
Fast Localized Delaunay Triangulation∗

Filipe ARAÚJO

Universidade de Lisboa

filipius@di.fc.ul.pt†

Luı́s RODRIGUES

Universidade de Lisboa

ler@di.fc.ul.pt †

Abstract

A localized Delaunay triangulation owns the following interesting properties in a wireless ad
hoc setting: it can be built with localized information, the communication cost imposed by con-
trol information is limited and it supports geographical routing algorithms that offer guaranteed
convergence. This paper presents a localized algorithm that builds a graph called planar localized
Delaunay triangulation, PLDel, known to be a good spanner of the unit disk graph, UDG. Un-
like previous work, our algorithm builds PLDel in a single communication step, maintaining a
communication cost of O(n logn), which is within a constant of the optimum. This represents a
significant practical improvement over previous algorithms with similar theoretical bounds. Fur-
thermore, the small cost of our algorithm makes feasible to use PLDel in real systems, instead
of the Gabriel or the Relative Neighborhood graphs, which are not good spanners of UDG.

Keywords: Wireless ad hoc networks, Location-based routing schemes, Delaunay triangulation

1 Introduction

Wireless ad hoc networks are networks where nodes communicate with neighbors within some range
using a wireless link. Nodes of a wireless network typically operate on batteries and thus have rela-
tively few memory and energy resources. It is therefore utterly important to rely on routing schemes
with small state and communication overhead. This requirement can be met by a localized routing
scheme, where nodes only maintain information about other nodes within a limited neighborhood. On
the other hand, for the sake of efficiency, a routing scheme should be competitive, i.e., any path found
by the scheme should be at most c times longer than the shortest path. However, Kuhn et al. proved
that no localized scheme can be c-competitive [9]. Still, a localized routing scheme can guarantee
convergence, while achieving competitive path lengths in most cases.

∗This work was partially supported by LaSIGE and by the FCT project INDIQoS POSI/CHS/41473/2001 via POSI and
FEDER funds. Selected portions of this report will be published in the proceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS), December 15-17 2004, Grenoble, France.
†Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifı́cio C6, 1749-

016 Lisboa, Portugal.

1

One way of achieving competitive routing is to build a global Delaunay Triangulation [2]. Un-
fortunately, building such a graph is not a viable solution to the routing problem in ad hoc wireless
networks, because: i) edges may be longer than communication range; ii) it cannot be built locally
and therefore, communication cost is too high. Hence, our approach is to build a planar graph (i.e.,
without intersection of edges) as dense as possible (O(n) edges), using Delaunay triangulations, but
in a localized fashion. The point of having a dense graph is to use routing algorithms that achieve
good hop count performance, while planarity is necessary to ensure convergence.

In literature, there are several algorithms that build Delaunay triangulations for routing purposes,
e.g., [12, 13, 6, 10]. The algorithm in [13] builds a subgraph of the global Delaunay triangula-
tion that only includes some of the edges within communication range of nodes; [12], [6] and [10]
build a denser graph, with global communication cost of O(n logn), O(n2) and O(n2), respectively.
While [6] and [10] are not optimal, [12] involves 4 communication steps to build the final subgraph,
which may be prohibitive in practical systems. Hence, in this paper, we improve on the work of Li
et. al [12], by presenting an algorithm that is considerably simpler and yet builds the same Planar

Localized Delaunay Triangulation graph (PLDel), with the same asymptotic communication cost,
but with just a single communication step (we define a communication step as the period required for
sending and then receiving one or more messages which are not causally related).

Therefore, our algorithm is well suited to wireless environments for the following reasons: i)
it is very efficient as it requires just one communication step; ii) it is applicable to dynamic and
asynchronous settings (see Section 6); iii) it is localized, only requiring nodes to receive information
broadcast by direct neighbors, thus requiring a communication cost within a small constant of the
optimum (assuming that a beacon message of O(logn) bits in an n-node network is necessary per
node); iv) it requires nodes to keep track of only a constant number of neighbors in the average; v)
under the constraint of preserving planarity, it builds a graph with good density (see Section 5).

The rest of the paper is structured as follows. For self-containment we provide a short overview
of necessary concepts in Section 2. In Section 3 we provide a survey on related work on wireless net-
works and Delaunay triangulations. In Section 4 we describe our algorithm and prove its correctness.
In Section 5, we experimentally evaluate our algorithm. The appplication of the algorithm in dynamic
settings is discussed in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

We assume that nodes can determine their own position and the position of their neighbors. Given a
set of nodes V in a two dimensional space, we model a wireless ad hoc network as a unit disk graph,
UDG(V), which is comprised of all nodes V and all edges connecting pairs of nodes of V whose
distance is at most 1, i.e., in this model, two nodesA andB are direct neighbors (or simply neighbors)
if and only if ||AB|| ≤ 1. Nodes A and B are k-hop neighbors if they can reach each other in k or
fewer hops. Throughout this paper, we will use the following notation: a triangle defined by nodes
A, B and C is represented as 4ABC; an angle (< π) between edges AB and AC defined at A is

2

interchangeably represented as ∠BAC or ∠CAB; the circle whose diameter is defined by two nodes
A and B is represented as d(A,B); the circumcircle defined by node A, B and C is represented as
©ABC.

The Gabriel graph (GG) is comprised of all edges AB such that d(A,B) does not contain any
other node of V . The edges of a GG are called Gabriel edges. The Relative neighborhood graph

(RNG) is comprised of all edges AB such that there is no node C for which ||AC|| < ||AB|| and
||BC|| < ||AB|| (i.e., node C, cannot be simultaneously closer to A and B than A and B are from
each other). It should be noted that RNG is a subgraph of GG. The Delaunay triangulation (DT)
of a node set V , represented as Del(V), is the set of edges satisfying the “empty circle” property:
edge AB belongs to the triangulation if and only if there is a circle containing A and B, but not
containing any other node. An important property of Del(V) that will be of use to us, states that
the circumcircle of a triangle does not contain any node of V . Under the UDG model, a complete
Delaunay triangulation may not exist, because some edges may be longer than 1 and therefore, we
refer to UDel(V) = Del(V) ∩ UDG(V) instead.

In this paper we will use the definition proposed in [12] of k-localized Delaunay graph over a node

set V , LDel (k)(V). LDel (k)(V) is comprised of two types of edges (not longer than 1): i) all edges
from theGG; and ii) edges of all trianglesABC for which there are no nodes inside©ABC reachable
by A, B or C in k or fewer hops. Li et al. [12] proved that LDel (k)(V) is planar for k ≥ 2, but edges
may intersect for k = 1. PLDel(V) [12, 10] is defined as a planar graph comprised of all triangles of
LDel (1)(V), except intersecting triangles that do not belong to LDel (2)(V). Moreover, Li et al. [12]
proved thatUDel(V) is a (4

√
3π)/9-spanner ofUDG(V) and thatLDel (k)(V) ⊇ UDel(V). Hence

PLDel(V) and LDel (k)(V), for all k, are also (4
√

3π)/9-spanners of UDG(V).

3 Related Work

In literature, we can find several algorithms that build Delaunay triangulations, e.g. [11, 4, 16]. Of
particular interest to us are the algorithms that allow Delaunay triangulations to be computed in an
incremental way [1, 17], as new nodes that arrive later do not force a recomputation of the entire
triangulation.

In [14], Liebeherr et al. proposed an algorithm to build a complete non-localized Delaunay tri-
angulation that serves as an overlay network on top of IP. However, direct application of this algo-
rithm to the more complex setting of a wireless environment is not possible since Delaunay neigh-
bors may not be able to communicate if their distance is greater than 1. In the context of wireless
networks, geographic routing algorithms like greedy and compass have received wide attention in
literature [8, 18]: these algorithms are memoryless and may achieve excellent performance in dense
graphs or even in graphs with O(n) edges, based on Delaunay triangulations, as shown by experi-
mental results of [12, 10]. Unfortunately, these algorithms are not guaranteed to converge. When they
fail, one has to use alternative routing algorithms, such as algorithms based on the right-hand rule
which are guaranteed to converge as long as the graph is planar. This commutation from greedy to

3

perimeter routing was first proposed in [3] and later explored in a protocol called Greedy-Perimeter
Stateless Routing (GPSR) [7]. To extract planar subgraphs from non-planar graphs, RNG, GG or
variations of the Delaunay triangulation [19, 5, 2, 13], may be used. As density is important to achieve
good routing performance, many authors have focused on increasing it, to create good spanners of
UDG(V) [6, 20, 10, 12]. Some of these approaches [6, 10, 12] are based on Delaunay triangulations,
because efficient algorithms can be used to build graphs that are good spanners of UDG(V).

Gao et al. [6] use a triangulation algorithm that builds a planar graph called restricted Delau-

nay graph (RDG). RDG is a graph that contains UDel(V). Communication cost of their algo-
rithm is O(n2) In [12], Li et al. presented an algorithm that builds PLDel(V) (also a supergraph of
UDel(V)), with communication cost of O (n log n). Lan and Wen-Jing [10] also build PLDel(V)

but with higher communication cost (O(n2)). In [13], Li et al. presented algorithms that build sub-
graphs of UDel(V) based on 1 and 2-hop neighbor information. Although their algorithms are sim-
ple, their graphs are less dense than any of the previous graphs and it is unclear whether they are good
spanners of UDG(V).

Our algorithm improves the results of Li et al. [12]. Although the asymptotic communication cost
of both algorithms is the same, namely O(n logn), our algorithm requires one communication step,
while [12] requires 4 communication steps. Thus, our algorithm converges much faster. Furthermore,
the total signaling cost of our algorithm is much smaller, as we will show in the evaluation section,
because in FLDT nodes send only a subset of the Delaunay triangulation in their single communication
step (if the subset is empty no message is sent).

4 Triangulation Algorithm

In this section we present a new Fast Localized Delaunay Triangulation (FLDT) algorithm that builds
a PLDel(V) graph.

4.1 Description

The FLDT algorithm is decentralized, as it does not rely on any centralized component, and localized,
since nodes are only required to gather knowledge about some nodes in their 2-hop neighborhood. The
algorithm builds a triangulation that ensures routing between any pair of nodes as long as UDG(V)

is connected. The algorithm consists of the following logical steps:

1. The neighbor discovery step. The purpose of this step is to allow nodes to discover their
neighbors. For sake of clarity, we first describe and analyze the algorithm in the context of a fixed
setting, where all nodes know their neighbors a priori. The discussion of the use of our algorithm in
the context of dynamic settings (that may require the exchange of BEACON messages) is postponed to
Section 6.

2. The triangulation step. The purpose of this step is to let each node compute and advertise
to its neighbors the relevant Delaunay triangulations. Based on the information collected during the

4

neighbor discovery step, each node P locally computes a Delaunay triangulation. For convenience
of exposition, we introduce the predicate Delaunay4P (Q,R) that holds true at P if, according to
the triangulation computed by node P , triangle 4PQR should exist. Delaunay4PQR will also be
used when referring to the predicate at no particular node. When Delaunay4P (Q,R) holds at P , if
∠QPR ≥ π/3, then P broadcasts a TRIANGULATE4PQR message to all nodes within range.

The purpose of the π/3 condition is to ensure that no node will issue more than 6 TRIANGULATE

messages by its own initiative (as in [12]). Since no additional messages are sent in the following
steps, total communication cost of FLDT is O (n log n). In practice, the constant involved in this
bound is small, because, as we show in Section 5, each node announces less than 6 other nodes in
average.

3. The sanity step. The purpose of this step is to let neighbor nodes eliminate inconsistent Delau-
nay triangulations. They do so by comparing triangulations computed locally with the triangulations
computed by their neighbors in Step 2, as advertised by TRIANGULATE messages. Note that by pro-
cessing TRIANGULATE messages, nodes may learn about new nodes that are not their direct neighbors.
This addititional information will never create new Delaunay triangulations, as triangulations must be
formed with direct neighbors. However, TRIANGULATE messages may invalidate some of the triangu-
lations computed in Step 2. This may happen at P if: i) Q or R broadcast a TRIANGULATE message
with some node T that invalidates 4PQR, i.e., T ∈ ©PQR, or ii) some node W sends a TRIAN-
GULATE message with an intersecting triangle WXZ, where either X or Z invalidate 4PQR, i.e.,
X ∈ ©PQR or Z ∈ ©PQR. Case i) ensures that a node only maintains a predicate if its neighbors
are not aware of some node that invalidates it, while case ii) avoids the existence of intersections 1.

4. The Gabriel edges step. The purpose of this step is to add to the graph all missing Gabriel
edges. Otherwise, despite always being correct, a Gabriel edge PQ for which no predicate Delau-

nay4P (Q,R) holds at P (e.g., after switching to false in Step 3) would not be included by P . This
will increase the density of the graph, while keeping O(n) edges (note that a Gabriel edge always
belongs to the Delaunay triangulation and can be determined locally without additional exchange of
information).

Optimization. To simplify our algorithm, all TRIANGULATE messages should be sent in a single
control message. �

When comparing FLDT with previous solutions [12, 10] one must notice that the simplicity of our
algorithm comes from two insights, that we later prove correct in Section 4.2. First, proposals sent in
TRIANGULATE messages, alone, suffice to confirm or reject triangulations proposed by neighbors in
their own TRIANGULATE messages (and vice-versa), i.e., there is no need to dedicated replies. This
insight builds on the observation that two Delaunay neighbors do not need to agree on some predicate
Delaunay4PQR. It can hold at P but not atQ andR if these two latter nodes are out of range of each
other. The fundamental issue is, in fact, to ensure that two nodes P and Q always agree on whether

1Note that case i) can also prevent some intersections.

5

edge PQ should exist (Lemma 4). Second, if three nodes P , Q and R wrongly assume the existence
of4PQR, intersected by4WXZ, such that one of the nodes of4WXZ is inside©PQR, then P ,
Q and R will listen to the same TRIANGULATE message on 4WXZ, thus commuting the predicate
Delaunay4PQR to false simultaneously at P , Q, and R (Lemma 5).

4.2 FLDT Builds PLDel(V) in a Single Communication Step

In this Section we show that, after a single communication step, our algorithm builds PLDel(V). To
see this, we reason as follows and present the necessary proofs afterward. The triangulation computed
at step 2 of the algorithm is a super-graph of LDel (1)(V). Only step 3 of the algorithm removes edges
from the graph: either edges from triangles that did not belong to LDel (1)(V) in the first place, and
edges from all intersecting triangles that did not belong to LDel (2)(V). Therefore, the graph built
by FLDT is a subgraph of LDel (1)(V) (Lemma 3), which is planar (Lemma 5). In fact, this graph is
PLDel(V) (Theorem 1).

In the proofs we assume that the network is static and that links are perfect (i.e., no messages are
lost). This assumption is made for sake of clarity. In Section 6 we discuss how lossy links can be
addressed by the algorithm in practical dynamic settings (where nodes can join or leave). Note also
that in the proofs we assume that no four nodes are co-circular (this scenario can be trivially addressed
using simple tie-breaking rules).

Lemma 1 In the UDG(V) model, if two edges AB and CD of a given node set V intersect, then at

least one of the nodes is within communication range of the other three.

Proof 1 We first note that if AB intersects CD and if d(A,B) includes C, C knows of A, B and D.

Since AB intersects CD, d(A,B) and d(C,D) have overlapping areas (one may even contain the

other) and hence it follows that at least one of the nodes (e.g., C) is inside the circle defined by the

other pair of nodes (e.g. d(A,B)), thus proving the Lemma. �

Lemma 2 If after the Delaunay triangulation computed at step 2 of the FLDT algorithm, Delaunay

4A(B,C) holds, but edge AB cannot exist at B, B will send a TRIANGULATE message with at least

one node D ∈ ©ABC.

Proof 2 Refer to Figure 1. Since non-Gabriel edge AB exists at A, C must be inside d(A,B) (e.g.

see [10]). In this case, AB cannot exist at B if Delaunay4B(X,D) holds at B for some nodes X

and D and XD intersects AB (assume w.l.o.g. that X and C are on the same side of AB, possibly

with X = C). D ∈ ©ABC, because otherwise ©BXD, would contain A which would be a

contradiction (D′ in the figure must be outside d(A,B) and closer toB than toA:©D′BC intersects

©ABC at B and C, thus for X = C it contains A; if X 6= C, ©D′BX intersects©D′BC at B

and D′, thus containing the part of©D′BC that contains A). Since, ∠XBD > ∠ABD > π/3, B

will send information of D in its TRIANGULATE messages. �

6

A B

C

D

X

D’

Figure 1: A and B do not agree on4ABC

A B C
E

F

G

H

Figure 2: A, B and C wrongly agree on4ABC

Corollary 1 At the end of the FLDT algorithm, any node N , simultaneously neighbor of A and B in

the conditions of Lemma 2, will know about some node D ∈ ©ABC.

Lemma 3 At the end of the FLDT algorithm, Delaunay4A(B,C) holds atA only if there is no direct

neighbor D of A, B or C such that D ∈ ©ABC.

Proof 3 If edge AB cannot exist at B, the proof follows from Lemma 2. Hence, we will focus on

the case where AB exists at A and B. The case where there is a common neighbor C ∈ d(A,B)

for which Delaunay4ABC holds at A and B, does not contradict the Lemma. Assume now that

Delaunay4A(B,C) holds, while Delaunay4B(A,C) does not (Delaunay4B(A,D) holds instead,

with C and D lying on the same side of edge AB). Since C,D /∈ d(A,B) [10] we can use circum-

circles to argue that either D ∈ ©ABC with ||DA|| > 1 or ||BC|| > 1 (both cases can occur

simultaneously). The latter case alone does not contradict the Lemma and, in the former case, since

||AD|| > 1, ∠ABD > π/3 and hence, B will send a TRIANGULATE message on 4ABD, thus

making A switch Delaunay4A(B,C) to false. The Lemma follows. �

Lemma 4 At the end of the FLDT algorithm, if edgeAB exists atA, it must exist atB, either because

it is a Gabriel edge or because there is one predicate Delaunay4ACB holding at A and B for some

common neighbor C ∈ d(A,B).

Proof 4 Given Lemma 2, the only not so trivial thing to prove is that non-Gabriel edge AB cannot be

deleted by A and maintained by B or vice-versa at step 3 of the algorithm. Hence, assume that node

A deletes edge AB, because Delaunay4A(B,C) does not hold anymore due to some intersecting

edge with node D ∈ ©ABC, which is not a direct neighbor of A, B or C. In this case, by Lem-

mas 1 and 3, A must have received information of D through a common neihbor of A, B and C and

Delaunay4ABC will not hold at any of the three nodes A, B or C. �

As a consequence of the Lemma 3, the final graph is a subgraph of LDel(1)(V) (which may not
be planar). The following Lemma serves to ensure that no intersection is possible.

7

Lemma 5 Graph built by FLDT is planar.

Proof 5 Refer to Figure 2 [12, 10]. Assume that Delaunay4ABC holds at A, B and C and that

4ABC intersects EF (at AB and AC). If E has more than one intersecting edge with AB, assume

w.l.o.g. thatEF defines the minimum angle ∠FEA, with F ∈ ©ABC (E cannot define an intersect-

ing edge EF ′ if F ′ /∈ ©ABC, because, in that case, any circle containing E and F ′ would have to

include at lest one of the nodesA,B or C known byE). By Lemma 4, edgeEF exists atE only ifEF

is a Gabriel edge or if some predicate Delaunay4EFG holds at E and F at the end of the algorithm

(assume w.l.o.g. that G is at the left of EF). In the latter case, either EG or GF would also intersect

AB andAC. Since by hypothesis F defines the smallest angle∠FEA it must beGF . By Lemma 1, in

this case, G must be within communication range of A, B and C. ∠AFB < π/3⇒ ∠EFG < π/3,

which means that A (the same goes for B and C) will always listen to some TRIANGULATE message

with edge EF (from E or G) and will eliminate wrong edge AB (AC).

Now, consider the case where EF is a Gabriel edge. Then, there must be some node G, pos-

sibly G = A for which Delaunay4E(F,G) holds. By hypothesis AB and GE do not intersect.

If ∠FEG > π/3 E sends a TRIANGULATE message and the Lemma follows. Otherwise, a new

subdivision in cases is needed: GE exists at G and GE does not exist at G. In the first case,

Delaunay4G(E,H) holds and H may be, in fact, node F . For reasons similar to the ones given

before, H ∈ ©ABC. ∠AHB < π/3⇒ ∠GHE < π/3. Since G knows of F , H 6= F ⇒ ||HE|| >
1⇒ ∠HGE > π/3. This means that either G or E or both will send a TRIANGULATE message with

information of F or H ∈ ©ABC. In the second case, if the triangulation computed by G does not

include non-Gabriel edge GE then, by Lemma 2, for some X ∈ d(E,G), G will send information of

H ∈ ©EXG ⇒ H ∈ ©ABC above AB. Whether GE exists or not in G, by Lemma 1 and Corol-

lary 1 A, B and C will hear about some intersecting edge with node H ∈ ©ABC, thus switching

Delaunay4ABC to false. �

We know that since nodes can send their TRIANGULATE messages independently of each other
in a single communication step, by Lemmas 3 and 5 and for the reasons explained before, it follows
that FLDT builds a subgraph of PLDel(V). However, we still need to prove that it is not possible
for some edge AB ∈ LDel(1)(V) to be incorrectly deleted due to the announcement of some other
intersecting edge EF /∈ LDel(1)(V).

Theorem 1 After a single step of communication, FLDT builds the graph PLDel(V).

Proof 6 Refer to Figure 2. If AB ∈ LDel(1)(V) is deleted by existence of edge EF /∈ LDel(1)(V)

it cannot be a Gabriel edge, because a Gabriel edge is always correct. Hence, ∃C ∈ d(A,B)|
Delaunay4ABC holds at A and B. However, w.l.o.g. F ∈ ©ABC. Since EF /∈ LDel(1)(V), it

is not a Gabriel edge and ∃K1 ∈ d(E,F) (not shown), such that K1E or K1F intersects AB (note

that ||K1E|| < ||EF || and ||K1F || < ||EF ||). Given that A,B /∈ d(E,F) and A,B /∈ d(K1, E) if

intersection is withK1E (d(K1, F) if intersection is withK1F), it follows that even if the intersecting

8

(a) RNG (b) GG (c) PLDel (d) UDG (e) Delaunay

Figure 3: Example of graphs

edge /∈ LDel(1)(V), we can inductively repeat the reasoning until we find one intersecting edge

∈ LDel(1)(V). Hence, even if AB is deleted due to some edge EF /∈ LDel(1)(V), there is some

other edge ∈ LDel(1)(V) that would legitimately delete AB. Theorem follows. �

5 Evaluation

In this section, we compare i) routing performance in each of the following graphs: RNG, GG,
PLDel, UDG and DT and ii) signaling cost of FLDT versus the algorithm of [12]. Figure 3 il-
lustrates the graphs in a network of 100 nodes. We have used the GPSR routing algorithm [7] in
all graphs, except UDG, which is not planar. In UDG we have used the greedy routing algorithm.
Results for DT are depicted only to serve as a reference, because, as we have discussed before,
such triangulation is not possible in a wireless environment. Since node density has a crucial im-
pact on the performance of routing algorithms, in our experiments, we have distributed a variable
number of nodes (between 140 and 600) inside a square of fixed side (7.5 times the communication
range). Reader should notice that density cannot be arbitrarily reduced, because disconnected topolo-
gies would result with high probability. On the other hand, increasing node density will benefit UDG,
because greedy routing will converge with increasingly higher probability and, unlike the remaining
graphs, paths will become shorter.

Figure 4 shows the average path length in number of hops (for paths where greedy did not failed),
while Figure 5 depicts the percentage of failures for the greedy routing algorithm in the UDG graph.
Both curves are functions of the average number of neighbors of a node 2. From the figures, it is
quite evident that when node density is high, no subgraph can do better than UDG, unless memory
usage is an issue and a node does not want to maintain all its neighbors. In this case, PLDel may
be a good option, because nodes need to maintain only a constant number of neighbors in average.
On the other hand, when node density decreases, PLDel is definitely the preferable choice, because
it achieves the best performance among the algorithms that ensure routing convergence. Since the

2For a node whose communication (unit) disk is entirely inside the simulation square.

9

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r o

f h
op

s

Average number of neighbors

UDG
DT

PLDel
GG

RNG

Figure 4: Average number of hops

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35

Fa
ilu

re
 ra

te

Average number of neighbors

UDG failure rate

Figure 5: Failure rate in the UDG

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r o

f n
ei

gh
bo

rs
 a

nn
ou

nc
ed

Average number of neighbors

FLDT
Li et al.

Figure 6: Average number of neighbors announced by each node

possibility of a greedy routing failure always exists, no matter how large node density is, it may also
be a good idea to maintain two graphs in memory: UDG and PLDel. The point is to use greedy in
UDG whenever possible for performance reasons and switch back to a right-hand rule algorithm and
to PLDel in case greedy fails. Such solution has the advantage of being oblivious to node density.
It is also interesting to observe that the number of hops obtained in PLDel is typically quite close to
that number in a DT , for high densities, where all edges are short, but the same is not true when node
densities are small, because in these cases, DT uses long edges, thus saving many hops.

To complete our evaluation, we depict in Figure 6 the average number of neighbors announced by
each node, in the algorithm of Li et al. and in our own algorithm. Note that whenever a triangle is
announced, two nodes are counted (the sending node is not counted). The algorithm of Li et al. also
needs to announce Gabriel edges, which are counted as only one node (again, sending node is not
counted). We can see that the number of nodes announced stabilizes in both algorithms as the density
increases, and that our algorithm announces approximately between 5.2 and 7 times fewer nodes for
the densities of interest. Furthermore, while our algorithm needs a single communication step, the
algorithm of Li et al. needs 4 steps. Therefore, we believe that these results show that our algorithm

10

builds PLDel very efficiently.

6 Application in Dynamic Settings

So far, we have described the execution of our algorithm in a static setting, where a node knows a

priori all its neighbors. We now discuss the application of our algorithm in dynamic settings.

The application of any graph building algorithm in a dynamic setting requires a complementary
mechanism to discover new nodes and to detect the departure/failure of existing nodes. In an op-
timized implementation, the concrete mechanisms to be used may depend on the physical and data
link layer technology. However, in the literature (for instance, [12, 10]) it is usually assumed that
nodes periodically exchange BEACON messages. We would like to emphasize that our algorithm is
particularly well suited for such setting, as TRIANGULATE messages can be easily piggybacked to (or
even replace) BEACON messages. Therefore, when BEACON messages are required, our algorithm
can be implemented with no additional messages, becoming extremely competitive with regard to the
Gabriel or the Relative Neighborhood graphs, which are not good spanners of UDG.

Also, for sake of simplicity, we have assumed perfect channels in our exposition (i.e., no message
losses). However, in a dynamic setting, BEACON messages have to be exchanged periodically. This
means that, at no additional cost in terms of number of messages exchanged, our algorithm may
retransmit periodically TRIANGULATE and recalculate PLDel at the end of each period. Therefore,
even if links are lossy, it can be shown that, as long as links are fair (i.e., if a message is sent infinitely
often by a process p then it can be received infinitely often by its receiver [15]), any new node will
eventually participate in the triangulation.

7 Conclusions

Routing protocols for wireless ad hoc networks may benefit from using a planar and localized Delau-
nay triangulation to achieve good routing performance, while, at the same time, guaranteeing conver-
gence. Therefore, in this paper we presented a new algorithm, FLDT, to build a well-known graph
called PLDel. Our experimental results show that PLDel can be used either to substitute the UDG,
when node density is small, or as a complementary graph that ensures routing convergence for all
node densities.

FLDT has a communication cost of O(n logn), which is within a constant of the optimal and
requires a single communication step (unlike previous work, that requires 4 communication steps). We
have also shown that the signaling cost of FLDT is much smaller than that of previous approaches, due
to the small number of control messages. Furthermore, in dynamic settings that require the exchange
of beacon messages, our algorithm requires no more messages than the algorithms used to build the
very simple but inefficient GG or RNG. Therefore, due to its efficiency, our algorithm is of practical
relevance in location-based wireless ad hoc networks.

11

References

[1] Jean-Daniel Boissonnat and Monique Teillaud. On the randomized construction of the Delaunay
tree. Theoretical Computer Science, 112(2):339–354, 1993.

[2] Prosenjit Bose and Pat Morin. Online routing in triangulations. In 10th Annual Internation

Symposium on Algorithms and Computation (ISAAC), 1999.

[3] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with guaranteed deliv-
ery in ad hoc wireless networks. In International Workshop on Discrete Algorithms and Methods

for Mobile Computing and Communications (DIALM), pages 48–55, 1999.

[4] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, (2):153–174, 1987.

[5] K. Gabriel and R. Sokal. A new statistichal approach to geographic variation analysis. Systematic

Zoology, 18:259–278, 1969.

[6] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric spanners
for routing in mobile networks. In 2nd ACM Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc 01), 2001.

[7] Brad Karp and H. T. Kung. GPRS: Greedy perimeter stateless routing for wireless networks. In
ACM/IEEE International Conference on Mobile Computing and Networking, 2000.

[8] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In 11th Cana-

dian Conference on Computation Geometry (CCCG 99), 1999.

[9] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal geometric mo-
bile ad-hoc routing. In 6th International Workshop on Discrete Algorithms and Methods for

Mobile Computing and Communications (DIALM’02), 2002.

[10] Luan Lan and Hsu Wen-Jing. Localized Delaunay triangulation for topological construction and
routing on manets. In 2nd ACM Workshop on Principles of Mobile Computing (POMC’02),
2002.

[11] Der-Tsai Lee and Bruce J. Schachter. Two algorithms for constructing a Delaunay triangulation.
International Journal of Computer and Information Sciences, 9(3):219–242, 1980.

[12] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed construction of a planar span-
ner and routing for ad hoc wireless networks. In The 21st Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), 2002.

[13] Xiang-Yang Li, Ivan Stojmenovic, and Yu Wang. Partial delaunay triangulation and degree
limited localized bluetooth scatternet formation. IEEE Transactions on Parallel and Distributed

Systems, 15(4):350–361, April 2004.

12

[14] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with Delaunay triangula-
tion overlays. Technical Report CS-2001-26, University of Virginia, Department of Computer
Science, Charlottesville, VA 22904, 5 2001.

[15] N. Lynch. Distributed algorithms. In Data Link Protocols, chapter 16, pages 691–732. Morgan-
Kaufmann, 1996.

[16] F. P. Preparata and M. I. Shamos. Computational geometry: An introduction. Springer-Verlag,
New York, 1985.

[17] R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243–245, 1977.

[18] Ivan Stojmenovic. Position-based routing in ad hoc networks. IEEE Communications Magazine,
July 2002.

[19] G. Toussaint. The relative neighborhood graph of a finite planar set. Pattern Recognition,
4(12):261–268, 1980.

[20] Yu Wang and Xiang-Yang Li. Geometric spanners for wireless ad hoc networks. In The 22nd

IEEE International Conference on Distributed Computing Systems, 2002.

13

