, this says that no new balls appear on any path from the

36

root.

Lemma 7 (Path Isolation Property). For any phase φ ≥ 1 and path π from the root, the

set of balls on π in φ is a superset of balls on π in φ+ 1.

Proof By construction, balls can only move down the tree. Fix some node η on path

π. The only way new ball bi at some node µ in phase φ reaches η in phase φ + 1 is by

constructing in φ a path from µ that contains η. Thus, by construction of a binary tree,

µ is on π.

We use some notation and facts from theory of probability, shown in Figure 4.2.

4.2.1 Bounding the Number of Balls at a Node

We now give a lower bound on how fast the number of balls at each node decreases.

Consider some node η, and let pM and (1−p)M be the remaining capacities of its left

and right subtrees, respectively, for some integer M , and 0 ≤ p ≤ 1 in phase φ. By

construction, at most M balls reach η. The balls that get stuck at η in phase φ+1 are

those which had η on their paths in φ, but did not fit in a subtree below η. By Lemma 4,

these balls have enough space in the sibling subtree of η. We use the notation balls(η, φ)

to denote the number of balls at node η in phase φ. We denote by bmax(φ) the most

populated node in phase φ.

Lemma 8. For some node η, let pM and (1 − p)M denote remaining capacities of its

left and right subtrees respectively, in some phase φ. If M ′ ≤M balls choose between the

left and right subtrees of η in φ, then, for any integer x > 0, Pr(balls(η, φ + 1) > x) ≤

Pr(|M
2
− B(M, 1

2
)| > x).

Proof Choosing between the left and right subtrees of η can be seen as choosing between

two bins with capacities pM and (1− p)M . Each of the M ′ ≤ M balls chooses indepen-

dently between the two bins with probabilities p and (1−p) respectively. If there is space

in the chosen bin, then the ball is accepted; if the bin is full, then the ball is rejected.

37

B(n, p) is the binomial distribution with parameters n and p. By abuse of

notation, B(n, p) also denotes a random variable that follows the binomial dis-

tribution.

Fact 1. If X∼B(M, p), Y∼B(M ′, p), such that E[X] and E[Y] are integers, and

M ≤M ′, then

Pr(|E[X]−X| > x) ≤ Pr(|E[Y]− Y | > x).

Fact 2. If 0 ≤ p ≤ 1, X∼B(M, p), Y∼B(M, 1
2
), such that E[X] and E[Y] are

integers, then

Pr(|E[X]−X| > x) ≤ Pr(|E[Y]− Y)| > x).

Intuition. Intuitively, the probability density function of B(n, p) is least con-

centrated around the mean for p = 1
2

(recall that the standard deviation of

B(n, p) is
√
np(1− p) ≤

√
n/4) .

Fact 3 (Chernoff Bound). If X∼B(m, p), then Pr(|E[X]−X| > x) < e−
x2

2mp(1−p) .

Figure 4.2: Notation and facts from probability theory used in the proofs.

Since M ′ ≤M , there are three cases: either both bins are filled (perfect split), no bin has

been filled, or exactly one bin has been filled, and there is some overflow. Note that, in

the first two cases, η is empty in phase φ+ 1.

If one bin has filled, then, w.l.o.g., assume it is the left bin. Let Y be a random variable

that counts the number of balls that have chosen left. Clearly, Y ∼ B(M ′, p). Then, the

number of rejected balls is Y −Mp. Since Mp ≥M ′p = E[Y], Y −Mp ≤ Y − E[Y].

From Fact 2, we obtain that Pr(|Y − E[Y]| > x) ≤ Pr(|M
2
− B(M, 1

2
)| > x).

Let us now consider what happens after the first phase.

Lemma 9. Let i be the depth of node η. Then, for some constant c > 0, we have that

Pr
(
balls(η, 2) > c(n

2i
log n)

1
2

)
< 1

nc
.

Proof Initially n balls start at the root.

The initial capacity of the subtree rooted at η is n
2i

. Then, at most n
2i

balls reach η.

38

Define Yη ∼ B(n
2i
, 1

2
).

Applying Lemma 8 and the Chernoff bound (Fact 3),

Pr(balls(η, 2) > x) < Pr
(
|E[Yη]− Yη| > c(

n

2i
log n)

1
2

)
<

1

nc
.

The analysis of the next phases is more involved, since we do not know the exact

remaining capacities of each subtree. Therefore, we consider the worst case scenario by

assuming that any node η has enough capacity to accommodate all balls on the path from

the root to η.

Lemma 10. For any φ > 1, node η, and some const. c > 0,

Pr
(
balls(η, φ+ 1) > c(bmax(φ))

1
2 log n

)
<

1

nc
.

Proof By the path isolation property (Lemma 7), the only balls that may attempt to

choose between subtrees of η are those on the path from the root to η. Let i be the

depth of η. The total number of balls on path π is at most i × bmax(φ). By Fact 1, the

probability to have more rejected balls is the highest if we inflate the remaining capacity

of the subtrees of η to i× bmax(φ).

Thus, by Lemma 8, the probability that at least x balls get stuck at η can be bounded

as follows,

Pr(balls(η, φ+ 1) > x) ≤ Pr

(∣∣∣∣i× bmax(φ)

2
− B(i× bmax(φ),

1

2
)

∣∣∣∣ > c

)
.

By the Chernoff Bound (Fact 3),

Pr

(∣∣∣∣i× bmax(φ)

2
− B(i× bmax(φ),

1

2
)

∣∣∣∣ > c(i× bmax(φ) log n)
1
2

)
<

1

nc
.

Since i ≤ log n, the claim follows.

39

Lemma 11. For some constant c′ > 0, after O(log log n) phases, Pr(balls(η, φ) >

O(1) log2 n) < 1
nc′

.

Proof Fix some constant c > 0. By Lemma 9, Pr
(
balls(η, 2) > c(n log n)

1
2

)
< 1

nc
.

By Lemma 10, Pr
(
balls(η, φ+ 1) > c(bmax(φ))

1
2 log n

)
< 1

nc
. Since n

1
2

log logn

= O(1), we

pick some constant c2 such that n
1
2

c2 log logn

= 1.

Let f(x) = x
1
2 c log n. Taking x = c(n log n)

1
2 , f c2 log logn(x) = c2 log2 n.

Applying Lemma 9, and then Lemma 10 iteratively for c2 log log n phases, we obtain

that

Pr
(
bmax(η, c2 log log n) > c2 log2 n

)
<
c2 log log c

nc
.

Therefore, there exists some small const. ε < 1, such that c2 log logn
nc

< 1
n(c−ε) , and the

claim follows.

4.2.2 Bounding the Number of Balls on a Path

Lemma 11 shows that, after O(log log n) phases, the number of balls on each path is at

most O(log3 n) whp. In the following, we complete the argument by showing that all

inner nodes of the tree are empty after another O(log log n) phases.

To show this, instead of looking at nodes, we focus on paths from the root to a parent

of a leaf (there are n/2 such paths). By the path isolation property (Lemma 7), new balls

never appear on a path. (In other words, new balls arriving at a node can only come

from nodes higher on the same path.) We show that at least a constant fraction of balls

escapes from each path once every two phases. Intuitively, this analysis captures how fast

balls disperse within the tree.

Formally, let us fix a phase φ and a path π from the root to a parent of a leaf.

Let η1, η2, . . . , ηlogn be the nodes on π, ordered by depth. A gateway node (or simply a

gateway) is a child of ηi that is not on π. For uniformity, we combine both children of the

40

(a) entire tree (b) 5 balls on the rightmost path and 5 empty
bins reachable from the path

Figure 4.3: Closer look at a path in a possible configuration

last node on π (tree leaves) into one gateway meta-child 2. For instance, in the sample

configuration from Figure 4.3a, consider the rightmost path (highlighted in Figure 4.3b);

all the left children of nodes on π are gateways. By construction, the sum of remaining

capacities of all gateway subtrees (corresponding to empty leaves reachable from π) is

equal to the total number of balls on π. In phase φ, most balls on the path propose paths

going through these gateways.

We now show that, if ball bi is among the highest priority balls that have chosen the

same gateway, then bi will escape from path π either in phase φ or φ+ 1.

Lemma 12. Consider node ηi on π and let ci be the remaining capacity of its gateway

subtree. If m balls choose that subtree in φ, then at least min(m, ci) balls escape π in φ

and φ+ 1.

Proof Let ball bk be among the min(m, ci) highest priority balls that have chosen the

gateway at ηi. Then, bk is in one of the following scenarios.

Case 1: bk attempts to move down towards ηi, and stops at some node ηj above ηi. This

happens because the subtree down on π has exceeded its capacity. In this case, in

φ+ 1, bk tries the gateway subtree at ηj and, by Lemma 4, that subtree has enough

space to accommodate bk.

Case 2: bk reaches ηi. By assumption, bk is among min(m, ci) highest priority balls that

2Obviously, a collision in a subtree with 2 leaves is solved within one phase.

41

have chosen the same gateway. Thus, bk escapes π into the gateway subtree of ηi.
3

If bk is in Case 1, it escapes path π in phase φ+ 1. If bk is in Case 2, it escapes π in phase

φ. There are at least min(m, ci) such balls, and the claim follows.

We now bound the probabilities with which balls try each gateway on π.

Lemma 13. Let Mi =
∑

1≤j≤i balls(ηj, φ) be the number of balls on the subpath of π from

the root to ηi. If ci is the remaining capacity of the gateway subtree of ηi, then Mi balls

try this gateway in φ with probability at least ci/Mi.

Proof Recall from Lines 5–9 of Algorithm 2 that balls construct paths trying between

the children of each node with probabilities indexed by their remaining capacities.

By construction, each ball competes on a subtree with every other ball that can reach

the same subtree. Also by construction, the remaining capacity of all subtrees reachable

from some path from the root is equal to the number of balls on this path. Note that the

total remaining capacity of the subpath from the root to ηi (i.e., all gateway subtrees and

the non-gateway subtree at ηi) is Mi. Thus, every ball tries the gateway at ηi with prob.

at least ci/Mi.

In the following, we show that at least a constant fraction of balls escape π in every two

phases.

Lemma 14. Let M be the total number of balls on π in phase φ. For some const. c > 1,

less than M
c

balls have escaped π after φ+ 1 with prob. < e
−M
c .

Proof By Lemma 13, Mi balls try the gateway at ηi with prob. at least ci
Mi

.

By Lemma 12, for any γ > 1, ci
γ
≤ ci highest priority balls that choose the gateway

at ηi, escape π in φ or φ + 1. Define as success the event that some ball chooses the

gateway at ηi. By Lemma 13, such an event occurs with prob. at least ci/Mi among Mi

tries. Thus, the number of successes follows B(Mi,
ci
Mi

). From the Chernoff Bound (Fact 3),

3In Case 2, ball bk can stop somewhere else deeper in the tree, but this no longer affects the
analysis of π.

42

Pr

(
B(Mi,

ci
Mi

) < ci −
ci
γ

)
< e−

Mi
γ .

Recall that
∑

1≤i≤logn ci = M . Considering all ηi, 1 ≤ i ≤ log n on π, the sum of successes

is less than M − M
γ

with prob. < e−
M
γ . Since γ is arbitrary, the claim follows.

From the above lemma, it follows that all M balls on π escape the path within O(logM)

phases, with probability at least 1− (1/e)Θ(M).

Lemma 15. Consider a path π containing M balls. After O(logM) phases, the probability

that π remains non-empty is at most < e−
M
c′ , for some constant c′ > 0.

Proof Fix c to be a constant. By Lemma 14, at least M
c

balls escape from π after phase

φ+1, with probability at least 1−e−Mc . Starting with M balls, and iterating in Lemma 14

over the remaining balls for 2c logM phases, we obtain that the probability that π is not

empty after 2c logM phases is at most 2c logMe−
M
c′ < e−

M
(c−ε) for some small constant

ε < 1.

Finally, we combine the two parts of the proof in the following theorem.

Theorem 16. Balls-into-Leaves terminates in O(log log n) rounds with probability at least(
1− 1

nc

)
, where c > 0 is a constant.

Proof From Lemma 11, after O(log log n) phases, the probability there is a path with

more than O(log3 n) balls, is less than 1
nc′

, for some const. c′ > 0. Taking M = O(log3 n)

balls on path π from the root to a parent of some leaf, by Lemma 15 and a union bound

over all such n/2 paths, the probability that some path is not empty is less than 1
nc′

, for

some constant c′ > 0. Putting together the above results, we get that the probability

that the tree still has a populated inner node is at most 1
nc′+c′′

where c′, c′′ are constants.

By construction, the algorithm terminates when all balls have reached leaves. Choosing

some constant c > c′+c′′, the algorithm terminates in O(log log n) phases with probability

> 1− 1
nc

.

Since each phase consists of 2 rounds, the claim follows.

43

Message Complexity and Bit Complexity

Since in each round, processes employ all-to-all communication, the total message com-

plexity is O(n2 log log n) messages whp.

In each round processes exchange their ids and up to log n values in range {1, . . . , 2n}.

There are 2n nodes in the tree, thus each node can be encoded by a value in range

{1, . . . , 2n}. Thus, the message size is bounded by O (log n logNmax) bits, where Nmax is

the largest id.

4.2.3 The Impact of Crashes on Round Complexity

To show that crashes do not slow down termination, we continue the analysis of some

path π that starts at the root. By construction, at the end of each phase, in every local

view, the position of each surviving ball bi is updated according to bi’s local view. We

thus focus on the progress of bi in its local view.

Iterating on each phase φ which contains at least one failure, we compare the local

view V of ball bi in φ with its hypothetical view V ′ in an execution with a failure free φ.

First, note that views V and V ′ are equivalent if bi has not seen a failure. Now, assume

bi has seen a failure in V .

We show that bi is at least as likely to escape from π in V , as it is in V ′. First, we

note that if bi has seen a failure in some disjoint subtree, or the crashed ball had lower

priority than bi, then, by construction, such a failure does not affect the progress of bi.

Consider now a failure which occurs in a subtree of bi. Such a failure implies that, in V ,

the total capacity of all gateways on π is larger than the number of balls on π. Thus, bi

is at most as likely to be among the first highest priority balls that have chosen the same

gateway in φ. Since the choice of bi and π is arbitrary, the argument applies to every ball

in every view.

44

4.2.4 Experimental Evaluation

We complement with simulations the analytical analysis of the round complexity of Balls-

into-Leaves. The results are depicted in Table 4.1 (the number of rounds was obtained

by averaging over 200 failure-free runs of the algorithm).

Number of balls Number of rounds

25 2.76

210 4.00

215 4.92

220 5.24

225 6.00

Table 4.1: Experimental evaluation of Balls-into-Leaves

Our simulations confirm that the running time grows very slowly with n: for example,

for 225 balls the algorithm takes only 6 rounds to terminate. These results are consistent

with our O(log log n) bound. Moreover, the simulations show that the hidden constants

in our asymptotic analysis are indeed are small.

4.3 Early Terminating Extension

We now extend the algorithm to terminate faster in executions with fewer crashes. With-

out failures, balls can use their unique labels to pick distinct leaves in one round: balls

exchange their labels, and each ball chooses a leaf indexed by the rank of its label in the

ordered set of all labels. But collisions may occur due to failures. A single crash can cause

up to n/2 collisions: the ball with the lowest label blowest sends to every second ball (by

label order) and then crashes, so that all other balls collide in pairs.

On the other hand, if balls use this scheme to deterministically pick paths in the Balls-

into-Leaves algorithm, it is easy to see that the paths are well distributed; in the first

phase, the tree collapses into small subtrees of depth 2 in every local tree. But the balls

45

cannot use deterministic paths in every phase, otherwise the algorithm’s round complexity

would be no better than Ω(log n), due to the lower bound of [CHT99].

We combine the deterministic and randomized approaches, by first deterministically

collapsing the tree into disjoint subtrees of depth O(log f) (where f is a number of failures

that have occurred in an execution), and then resorting to randomization. The modified

Balls-into-Leaves algorithm works as follows. In Round 1 of phase 1, replace Lines 6–11 in

Algorithm 2 with the following: ball bi constructs path deterministically towards the leaf

ranked by bi in OrderedBalls(); the rest of phase 1 is executed as in the original algorithm.

In the remaining phases, bi executes the code of the original algorithm.

It is easy to see that, in a failure-free execution, the modified algorithm terminates in

one phase.

Theorem 17. In a failure-free execution, the modified Balls-into-Leaves algorithm ter-

minates in O(1) rounds.

In an execution with f failures, we show that the algorithm terminates in O(log log f)

rounds whp.

Theorem 18. The modified Balls-into-Leaves algorithm terminates in O(log log f) rounds

with prob. at least
(
1− 1

nc

)
, where c > 0 is a constant.

Proof Let i be rank of ball bi among the surviving balls. Assume bi has not seen k ≤ f

failures. The rank in its local view has shifted right by at most k with regard to other

views. On the other hand, all surviving balls have bi in their local views. Thus, at most

k − 1 other survivors see their ranks in the interval i..(i+ k).

Consider binary representation of leaf ranks. We note that each subtree that contains

some leaf is indexed by the binary prefix of the leaf rank. From the previous discussion,

the surviving balls collide on at most dlog fe least significant bits. Thus, in every local

view, collisions occur at the depth at least log n− dlog fe in phase 1.

In the subsequent phases, balls in disjoint subtrees propose non-overlapping paths.

Therefore, the rest of the execution is equivalent to running at most n
2logn−dlog fe

≤ n

46

parallel instances of Balls into Leaves with at most f balls each. From Theorem 16, and

for a sufficiently large const. c > 0, the claim follows.

47

48

Chapter 5

Renaming with Byzantine Faults

In this chapter, we address renaming in the context of more challenging Byzantine faults

and assume that up to t < n processes may be Byzantine. We first consider the weaker

non-rushing adversary that sends messages at the beginning of each round without having

access to random choices of correct processes. In this setting, due to a possibly high

number of corrupted processes, it is no longer possible to resort to techiques that require

close coordination among processes (as in the previous chapter). We propose an algorithm

based on the following simple idea: each process randomly chooses a new name from the

range {1, . . . , n} and applies tie-breaking rules to choose a winner in the case of a collision.

Each process repeats the procedure until it wins a name. We show that this algorithm

terminates in O(log n) rounds whp.

We next consider a stronger rushing adversary that sees the random choices of correct

processes at the beginning of each round. We show that our first algorithm can toler-

ate t = 1 Byzantine failure but the algorithm fails if t > 1. This is because, in each

round, Byzantine processes can first observe the choice of a correct process and mimic

it, causing infinitely many collisions. To tackle this problem, we use a cryptographic

commitment primitive to force processes to commit to a choice without revealing the

value; this technique prevents Byzantine processes from constantly mimicking the choices

of correct processes. We extend the previous algorithm with cryptographic commitment;

49

the extended algorithm works for any t < n. To use cryptographic commitment, we

must assume a polynomially bounded adversary, so that the adversary cannot break the

cryptographic primitive.

5.1 Renaming with the Non-Rushing Adversary

In this section, we consider the non-rushing adversary and present an algorithm (Algo-

rithm 3) that solves renaming in O(log n) rounds. The algorithm solves tight renaming,

where M = n.

The algorithm is based on the following idea. A process chooses uniformly at random a

name from {1, . . . , n} and exchanges its choice with all other processes. If no other process

picks the same name, the process is done and informs all other processes. Otherwise, the

process excludes names already chosen by other processes and then restarts. Since the

adversary cannot inspect the random choices of the correct processes before issuing its

messages, each process will eventually pick a unique name. All Byzantine processes can

do is to repeatedly claim t distinct available names to increase the chance of collisions. For

example, in the presence of n−1 Byzantine processes, the correct process has a chance of

1/n of not colliding with the choices of the Byzantine processes. Hence, without additional

rules, the expected decision time for a correct process could be linear in the size of the

network.

To speed up the decision time, we use a tie breaking rule that allows processes to

decide even in the case of collisions. Tie breaking is done by appointing in each phase

a set of processes whose choices, in case of a collision, have priority over the choice of

the given process. These sets are calculated in each phase as follows. In odd phases, the

set consists of the undecided neighbors with ids lower than myId (the id of the current

process); in even phases, the set consists of undecided neighbors with ids higher than

myId. Roughly speaking, with this rule, in a given phase, a correct process competes

with some fraction of undecided processes, and, in the following phase, competes with the

50

Algorithm 3 Renaming with t < n

01 Initialization:
02 undecided := {1, . . . , n}; // set of links to undecided neighbors
03 freenames := {1, . . . , n}; // set of available names
04 foreach i ∈ {1, . . . , n} do
05 ids[i] :=⊥; //array that stores old ids of all neighbors

06 In Phase 1 do
// Phase 1 has a single round

07 send 〈ID,myId〉 to all links;
08 foreach i ∈ {1, . . . , n} do
09 if 〈ID, id〉 has been received from link i then
10 ids[i] := id;
11 proceed to Phase 2;

12 In Phase φ > 1 do
// Round 1
// choose priority set for the current phase

13 if φ is odd then
14 plinks := {i ∈ undecided : ids[i] < myId};
15 else
16 plinks := {i ∈ undecided : ids[i] > myId};
17 myName := choose an element in freenames uniformly at random;
18 send 〈proposal,myName〉 to every link i such that i ∈ undecided \ plinks;

// check for collisions
19 if ∃i ∈ plinks : 〈proposal, namei〉 has been received from link i

such that myName = namei then
20 winner := false;
21 else
22 winner := true;

//Round 2
23 if winner = true then
24 send 〈decided,myName〉 to every link i such that i ∈ undecided;
25 return myName;
26 else
27 foreach i ∈ undecided do
28 if 〈decided, namei〉 has been received from link i then
29 undecided := undecided \ {i};
30 freenames := freenames \ {namei};
31 proceed to Phase φ+ 1;

51

remaining fraction of undecided processes. As we will show, this tie breaking rule reduces

the decision time to a factor of log n. Hence, the algorithm terminates in O(log n) rounds

w.h.p (i.e., with probability at least
(
1− 1

nc

)
, where c > 0 is a constant).

We now describe the algorithm in detail. Each process pi stores the following data

structures:

• idsi: an array that stores ids (not names) that pi knows about, indexed by the link

to which they are connected, i.e. idsi[j] stores the id of the neighbor connected to

link j of pi. Initially, idsi[j] = ⊥ for every j.

• freenamesi: the set of names that pi believes to be free (not selected by its neigh-

bors). Initially, freenamesi = {1, . . . , n} (all possible names).

• undecidedi: the set of links to neighbors that pi believes to not have decided yet.

Initially, undecidedi = {1, . . . , n} (all links).

The purpose of the first phase of the algorithm is for processes to exchange their initial

ids. Each process sends its own id to all links and stores the ids it receives from other

links (Lines 07–10). The ids received in phase 1 are used in all subsequent phases.

The following phases are tournament phases, where processes compete for available

names. There are two ways of winning a tournament: if there are no collisions on the name

chosen by a process in the current phase (i.e., the process was the only one to make that

choice) or, when collisions occur, by winning a tie breaking rule, which differs according to

the phase number. The tie breaking rule updates plinks in each phase as follows. In odd

phases, plinks includes undecided neighbors with ids lower than myId ; in even phases,

plinks includes undecided neighbors with ids higher than myId (Lines 13–16). In what

follows, recall that linkj(pi) denotes the number at process pj of the bidirectional link to

pi (recall from Chapter 3). The relevant property of the plinks assignment is that, for

any phase φ, when considering any two correct processes pi and pj, if linki(pj) ∈ plinksi,

then linkj(pi) /∈ plinksj. Furthermore, if linki(pj) ∈ plinksi in φ, and pi and pj do not

decide in φ, then linkj(pi) ∈ plinksj in φ+ 1.

52

Each tournament phase has two rounds. In the first round, a correct process selects

plinks, picks randomly a name from freenames, and sends the name to the undecided

neighbors that do not belong to plinks (Lines 17–18). There is no need to send the name

to the neighbors in plinks because if a collision occurs in this phase, they will ignore the

choice of the given process. A process wins the tournament if it has not received the same

name from any process in plinks. At the end of the first round, processes check if they

have won the tournament (Lines 19–22).

In the second round, if a correct process has won the tournament, it sends a

〈decided,myName〉 message to all undecided neighbors and terminates, returning vari-

able myName as its new name (Lines 23–25). Otherwise, if the process did not win,

it collects 〈decided, namei〉 messages from its neighbors, removes these neighbors from

undecided (doing so excludes these neighbors from all succeeding tournaments), and re-

moves the names elected by the decided processes from freenames (Lines 26–30).

Each undecided process keeps executing consecutive tournament phases until it wins

a name in one of the tournaments.

Analysis

In the following we prove the correctness of Algorithm 3. Whenever needed to distinguish

between local variables at distinct processes, we use subscript i to indicate the local

variables of process pi. Superscript φ indicates the value of a variable in Round 1 of phase

φ.

Lemma 19. For any phase φ > 0 and any correct processes pi and pj, if pi has not

decided a new name before φ, then linkj(pi) ∈ undecidedj in Round 1 of φ.

Proof Assume there exist correct undecided processes pi and pj such that linkj(pi) /∈

undecidedj in Round 1 of φ. By the algorithm, the links to all neighbors are initially in

undecidedj (Line 02) and are excluded from the set only when a 〈decided, ·〉 message is

received from the corresponding neighbor (Lines 28–29). Thus, pj must have previously

53

received 〈decided, vi〉 from pi. This, in turn, means that pi sent 〈decided, vi〉 before

φ (Lines 24–25). But by assumption pi is undecided in Round 1 of φ—a contradiction.

The following lemma states that each correct process considers available at least as

many names as there are processes participating in each tournament phase.

Lemma 20. For every correct process pi, in Round 1 of any phase φ ≥ 2,

|undecidedi| ≤ |freenamesi| .

Proof The proof follows by induction on the phase number.

Base case. By the algorithm, pi starts with |undecidedi| = |freenamesi| = n (Lines

02–03). Thus, in Round 1 of phase φ = 2, |undecidedi| = |freenamesi|.

Induction step. Assume |undecidedi| ≤ |freenamesi| in Round 1 of phase φ. In

Round 2 of the same phase, pi only accepts 〈decided, .〉 messages from the links in

undecidedi (Line 27-28). For each link j ∈ undecidedi, if 〈decided, vj〉 message has

been received from j in the current phase, pi removes j from undecidedi; and, if vj ∈

freenamesi, pi also removes vj from freenamesi (Lines 28–30). As a result, in Round 1

of phase φ+ 1, |undecidedi| ≤ |freenamesi|.

The following lemma establishes the uniqueness property of the algorithm based on

two following observations: in case of a collision, at most one correct process (with the

smallest id in odd phases and with the largest id in even phases) wins the tie breaking;

the winning process always announces its decision before returning.

Lemma 21. No two correct processes decide on the same name in Algorithm 3.

Proof Assume, by contradiction, that there are two correct processes pi and pj that

decide on the same name v in phases φi and φj respectively. We will distinguish two

possible scenarios.

54

Case 1. φi 6= φj. Without loss of generality, assume φi < φj. By the algorithm, if pi

decided on v in φi, then pi sent 〈decided, v〉 in Round 2 of φi to all undecided neighbors

before returning the new name (Lines 24–25). By Lemma 19, linkj(pi) ∈ undecidedj and

linki(pj) ∈ undecidedi in Round 1 of φi. Therefore, pi sent v to pj, and pj excluded v

from freenamesj in Round 2 of φi (Lines 27–30). On the other hand, if pj decided on v in

phase φj, then pj must have chosen v from freenamesj in φj (Line 17), which contradicts

the previous statement.

Case 2. φi = φj = φ. Without loss of generality, assume that idi < idj and φ is

odd (for even values of φ the argument is symmetric). If both pi and pj decided on v in

Round 2 of φ, then pi and pj were both undecided in Round 1 of φ.

Also, by Lemma 19, linkj(pi) ∈ undecidedj and linki(pj) ∈ undecidedi in Round 1 of

φ. Processes pi and pj randomly picked v from freenames and sent v to their neighbors

in undecided \ plinks (Lines 17–18). By assumption, idi < idj; therefore, linkj(pi) ∈

undecidedj\plinksj. Hence, pi sent v to pj in Round 2 (Line 18). Since linkj(pi) ∈ plinksj,

pj received v from pi (Lines 19–20). But by assumption, pj decided on v in Round 2, which

is possible only if pj had not received v from any link in plinksj in Round 1 (Lines 19–

22)—a contradiction.

Round Complexity

In the following we calculate the round complexity of the algorithm. Recall that we

consider the non-rushing adversary, whose behavior is independent from the random

choices of the correct processes in the current round.

We now prove that each correct process decides whp after O(log n) rounds. To do so,

we consider an arbitrary correct process p0 and give an upper bound on the probability

that p0 has not decided after O(log n) rounds.

Intuitively, the adversary can decrease the probability that p0 decides in some phase

by making certain Byzantine processes (those not in plinks0) announce their decision

in the previous phase. However, once a process decides, it is excluded from subsequent

55

tournaments, and so the adversary can do this only a limited number of times. We will

show that the adversary has to make a large fraction of processes to decide in order to

decrease by a constant factor the probability that p0 does not decide. Thus, in each phase,

the adversary has to carefully balance the number of processes that it causes to decide

and the probability that p0 does not decide. We will show that, whatever the strategy of

the adversary, after O(log n) rounds, p0 decides whp.

Lemma 22. Under the non-rushing adversary, the probability that a correct process p0

decides by round 12 log n+ 3 is at least 1− 1
n2 .

Proof In the analysis, we assume without loss of generality that the adversary controls

all processes other than p0; if the probability lower bound holds in this case, then it also

holds if the adversary can control a smaller number of processes. We say that a link `

decides at an epoch e (or at a round r) if p0 receives a 〈decided, ·〉 message from link ` in

epoch e (or round r). Intuitively, we are considering a p0-centric view of the system since

p0 is the only correct process. We say that link ` is undecided at epoch e (or round r) if

` has not decided at epoch e (round r) or earlier.

Recall that the algorithm is organized in phases of two rounds each. We will further

group two consecutive phases into an epoch e ≥ 1: epoch e has phases 2e+ 1 and 2e+ 2.

For convenience we also define epoch 0 as having just a single phase, phase 2.

In each epoch, we pick one phase to scrutinize more carefully; this is called the chosen

phase of the epoch. For the other phase, we will use a trivial upper bound of 1 on the

probability of non-termination. The chosen phase of epoch e is determined as follows. At

the beginning of last round before epoch e,1 consider the sets pl1 = {i ∈ undecided0 :

ids0[i] < myId0}; and pl2 = {i ∈ undecided0 : ids0[i] > myId0}, where undecided0,

ids0[i], and myId0 are variables of process p0. If |pl1| < |pl2| then we pick the first phase

of epoch e as the chosen phase, otherwise we pick the second phase. Intuitively, we want

the phase with fewest priority links, where pl1 is the set of priority links of the first phase

and pl2 is the set of priority links of the second phase (see Lines 13–16 of Algorithm

1The last round before epoch e is when the adversary can make links decide before starting epoch e.

56

3). We let ple and nple be the priority links and non-priority links, respectively, of the

chosen phase evaluated at the beginning of last round before epoch e. That is, ple = pl1,

nple = pl2 if the chosen phase is the first phase, and ple = pl2, nple = pl1 if the chosen

phase is the second phase.

For each epoch e, we define the following variables:

• ne= the number of undecided links at the beginning of the last round before epoch

e;

• γe = |ple| /ne;

• αe = |links in nple that decide before the chosen phase of e|
ne

;

• ᾱe = 1− αe;

• ce = number of links in ple that decide before the chosen phase of epoch e.

We now bound the probability Pe that p0 does not decide in the chosen phase of epoch

e, as follows:

Pe ≤
neγe − ce
neᾱe − ce

≤ neγe
neᾱe

≤ 1

2ᾱe
(5.1)

Here, the first inequality holds because the best strategy for the adversary to delay termi-

nation is to claim as many free names as it can (at most neγe− ce, the number of priority

links) over the total number of free names (at least neᾱe − ce, the number of undecided

links). The second inequality holds because (a− c)/(b− c) < a/b for any positive integers

a, b, c such that a < b and c < b. The third inequality holds because γe ≤ 1/2 by definition

of γe and of the chosen phase.

We can trivially upper bound by 1 the probability that p0 does not decide in the

non-chosen phase of epoch e. Thus, from (5.1), the probability that p0 does not decide in

epoch e is upper bounded by 1
2ᾱe

as well. Therefore, the probability Pe that p0 does not

57

decide in any of epochs 1, . . . , e is upper bounded by

Pe ≤ P1 × · · · × Pe ≤
1

2eᾱ1 . . . ᾱe
(5.2)

Note that ne+1 ≤ neᾱe because at least αene links decide before the chosen phase of

epoch e+ 1. Therefore,

ne+1 ≤ n1ᾱ1ᾱ2 . . . ᾱe (5.3)

We do not know the values of ᾱi because they depend on the strategy of the adversary.

However, from (5.2) and (5.3), we can upper bound the product Pene+1:

Pene+1 ≤ n1/2
e ≤ n/2e (5.4)

For e = 3 log n, we obtain Pene+1 ≤ 1/n2. If p0 has not decided by the end of epoch e

then 1 ≤ ne+1. Therefore, Pe ≤ Pene+1, and so Pe ≤ 1/n2. Note that each epoch has two

phases, and each phase has two rounds. Moreover, there are three initial rounds before

epoch 1. Thus, there are 3 + 12 log n rounds until the end of epoch e. Therefore, the

probability that process p0 has not decided by round 3 + 12 log n is upper bounded by

1/n2.

We now use Lemma 22 to calculate the overall round complexity of Algorithm 3.

Theorem 23. Under the non-rushing adversary, all correct processes decide on names in

O(log n) communication rounds whp.

Proof By Lemma 22, the probability that a correct process decides in at most 12 log n+3

rounds is at least 1 − 1
n2 . By taking a union bound, the probability that there exists at

least one correct process that has not decided after 12 log n+ 3 rounds is at most 1
n
.

We now have all ingredients necessary to prove the correctness of Algorithm 3.

58

Theorem 24 (Correctness). Under the non-rushing adversary, Algorithm 3 solves tight

renaming for any t < n.

Proof

Validity condition is satisfied by the algorithmic construction: processes propose new

names from the set {1, . . . , n} and decide only on the values they have proposed.

Uniqueness follows from Lemma 21.

Termination with probability 1 follows from Theorem 23.

Message Complexity and Bit Complexity

Since in each round, processes employ all-to-all communication, the total message com-

plexity is O(n2 log n) messages whp.

In the first round, processes send their ids; hence the message size is bounded by

O(logNmax) bits, where Nmax is the largest id. In the following rounds processes exchange

values in range {1, . . . , n}; hence the message size in these rounds is bounded by O (log n)

bits.

5.2 Renaming with the Rushing Adversary

In this section, we consider the rushing adversary, which is allowed to inspect the messages

from correct processes before Byzantine processes send their own messages. As a result,

in our algorithm, the Byzantine processes can echo the choices of each correct process

causing infinitely many collisions. Surprisingly, even in this case, correct processes are

still able to decide on new names in the presence of one Byzantine process.

5.2.1 Case of t = 1

We now show that the algorithm of Section 5.1 works under the rushing adversary for

t = 1. The validity property follows from the algorithm construction. Uniqueness follows

59

from Lemma 21.

It remains to show the termination with probability 1. Consider an execution of Algo-

rithm 3 with t = 1. For any φ ≥ 2, if a correct process has a link to the Byzantine process

in the plinks set of phase φ, then this process will ignore the choice of the Byzantine

process in φ+ 1. As a result, the Byzantine process can influence the outcome of a half of

tournament phases, while in the remaining phases the correct process is competing only

with the undecided correct neighbors.

Theorem 25. Under the rushing adversary with t = 1, Algorithm 3 terminates in

O(log n) rounds whp.

Proof Let pi be an undecided correct process. For any two consecutive phases there exists

a phase, say φ, when the link to a Byzantine process /∈ plinksφi . Therefore, the choice of

the Byzantine process is ignored by pi in every such φ (Line 19). Since by Lemma 20, in

each phase there are as many free names as undecided processes, the expected decision

time for pi is at most double the decision time under the non-rushing adversary (see

Lemma 22 and Theorem 23).

5.2.2 General Case of t > 1

If t > 1, two Byzantine processes can announce to a correct process pi a smaller id and

a larger id than pi’s identifier, and then generate collisions deterministically in each tour-

nament phase. In this way, the correct processes are never able to decide. To prevent

such behavior, we introduce in Algorithm 3 a cryptographic commitment primitive. In

the modified algorithm, depicted in Algorithm 4, the random choices of processes are not

announced immediately. Instead, the undecided processes first commit to their choices

without revealing the actual values, and in a subsequent round reveal their choices. Thus,

the adversary is required to commit the values of the corrupted processes without know-

ing the values committed by the correct processes (hiding property). Furthermore, the

adversary is not able to modify its choices during the revealing stage (binding property).

60

Algorithm 4 Renaming with the Use of Commitment

// In Algorithm 3 replace the lines

17 send 〈proposal,myName〉 to every link i such that i ∈ undecided \ plinks;

18 if ∃i ∈ plinks : 〈proposal, namei〉 has been received from link i

such that myName = namei then

// by the following
17 commit (φ, myName, myId) to every link i such that i ∈ undecided \ plinks;

// Round 2
18a reveal (φ, myName, myId) to every link i such that i ∈ undecided \ plinks;
18b if ∃i ∈ plinks : such that (φ, namei, ids[i]) has been revealed from link i

and myName = namei then

Therefore, the algorithm operates analogously to its non-rushing counterpart.

As noted before in the text, with small probability, the adversary is able to break

the commitment. In this case, it will be able to reproduce the value of a correct process,

causing a collision. However, since in different phases processes use independent instances

of commitment, correct processes still decide with probability 1. Therefore, under the

computationally bounded adversary, with probability 1, Algorithm 4 terminates correctly.

Commitment abstraction can be implemented in constant number of rounds,

e.g. [PR05]. Hence, the total round complexity of Algorithm 4 is logarithmic.

Theorem 26. Under the rushing computationally bounded adversary, the modified algo-

rithm solves renaming in O(log n) rounds whp.

61

62

Chapter 6

Order-Preserving Renaming with

Byzantine Faults

In this chapter, we continue with the Byzantine fault model and turn our attention to a

stronger order-preserving variant of renaming. Recall that in order-preserving renaming,

processes’ new names are required to preserve the order of their original ids. To our

knowledge, we are the first to address this problem in the Byzantine model.

We show that order-preserving renaming can be solved efficiently in this model, but

only if the number of Byzantine faults is bounded by t < n/3. In particular, we show that

order-preserving renaming can be solved in O(log n) rounds and with target namespace of

size n+ t− 1, if t < n/3. In this algorithm, processes exchange their ids, sort all received

ids, and propose a new name for each id based on its rank in the ordered set. Then,

processes run a variant of approximate agreement on new names for all ids to ensure that

the names are in the correct order. After presenting this algorithm and the proofs, we

proceed by showing that if t is bounded by O(
√
n), the algorithm solves order-preserving

renaming in O(1) rounds and with tight namespace. We then present a simple double-echo

algorithm for small values of t that solves order-preserving renaming in just 2 rounds.

On the negative side, we show that order-preserving renaming cannot be solved if

t ≥ n/3; the impossibility applies to both deterministic and randomized algorithms. The

63

proof is by the indistinguishability argument: we assume by contradiction the existence of

an algorithm that solves order-preserving renaming with t ≥ n/3 and construct indistin-

guishable executions, in which a correct process decides on different values. This impos-

sibility result implies a separation between the power of renaming and order-preserving

renaming.

6.1 Algorithm for n > 3t

In this section, we present what is, to our knowledge, the first order-preserving renaming

algorithm tolerant to Byzantine faults. The resiliency of our algorithm is n > 3t. At a

high level, our algorithm follows the structure of the order-preserving algorithm for the

crash fault model [Oku10], employing the techniques of Byzantine approximate agreement

(AA) [DLP+86] with extensions that address the two following additional concerns. First,

when Byzantine processes announce their ids, they can send different values to different

correct processes. Therefore, when the computation requires a list of existing ids, processes

may include some faulty ids, which other correct processes may regard as possibly correct

(note that it would be too costly to agree on a unique set of ids). The first challenge

is to limit the number of such faulty ids. Second, we need to ensure that, in spite of

contradictory information sent by corrupted processes, the instances of AA converge in a

way that preserves the initial ordering.

The algorithm, depicted in Algorithm 5, uses two distinct phases, namely the id selec-

tion phase and the rank approximation phase, or voting. The first phase takes 3 rounds

and aims at limiting the number of ids announced by Byzantines processes that are not

recognized as faulty, while ensuring that all correct processes know all correct ids. At the

end of this phase, each process makes an estimate of the new name for each process. Since

these estimates are not precise enough to be order preserving, the second phase of the

algorithm runs, in parallel, coordinated Byzantine-tolerant approximate agreements on

those estimates. This phase is called approximation phase and takes logarithmic number

of rounds. We denote each round of the approximation phase as a voting round. By

64

making appropriate validations on the votes of each process, we ensure that the values

converge preserving the order of original ids. Below we discuss each of these two phases

in detail.

6.1.1 Id Selection Phase

The id selection phase is implemented in Rounds 1 to 3 of Algorithm 5. The purpose of

this phase is to choose which identifiers should feed the rank approximation phase. Note

that Byzantine processes can announce different ids to different peers; if their power is

not constrained the number of “fake” ids may prevent correct processes from executing

correctly. On the other end, we do not aim at ensuring that all correct processes select the

exact same set of identifiers: that would be equivalent to solving consensus, which would

have linear round complexity. For convenience of exposition, ids belonging to correct

processes are named correct ids. All other ids are referred to as Byzantine, e.g. ids issued

by Byzantine processes as their own or non-existent ids that Byzantine processes claim

to have received from others.

Each process locally stores the following variables: two sets, timely and accepted, that

are used to collect ids; variable ranks, a sparse array where ranks [id] stores a new name

for each id in the accepted set. Function sort(set) orders the entries in a set set; function

rank(set, v) returns a position of value v in the ordered set set.

At the end of the id selection phase, the following properties are ensured on the timely

and accepted sets:

• at every correct process p, timelyp includes all correct ids;

• at every correct process p, acceptedp includes at most n+ t− 1 ids in total;

• at every correct process p, acceptedp is such that:

⋃
q : q is correct

timelyq ⊆ acceptedp,

i.e., if one id is considered timely by some correct process, this id is for sure included in

65

Algorithm 5 Order-preserving Byzantine Renaming

01 Init:
02 δ = 1 + 1

3(n+t)
; Ids := ∅; timely := ∅; accepted := ∅;

// id selection phase

03 In Round r := 1
04 broadcast (〈ID,my id〉);
05 foreach id: 〈Id, id〉 received from a distinct link do
06 Ids := Ids ∪ {id};

07 In Round r := 2
08 foreach id ∈ Ids do
09 broadcast(〈Echo, id〉);
10 foreach id: 〈Echo,id〉 received from at least n− t distinct links do
11 Ids := Ids ∪ {id};

12 In Round r := 3
13 foreach id ∈ Ids do
14 broadcast(〈 Ready, id〉);
15 foreach id: 〈Ready, id〉 received from at least n− t distinct links do
16 timely := timely ∪ {id};
17 foreach id: 〈Ready, id〉 received from at least n− 2t distinct links do
18 accepted := accepted ∪ {id};
19 sort (accepted);
20 foreach id ∈ accepted do
21 ranks[id] := rank(accepted,id)×δ;

// rank approximation phase

22 In Round r := 4 to 2dlog te+ 8
23 votes := ∅;
24 broadcast (〈AA, ranks〉);
25 foreach 〈AA, R〉 received do
26 if isValid (timely, R) then
27 votes := votes ∪ R;
28 ranks := approximate(ranks, votes); // updates “accepted” set

29 if Round r = 2dlog te+ 8
30 return round(ranks[my id]);

66

the accepted set by every other correct process (but not necessarily considered timely).

In detail, the first phase of the algorithm works as follows. In Round 1, each correct

process broadcasts its identifier in an Id message. In Round 2, processes echo the ids they

have received in the previous round (Echo messages). Only ids that have been echoed at

least n− t times are considered for the following round. This effectively limits the number

of Byzantine ids. Also, since all correct ids are echoed by the correct processes, all correct

ids are taken to the next round. Ids that satisfy the previous condition are broadcast

in a Ready message in Round 3; all ids for which at least n − t Ready messages have

been issued are added to the timely set. Notice that all correct ids will be included in

the timely set of every correct process. All ids for which at least n− 2t Ready messages

have been produced are added to the accepted set. As a result, accepted contains all ids

in the timely set.

The concept of separating the ids in timely and accepted sets is similar to grading the

delivered messages with confidence levels, as done in Gradecast. The classical broadcast

[BT85] and Gradecast [FM88] algorithms require each process to know the identity of a

sender. Therefore, if the ids are not known a priori and all processes are broadcasting

at the same time, Byzantine participants can collude such that more than t messages

issued by Byzantine processes are delivered by the correct processes. In fact, any message

received in the first round by at least n−2t correct processes can be delivered by a correct

process. Therefore, in our id selection, the size of the accepted set at a correct process

can contain as many as n+ t− 1 ids. Note also that Byzantine processes may use correct

ids as their own; this has no effect on the execution: duplicate identifiers do not appear

in timely and accepted sets.

At the end of the id selection phase, each process sorts its accepted set, and estimates

a new name to each of these ids (including its own), which is the rank of that id in the

sorted set stretched by factor δ = 1 + 1
3(n+t)

. This factor is large enough to prevent

names from clashing due to small disagreement errors in the approximate agreement, as

we explain below. The purpose of the second phase is to iteratively execute approximate

67

Algorithm 6 Procedure isValid

01 Function isValid (timely, ranks) returns boolean is
02 foreach id, id′ ∈ timely such that id < id′ do
03 if id /∈ ranks or id′ /∈ ranks or ranks[id′]−ranks[id]< δ then
04 return false;
05 return true;

agreement until the ranks calculated by the correct processes are within safe distance.

6.1.2 Approximation Phase

The approximation phase, or voting, starts in Round 4 and takes a logarithmic num-

ber of rounds to converge. This phase is based on the Byzantine-tolerant AA algorithm

of [DLP+86]. The AA algorithm guarantees that, in spite of contradictory inputs from

Byzantine processes, the output values are within a bounded error. Moreover, it guaran-

tees that the outputs are within the range of input values issued by the correct processes.

In our case, the ranks calculated at the end of the id selection phase may not preserve the

correct global ordering. As a result, the ranges of the correct inputs into AA may overlap.

Without any additional care, AA may converge to values that are not order preserving.

The above issue is addressed by the verification function depicted in Algorithm 6 that

aims at ensuring that the approximation is performed in accordance with the ordering of

the original ids. The function isValid takes as input the timely set of a local process and

array ranks received from some other process. It makes two tests to check if the votes

from the remote process are consistent. First, the votes must include a vote for each id in

timely (we remind that if p and q are correct, then timelyp ⊆ accepted q, thus any vote that

does not satisfy this invariant may be discarded as faulty). Second, it ensures that the

new rankings for these ids appear in the correct order separated by the minimum safety

margin of δ. As a result, even if a Byzantine process sends different votes to different

processes and both are considered valid, the presented validity conditions are sufficient

68

Algorithm 7 Procedure approximate

01 Function approximate (my ranks, all ranks) returns array of ranks is
02 new ranks := ∅;

03 foreach id ∈ accepted do
04 votes[id] := ∅;
05 foreach R ∈ all ranks do
06 if id ∈ R then
07 votes[id] := votes[id] t R[id];
08 accepted := {id ∈ accepted : |votes[id]| ≥ n− t};

09 foreach id ∈ accepted do
10 for |votes[id]| + 1 to n do //fill missing votes with valid vote
11 votes[id] := votes[id] t my ranks[id];
12 for 1 to t do // remove t extreme values
13 votes[id] := votes[id] \ {max(votes[id])};
14 votes[id] := votes[id] \ {min(votes[id])};
15 sort(votes[id]);
16 new ranks[id] := avg(selectt(votes[id]);
17 return new ranks;

to ensure that the approximation of the validated values will still be done in a consistent

way.

In addition to the variables and functions introduced before, the second phase of our

algorithm also needs the following data structures and auxiliary functions: variable R is a

set of ranks arrays; the function Round(x) returns the integral value nearest to x; finally,

the function selectk(set) returns a choice of values from a set. These values are chosen

to maximize the convergence rate of the approximate agreement. Later in the text we

describe what is the most appropriate choice function.

In detail, each voting round works as follows. Processes exchange the values in their

ranks array. Each array received from a remote process is first validated as described

earlier. If the array is considered valid, it is added to the set of votes received in the

current round. At the end of the round, votes are processes by the function approximate,

depicted in Algorithm 7. In this function, each process computes a new rank for each id

69

in the accepted set as follows. It first collects all votes received for a given id into multiset

votes[id] (multiset is a set that allows repetitions). If for some id in accepted, less than

n− t votes are received, this id is discarded (by construction, this never happens to an id

that has been considered timely by some correct process). For the remaining ids, if the

number of votes is less than n, the process fills the multiset by including copies of its own

value (local values of a correct process are always valid). Then, the resulting multiset

of n votes is sorted and the t lower values and t higher values are discarded. Finally,

function selectt is used to pick a subset from the remaining values that is averaged to

compute the new vote for that id. This function returns a multiset consisting of each

(it+1)th element of the set (which is an ordered multiset), where 0 ≤ i < b |set|
t
c. In other

words, selectt(set) returns a multiset consisting of the smallest and each t-th element

after it. This choice of selectt is the same as in the approximate agreement algorithm

of [DLP+86], which guarantees the convergence rate of σt = bn−2t
t
c + 1 where σt is a

number of elements returned by selectt .

After executing 2 log t + 5 approximation rounds, the new name is chosen as the

rounded value of rank[my id]. The stretch factor of δ applied to the inputs and the valida-

tion procedure ensures that the ranks converge preserving a distance of slightly more than

1, which prevents the rounded ranks from clashing in spite of a possible approximation

error.

6.1.3 Correctness

We start by stating that any id in timely at some correct process, is necessarily included

in accepted of any other correct process.

Lemma 27. For any id such that id ∈ timelyp at some correct p, then id ∈ acceptedq at

any correct q.

Proof Assume by contradiction, id /∈ acceptedq at some correct q. This is only possible if

q has not received n−2t 〈Ready, id〉 messages in Rounds 3 (Lines 17-18 of Algorithm 5).

70

But if p added id into timely, it means that it has received at least n − t 〈Ready, id〉

messages, n − 2t of which must have been sent by the correct processes in Round 3.

Therefore all correct processes have received at least n − 2t 〈Ready, id〉 messages in

Round 3, which leads to a contradiction.

The following lemma states that all correct ids are included in timely sets of all correct

processes.

Lemma 28. If id belongs to some correct p, then id ∈ timelyq at any correct q.

Proof Assume by contradiction, id /∈ timelyq for some correct q. This means that q has

not received n− t 〈Ready, id〉 in Round 3. This is only possible if some correct process

has not issued 〈Ready, id〉, which in turn is because it has not received n− t 〈Echo, id〉

in Round 2. This also is only possible if id was not received by some correct process

in Round 1. However, since p is correct, p sent id to all correct processes in Round 1.

Contradiction.

The following lemma will be used to calculate the maximum number of ids that Byzan-

tine processes are able to produce.

Lemma 29. If id ∈ acceptedp at some correct p, then at least n − 2t correct processes

received id in Round 1.

Proof If id ∈ accepted, then p has received at least n − 2t 〈Ready, id〉 messages from

which at least 1 must have been issued by a correct process. This means that some correct

process received at least n− t 〈Echo, id〉 messages in Round 2, n−2t of which must have

come from the correct processes.

As discussed earlier, Byzantine processes can generate more than t identifiers, none

of which recognized as faulty by the correct processes. The following lemma bounds the

total number of ids included in accepted at any correct p.

Lemma 30. At the end of Round 3, if p is correct, then

|acceptedp| ≤ n+

⌊
t2

n− 2t

⌋
.

71

Proof By Lemma 28, all n − t correct ids are in timelyp, therefore also in acceptedp. It

remains to calculate the maximum number of Byzantine ids that can be in acceptedp. By

Lemma 29, each id ∈ acceptedp must have been echoed in Round 2 by at least n − 2t

correct processes. This means that from the total of at most t(n− t) identifiers broadcast

by the Byzantine processes in Round 1, b t(n−t)
n−2t
c = t + b t2

n−2t
c can be in acceptedp at the

end of Round 4.

The following lemma is auxiliary and states that if we construct two multisets by

adding pairwise values separated by some given distance from each other, then after we

order the multisets, the entries on the corresponding indexes still preserve this distance.

Lemma 31. Let U and W be two ordered multisets with k elements each, created by

adding k pairs of elements a, pair(a) into U,W respectively, such that a + δ ≤ pair(a).

Then, for any 1 ≤ i ≤ k, ui + δ ≤ wi.

Proof We first show that the inequality holds for the first elements in the ordered mul-

tisets, i.e.

u1 + δ ≤ w1. (6.1)

Since w1 is the smallest in W , w1 ≤ pair(u1). If w1 = pair(u1), then (6.1) follows.

If w1 < pair(u1), there exists ui such that w1 = pair(ui). Since u1 is the smallest in U ,

u1 + δ ≤ ui + δ ≤ w1, as claimed.

Now, by making pair(u1) a new pair of ui, the same argument is used to iteratively

prove (6.1) for U = U \ {u1} and W = W \ {w1} until U and W are empty. Therefore,

1 ≤ i ≤ k, ui + δ ≤ wi, as needed.

The following lemma shows that during the approximation procedure, the distance

between the ranks of two ids included in the timely set of some correct process maintains

at least δ.

Lemma 32. If for some ids id, id′ ∈ timely, at the beginning of Round r, ranks[id]+δ ≤

72

ranks[id′] and |votes[id]| , |votes[id′]| ≥ n− t, then at the end of Round r, ranks[id]+ δ ≤

ranks[id′].

Proof Since id, id′ ∈ timely, all votes accepted in Line 25 must contain new ranks for

both id and id′ spaced by at least δ. Hence, |votes[id]| = |votes[id′]|.

If there are less than n entries in each set, the ranks[id] and ranks[id′] will be added

respectively such that both sets have exactly n entries (Lines 10-11 of Algorithm 7), (by

assumption, the added values also preserve the distance of at least δ).

Now, assume U,W are multisets resulted from ordering votes[id] and votes[id′] re-

spectively. By Lemma 31, for any 1 ≤ i ≤ n, ui + δ ≤ wi. Hence, after deleting from

U and W , t smallest and t largest entries (Line 13-14 of Algorithm 7), it still holds that

1 ≤ i ≤ n− 2t, ui + δ ≤ wi. The distance between the new values (calculated in Line 16)

is given by,

avg(selectt(W))− avg(selectt(U))

≥ sum(selectt(U)) + tδ

t
− sum(selectt(U))

t

= δ.

We then show that correct processes always issue valid votes.

Lemma 33. For any r ≥ 4, if ranksp and ranksq are held by any two correct p and q in

Round r, then

isValid(ranksp, ranksq) = true.

Proof isValid(ranksp, ranksq) checks if the distance between the ranks of all elements

in timelyp is at least δ. By Lemma 27, timelyq ⊆ acceptedp. Therefore, if the entries in

ranksp preserve the distance of least δ, for any id such that id ∈
⋃
q: q is correct timelyq, in

Round r, then isValid(ranksp, ranksq).

We now show by induction on r that the distance between the ranks of ids in timelyp is

73

preserved at least δ by all correct processes in any Round r ≥ 5. For the base case of r = 5,

recall that p constructs the initial ranks in such a way that all ranks for the accepted set are

spaced by at least δ (Line 28 of Algorithm 5), therefore isValid(ranksp, ranksq) = true.

For the induction round, assume that, for the rank held by p in Round r,

isValid(ranksp, ranksq) = true. Therefore, for each element in timely each correct

process will receive at least n− t valid votes. And since by assumption, the correct votes

are valid in Round r and by Lemma 28 each correct vote contains new ranks for all ids in

timelyp, p will update their values in Line 35 of Algorithm 5 and, by Lemma 32, the new

ranks calculated by each correct process at the end of Round r preserve the necessary

distance at least δ. Therefore, isValid(rankp, rankq) = true in r + 1.

Corollary 34. If id ∈ timelyp at some correct p, then its rank is updated in every

approximation round by each correct process.

Corollary 35. If id < id′ belong to two correct processes, then

ranksp[id] + δ ≤ ranksp[id
′],

at any correct p in every Round r ≥ 3.

We now need to bound the maximum discrepancy in the initial ranks for the same ids.

Lemma 36. If id ∈ timelyp for some correct p, then at the end of Round 3,

|ranksp[id]− ranksq[id]| ≤ (t+ b t2

n− 2t
c)× δ,

where ranksq[id] is the rank of id at some correct q.

Proof By assumption, id ∈ timelyp, therefore, by Lemma 27, id ∈ acceptedq. Also, by

Lemma 28, all correct ids are in timelyp and timelyq and therefore in accepted at each

correct process. Hence, |acceptedp ∩ acceptedq| ≥ n−t. On the other hand, by Lemma 30,

all correct processes have |accepted| ≤ n + t − 1. Hence, the initial ranks calculated in

74

Line 28 of Algorithm 5 of each common element of acceptedp and acceptedq differs by at

most (2t− 1)× δ.

Now it remains to show that each approximation round of Algorithm 7 reduces the

distance between the ranks by the factor σt = bn−2t
t
c+ 1.

Lemma 37. Let id ∈ timelyp at some correct p, and ∆r denote the maximum distance

between the correct ranks for id in the beginning of Round r. Then, at the end of Round r,

the distance between new correct ranks for this id is within the range of ∆r

σt
. Moreover,

the new values are within the range of the old values belonging to correct processes.

Proof Since id ∈ timelyp, then by Lemma 33 and Corollary 34, votesp[id] and votesq[id]

have at least n− t entries from the correct processes, therefore after executing Lines 12-14

of Algorithm 7 both multisets have exactly n entries.

Let C be the multiset of ranks of id issued by all correct processes in Algorithm 5, in

Round r. Note that C ⊆ votesp[id], votesq[id].

Let A,B be ordered multisets resulting from deleting t maximal values and t minimal

values from votesp[id] and votesq[id], respectively. Let a1 ≤ · · · ≤ ac be the elements of

selectt(A) and b1 ≤ · · · ≤ bc be the elements of selectt(B), where c is the number of

elements selected. Note that c = σt.

First, we need to show that, for 1 ≤ i ≤ c− 1,

max(ai, bi) ≤ min(ai+1, bi+1). (6.2)

It suffices to show that ai ≤ bi+1, then by symmetric argument bi ≤ ai+1. Suppose, by

contradiction, that ai > bi+1. There are at least t(i + 1) + 1 elements in B less than or

equal to bi+1. By our supposition, these elements are strictly less than ai. However, there

are at most ti elements in A strictly less than ai. Therefore, at least t(i+1)+1−ti = t+1

elements in B, are not in A. However, since |votesp[id] ∩ votesq[id]| ≥ n− t, it holds that

75

|A ∩B| ≥ n− t− 2t. Therefore,

|B − A| = |B − (A ∩B)| ≤ (n− 2t)− (n− 3t) = t.

Hence the contradiction and (6.2) follows.

We then use (6.2) to prove the lemma. The discrepancy between ranksp[id] and

ranksq[id], which are updated in Line 16 of Algorithm 7 at the end of Round r, is given

by,

|avg(selectt(A))− avg(selectt(B))|

=
1

c
|(a1 + · · ·+ ac)− (b1 + · · ·+ bc)|

=
1

c

∣∣∣∣∣
c∑
i=1

(ai − bi)

∣∣∣∣∣
≤ 1

c

c∑
i=1

|ai − bi|

=
1

c

c∑
i=1

(max(ai, bi)−min(ai, bi)) , (6.3)

where the fourth line follows from triangular inequality.

Expanding the sum and successively applying (6.2),

1

c

c∑
i=1

(max(ai, bi)−min(ai, bi))

=
1

c
(max(ac, bc)−min(ac, bc))

+
1

c

c−1∑
i=1

(max(ai, bi)−min(ai, bi))

≤ 1

c
(max(ac, bc)−min(a1, b1)) . (6.4)

On the other hand, since we deleted t extremal values from votesp[id] and votesq[id], it is

true that max(ac, bc) ≤ max(C) and min(a1, b1) ≥ min(C). Therefore, the averages are

within the interval of the input values belonging to the correct processes.

76

Moreover, from (6.3) and (6.4),

|avg(selectt(A))− avg(selectt(B))|

≤ 1

c
(max(C)−min(C))

=
1

σt
∆r.

Hence, the lemma follows.

We now calculate the number of iterations needed to reduce ∆r to less than 1−δ
2

.

Lemma 38. If ∆4 ≤ (2t− 1)× δ, then after r = 2dlog te+ 5 iterations, the range of the

values belonging to all correct processes is less than ∆r+4 <
δ−1

2
.

Proof By successive applications of Lemma 37,

∆r+4 ≤
(

1

σt

)r
∆5

<

(
1

2

)d2 log(t)e+5

2t×
(

1 +
1

n+ t

)
<

1

6 (n+ t)
.

Finally, we are ready to prove the main theorem.

Theorem 39. Algorithm 5 solves order-preserving renaming with n > 3t and target

namespace of size n+ t− 1.

Proof

Validity. By Lemma 30, if p is correct, |acceptedp| ≤ n+ b t2

n−2t
c ≤ n+ t− 1, for n > 3t.

Therefore, the initial ranks are bounded by (n+ t−1)×δ. Since by Lemma 37, all correct

processes output a value within the interval of the initial correct values, the outputs of

the correct processes are bounded by round((n+ t− 1)× δ) = n+ t− 1.

Termination. After 2dlog te+ 8 rounds, every correct process outputs a value.

77

Order-preserving property. By Lemma 28, correct ids are always included in timely

sets and, by Corollary 34, are updated in each round by every correct process. By Corol-

lary 35, for any two correct id and id′ such that id < id′, the distance between their ranks

is lower bounded by δ in every round. Since by Lemma 38, after 2dlog te + 8 rounds,

∆r <
δ−1

2
,

rank (id) + δ +
1− δ

2
< rank (id′)− 1− δ

2
.

Hence, Round(ranks[id])) < Round(ranks[id′]) .

6.1.4 Complexity Analysis

By construction, the round complexity of Algorithm 5 is 2dlog te + 8. In each round,

processes employ all-to-all communication. As a result, the total message complexity is

O (n2 log t). Since in each round processes exchange arrays of at most n+ t−1 original ids

and their ranks, the message size is bounded by O ((n+ t− 1) (logNmax + log n)) bits.

6.2 Algorithm for n > t2+2t with 7 Rounds and Tight

Namespace

An interesting property of Algorithm 5 is that it performs tight renaming, i.e. renaming

with the target namespace of size n, and can terminate after a constant number of rounds

if n > t2 + 2t. The optimal namespace is achieved because Byzantine processes are not

able to introduce any additional identifiers in our id selection scheme. The constant round

complexity is due to the fast convergence of Byzantine AA. Similar argument was used

by the authors of [AAGT12] to prove the constant round complexity of the crash-tolerant

algorithm presented in [Oku10] when the number of actual crashes is bounded by n > 2f 2.

This result is formalized below.

Lemma 40. If n > t2 + 2t, Algorithm 5 achieves the target namespace of size n.

78

Proof By Lemma 30, the number of ids in the accepted set of any correct process is at

most n + b t2

n−2t
c = n. Due to the stretching factor of δ = 1 + 1

3(n+t)
, the initial ranks

are bounded by n × δ. Since by Lemma 37 the values returned by the approximation

belong to the interval of the initial correct values, the rounded outputs will be at most

round(n× δ) = n.

Lemma 41. If n > t2 + 2t, after 4 approximation rounds, the values held by the correct

processes are within the distance of less than δ−1
2

= 1
6(n+t)

.

Proof By Lemma 36, the maximum discrepancy between the votes is at most (t+b t2

n−2t
c)×

δ = t× δ. On the other hand, by Lemma 37, the convergence rate of each approximation

round is at least σt = bn−2t
t
c+1 > b t2

t
c+1 = t+1. Therefore, after 4 convergence rounds,

the values of the correct processes are within

t× δ
(t+ 1)4

<
1

3t3
<
δ − 1

2
.

Therefore, if we change the code of Algorithm 5 to run only 4 approximation rounds

(Line 29), the resulting algorithm has the complexity of 7 rounds.

Theorem 42. The modified algorithm solves tight order-preserving renaming in O(1)

rounds if n > t2 + 2t.

6.3 Algorithm for n > t2 + 2t with Only 2 Rounds

In the previous section we have shown that the modified Algorithm 5 has constant round

complexity with n > t2 + 2t. This is an interesting result from the asymptotic point

of view, specially considering that the resulting name space is optimal. Still, from the

practical point of view, the number of communication rounds can still be an impairment

for time constrained applications (the number of rounds of the modified Algorithm 5 is

exactly 7). Therefore, in this section we are interested in performing renaming in as few

79

communication rounds as possible. Interestingly, we show that order-preserving renaming

in face of Byzantine faults can be solved in just 2 communication rounds with n > 2t2 + t,

by relaxing the target namespace to n2. Obviously, in just 2 communication rounds, it is

impossible to perform iterative approximate agreement. In fact, our algorithm is simply

based on counting echoes that are filtered by a validity check.

The algorithm is depicted in Algorithm 8. The main idea of the algorithm is having

each process initially announce its ids to all other processes; then, echo all the ids received

in the first round, and finally having each correct process calculate its new name by

ordering all the received ids, and calculating offsets, i.e. spacings between two consecutive

names, according to the number of echoes received for each id. Byzantine processes may

opt not to echo the ids or even send contradictory information to different processes.

Therefore, correct processes may receive different sets of ids as well as different numbers

of echoes for each ids. The key to the algorithm is to compute the offsets in such a

way that the new names chosen by the correct processes will hold the order-preserving

property, despite potentially inconsistent sets of echoes.

As the previous algorithms, Algorithm 8 also uses a timely and an accepted set of ids.

In this algorithm, all ids broadcast in Round 1 are considered timely and all ids echoed

in Round 2, that pass a basic validity test, are accepted. The validity test, captured by

function isValid, limits the power of Byzantine processes as follows: first, it only accepts

echo messages from processes that have sent their id in Round 1; then, it does not accept

a MultiEcho message that has more than n ids; finally, the incoming MultiEcho

must have at least n− t ids in common with the timely set of the recipient (note that if

the sender and the recipient of a MultiEcho are correct, they both have at least n− t

correct ids in their timely sets). Also, for each accepted id, the algorithm counts how

many processes have echoed that id (again, correct ids are guaranteed to be echoed at

least n− t times).

After all echo messages have been processed, processes are ready to calculate new

names. The offset for each known id is simply the value of min(counter, n− t) (Line 20).

80

Algorithm 8 2-round Order-preserving Byzantine Renaming for n > 2t2 + t

01 Init:
02 foreach lnk ∈ {1, · · · , n} linkid[lnk] :=⊥;
03 timely := accepted := ∅;
04 forall id do counter[id] := 0; // init sparse array with zeros

05 In Round r := 1
06 broadcast (〈ID,my id〉);
07 foreach id: 〈Id, id〉 received from a distinct link lnk do
08 linkid[lnk] := id;
09 timely := timely ∪ {id};

10 In Round r := 2
11 broadcast (〈MultiEcho, timely〉);

// count echoes
12 foreach id: 〈MultiEcho, ids〉 received from a distinct link lnk do
13 if isValid (lnk, ids) then
14 foreach id ∈ ids do
15 accepted:= accepted ∪ {id};
16 counter[id] := counter[id] +1;

// compute new names
17 sort (accepted);
18 accum offset := 0;
19 for id := first(accepted) to last(accepted) do
20 accum offset := accum offset + min (counter[id], n− t);
21 newid[id] : = accum offset;
22 return newid[my id]

01 Function isValid (lnk, ids) returns boolean is
02 return (linkid[lnk] 6=⊥) ∧ (|ids| ≤ n) ∧ (|timely ∩ ids| ≥ n− t)

The adjustment to n − t guarantees that these offsets for the correct ids are always the

same. This prevents Byzantine processes from introducing an additional error linear in

the number of correct processes by choosing to echo correct ids for some processes but

not others. Finally, the new name of a process is produced by summing the offsets of

all ids up to, and including, the id of the current process. The algorithm also stores

locally estimated values of new names for other processes (Line 20); this is not required

81

in practice and is done here only for clarity of the proofs.

6.3.1 Correctness

Let ∆ denote the maximum possible discrepancy between the new names for some correct

id.

Lemma 43. ∆ ≤ 2t2.

Proof For each echo message received in Round 2, a correct process compares the number

of ids in common, that should be at least n− t out of n allowed per message (procedure

isValid). Due to this sanity check, each Byzantine process can introduce only 2t Byzan-

tine ids in an echo message: in the worst case, the Byzantine process includes t Byzantine

ids already known to the receiver and additional t Byzantine ids. Therefore, the total

number of echoes of Byzantine ids received from the Byzantine processes by each correct

process in Round 2, is at most 2t2.

We now need to lower bound the offset of any correct id.

Lemma 44. Let id and id′ be two correct identifiers. If id′ < id, then newidp[id
′] + (n−

t) ≤ newidp[id] at some correct p.

Proof Assume, by contradiction, newidp[id]− newidp[id′] < n− t. This is only possible

if counterp[id] < n− t (Line 20). This means that, in Round 2, p received less than n− t

echoes of id. It can only happen if some correct p′ did not echo id. This, in turn, is only

possible if p′ did not receive id in Round 1. But since id is correct, it was sent to all the

processes in Round 2. Contradiction.

We are ready to prove the correctness.

Theorem 45. Algorithm 8 solves order-preserving renaming with n > 2t2 + t and the

target namespace of size n2.

Proof

82

Validity. The total number of echoed ids accepted by each correct process in Round 2

is at most n2. Therefore, the correct processes output an integer value within the range

[1, · · · , n2]. Hence, Algorithm 8 satisfies the validity property.

Termination. After 2 rounds, every correct process outputs a value.

Order-preserving property. Consider two correct processes p and q with initial iden-

tifiers id and id′, such that id < id′. By Lemma 44, newidp[id] + n − t ≤ newidp[id
′].

Since by Lemma 43, ∆ ≤ 2t2, then newidp[id
′] − 2t2 ≤ newidq[id

′]. Furthermore, since

n > 2t2 + t, newidp[id] + n− t− 2t2 < newidq[id
′].

6.3.2 Complexity Analysis

Algorithm 8 consists of 2 communication rounds. Since in each round, processes employ

all-to-all communication, the total message complexity is 2n2. In Round 2, processes

exchange vectors of all ids they have received in Round 1. Therefore, the message size is

bounded by O (n logNmax) bits.

6.4 Impossibility Result for n ≤ 3t

In previous sections we have seen that order-preserving renaming can be solved efficiently

for different values of t smaller than n/3. We now address the question whether it is

possible to solve this problem for t ≥ n/3, as is the case with the original renaming

problem (even though it requires a very inefficient algorithm). We establish the separation

result for order-preserving renaming by showing that there is no deterministic algorithm

with n ≤ 3t that solves order-preserving renaming. Our proof method is based on the

indistinguishability argument widely used in the literature on Byzantine fault tolerance,

e.g. [FLM85,KY86,GY89].

We first give the impossibility proof for deterministic algorithms in the system with n =

3 and t = 1. In the proof, we consider the easiest case of order-preserving renaming from

a bounded original namespace of size M + 1 into a target namespace of size M , for some

83

!"# !$#
!%#

!&#

!%'$# !(#

)
#

)
#

###*+,-./01#2## ###*+,-./01#2"## *+,-./01#2$##

!"# !$#
!%#

!&#

!%'$# !(#
)
#

)
#

!"# !$#
!%#

!&#

!%'$# !(#

)
#

)
#

*+,-./01#2%##

!"# !$#
!%#

!&#

!%'$#
!(#

)
#

)
#

!"# !$#
!%#

!&#

!%'$# !(#

)
#

)
#

###*+,-./01#2## ###*+,-./01#2"## *+,-./01#2$##

!"# !$#
!%#

!&#

!%'$# !(#

)
#

)
#

!"# !$#
!%#

!&#

!%'$# !(#
)
#

)
#

*+,-./01#2%##

!"# !$#
!%#

!&#

!%'$#
!(#

)
#

)
#

Area in gray corresponds to a system simulated by a single Byzantine process.

Figure 6.1: Indistinguishable executions for n = 3 and t = 1.

arbitrary M ≥ n. This implies a fortiori that the impossibility applies to namespaces of

any size, as long as the original namespace is larger than the target namespace (otherwise

the problem becomes trivial).

We take a candidate algorithm for the case n = 3 and construct an indistinguishability

ring of executions, which violates the properties of order-preserving renaming. Namely,

we construct a ring of size M + 1 and assign inputs in such a way that new names must

increase as we traverse the ring in one direction, but this exhausts the target namespace

after going around the ring.

Theorem 46. There is no deterministic algorithm that solves order-preserving renaming

in a system with n = 3 and t = 1.

Proof Assume by contradiction there exists an algorithm π that solves order-preserving

84

renaming for n = 3 and t = 1 from the original namespace of size M + 1 into the target

namespace of size M , for some M ≥ 3. Without loss of generality we assume π is a

full-information algorithm.

Consider a system with M + 1 processes p0, . . ., pM . We consider an execution α

of π in this system, where processes are arranged in a ring as depicted in Fig. 6.1, and

process pi has original id i. This is an execution with M + 1 > n processes, even though

algorithm π is designed for n = 3 processes, but we will argue this execution has some

interesting properties. For every pair of adjacent processes in the ring, their view of

the system is indistinguishable from the view in a 3-process system in which the two

processes are connected to a corrupted third process. For instance, processes p0 and p1

cannot distinguish execution α from execution α0 in Fig. 6.1 where both p0 and p1 are

connected to a single corrupted process that simulates pM and p2. That is, the single

Byzantine process sends to p0 exactly what pM sends to p0 in α, and the same Byzantine

process sends to p1 exactly what p2 sends to p1 in α (in Fig. 6.1, the gray area in execution

α0 depicts the system simulated by a single Byzantine process). By assumption, in α0

processes p0 and p1 decide on valid names in the correct order. Moreover, since p0 and p1

cannot distinguish execution α from execution α0, they decide in α exactly on the same

names as in α0. Similarly, p1 and p2 cannot distinguish α from α1 in Fig. 6.1, and so

on for each pair of adjacent processes in the ring. Therefore, in α, each pair of adjacent

processes decides on valid names in the correct order.

By the validity property, in α process p0 decides on a new name v0 such that 1 ≤

v0 ≤M . By the order-preserving property, p1 decides on name v1 such that 1 ≤ v0 < v1.

Applying the order-preserving property to the new names of all pairs of processes from p0

to pM , we see that process pM decides on a new name vM such that 1 ≤ v0 < v1 < . . . <

vM−1 < vM . Thus, vM > M . But by the validity property, vM ≤ M—a contradiction to

the existence of algorithm π.

Theorem 46 is generalized to the case of t = dn/3e by having three processes simulate

the n-process system as described in [OBG08]. More precisely, if there is an algorithm π

85

for n processes and t = dn/3e, we can use π to obtain an algorithm for three processes

and t = 1, which contradicts Theorem 46. The simulation algorithm for three processes

works as follows. Each process simulates dn/3e or bn/3c processes running algorithm π,

for a total of n simulated processes, where the simulated processes start with names that

respect the id ordering of the three processes; each process then decides on the new name

of any of the processes that it simulates.

Theorem 46 concerns deterministic algorithms. We now consider randomized algo-

rithms. We use the indistinguishability argument to show that any randomized algorithm

with n = 3 has a non-zero probability of error when running in the system depicted in

Fig. 6.1. Again, we assume the easiest case of order-preserving renaming from the original

namespace of size M + 1 into the target namespace of size M , for some arbitrary M ≥ n.

In our proof, we assume the non-rushing adversary, which is weaker than the rushing

counterpart. Therefore, the impossibility holds under both adversaries.

Theorem 47. Under the non-rushing adversary, there is no randomized algorithm that

solves order-preserving renaming in a system with n = 3 and t = 1.

Proof Assume that there exists a (full information) randomized algorithm π′ that solves

order-preserving renaming for n = 3 and t = 1 from the original namespace of size M + 1

into the target namespace of size M , for some M ≥ 3.

Consider a system composed by M + 1 processes p0, . . . , pM arranged in a ring as

depicted in Fig. 6.1. We show that there exists a finite execution in the ring such that all

M + 1 processes terminate. From that point, the proof proceeds as in Theorem 46. The

proof of the existence of such execution is slightly technical but follows from the termi-

nation with probability 1 of π′. The proof will construct increasingly larger executions in

which, successively, processes p0, . . . , pM terminate, by arguing for each process pi that it

would terminate with probability 1 in a 3-process system.

More precisely, for each pair of processes pi and pi+1 the execution in the ring is

indistinguishable from an execution αi where pi and pi+1 is connected to a single Byzantine

process that behaves exactly like pi−1 and pi+2 in α (the arithmetic of indices is done

86

modulo (M + 1)). From the termination with probability 1 property of order-preserving

renaming, (*) all correct processes in a 3-process system running π′ with t = 1 terminate

with probability 1. We now consider executions of π′ in the ring of M + 1 processes. We

first claim that there is a finite execution β0 of π′ in the ring such that p0 and p1 terminate.

This follows from (*) and the fact that an execution in the ring is indistinguishable by

p0 and p1 from an execution in a 3-process system. We now claim that we can extend

execution β0 such that p2 also terminates. Indeed, β0 is indistinguishable by p1 and p2 from

an execution in a 3-process system. Since β0 is finite, it occurs with positive probability

p0 > 0. If p2 never terminates in any extensions of β0, we can find a set of executions

with probability p0 > 0 where p2 never terminates, contradicting (*). Therefore, in some

extension of β0, p2 terminates. Let β1 be the finite execution that combines β0 and this

extension until p0, p1, and p2 terminate. We apply the same argument with execution β1

and process p3 to obtain a finite execution β2 where p0, . . . , p3 terminate. We continue

this construction with all other processes, to obtain a finite execution βM−1 where all

processes p0, . . . , pM terminate.

Theorem 47 is generalized to the case of t = dn/3e by the simulation by 3 processes

of an n-process system given in [OBG08], as previously described for the deterministic

algorithm.

87

88

Chapter 7

Conclusions

This thesis presents a number of results on different aspects of renaming and order-

preserving renaming problems. In particular, we have focused on renaming in the classical

synchronous message-passing model and considered both crashes and byzantine faults.

The results, summarized in Table 1.1 and Table 1.2, support our hypothesis that renaming

can be solved both efficiently and with high resiliency in these settings. Many of our results

have been achieved with resort to randomization. This implies that randomization is a

powerful and necessary technique in solving renaming.

When considering crash faults, we have shown that tight renaming can be solved very

efficiently by using randomization. We prove this by proposing a randomized algorithm

that we call Balls-into-Leaves due to its connection to the classical balls-into-bins tech-

nique. The algorithm places n balls into n leaves of a binary tree in O(log log n) rounds

whp. Our simulations suggest that the hidden constants in our asymptotic analysis are

indeed small. In fact, the algorithm terminates in few rounds even for very large values

of n. We do not optimize the algorithm for the message complexity—in each round Balls-

into-Leaves employs all-to-all communication. Therefore, the total message complexity

is O(n2 log log n) whp. It is possible to reduce this value to O(n2) whp by eliminating

communication between balls in disjoint subtrees. However, overcoming the O(n2) barrier

(O(n) messages per ball) would require a substantially different approach.

89

We have also presented an extension of the algorithm that provides early termination

in O(log log f) rounds whp when there are f failures. The modified algorithm terminates

optimally in O(1) rounds in failure-free executions.

These results imply an exponential separation between deterministic and randomized

algorithms for tight renaming. The main open question is whether the Balls-into-Leaves

algorithm is optimal for this problem. Answering this question requires new lower bounds

for randomized renaming. We conjecture that obtaining such lower bounds will be chal-

lenging, given that lower bounds for other variants of renaming have required subtle

topological or reduction techniques, e.g. [HS99,CnR08,Gaf09,AACH+14].

We then turn our attention to a more challenging failure model and consider Byzan-

tine faults. In particular, we have shown that tight renaming can be solved efficiently in

the presence of Byzantine faults under the assumption of the non-rushing adversary. Our

algorithm terminates in O(log n) rounds whp, and works for any t < n. An interesting

open question is whether it is possible to solve this problem with sub-logarithmic round

complexity. We have also shown that our algorithm works for t = 1 under the rushing

adversary. For the general case of t > 1, we strengthened the algorithm with a crypto-

graphic commitment scheme, which requires the additional assumption of a polynomially

bounded adversary. Avoiding the use of cryptography for t > 1 is an interesting open

problem.

Additionally, this thesis is the first to address order-preserving renaming in the Byzan-

tine fault model. We show that this problem can also be solved efficiently in this context.

Our first order-preserving algorithm terminates in O(log n) rounds and tolerates up

to t < n/3 Byzantine faults. Whether this round complexity is optimal for this problem

is an open question. The algorithm has target namespace of size n+ t− 1, presenting an

improvement on the namespace size compared to the previous result for the Byzantine

setting [OBG08] that does not ensure the ordering (the algorithm in [OBG08] ensures the

target namespace of size at most 2n). Interestingly, if n > t2 + 2t, our algorithm achieves

tight namespace. It remains open whether it is possible to achieve tight namespace for

90

larger values of t.

If the resiliency is bounded by O(
√
n), we have shown that order-preserving renaming

can be solved in constant time both by using approximate agreement and with a simple

double-echo scheme. This resiliency threshold for constant round complexity asymptoti-

cally matches the results for the crash fault model [AAGT12]. We leave for future work

to find out whether the O(
√
n) threshold is optimal or higher resiliency can be achieved

in constant time.

Finally, we have proven a t < n/3 bound on the resiliency of both deterministic and

randomized algorithms for order-preserving renaming. This result reveals a separation

between the resiliency of renaming and order-preserving renaming. In other words, order-

preserving renaming is provably a stronger problem than renaming. It will be interesting

to find out whether randomization can help in reducing the round complexity of order-

preserving renaming.

91

92

Bibliography

[AACH+14] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid

Guerraoui. Tight bounds for asynchronous renaming. J. ACM, 61(3):18:1–

18:51, June 2014.

[AAGT12] Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers. Early

deciding synchronous renaming in O(log f) rounds or less. In Proceedings of

the 19th International Colloquium on Structural Information and Communi-

cation Complexity, SIROCCO ’12, Reykjavik, Iceland, June 2012.

[ABND+90] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reis-

chuk. Renaming in an asynchronous environment. J. ACM, 37:524–548, July

1990.

[ACMR95] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Ras-

mussen. Parallel randomized load balancing. In Proceedings of the Twenty-

seventh Annual ACM Symposium on Theory of Computing, STOC ’95, pages

238–247, New York, NY, USA, 1995.

[AF02] Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice

agreement and renaming. SIAM J. Comput., 31(2):642–664, February 2002.

[BEW11] Alex Brodsky, Faith Ellen, and Philipp Woelfel. Fully-adaptive algorithms

for long-lived renaming. Distributed Computing, 24(2):119–134, 2011.

[BG93] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast

renaming. In Proceedings of the Twelfth Annual ACM Symposium on Prin-

93

ciples of Distributed Computing, PODC ’93, pages 41–51, New York, NY,

USA, 1993. ACM.

[BKSS13] Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexan-

dre Stauffer. Balls-into-bins with nearly optimal load distribution. In Pro-

ceedings of the 25th ACM Symposium on Parallelism in Algorithms and Ar-

chitectures, SPAA ’13, pages 326–335, Montreal, Canada, 2013.

[BN01] Rida A. Bazzi and Gil Neiger. Simplifying fault-tolerance: providing the

abstraction of crash failures. J. ACM, 48:499–554, May 2001.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-

pletely asynchronous agreement protocols. In Proceedings of the second an-

nual ACM symposium on Principles of distributed computing, PODC ’83,

pages 27–30, New York, NY, USA, 1983. ACM.

[Bra87] Gabriel Bracha. An o(log n) expected rounds randomized byzantine generals

protocol. J. ACM, 34(4):910–920, October 1987.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast

protocols. J. ACM, 32(4):824–840, October 1985.

[CHT99] Soma Chaudhuri, Maurice Herlihy, and Mark Tuttle. Wait-free implementa-

tions in message-passing systems. Theoretical Computer Science, 220(1):211–

245, June 1999.

[CnR08] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology

upper and lower bounds for renaming. In Proceedings of the Twenty-seventh

ACM Symposium on Principles of Distributed Computing, PODC ’08, pages

295–304, Toronto, Canada, 2008. ACM.

[CnR12] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology

bounds for renaming: The upper bound. J. ACM, 59(1):3:1–3:49, March

2012.

94

[CR10] Armando Castaeda and Sergio Rajsbaum. New combinatorial topology

bounds for renaming: the lower bound. Distributed Computing, 22(5-6):287–

301, 2010.

[Dij82] Edsger W. Dijkstra. On weak and strong termination. In Selected Writings on

Computing: A Personal Perspective, pages 355–357. Springer-Verlag, 1982.

[DLP+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and

William E. Weihl. Reaching approximate agreement in the presence of faults.

J. ACM, 33:499–516, May 1986.

[DS82] Danny Dolev and Raymond Strong. Polynomial algorithms for multiple pro-

cessor agreement. In Proceedings of the 14th Annual ACM Symposium on

Theory of Computing, STOC ’82, pages 401–407, San Francisco (CA), USA,

1982.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-

tine agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a synchronous

ring. J. ACM, 34(1):98–115, January 1987.

[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility

proofs for distributed consensus problems. In Proceedings of the fourth annual

ACM symposium on Principles of distributed computing, PODC ’85, pages

59–70, New York, NY, USA, 1985. ACM.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility

of distributed consensus with one faulty process. J. ACM, 32:374–382, April

1985.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agree-

ment. In Proceedings of the twentieth annual ACM symposium on Theory of

computing, STOC ’88, pages 148–161, New York, NY, USA, 1988. ACM.

95

[Gaf09] Eli Gafni. The extended bg-simulation and the characterization of t-

resiliency. In Proceedings of the 41st Annual ACM Symposium on Theory

of Computing, STOC ’09, pages 85–92, Bethesda, Maryland, USA, 2009.

ACM.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Tech-

niques. Cambridge University Press, 2001.

[Gon81] Gaston Gonnet. Expected length of the longest probe sequence in hash code

searching. J. ACM, 28(2):289–304, April 1981.

[GT89] Ajei Gopal and Sam Toueg. Reliable broadcast in synchronous and asyn-

chronous environments (preliminary version). In Distributed Algorithms,

volume 392 of Lecture Notes in Computer Science, pages 110–123. Springer

Berlin Heidelberg, 1989.

[GY89] Ronald L. Graham and Andrew Chi-Chih Yao. On the improbability of

reaching byzantine agreements (preliminary version). In STOC, pages 467–

478, 1989.

[HS99] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous

computability. J. ACM, 46(6):858–923, November 1999.

[IR81] Alon Itai and Michael Rodeh. Symmetry breaking in distributive networks.

Foundations of Computer Science, IEEE Annual Symposium on, 0:150–158,

1981.

[KPP+13] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and

Amitabh Trehan. Sublinear bounds for randomized leader election. In Dis-

tributed Computing and Networking, volume 7730 of Lecture Notes in Com-

puter Science, pages 348–362. Springer Berlin Heidelberg, 2013.

[KY86] Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for

byzantine agreement. Manuscript, 1986.

96

[LSP82a] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[LSP82b] Leslie Lamport, Robert Shostak, and Michael Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[LW11a] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel ran-

domized load balancing. CoRR, abs/1102.5425, 2011.

[LW11b] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel random-

ized load balancing: Extended abstract. In Proceedings of the 43rd Annual

ACM Symposium on Theory of Computing, STOC ’11, pages 11–20, San

Jose, CA, USA, 2011.

[Mit01] Michael Mitzenmacher. The power of two choices in randomized load balanc-

ing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–

1104, Oct 2001.

[NT88] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of

distributed systems. In Proceedings of the seventh annual ACM Symposium

on Principles of distributed computing, PODC ’88, pages 248–262, New York,

NY, USA, 1988. ACM.

[OBG08] Michael Okun, Amnon Barak, and Eli Gafni. Renaming in synchronous

message passing systems with byzantine failures. Distributed Computing,

20:403–413, 2008.

[Oku10] Michael Okun. Strong order-preserving renaming in the synchronous message

passing model. Theoretical Computer Science, 411(40-42):3787 – 3794, 2010.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In

Proceedings of the 46th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS ’05, pages 563–572, Washington, DC, USA, 2005. IEEE

Computer Society.

97

98

List of Publications

The results desribed in this thesis have been published and presented by the author in

the following venues:

• Dan Alistarh, Oksana Denysyuk, Lúıs Rodrigues, and Nir Shavit. Balls-into-leaves:

sub-logarithmic renaming in synchronous message-passing systems. In Proceedings

of the 2014 ACM symposium on Principles of distributed computing (PODC ’14). pp

232-241, 2014. ACM (invited for PODC ’14 special issue in Distributed Computing

journal.)

• Oksana Denysyuk and Lúıs Rodrigues. Byzantine renaming in synchronous systems

with t < N. In Proceedings of the 2013 ACM symposium on Principles of distributed

computing (PODC ’13). pp. 210-219. ACM

• Oksana Denysyuk, Lúıs Rodrigues, Order-Preserving Renaming in Synchronous Sys-

tems with Byzantine Faults, In Proceeding of the 2013 IEEE 33rd International

Conference on Distributed Computing Systems (ICDCS ’13), pp. 276-285, 2013 ,

2013. IEEE

• Oksana Denysyuk and Lúıs Rodrigues. Brief announcement: order-preserving re-

naming in synchronous message passing systems with byzantine faults. In Proceed-

ings of the 2012 ACM symposium on Principles of distributed computing (PODC

’12). pp. 233-234. ACM

99

	Introduction
	Renaming
	Summary of Contributions
	Renaming with Crash Faults
	Renaming with Byzantine Faults
	Order-Preserving Renaming with Byzantine Faults

	Outline of the Thesis

	Related Work
	Renaming in Synchronous Systems
	Renaming with Crash Faults
	Renaming with Byzantine Faults
	Order-Preserving Renaming with Crash Faults
	Discussion

	Other Related Problems
	Balls into Bins
	Randomized Symmetry Breaking

	Model and Definitions
	Basic System Model
	Fault Models
	Crash Faults
	Byzantine Faults

	Cryptographic Techniques
	Problem Statement
	Renaming
	Order-Preserving Renaming

	Complexity Measures

	Renaming with Crash Faults
	Balls-into-Leaves Algorithm
	Tight Renaming using Balls-into-Leaves
	Correctness

	Complexity Analysis
	Bounding the Number of Balls at a Node
	Bounding the Number of Balls on a Path
	The Impact of Crashes on Round Complexity
	Experimental Evaluation

	Early Terminating Extension

	Renaming with Byzantine Faults
	Renaming with the Non-Rushing Adversary
	Renaming with the Rushing Adversary
	Case of t=1
	General Case of t>1

	Order-Preserving Renaming with Byzantine Faults
	Algorithm for n>3t
	Id Selection Phase
	Approximation Phase
	Correctness
	Complexity Analysis

	Algorithm for n>t2+2t with 7 Rounds and Tight Namespace
	Algorithm for n>t2+2t with Only 2 Rounds
	Correctness
	Complexity Analysis

	Impossibility Result for n3t

	Conclusions
	Bibliography

