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Abstract. Graphs are data structures that can represent relations among
entities and enable the extraction of insightful information from their
properties. Graph processing systems, that aim at simplifying the compu-
tational analysis of graph structures, typically rely on a vertex-centric ap-
proach to ease the development of parallel algorithms. In this approach,
the computation is modeled as a function that needs to be repeatedly
applied to each vertex of the graph, in an iterative process. The irregular
structure of graphs and the dynamic nature of the domains that they
model, induce load imbalances both in the work performed at each ver-
tex and the number of updates that each region of the graph receives.
Knowledge about this load imbalance could be used to provide a more
efficient allocation of resources during the execution of the graph pro-
cessing task. Many graph processing systems are frequently deployed in
Infrastructure as a Service (IaaS) platforms but, unfortunately, are obliv-
ious to the heterogeneity of resources that exist in such environments.
This prevents them from performing a suitable match among the re-
sources available and the processing needs, which could bring significant
cost savings by avoiding the allocation of expensive resources to graph
regions that have low computational demand. In this report we advocate
the development of a new graph processing system that is aware of the
heterogeneity of underlying resources, to enable it to better adapt to
different usage patterns and reduce deployment costs.
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1 Introduction

The recent growth of datasets represented as graphs (including social net-
works [1], web graphs [2], and biological networks [3]), motivated the appearance
of systems dedicated to the processing of such graph datasets. These systems
leverage the graph structure to ease the development of algorithms that are able
to perform the computational analysis of the graph. Graph processing systems
also provide an efficient execution model to support computations that, typically,
cover the entire graph multiple times using iterative procedures.

The information extracted from these computations usually has a significant
scientific, social, or business value. For example, recommendation systems [4, 5]
leverage on graphs representing relations between users and the products that
these users buy (consumer networks) or people and posts that they follow (social
networks) in order to identify groups of similar users. Based on this information,
these recommendation systems are able to recommend items/posts that the users
are more likely to buy/read, increasing revenue.

Different architectures to build these systems have been proposed. Distributed
graph processing models, such as Google’s Pregel [6], propose a vertex-centric ap-
proach to specify the algorithms that perform the computation on the graph.
According to this approach, the computation is modeled as a compute function
that needs to be repeatedly applied to each vertex of the graph, in an itera-
tive process known as the Bulk Synchronous Parallel (BSP) execution model.
This model is supported by a master/slave architecture, where slaves split the
input graph among them in partitions and become responsible for performing
the computation at each of the assigned partitions. The master node is respon-
sible for coordinating the execution and partitioning the graph in the start of
the process. Single machine architectures have also been proposed to address
the challenges of the distributed counterparts, such as cluster management and
communication overhead. Systems that follow this approach have an identical
vertex-centric computational model and either leverage on secondary storage to
enable large graph processing or use server class machines with large resources
to do so.

To support the dynamic aspect of the underlying graphs, that suffer mod-
ifications as the time goes by, incremental graph processing models have been
proposed. They aim at performing the computations required to reflect the mod-
ifications performed to the graph, such as modifying the static properties of ver-
tices/edges or add/remove new vertices or edges, avoiding to recompute all data
from scratch on the new graph version. These systems typically analyze a batch
of updates identifying the graph regions that are affected by such updates. Then,
computation is performed to update the data associated with the inconsistent
graph zones, rather than to the entire graph. The updates to the graph often ex-
hibit access patterns where is possible to notice that the distribution of vertices
that are modified is not uniform across graph partitions.

Most graph processing systems are deployed on commodity clusters on IaaS
platforms. However, these systems are oblivious to the heterogeneity of resources
in the deployment environment, ignoring opportunities to reduce the costs by



matching the resources with the computational needs. In this work we advocate
the development of a deployment aware incremental graph processing system
able to explore opportunities to reduce the number of necessary machines and
reduce system costs.

The rest of the report is organized as follows. Section 2 briefly summarizes the
goals and expected results of our work. From Section 3 to Section 7 we present
all the background related with our work. Section 3 discusses the properties
and objectives of different systems designed to manage graph structures. On
Section 4 we present some examples of algorithms that typically run on these
systems. Next, Section 5 presents examples of some graph processing systems
detailed in the literature. Section 6 introduces the incremental graph processing
model and gives examples of systems that follow this model. Section 7 discusses
on deployment environments. Section 8 describes the proposed architecture to
be implemented and Section 9 describes how we plan to evaluate our results.
Finally, Section 10 presents the schedule of future work and Section 11 concludes
the report.

2 Goals

Most of the current graph processing systems are oblivious to the hetero-
geneity of resources that exists in their deployment environment, thus losing
opportunities to reduce the associated costs. This work makes a survey of exist-
ing graph processing systems, identifying their main characteristics, advantages,
and disadvantages, with the aim of finding opportunities to reduce the deploy-
ment costs by leveraging knowledge about the heterogeneity of resources. More
precisely:

Goals: The main goal of our work is to design and implement a new
graph processing system aware of the heterogeneity of resources that may
exist in the deployment environment. The system should be able to take
advantage of imbalances in computational demand on different graph
zones, to better match the resources with the computational needs, thus
reducing the costs associated with deployment.

To achieve our goal, is important to identify imbalances in the computa-
tional demand, understand the implications of having machines with different
resources, or even some machines turned off, while computations are being per-
formed and how to handle this heterogeneity.

The project will produce the following expected results.

Expected results: The work will produce i) a graph processing system
that can automatically match machines with heterogeneous resources
to the needs of the computations being performed on different regions
of the graph; ii) an implementation of the proposed system and iii) an
extensive experimental evaluation to analyze the cost reductions it may
provide and its impact on the system’s performance.



3 Graph Management Systems

Graphs are data structures composed of a set of vertices and a set of edges.
An edge connects two vertices and captures a relationship between the vertices
it connects. This structure has a high expressive power, allowing it to model
many different kinds of systems. The rich model provided by graphs creates an
elegant representation for problems that would not be easily expressed using
other abstactions. Several science areas can benefit from the use of graphs to
model the objects of study [7] including, among others, social sciences, natural
sciences, engineering, and economics.

We provide a few examples of applications where graphs are useful. On so-
cial sciences, social graphs can be used to model contact patterns (edges) among
individuals (vertices) [8]. Information graphs, or knowledge graphs, represent the
structure of stored information. A classic example of such graph is the network of
citations between academic papers[9]. Technological graphs can represent man-
made networks designed typically for distribution of some commodity or re-
source, road networks and airline routes are typical examples of such graphs.
Biological networks represent natural structures like the food web, in which the
vertices represent species and edges represent prey/predator relationships [10],
another example of biological networks are neural networks [11]. Finally, markets
can also be modelled by graphs. Gartner [12] points to consumer web identify-
ing five different graphs on this matter: social, intent, consumption, interest and
mobile graphs. By storing, manipulating, and analyzing market data modeled
as graphs, one can extract relevant information to improve business.

The rich model provided by graphs, together with the increased interest on
being able to store and process graph data for diferent purposes led to the
appearance of computational platforms dedicated to operate over a graph data
model. In this report we call such platforms graph management systems. An
important feature of many graphs that appear in current applications is their
large size, which tends to increase even further as time passes. For example, in
the second quarter of 2012 Facebook reported an average of 552 million active
users per day. On June 2016 Facebook reportes [13] an average of 1.13 billion
daily active users. Another example is the largest World Wide Web hyperlink
graph made publicly available by Common Crawl [14] that has over 3.5 billion
web pages and 128 billion hyperlinks between them. Therefore, most systems
that support the storage and processing of graph data need to be prepared to
deal with large volumes of data, qualifying them as Big Data systems.

Several graph management systems exist, they offer a wide range of different
services, including: storing the graph on a transactional persistent way; provide
operations to manipulate the data; perform online graph querying that can per-
form computations on a small subset of the graph and offer fast response time;
offline graph analytics that allow data analysis from multiple perspectives in or-
der to obtain valuable business information, with long operations that typically
cover the whole graph and perform iterative computations until a convergence
criteria is achieved. Robinson et al. [15] proposed the classification of graph man-
agement systems into two different categories:



1. Systems used primarily for graph storage, offering the ability to read and
update the graph in a transactional manner. These systems are called graph
databases and, in the graph systems space, are the equivalent to online trans-
actional processing (OLTP) databases for the relational data model.

2. Systems designed to perform multidimensional analysis of data, typically
performed as a series of batch steps. These systems are called graph pro-
cessing systems. They can be compared to the online analytical processing
(OLAP) data mining relational systems.

We further detail each one of these types of systems, identifying the typical
services provided by each one of them and pointing out the main differences
between the two.

3.1 Graph Databases

Graph Databases [15] are database management systems that have been op-
timized to store, query and update graph structures through Create, Remove,
Update and Delete (CRUD) operations. Most graph database systems support
an extended graph model where both edges and vertices can have an arbitrary
number of properties [16-18]. Typically, these properties have a key identifier
(e.g. property name) and a value field.

Graph databases have became popular because relationships are first-class
citizens on the graph data model. This is not truth in other database manage-
ment systems, where relations between entities have to be inferred using other
abstractions such as foreign keys. Another important aspect of graph databases
systems is the query performance over highly connected data. On relational
databases systems, the performance of join-intensive queries deteriorates as the
dataset gets bigger. On graph databases, queries are localized to a given sub-
section of the graph and, as a result, the execution time is proportional to the
size of the subsection of the graph traversed by the query rather than the overall
graph size. If the traversed region remains the same, this allows for the execution
time of each query to remain constant, even if the dataset grows in other graph
regions.

3.2 Graph Processing Systems

Many graph processing algorithms, aimed at performing graph analytics,
have been developed for many different purposes. Examples of some graph pro-
cessing algorithms are: subgraph matching, finding groups of related entities to
define communities, simulate disease spreading models and finding Single-Source
Shortest Paths (SSSP). Some graph database systems also include small collec-
tions of such algorithms and are able to execute them. However, since the focus
of graph databases is storage, and not processing, database implementations
have scalability limitations and are unable to execute the algorithms efficiently
when graphs are very large (namely, graphs with billions of highly connected
vertices). In opposition, a graph processing system is optimized for scanning



and processing of large graphs. Most graph processing systems build on top of
an underlying OLTP storage mechanism, such as a relational or graph database,
which periodically provides a graph snapshot to the graph processing system for

in-memory analysis.

Table 1. Differences between graph databases and graph processing systems.

Graph Databases

Graph Processing Systems

System Purpose

Provide access to

business data

Produce valuable
information from the
business point of view

by analysing graph structure

Queries Type

Standardized and simple
queries that include small
graph zones

Complex queries involing
the whole graph

Processing Time

Typically fast but depends
on the amount of data

traversed by the queries

Proportional to the entire
graph size which is
typically slow

Data Source

Operational data modified
through CRUD operations

Graph snapshots from
OLTP databases

Typical Usage

Answer multiple queries

at the same time

One computation at a

time

3.3 Comparison

In the previous sections, we discussed the main differences between graph
databases and graph processing systems, the typical usage of each one of them
and how they differ from other types of systems. This information is summarized
in Table 1. In this report, we will focus mainly on graph processing systems.
We will detail the most relevant architectures and design decisions in Section 5,
discussing their impact on the computational and execution model as well as how
they relate to each other. Before that, we will provide some relevant examples
of graph processing applications.

4 Example Graph Processing Applications

As hinted before, graph processing is a data mining task that consists of
analyzing graph data from different perspectives and summarizing the results
in a form that typically can be used to increase business revenue, cut costs, or
enable the system to provide some high level functionality based on the retrieved
information. We now present real world examples were this analytical process is
used.



4.1 PageRank

PageRank [19] is an algorithm that allows to assess the relevance of a web
page, leveraging on the existing links (edges) between pages (vertices). The al-
gorithm has been used by Google to implement its early search engine and is,
today, one of the most known and well studied algorithms for this purpose.

The algorithm estimates how important a page is based on the number and
quality of links to that page. It works on the assumption that important websites
are likely to receive more links from other websites. For example, consider a web
page A, that has pages T1,T5. ..., T, pointing to it, the importance of the page
A represented by PR(A) is given by:

PR(A) = (1 —d) + d(PR(T1)/C(T1) + .. + PR(T,,)/C(T},))

Where C(T;) is the number of links going out of page T; and d is a damping
factor which can be set between 0 and 1. The algorithm is designed as a model
of the user behavior, here represented as a ”"random surfer” that starts on a
web page at random and keeps clicking on links from that page or, with a given
probability d, the surfer gets bored and starts on another page at random.

This is a classic example of an iterative graph processing algorithm, it starts
by assigning the same importance value to all pages, 1/N being N the total
number of pages, and is then executed iteratively multiple times until it arrives
at a steady state.

Although PageRank has become popular as web search algorithm, executed
over a graph of pages and links between them, it now finds widespread applica-
tions in many other fields: Gleich [20] discusses on the aplicability of such algo-
rithm on graphs of different domains. One of such diverse application is Biology
where a study used a similar algorithm [21], over a graph of genes (vertices) and
known relationships between them (edges), to identify seven marker genes that
improved the prediction of the clinical outcome of cancer patients over other
state of the art methods. Other examples of the application of PageRank to dif-
ferent domains include recommendation systems [4], trend analysis in twitter [22]
and others [23, 24].

4.2 Community Detection

One of the most relevant aspects of graphs that represent real world domains
is the underlying community structure. A graph is composed of vertices clusters
that represent different communities, vertices on the same community have many
connections between them, having only few edges joining vertices of different
clusters.

Detecting these structures can be of great interest, for example, identify-
ing clusters of customers with similar interests on a purchase network, among
products and customers, enables the development of efficient recommendation
systems [5]. These systems leverage on similar user purchase history to recom-
mend new products that the user is more likely to buy increasing revenue. In



Biology, protein-protein interaction networks are subject of intense investiga-
tions, finding communities enables researchers to identify functional groups of
proteins [3].

5 Architectures of Graph Processing Systems

The characteristics of graph analytical algorithms, which typically involve
long operations that need to process the entire graph, together with the increas-
ingly large size of the graphs that need to be processed, demand a dedicated
system that is specifically designed to process large amounts of data on a ef-
ficient way. We now discuss typical graph processing architectures, analyzing
concrete systems, and detailing how they are able to process such algorithms
over large graphs.

5.1 Distributed Graph Processing Systems

We have already noted that most graph processing systems need to be pre-
pared to process large volumes of data. One of the approaches to address this
challenge is to resort to distributed architectures and to algorithms that can be
parallelised, such that different parts of the graph can be processed concurrently
by different nodes. In the next paragraphs, we discuss some of the most relevant
distributed graph processing systems.

5.1.1 MapReduce

The MapReduce framework [25] (and its open-source variant Hadoop MapRe-
duce [26]) is a notable example of a middleware, and of a companion program-
ming paradigm, that aims at simplifying the construction of highly distributed
and parallel applications that can execute efficiently on commodity clusters.
The MapReduce framework supports two operators, map and reduce, which en-
capsulate user-defined functions. A typical execution reads input data from a
distributed file system as key-value pairs. The input is split into independent
chunks which are then processed by the map tasks in a completely parallel man-
ner. The generated intermediate data, also formatted as key-value pairs, is sorted
and grouped by key forming groups that are then processed in parallel by the
user-defined reduce tasks. The output of each reduce task represents the job
output and is stored in the distributed file system.

MapReduce quickly gained popularity because of its simplicity and scalabil-
ity. In particular, the middleware abstracts many lower-level details and prevents
the programmers from having to deal directly with many of the issues that make
the management of a distributed application complex, such as haldling failures
(which are masked automatically by the framework). It is therefore no surprise
that early graph processing systems, such as [27, 28], have attempted to lever-
age MapReduce for graph analytics. Unfortunately, experience has shown that
MapReduce is not well suited for graph applications [29, 30], including experience



from Google itself [6], who first introduced MapReduce. The main limitation of
such model regarding graph processing is the lack of support for iterative pro-
cessing. Most of graph processing algorithms are iterative, and most of them
require a large number of iterations. However, in order to conduct multiple iter-
ations over a map-reduce framework, the programmer needs to explicitly handle
the process and write intermediate results into the distributed file system so that
it can be used as input for the next map-reduce job. This approach has poor
performance due to the frequent I/O operations and time wasted on multiple
jobs’ start up.

5.1.2 Pregel

Pregel [6] is a distributed system dedicated to large-scale graph processing.
It has been introduced by Google as a way to overcome the limitations of other
general-purpose data processing systems used to perform graph analytics. The
system introduces a vertex-centric approach, also called the ”"think like a vertez”
paradigm, in which the computation is centered around a single vertex. The
programmer needs to define the algorithm from a vertex point of view, defining
a compute function that will be executed conceptually in parallel at each vertex.

Pregel’s computational model is inspired by Valiant’s BSP model [31]. The
computation consists of a sequence of iterations, also called supersteps, in which
the system invokes the compute user-defined function for each vertex in parallel.
At each superstep, the function specifies the behavior of the vertices. On super-
step S, the compute function executed over vertex V is able to: read all messages
sent to V on superstep S — 1; modify the state of V; mutate the graph structure
(add or delete vertices/edges); and send messages to other vertices that will be
available to them at superstep S + 1. Typically messages are sent to the out-
going neighbors of V' but may be sent to any vertex whose identifier is known.
All vertices in the graph start the computation in active state and are able to
deactivate themselves executing the function wvoteToHalt. Deactivated vertices
are not considered for execution during the next supersteps unless they receive
messages from other vertices and are automatically activated. Computation ends
when all vertices have voted to halt. Pregel also introduces combiners, a com-
mutative associative user defined function that merges messages destined to the
same vertex. For example, when executing the SSSP algorithm, where vertices
send messages to inform their neighborhood of their distance to the source ver-
tex, we can use this function to reduce all messages directed to the same vertex
into a single message with the shortest distance.

The system has a master/slave architecture, the master machine is respon-
sible for reading the input graph, determines how many partitions the graph
will have and assigns one or more partitions to each slave machine. The par-
titions contain a portion of the graph vertices, all the outgoing edges of those
vertices (vertex id of the edge’s target vertex and edge’s value), a queue con-
taining incoming messages for its vertices and the vertex state (vertex’s value
and a boolean identifying whether the vertex is active or not) for every vertex in
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the partition. The master is also responsible for coordinating the computation
between slaves. The slave machines, or workers, are responsible for maintaining
its assigned partition in memory and perform the computation over the vertices
in that partition. During computation, messages sent to vertices on other slave
machines are buffered and sent when the superstep ends or when the buffer is
full.

The system achieves fault tolerance through checkpointing. At the beginning
of a superstep, on user defined intervals of supersteps, the master instructs the
slaves to save the state of their partition to a distributed persistent storage.
When machines fail during computation the master detects failed machines using
regular ”ping” messages and reassigns the partitions of the failed machines to
other slaves and computation is resumed from the most recent checkpointed
superstep.

5.1.3 Pregel Variants

Since Pregel has been introduced, several systems following the same ”think
like a vertex” paradigm have been proposed [32-36]. These systems either pro-
vide conceptually different execution models, such as incremental execution (dis-
cussed on Section 6), or introduce some system level optimizations that we now
discuss.

Graph Partitioning Techniques: In the original Pregel system, vertices are
assigned by default to partitions using a simple hash based method that ran-
domly assigns them. This method is fast, easy to implement, and produces an
almost evenly distributed set of partitions. Salihoglu and Widom [33] presented
an experimental evaluation, on a system similar to Pregel, where they tried to
verify if certain algorithms have performance improvements if vertices are ”in-
telligently” assigned. They compared the performance metrics of three different
techniques, namely: i) the random approach; ii) a domain-based partitioning
scheme where domain specific logic is used to partition the graph, for exam-
ple in the web graph, web pages from the same domain can be assigned to the
same partition, and finally; iii) the METIS [37] software, that divides a graph
into a given number of partitions, trying to reduce the number of edges crossing
partitions (with source vertex and target vertex on different partitions).

The domain-based and the METIS partitioning techniques are expected to
improve the system overall performance because they will, in theory, reduce the
amount of messages exchanged by different workers, reducing the time wasted
on message transmission and data serialization/deserialization. This reduction
is achieved by assigning vertices connected by edges to the same partitions given
that most messages are exchanged by directly connected vertices. The obtained
results showed that, in fact, both techniques reduce the network I/0O and runtime
on multiple graphs with different algorithms. However these results cannot be
extrapolated to every situation, for example, the METIS approach provides high
quality partitions that significantly reduce the communication between workers
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but it typically requires long preprocessing periods that can nullify the perfor-
mance gains obtained. Therefore, the METIS technique is well suited for very
long operations where the necessary preprocessing time is orders of magnitude
smaller than the time spent on algorithm execution. The domain-based is a
simplified version of the METIS approach that has a faster preprocessing time,
with simple domain specific rules that try to foresee the communications pat-
terns. This approach has fast preprocessing time but often produces inferior
quality partitions, than those obtained with METIS, and is not easy to define
over different graph domains and algorithms.

GPS[33] also introduces an optional dynamic repartitoning scheme. Most
systems use an initial partitioning step, like the ones presented before, and ver-
tices remain in those assigned partitions until the end of the computation. This
scheme reassigns vertices during computation, by analyzing communication pat-
terns between different workers it is able to reassign vertices in order to improve
network usage. This approach decreases network I/O but due to the time spent
in the exchange of vertex data between partitions it does not always improve
computational time.

Gather, Apply, Scatter (GAS): Gonzalez et al. [36] discussed the challenges
of analyzing scale-free networks on graph processing systems. These networks
have a power-law degree distribution, that is, the fraction P(k) of nodes in the
network having &k connections to other nodes goes as P(k) ~ k~7. Most of the
networks presented so far, such as social networks, citations between academic
papers, protein-protein interactions, connections between web pages and many
others follow these power-law degree distributions.

They concluded that a programming abstraction that treats vertices sym-
metrically, as Pregel does, can lead to substantial work and storage imbalance.
Since the communication and computation complexity is correlated with vertex’s
degree, the time spent computing each vertex can vary widely, which can lead
to the occurrence of stragglers. To address these problems, they introduced a
new system called PowerGraph [36]. The system adopts a shared-memory view
of the graph data, although in reality it is still partitioned, and proposes a
GAS model where the vertex functionality is decomposed into three conceptual
phases: Gather, Apply and Scatter.

The Gather phase is similar to a MapReduce job, using the gather and sum
user-defined functions to collect information about the neighborhood of each ver-
tex. The gather function is applied in parallel to all edges adjacent to the vertex,
it receives the edge value, the source vertex value and target vertex value to pro-
duce a temporary accumulator. The set of temporary accumulators obtained
are then reduced through the commutative and associative sum operation to a
single accumulator. In the Apply phase, the value obtained in the previous step
is used as input to the user-defined apply function that will produce the new
vertex value. Finally, in the Scatter phase, the user-defined scatter function is
invoked in parallel on the edges adjacent to the vertex, with the new value as
input, producing new edge values.
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By breaking the typical ”think like a vertex” program structure, PowerGraph
is able to factor computation over edges instead of vertices overcoming the prob-
lems mentioned before on power-law graph computation. The downside of this
model is the restrictiveness imposed to the user, it forces the conceptual compute
function (gather, sum and apply) to be associative and commutative, new vertex
values must always be obtained based on neighbor’s values and communication
is only performed to the neighborhood of each vertex. In the original Pregel
model none of these conditions exist.

Asynchronous Mode: The BSP model provides a simple and easy to reason
about execution model where computation is performed as an iterative process.
Global synchronization barriers, between each iteration (superstep), ensure that
every worker finishes the current iteration before a new one can start.

Although synchronous systems are conceptually simple, the model presents
some drawbacks. For example, most graph algorithms are iterative and often
suffer from the ”straggler” problem [38] where most computations finish quickly,
but a small part of the computations take a considerably longer time. On syn-
chronous systems, where each iteration takes as long as the slowest worker, this
can result in some workers being blocked most of the time waiting for other slower
workers to finish, thus causing under-utilization of system resources. Graph al-
gorithms requiring coordination of adjacent vertices are another example where
the synchronous execution model is not suitable. The Graph Coloring is one of
such algorithms, it aims at assigning different colors to adjacent vertices using
a minimal number of colors. Some implementations of this algorithm may never
converge in synchronous mode, since adjacent vertices with the same color will
always pick the same colors based on the previous assigned ones. These types of
algorithms require an additional complexity in the vertex program in order to
converge [39].

To overcome these problems, asynchronous execution models on graph pro-
cessing systems have been proposed [40, 34,41,42]. In this model there are no
global synchronization barriers and vertices are often scheduled to execution in
a dynamic manner, allowing workers to execute vertices as soon as they receive
new messages. Some algorithms exhibit asymmetric convergence rates, for ex-
ample, Low et al. demonstrated that running PageRank on a sample web graph,
most vertices converged in a single superstep while a small part (about 3%) re-
quired more than ten supersteps [40]. The dynamic scheduling of computation
can accelerate convergence as demonstrated by Zhang et al. [43] for a variety of
graph algorithms including PageRank. The insight behind such statement is that
if we update all parameters equally often, we waste time recomputing parame-
ters that have already converged. Thus, using the asynchronous graph processing
model, some graph zones that take longer to converge can get executed more
often and we can potentially accelerate execution time.

Although the asynchronous execution model outperforms the synchronous
one in some situations, that is not always the case. Xie et al. [39] studied the situa-
tions that better fit each execution model. They concluded that the asynchronous
model lacks the message batching capabilities of the synchronous model, making
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the latter more suitable for I/O bound algorithms, where there is a high num-
ber of exchanged messages and most time is spent on communication. On the
other hand, asynchronous model can converge faster and favors CPU intensive
algorithms, where workers spend most of the time inside the compute functions.
The authors also demonstrated that due to heterogeneous convergence speeds,
communication loads and computation efforts in different execution stages, some
algorithms perform better with different execution models in different execution
states. For example, they shown that the asynchronous mode performs better
in the beginning and end of the SSSP algorithm, but synchronous model has
superior performance during the middle of execution. This insight motivated
the design of PowerSwitch [39], a graph processing system that adapts to exe-
cution characteristics and dynamically switches between the asynchronous and
synchronous execution model.

5.2 Single Machine Graph Processing Systems

While the access to distributed computational resources is nowadays eased
though the cloud computing services, managing and deploying a distributed
graph processing system is still a challenge. The characteristics of the distributed
infrastructure have a large impact on the execution model and force complex de-
sign decisions, such as the choice of the right communication paradigm, graph
partitioning techniques and fault tolerance mechanisms. Also, in some systems,
the communication among the processing nodes can become the main perfor-
mance bottleneck.

To avoid the challenges above, and to mitigate the impact of the communi-
cation latency, recent graph processing systems have been designed to support
graph processing on a single machine. Typical implementations either leverage
on secondary storage to handle huge graphs or use multicore server class ma-
chines with tens of cores and terabyte memories. We now analyze some of the
graph processing systems that follow this approach.

5.2.1 Polymer

Several multicore machines adopt a Non-Uniform Memory Access (NUMA)
architecture that consists of several processor nodes, each one of them with mul-
tiple cores and a local memory. These nodes are connected through high-speed
communication buses and are able to access memories from different nodes, of-
fering a shared memory abstraction to applications. However, when nodes access
memory from other nodes (remote memory), the data must be transferred over
the communication channel, which is slower than accessing local memory. Fur-
ther, the latency on remote accesses highly depends on the distance between
nodes.

Polymer [44] is a single machine NUMA-aware graph processing system that
provides a vertex-centric programming interface. The system tries to align NUMA
characteristics with graph specific data and computation features in order to
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reduce remote memory accesses. NUMA machines are treated as a distributed
system, where processing nodes act as multi-threaded worker machines, and uses
similar execution models to the ones presented before for distributed systems.
The graph is partitioned across these nodes in order to balance the computa-
tional effort and, given that most accesses are performed to the assigned graph
partition, reduce the remote accesses performed by each processing node. To
further reduce the remote accesses performed with the purpose of obtaining
graph topology data the system uses lightweight vertex replicas, where every
partition has a replica of all vertices from all other partitions. These replicas
are immutable and only contain partial topology information, such as the vertex
degree and some neighboring edges’ data.

The system evaluation on a 80-core NUMA machine shows that Polymer
outperforms other state-of-the-art single machine graph processing systems, such
as Ligra[30] and Galois [45], that do not leverage on NUMA characteristics.
Although it is expected that Polymer outperforms state-of-the-art distributed
graph processing systems, its evaluation lacks such comparison.

5.2.2 GraphChi

GraphChi[41] is a system that leverages on secondary storage to allow effi-
cient processing of graphs with huge dimensions on a single consumer-level ma-
chine. The system proposes Parallel Sliding Windows (PSW), a novel method
for very large graph processing from disk. PSW processes graphs in three stages:

Loading the Graph: In this method, the vertices of the graph under analysis
are split into P disjoint intervals. For each interval, there is an associated shard
that stores all edges whose destination vertex belongs to the interval. Edges are
stored in shards ordered by their source vertex. Intervals are chosen in order to
produce balanced shards that can be loaded completely into memory.

The graph processing phase is then performed by processing vertices one
interval at a time. To process one interval of vertices, their edges (in and out) and
their associated values must be loaded from disk. First, the shard associated with
the current interval being processed is loaded into memory, this shard contains
all in-edges for the vertices in the interval. Then all out-edges must be loaded
from the other shards, this process is eased by the fact that edges are stored
ordered by their source vertex thus only requiring P — 1 sequential disk reads
from other shards. Another important aspect of the shards is that edges are not
only ordered by their source vertex but also by interval. This means that out-
edges for interval P + 1 are right after the ones for interval P, thus when PSW
starts processing another interval it slides a window over each of the shards.
In total PSW only requires P sequential disk reads, a high-level image of the
described process is given in Figure 1.

Parallel Updates: After loading all edges for the vertices in the current interval
being processed, the system executes the user-defined functions at each vertex in
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Interval 1 Interval 2 Interval 3 Interval 4

5 === 10

Shard1 Shard2 Shard3  Shard 4 Shard1  Shard2 Shard3  Shard 4 Shard1 Shard2 Shard3  Shard 4 Shard 1 Shard2 Shard3  Shard 4

Fig. 1. Example of the PSW method. The vertices are divided into four intervals, each
one of them with an associated shard. The computation proceeds by processing each
interval at a time, in-edges are read from the current associated shard (in dark color)
while out-edges are read from other shards segments (highlighted on top of the other
shards), image taken from [41].

parallel. In addition to the vertex values, the system also allows for modifications
on the edge values. To prevent race conditions between adjacent vertices, the
system marks vertices that share edges in the same interval as critical and they
are processed in sequence.

Updating Graph to Disk: After the update phase, the modified edge values
and vertex values need to be written back to disk in order to be visible to the
next interval execution. This phase is similar to the first one but with sequen-
tial writes instead of reads. The shard associated with the current interval is
completely rewritten, while only the active sliding window of each other shard
is rewritten to disk.

Although the system is simple to use and allows the processing of large
graphs on a single commodity machine, its evaluation shows that it performs
poorly when compared to state-of-the-art distributed graph processing systems.

6 Incremental Graph Processing

The increasing interest in the information gathered from graphs, motivated
by its business value, boosted the rise of many graph processing systems. The
domains of interest, such as commerce, advertising, and social relationships are
highly dynamic. Consequently, the graphs that model these domains present a
fast-changing structure that needs to be constantly analyzed. However, most
of the systems analyzed so far present a static data model that does not allow
changes to the graph data. To cope with dynamic graphs in these systems we have
to follow a strategy similar to: (1) perform the computation over a static version
of the graph while storing the updates that occur during the computation; (2)
apply the updates to the previous graph version; (3) repeat the computation over
the new graph. This approach has several drawbacks, for example, it increases the
time necessary to see the impact of some graph mutations in the information
retrieved from the graph processing step, an extra complexity is necessary to
manage the update storage and most of the computations performed in the new
graph version are repeated from the previous versions.
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To address these issues, a new class of graph processing systems has emerged.
Incremental graph processing systems allow graph data to change over time and
allow computation to adapt to the new graph structure without recomputing
everything from scratch. We now analyze some systems that implement this
approach and discuss the system level details specific to it.

6.1 Kineograph

Kineograph [35] was one of the first systems to take the incremental approach
into consideration in the system’s design. The system is able to process an incom-
ing stream of data, representing operations that modify the graph structure, and
accommodate graph algorithms that assume a static underlying graph through
a series of consistent graph snapshots.

Figure 2 shows an overview of Kineograph. Ingest nodes are the system entry
point, they process raw data feeds encoding operations that modify the graph.
They are responsible for: translating such raw data into concrete graph oper-
ations (add or remove nodes/edges) that can span multiple partitions; assign
them a sequence number; and distribute the operation to graph nodes. Graph
nodes are the typical entities responsible for storing the partitioned graph data
in memory and perform the computations. Each ingest node has its own se-
quence number that it uses to timestamp operations. After timestamping new
operations, ingest nodes update their sequence numbers on a central progress
table and send the operations to the graph nodes that will process them. Graph
nodes do not update the graph right away, periodically, a snapshooter instructs
all graph nodes to apply the stored graph updates based on the current vector of
sequence numbers in the progress table. The end result of this commit protocol
is a graph snapshot.

ProgressTable o000 E]

~

| Ingest Node1 I [ X X ] Ingest Node N
—

A 4 Y

[ Graph Node 1 ] [ X X ] [ Graph Node M

Fig. 2. Kineograph system overview, image adapted from [35].
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Kineograph follows the typical ”think like a vertex” paradigm where compu-
tation proceeds by processing across vertices and the data of interest is stored
along vertex fields. After producing the new graph snapshot, each graph node
has its own incremental graph engine. It is responsible for detecting changes in
the partition from the last snapshot and trigger user-defined update functions to
compute new values associated with modified vertices or initialization functions
to newly created vertices. The system uses the BSP execution model, it proceeds
in supersteps and starts by processing the update and initialization functions on
the vertices that were affected by graph modifications. At each modified ver-
tex, if the value changes significantly, the system will propagate the changes to
the neighbors, what will schedule them for execution on the next superstep, the
propagation proceeds until no status changes happen across all vertices, what
designates the end of the computation.

Regarding fault tolerance, the system has several mechanisms to deal with
different types of faults. The most relevant for our work, and that we now de-
tail, is the failure of a graph node. The system uses replication to reliable store
graph data. The original graph is partitioned in small partitions and each parti-
tion is replicated across k graph nodes and can tolerate up to f failures, where
k > 2f+1. Ingest nodes then use a simple quorum-based mechanism to replicate
graph updates, they send the updates to the replicas and consider them reliable
stored if they receive responses from at least f 4 1 replicas. Regarding the com-
putational values at each vertex, the system uses a primary-backup replication
strategy where the primary copy of the vertex executes the update function and
then sends the results to the replicas. This way it avoids wasting computational
resources by executing the update functions at each replica of the partition. If
the master replica fails a secondary takes it place without any additional effort.

6.2 Graphln

Graphln [46] is an incremental graph processing framework and it proposes
Incremental-Gather-Apply-Scatter (I-GAS), a novel method to process a con-
tinuous stream of updates as a sequence of batches. This method is based on
the GAS programming paradigm [36] and allows the development of incremen-
tal graph algorithms that perform computation on the modified portions of the
entire graph data.

The system enables evolving graph analytics programming by supporting a
multi-phase, dual path execution model that we now describe. First, the system
runs a typical graph processing algorithm over a static version of the graph. It
could use any of the above mentioned systems to provide the expected results
for this phase. The system then uses a user-defined function, that receives the
set of updates received since last time it was executed, and determines which
vertices should be considered inconsistent. Typical vertices are the ones affected
by edge’s addition or removal or direct properties’ changes. Sometimes a large
portion of the graph may become inconsistent. In this situation, the system
does not achieve any performance benefit over static recomputation and may
even result in performance degradation due to the overheads associated with
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incremental execution. To deal with such situations, the system allows the user do
define heuristics that help the system decide between proceeding to incremental
execution or perform a static recomputation. For example, in Breadth First
Search (BFS), the vertex depth could be used to define a heuristic that chooses
to perform a full static recomputation if there are more than N inconsistent
vertices with depth lesser than 2 (closer to the root of the BFS tree). If the
computation proceeds to the incremental execution, the I-GAS engine proceeds
in supersteps by executing the scheduled vertices to execution, initially with
the vertices that were marked as inconsistency and then with the vertices that
receive messages during computation. Figure 3 illustrates the process described
above.

The system evaluation reports speedups of 407x, 40x and 82X over static
recomputation across several datasets on algorithms like Clustering Coefficient,
Connected Components and BFS, respectively, reporting a maximum through-
put of 9.3 million updates/sec.
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Fig. 3. Graphln computational process overview, image taken from [46].

6.3 Heterogeneous Update Patterns

Most incremental graph processing systems [35,46-48], take a stream of up-
date events to build a series of graph snapshots at which incremental graph
processing algorithms run on top. These update events can be of different forms,
for example, create new vertices, add new edges between existing vertices and
change static properties from vertices or edges (such as the weight of a given
edge). An interesting observation, that crosses several application domains, is
the obtained update patterns where some vertices receive much more updates
than others. For example, on social networks where graphs model the existing
relationships between users, is expected that the most active users or the ones
with more connections produce a higher number of update events than those
less active or with less connections.

The preferential attachment network behavior model [49], also called the
rich get richer model, models the growth of networks into the power-law degree
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distributions observed in reality. In this model of network behavior, new vertices
that come into the system are more likely to create connections with other
vertices that already have a higher number of connections. The same happens
with new connections that are created with existing nodes. Easley and Kleinberg
[50] discuss the suitableness of such model on social circles and connections
between web pages, on these domains, new vertices are more likely to follow other
popular vertices (social networks) or create links to other popular pages (web
pages network). This further supports the idea that some vertices will receive
and produce more updates than others, thus creating different computational
needs at different graph partitions.

Ju et al. [47] took this insight into consideration when designing iGraph, an
incremental graph processing system. It provides a programming model similar
to Kineograph [35] and, in addition, it uses a hotspot rebalancer. This entity is
responsible for, at user defined intervals, analyze the number of update events
that come into the system. It then assigns heat values to each partition, based
on the number of updates received by each vertex in the previous time interval.
Based on this values, it uses a greedy algorithm to move vertices between par-
titions. This seeks to balance the work performed by each slave node creating
partitions that receive approximately the same number of updates.

7 Deployment Issues

The systems studied in this report can be used for a wide-variety of applica-
tions with very different time constraints. For example, real-time applications,
such as fraud detection [51] or trend topic detection [22], need to extract timely
insights from continuous changing graphs. Other systems, such as recommenda-
tion systems [4, 5], do not require changes to the underlying graph to be reflected
immediately in the produced results, thus allowing longer time intervals between
the update of results. Incremental graph processing systems have proven to have
the best of two worlds, for fast changing graphs they are faster to reflect changes
in the produced results [35,46] than static recomputation and still can benefit
from the update batching on applications without real-time requirements. Thus,
these systems have a computational model more suited for continuous deploy-
ments, that are important to enable the processing of dynamic graphs, rather
than single shot executions over static graphs that are of little use.

Continuously deployed graph processing systems should be able to adapt
to the underlying graph dataset computational requirements and use the right
number of machines to avoid wasting resources and consequently money. Most of
the graph processing systems, including the ones discussed on this report, do not
make assumptions regarding the deployment environment. Most of them are not
production level systems and it is hard to predict the deployment environments
that would be used for that purpose. However, from the existing implementa-
tions and evaluation details we observe that a large majority of them use IaaS
platforms, such as Amazon Web Services (AWS) !, for deployment. The flexibil-

1 AWS: https://aws.amazon.com/
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ity, nonexistent upfront investment or maintenance costs, ease of management
and payments based on usage make the laaS platforms an appealing deployment
environment for these and other types of systems.

Single machine architectures on server class machines, with large memories
and hundreds of CPU cores, are cheaper to deploy on these platforms than using
multiple machines with less resources to achieve the same level of processing
capabilities and are usually faster than the distributed counterparts. However,
they represent a stronger commitment to the allocated resources making it more
difficult for the deployed system to adapt to a greater or lesser need for processing
resources. On distributed architectures, increasing or decreasing the number of
machines performing the graph computation allows the system to provide better
flexibility to dynamic resource demands, which may come from growing datasets
or usage spikes. This allows the system to scale to a virtually unlimited level of
resources while on single machine architectures it has fixed boundaries.

Dindokar and Simmhan [52] have studied the possibility of reducing the costs
of deploying a distributed graph processing system on an IaaS environment to
run static graph computations. Their work leverages on graph computations that
have different groups of vertices active in different supersteps, such as BFS or
SSSP. At the beggining of each superstep, their system analyzes the number
of partitions that will be active for that iteration and determines the number
of machines necessary to perform the computation, moving partitions between
machines if needed and terminating the unnecessary ones. The proposed solu-
tion is able to reduce the costs for those types of computations but the extra
computational effort at the beginning of each superstep, associated with data
movement and time to startup or terminate machines, has impact on the compu-
tation runtime. Another system limitation is the payments granularity provided
by the TaaS platforms. Usually supersteps take seconds or minutes to execute,
thus in order to reduce the costs of deployment on a superstep basis the ITaaS
platform needs to have a granularity of payments in the same order of magnitude
as the average execution time of the computation supersteps (minutes or sec-
onds). This allows the system to achieve its goals on platforms with payments
per minute of machine usage, such as Microsoft Azure? where the evaluation
of the system is performed, but platforms with larger payment granularities,
such as Amazon that has payments per hour of machine usage, nullify the cost
reductions achieved by turning machines off on a superstep basis.

8 Architecture

In this section we describe the preliminary architecture of Hourglass, an in-
cremental graph processing system designed to take advantage of heterogeneous
update patterns on dynamic graphs in order to reduce deployment costs on
heterogeneous clusters. In these clusters, machines have different costs associ-
ated with their usage, typically proportional to the level of resources that they

2 Microsoft Azure: https://azure.microsoft.com
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provide. For example, machines with higher processing capabilities are more ex-
pensive to rent on IaaS platforms and will probably have higher costs associated
with power supply and cooling mechanisms on private clusters.

Hourglass will provide a computational model similar to the ones provided
by other incremental graph processing systems [35,46-48] and, in addition, with
the intent of reducing deployment costs, it will analyze the update patterns of
each graph region and, by moving vertices with similar update rates to the same
set of partitions, create partitions with different computational requirements. Af-
ter identifying these partitions, the system is able to assign the ones with higher
computational requirements (high update rates) to machines with higher com-
putational capabilities. Rarely updated partitions can be assigned to machines
with lower processing capacities, that can be turned off most of the time and
turned on when necessary, thus reducing costs without affecting performance.

Although this strategy can be used on different types of clusters with het-
erogeneous resources, we decided to follow the trend of other graph processing
systems and develop Hourglass in the AWS environment. Figure 4 illustrates an
overview of the system’s architecture. It follows a typical graph processing mas-
ter/slave architecture, being master and slave nodes EC2 instances. In the next
sections we describe the implementation strategy that we intend to follow in
order to accomplish our goals on the target environment, detailing the different
entities that exist in the system and the fault tolerance mechanisms.
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Fig. 4. Hourglass Architecture’s Overview




8.1 Overall Strategy

AWS provides different machine renting mechanisms with three different
types of instances: On-Demand Instances, Reserved Instances and Spot Instances.
On-Demand instances are paid by the hour and the user is free to increase or
decrease the number of machines she uses. Reserved instances, as the name sug-
gests, allow the user to reserve instances for a predefined period of time with
discounts off On-Demand, around 40% for a period of one year, and the user
is charged even if she do not use them. Spot instances allow the user to bid
on spare instances. Their price is based on the current usage of On-Demand
instances and when the user’s bid price is equal or higher than the current cal-
culated price the platform launches the number of machines requested when
the bid was placed. When the price for those spare instances is higher than the
user’s bid those instances are immediately terminated, even if they were per-
forming any computation. These instances allow to pay up to 90% less than for
the On-Demand ones, making them good candidates to hold the partitions that
are rarely updated. In this case, the machine heterogeneity is also observable
in terms of their reliability and rental price. Having cheap Spot instances that
are likely to fail and can not be started in a deterministic way and On-Demand
instances that are more expensive but have a much lower probability of failure
and can be turned on and off as needed.

During the initial phase, while update patterns are being analyzed, we will
use the same type of On-Demand instances for all slaves. The system will then
reassign vertices in order to allocate those with higher update rates to the same
set of partitions, leaving other partitions with vertices that are rarely updated.
This will allow the system to keep partitions with high update rates in the On-
Demand instances and move the remaining partitions to Spot instances that can
be turned off most of the time. Based on the size and computational requirements
of each of the obtained partitions, On-Demand and Spot instances can be of
different types, providing different levels of resources and enabling the system to
better adapt to the computational needs of each partition. After some time of
usage, it is easier for the system to predict the number of machines necessary for
those partitions with high update rates, enabling the usage of Reserved instances
to hold them, further reducing the deployment costs.

In this report, vertices that belong to partitions assigned to instances that
are not active are called offline vertices. Creating those types of vertices also
creates some challenges from the graph computational point of view, given that
it was never studied before. For example, what happens if offline vertices receive
updates or are scheduled for execution. In the next sections we describe how we
deal with such situations.

8.2 Master Node

The master node is the entity responsible for the system management and
is the entry point to the update requests. It has several modules implementing
different responsibilities, namely:
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Partition Manager: The master node implements in this module an entity
similar to the hotspot rebalancer on iGraph [47]. In the original system it is
responsible for analyzing update patterns and reassign vertices in order to obtain
partitions that receive approximately the same number of updates. In our system,
as described before, the goal is different and it will assign vertices with high
update rates to the same partitions. Some vertices may never receive updates
and still be constantly scheduled for execution due to received messages from
other vertices. To prevent them from being moved to partitions with vertices
that are never executed we also consider how often vertices are scheduled for
execution.

Update Scheduler: The master node is responsible for receiving the update
requests and forward them to the slave that holds the partition that will receive
the update. Following the typical approach of other incremental graph processing
systems [35,46,47], our system will receive the requests and group them at
batches of updates that are delivered to the slaves at fixed time intervals to
initiate the incremental computation.

Instance Manager: This module manages the instances in the system. It is
able to check if it is necessary to create requests to launch Spot instances based
on the updates that came to offline vertices. It is also responsible for checking if
any of the On-Demand instances failed and replace it if necessary.

Computational Master: The master node is still responsible for coordinat-
ing the supersteps of the incremental execution. This module is responsible for
coordinating the slaves and check stop conditions.

8.3 Slave Node

The slave nodes are responsible for performing the incremental computation
on the in-memory graph partitions that they hold and checkpointing the obtained
results to persistent storage. Although EC2 instances have secondary storage,
it is not reliable. On machine failures or shutdown, the instance loses all the
data including the data stored in the secondary storage. Thus, it is necessary to
use another mechanism to store the data that needs to be persistently stored.
The use of Spot instances, that are likely to fail, further motivates the need
for a persistent way of storing information. We intend to use the Elastic Block
Store (EBS) Amazon service, this service enables us to attach to each instance
a persistent block storage. Even if the attached instance is terminated or fails
the volume persists and can be later on assigned to a new instance. This storage
service provides low latency and is automatically replicated to prevent data loss
from component failures.

Regarding the computational execution, given that some graph partitions are
assigned to Spot instances it is possible, but unlikely given the characteristics
of the vertices assigned to those instances, that in the incremental computation
some messages are directed for vertices that are not at any active instance,
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therefore scheduling offline vertices to execution. When this happens, the slaves
sending the messages proceed the computation normally and hold the messages
for a later phase when the destination vertices are not offline. This enables the
computation to continue even in the presence of offline vertices that receive
messages. When this happens, it is possible that some graph regions become
inconsistent and their computational values do not reflect the latest received
updates. This will eventually converge when the scheduled offline vertices (that
have pending updates or messages from other vertices) become active and are
executed.

8.4 Fault Tolerance

The discussed static graph processing systems use checkpointing mechanisms
to handle machine failures. The graph state is checkpointed at the end of certain
supersteps, when the system is at a steady state. In case of slave failure, the
system rolls back to the last checkpointed superstep and continues computation
from there. Incremental graph processing systems have an additional aspect to
take into consideration on fault tolerance mechanisms. These systems receive up-
date requests that cannot be lost until their effects are reflected in the persistent
state.

A naive solution would be to also checkpoint every update request that comes
into the system. Although effective this solution is far from efficient, a high num-
ber of update requests would degrade the system performance due to frequent
checkpoints. Other systems, like Kineograph [35], use a quorum-based replica-
tion mechanism. Every vertex in the system is replicated to k different partitions
and the system is able to tolerate up to f failures, where k > 2f + 1 holds. An
update is then replicated to every replica and considered reliably stored as long
as at least f + 1 have confirmed that the update was stored. This approach re-
moves the need for checkpointing at all, given that partitions are replicated, but
requires more in-memory space (about & times the original space) to hold every
graph vertex and its associated replicas. When a failure occurs, the replicas of
the vertices on the failed partitions take their places and the system is able to
continue execution. On large graphs this replication mechanism could require a
larger number of slave machines, thus defeating the main system goal of reducing
deployment costs.

To avoid the replication drawbacks, we intend to use a log-based checkpoint-
ing mechanism. In this approach, slave nodes still perform the checkpoints at
specific time periods and updates are sent to £ machines, being one of them the
machine holding the vertex to which the update is intended. When a new check-
point occurs, the updates whose effects are reflected on the current checkpoint
can be discarded. When a slave machine failure occurs, the master node is able
to detect the failure and start a new machine to take its place. The new machine
loads the last checkpoint and requests other slaves for the updates intended for
its assigned partitions that were not yet processed on the last checkpoint state.
This approach allows the system to handle frequent Spot instances terminations
as any other machine failure. Updates directed to offline vertices are sent to the
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other £ — 1 machines, when the Spot instances come back up they follow the
procedure described above.

Considering that Spot instances are very likely to fail, they are not considered
to hold the replicated update logs and should have much shorter checkpoiting
periods than the On-Demand instances. Elnozahy et al. [53] do a very detailed
analysis of log-based checkpointing fault tolerance mechanisms on message pass-
ing systems.

8.5 Final Considerations

Due to the lack of publicly available incremental graph processing systems
our implementation will have to be made from scratch. Therefore, and due to the
short period of time to implement the system, we intend to leave the implemen-
tation of the initial execution phase of the system, where the update patterns
are analyzed and vertices assigned to different partitions based on their update
patterns, to future work. This part of the system could be created based on
the hotspot detector from iGraph [47]. This entity is responsible for analyzing
the number of updates that each vertex receives and, at user defined intervals,
rebalance partitions in order to balance the work. In our system, as explained
before, we would also check the number of times a vertex was executed in that
period so that vertices that do not receive high number of updates but are fre-
quently scheduled for execution do not get moved to partitions that are likely
to go offline.

We also intend to implement a simplified version of the master node, using
a single machine. In order to cope with master failures a paxos-based solution
[54], such as Apache Zookeeper [55], should be used to implement the centralized
functionality instead. Using a single machine to receive all the update requests
will possibly become a scalability bottleneck in the system, causing performance
degradation. If such situation arises, a solution similar to the Kineograph [35]
approach should be used. The system uses multiple ingest nodes that receive the
updates and have different sequence numbers to timestamp different operations.

This way we intend to use our time to implement the aspects of the system
that are new. Namely, the usage of heterogeneous resources in different partitions
and the aspects that need to be adapted in order to cope with such modification
(fault tolerance mechanism, vertex scheduling policies and resource allocation).

9 Evaluation

Regarding the system evaluation we intend to deploy it on the target AWS
environment and analyze different dimensions of the problem on different usage
conditions.

9.1 Deployment Costs and Performance Analyses

First, being that the main system goal is to reduce the deployment costs,
we intend to compare under the same conditions (same number and type of
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machines, input graph and set of updates) the costs of deploying our system
on the AWS environment against another incremental graph processing system
that does not take the cluster heterogeneity into consideration. Due to the lack
of publicly available incremental graph processing systems, we intend to use a
modified version of Hourglass, that only uses On-Demand instances, as the base-
line comparison system. Considering that the potential cost reductions achieved
by Hourglass are highly dependent of the generated update patterns, we intend
to use different update sets. We shall use at least three different types of update
sets, one with a typical use case where most of the updates are directed to the
partitions that belong to On-Demand instances and a very small part of updates
are for those on Spot instances. Another update set that is evenly distributed
across partitions and a third update set that is highly directed towards the par-
titions that belong to Spot instances. We shall compare the costs and processing
time necessary to complete the three update sets in Hourglass and in the baseline
implementation. We expect to achieve cost reductions in the three update sets
without performance degradation at least in the typical use case update set.

In order to understand the real performance implications of using Spot in-
stances, the Hourglass execution under the three types of datasets should be
evaluated for different bid values on Spot instances. The goal of such variance is
to find the sweet spot between the bid value (and consequently the price paid)
and the performance degradation for the three datasets. We expect to be able
to use the lowest possible bid value on the typical use case without performance
degradation and increase bid values when atypical situations (the other two
datasets) arise to mitigate the performance problems that may occur.

9.2 Fault Tolerance Mechanism Analysis

To the best of our knowledge, this system is the first incremental graph pro-
cessing system to use a log-based checkpointing mechanism, therefore we intend
to compare it against other fault tolerance mechanisms, namely the replication
approach followed by Kineograph [35] and the naive solution that performs a
checkpoint every time a new update request comes into the system. The evalua-
tion should compare the system performance under the three alternative mech-
anisms for a fixed update set. We also intend to analyze the necessary time to
process a batch of updates directed for a specific machine that will fail during the
incremental execution under the three mechanisms. For this experiment it is ex-
pected that the replication mechanism outperforms the others because it is not
necessary to start new machines in order to proceed. However, this approach
requires a larger number of machines that we shall also consider defining the
existing trade-off between deployment cost and execution time under machine
failure.

10 Scheduling of Future Work

Future work is scheduled as follows:
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January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

March 30 - May 3: Perform the complete experimental evaluation of the
results.

— May 4 - May 23: Write a paper describing the project.

May 24 - June 15: Finish the writing of the dissertation.

June 15 Deliver the MSc dissertation.

11 Conclusions

Graph processing systems are designed to improve the execution of graph
algorithms that leverage on the graph structure and perform long operations
that traverse the entire graph. In this report we analyzed the architectures of
state-of-the-art systems and discussed the main advantages and disadvantages
of each one of them.

Incremental graph processing systems, that allow modifications to the un-
derlying graph structure during computation, have been proposed. They aim at
keeping the values extracted from computation in pace with the fast changing
structure of graphs, originated from the dynamic nature of the domains that
they model. These systems have shown to the best solution for long term de-
ployments.

Graphs have different computational requirements that could be leveraged
to reduce the system deployment costs by matching computational needs of each
graph region with the right resources. However, existing systems are oblivious to
the heterogeneity of resources that exist in their deployment environment thus
losing such opportunities.

We proposed Hourglass, an incremental graph processing system highly in-
tegrated with its deployment environment. It is able to reduce the associated
deployment costs by leveraging the existing resource heterogeneity and com-
putational imbalances across graph regions. We have proposed the usage of a
log-based checkpointing fault tolerance mechanism to reduce the memory re-
quirements of other approaches [35]. We also presented the evaluation plan and
future work schedule.
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