
Leveraging Transient Resources for Incremental Graph
Processing on Heterogeneous Infrastructures.

Extended Abstract of MSc Dissertation

Pedro Joaquim
Instituto Superior Técnico

Lisboa, Portugal
Advisor: Professor Luís Rodrigues

ABSTRACT
Incremental graph processing as emerged as a key technology, with
applications in many different areas. These applications, regardless
of their differences, have the common characteristic of continuous
processing, thus requiring the system to run on a 24/7 basis. For
deployments in public cloud infrastructures, these long term de-
ployments may incur very high costs. However, cloud providers
offer transient lived resources, with significantly reduced prices
compared to the regular resources, with the proviso that the former
can be evicted at any time. Thus, this type of resources is a huge
opportunity to significantly reduce operational costs, missed so far
by existing approaches.

In this work we present Hourglass, a deployment engine for
existing incremental graph processing systems. The system aims at
leveraging the resource heterogeneity in public cloud infrastruc-
tures, as well as transient resource markets, to significantly reduce
operational costs. Hourglass exploits features of the workload,
such as the imbalance in vertex communication patterns, to do a
resource-aware distribution of graph partitions among the existing
machines. By constantly analyzing transient market conditions,
it is able to select the cheapest deployment configuration in each
moment, allowing a periodic reconfiguration of the system. Knowl-
edge about the computation being performed allows Hourglass to
choose the right moment to transition between deployments. This
allows the underlying system to operate on a fraction of the cost of
a system composed exclusively of reserved machines, with minimal
impact in performance.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;

KEYWORDS
Graph Processing, Cloud Computing, Resource Management.

1 INTRODUCTION
The growth of graph data, including social networks, web graphs,
and biological networks, has driven the emergence of many spe-
cialized graph processing frameworks [6, 7, 14, 15]. These systems
simplify the implementation of iterative graph algorithms by ex-
posing graph-specific abstractions. Early systems, such as Google’s
Pregel [15], assumed an underlying static graph structure while
the computation is performed. However, many domains of interest,
such as commerce, advertising, and social relationships, are highly
dynamic and consequently, the graphs that model these domains

present a fast-changing structure that needs to be constantly re-
analyzed. To support the dynamic aspects of the existing graphs,
incremental graph processing frameworks have been proposed
[4, 11, 19]. These systems provide decision makers with access to
up-to-date information in real-time.

Incremental graph processing systems require a processing in-
frastructure to be permanently deployed and operating. Unfortu-
nately, the cost of operating an incremental graph processing infras-
tructure over long periods of time can easily become prohibitively
expensive. For instance, considering the experiment reported by
facebook [5] to process their trillion edge social graph. On Amazon
EC2, using the same 200 reserved machines of type C4.4xlarge, at
current prices, incurs a yearly cost of 1 064 600 USD 1.

Luckily, these costs can be significantly reduced if the incre-
mental graph processing system exploits the diversity of resources
currently offered by public cloud providers, such as Amazon and
Google Compute Engine. First, these platforms offer a wide variety
of machines with prices proportional to the provided level of re-
sources. This can potentially enable deployments that better match
the resources with the computational needs. Second, providers of-
ten make available transient resource markets that offer clients the
possibility to rent, under dynamic price and availability conditions,
spare resources with big discounts over the reserved counterparts,
with the proviso that they can be withdrawn at anymoment2. These
resources offer a good opportunity to dramatically reduce deploy-
ment costs for systems that can tolerate unpredictable availability
conditions. Unfortunately, existing incremental graph processing
systems often consider homogeneous deployment solutions, lead-
ing to over-provisioned services with resources that are, most of
the time, left idle [13, 23]. Furthermore, their design is not meant
to tolerate unpredictable resource evictions.

In this work we present Hourglass, a deployment engine that
works as a middleware between the deployemnt environment and
the incremental graph processing framework.Hourglass leverages
the existing heterogeneity and transient resources to significantly
reduce the long term deployment costs. To achieve this goal, Hour-
glass offers a number of interesting features: (i) it exploits the
characteristics of the workload, such as imbalances in vertex com-
munication, to do a resource-aware distribution of graph partitions
among the existing resources. This allows Hourglass to resort to
a combination of heterogeneous machines with different resources,
a strategy that allows to adapt to price fluctuations that result for

1https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
2https://aws.amazon.com/ec2/spot/pricing/

https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/spot/pricing/


peaks of demand for certain instances’ types. (ii) Hourglass con-
stantly analyses market conditions and uses knowledge about the
computation being performed to find the right moment to tran-
sition among deployments and to dynamically adapt to changes
in market prices. Combined, these features allow the incremental
graph processing system to operate on a fraction of the cost of a
system deployed exclusively of reserved machines, with minimal
impact on the system performance, despite the evictions. The ob-
tained results show that the Hourglass system is able to achieve
cost reductions of 50% with residual impact on performance and
up to a 80% cost reductions with a performance degradation less
than 10% over the traditional reserved resources deployments.

The main contributions of this work are the following:
• It presents the first architecture of a deployment engine for
incremental graph processing systems that seeks to reduce
deployment costs by using transient resources.

• This work also describes how the proposed system is able
to use heterogeneous resources leveraging specific features
of graph processing task, proposing a hot/cold separation
strategy.

• It formally describes the optimization problem associated
to the target system deployment, considering multiple prob-
lem level constraints, and proposes a way of solving it in
reasonable time.

• A sound evaluation that shows how the transient resource
usage provides better results when multiple instance types
are considered over the traditional homogeneous approach.
The presented evaluation also studies the impact that sev-
eral system level configurations have on the achieved cost
savings and system’s performance.

The rest of the report is organized as follows. Section 2 identifies
the challenges in transient resource usage, applied to our context.
Section 3 presents the Hourglass system, the solution to the pre-
sented problem. Section 4 evaluates the solution. Section 5 presents
the related work and Section 6 concludes the work.

2 CHALLENGES
The usage of transient resources brings some challenges to the
system design. The dynamic price and availability conditions of
these resources raise problems that did not exist before. A heteroge-
neous resource approach, that considers multiple types of machines,
further raises questions about how to leverage such diversity. We
decided to tackle the Amazon Web Services (AWS) environment,
as we believe it to be the most challenging for transient resources
usage. The current solution could then be easily translated to other
cloud providers with simpler transient resource usage mechanisms.
The main challenges identified are the following:

(1) How to handle the dynamic market prices for transient re-
sources. At somemoment amachine type can have a discount
of 90% over the reserved price and some moments later have
a price that is 10× higher than that baseline price.

(2) How to take advantage of the heterogeneous environment
when partitioning the initial dataset. Traditional solutions
consider only one type of machine and try to split the dataset
into a set of partitions that have roughly the same computa-
tional effort. In our target setting, that considers machines

Figure 1: Hourglass system’s overview

with different computing powers, there is the possibility of
creating partitions that are not balanced in terms of compu-
tational effort.

(3) How tominimize the impact on performance due to transient
resource usage. Although we expect the usage of transient
resources to significantly reduce the deployment costs, the
increased probability of failure will impact the system per-
formance.

In the following sections we describe the Hourglass system.
We detail the main system characteristics that specifically tackle
these challenges.

3 HOURGLASS
Hourglass is a deployment engine for incremental graph process-
ing systems. It works as a glue between existing systems and the
target deployment environment. As a deployment engine, its goal is
to ensure that the underlying incremental graph processing system
is deployed in a set of machines that are able to withstand the com-
putational task and, at the same time, find the cheapest deployment
configuration that is able to do it. Hourglass leverages heteroge-
neous transient resources usage in order to significantly reduce
the associated deployment costs. The system assumes that these
resources are provided by cloud providers on dynamic markets
where instances’ prices and eviction probabilities are constantly
changing. These conditions are frequently analyzed by Hourglass
in order to allow it to adapt the current deployment configuration
to the new market conditions.

Hourglass has four core components – illustrated in Figure 1 –
namely:

• Heat Analyzer is responsible to process computational
metadata, provided by the underlying graph processing sys-
tem, in order to calculate the heat of each vertex in the
computational task. This data is then provided to Hourglass
Partitioner to assist in the graph partitioning task and to
Hourglass Bidder during the deployment process.

• Hourglass Partitioner splits the target dataset into a set
of partitions, created with certain characteristics meant to
improve user-defined goals such as: improve performance;
maximize the obtained cost savings; or find a good compro-
mise between the two.

2



• HistoricalDataDigester reads historical spotmarket prices
from AWS. It uses the historical information to calculate spot
instances failure probabilities and estimate costs. This in-
formation is then used by Hourglass Bidder to choose the
deployment configuration.

• Hourglass Bidder is the system’s component responsible
for, at user defined time intervals, find the cheapest assign-
ment for the target set of partitions. Before the beginning of
each time slot, Hourglass Bidder casts an optimization prob-
lem to find the cheapest possible deployment for the current
partition’s characteristics and spot market prices. The output
of this process is a list of machines that need to be requested
to the deployment infrastructure and the bid values for each
one of them. The result also has the assignment between the
existing partitions and the machines available for the next
time slot.

3.1 Hourglass Partitioner
Hourglass bases the partitioning problem around the heat distri-
bution. We define heat as the minimum amount of resources that
a cluster must have in order to process a given dataset. Once the
dataset is divided into partitions, the heat of each partition gives
us the minimum amount of resources that a machine must have
in order to withstand the computational task associated to that
partition. Depending on incremental system’s implementation, or
on the characteristics of the incremental algorithm being executed,
the problem may be memory bound, CPU bound or network bound.
The heat should then be measured in a unit of these metrics or in a
combination. For simplicity, in the rest of the report we assume the
problem to be memory bound and measure the heat in gigabytes.

Once the total heat of the target graph dataset is known, one
should decide how the graph will be partitioned. The system should
take into consideration the partitioning impact, not only in the
system’s performance, but also in the possible cost savings achieved.

Improving Execution Time: If the system prioritizes execution
time, the created partitions’ heat should be as high as the capacity
of the largest machine. In detail, as the number of partitions in
which we divide the target dataset increases, assuming that the
total amount of resources in the system is kept the same, one should
also expect the execution time to increase as there is the extra effort
of transmitting messages between partitions that are assigned to
different machines. Based on this, when the execution time should
be prioritized, Hourglass chooses to create partitions as large as
the maximum allowed by the available machines. Strategies that
seek to maximize local communication between vertices [6, 9, 17]
can then be applied to create the partitions with the intended heat
value.

Improving Cost Reductions: When leveraging transient re-
sources, the more types of instances we consider the more likely
we are to find an instance type that has a significant discount over
reserved resources. For example, in the AWS spot market, if one
type of spot-instance is under a high demand, its price will rise,
possibly even above the price of the on-demand version for that
type of instance. When this happens, a good alternative is to assign

the partitions to other types of instances that, for that moment,
offer a better deal between provided resources and cost.

If we create large partitions, aiming at improving the execution
time, we are indirectly hindering the deployment cost as we are
reducing the types of instances to which the partitions may be
assigned. This means that when the spot price for the instance
that we are using rises, we have no alternative other than change
to on-demand resources if the spot-price rises beyond that price.
If the only goal of the system is to reduce the deployment cost,
Hourglass decides to create partitions that can be assigned to all
types of instances.

By creating small partitions, that can be assigned to any type of
instance, we are not forcing the system to use the smallest possible
machines always (worst performance). Under the right market price
conditions, if the cost of using large machines is the same of using
small machines to achieve the same level of resources, Hourglass
prioritizes large resources and assigns multiple partitions to the
same machine, achieving the same performance benefits of creating
large partitions.

Hot/Cold separation, a good compromise between cost and
execution time: As explained before, execution time and cost re-
ductions are objectives maximized under different, and contrary,
conditions. The system’s performance degradation is directly re-
lated to the percentage of the total communication that is not
performed locally. Larger partitions reduce the amount of com-
munication performed remotely but may reduce the achieved cost
savings by limiting the types of machines to which partitions may
be assigned. A good compromise between cost and execution time
would be to choose an intermediate term between the two objective
functions and create partitions with an intermediate heat value.

Hourglass explores a different approach to achieve a better
compromise between cost and execution time. Previous work [4,
11, 19] has focused on creating partitions with equal heat values
in order to balance the work performed by each machine in the
system, assuming all of them to have the same amount of resources.
In order to take advantage of the available resources heterogeneity,
we advocate the creation of partitions with different heat values,
therefore with different computational needs, in order to improve
on the execution time and cost that would be obtained by creating
partitions with an intermediate, evenly distributed, heat value.

As graphs present irregular structures, one should expect the
communication to follow such irregular patterns. This leads to the
existance of distinct heat values across different vertices, observed
by [11]. Based on this, we classify the vertices in the system as hot
vertices, that have a huge roll in the system’s performance and are
responsible for a great part of the communication, and cold vertices,
that perform almost no communication and have low impact in the
overall execution time. Hourglass focuses on creating partitions
that either have hot vertices or cold vertices, therefore promoting
a hot/cold separation of vertices. On one hand, by creating parti-
tions of hot vertices, the system is placing in the same partitions
the vertices that communicate the most and the number of remote
messages between machines is expected to decrease significantly,
improving execution time. These partitions will have high heat val-
ues, reducing the possible machines to which they can be assigned.
On the other hand, the remaining cold vertices can be partitioned

3



Figure 2: Graph processing communication analysis.

into a higher number of partitions, with low heats, without sig-
nificantly affecting the system’s performance as these vertices are
expected to have low impact in the system’s performance.

In short, the hot/cold separation approach tries to create a better
compromise between cost and execution time by separating hot
vertices from cold vertices and creating partitions of different heats
(sizes). Partitions with hot vertices will have a higher heat, increas-
ing their deployment cost, but improving the system’s performance.
Cold vertices can be partitioned into low heat partitions (more
partitions) without significantly hindering the execution time and
allowing a cheap deployment. In addition to the hot/cold separation,
one can still use partitioning techniques that favor local commu-
nication. For example, these techniques can be used to choose hot
vertices’ placement if more than one hot partition is necessary. This
will further help to reduce the communication between machines.
Besides that, these techniques are often associated with large pre-
processing times[16], by limiting the partitioning to hot vertices,
as we expect cold vertices to communicate a lot less, we are also
reducing the pre-processing time and increasing partition quality
by reducing the dataset size [20, 21].

However, in order to this hot cold separation to be useful, the
number of hot vertices should be smaller than the number of cold
vertices. A lower percentage of hot vertices will reduce the number
of partitions with high heat, necessary to improve execution time,
and increase the number of partitions with low heat, that reduce
deployment costs. As explained before, communication is the rul-
ing factor for vertices’ heat. Figure 2 presents a communication
analysis performed over three datasets of different sizes and types,
namely a social network [26], a webpages network [12] and a road
network [12]. The figures show the relation, on a vertex-centric
approach, between the percentage of the number vertices (x-axis)
and the percentage of the total communication performed during
the computation (y-axis). The presented results are for a the Single-
Source Shortest Paths (SSSP) application with a 25% percentage
of vertices receiving updates. A more detailed evaluation was per-
formed with more application types and different percentage of
vertices receiving updates. These are not shown here due to space
constraints. However, the presented results are representative of
the results obtained for the other experiments.

Based on this results, we can see that a small set of vertices
is responsible for most part of the communication. This evidence
suggests that the conditions for a hot/cold separation approach to
work are met.

3.2 Heat Analyzer
The Heat Analyzer component receives metadata information from
the computational task being performed to calculate the heat values
of different vertices. The heat of a vertex is given as a function of the
amount of updates it receives and the communication it performs
during the incremental computation task.

The current implementation of this component uses a simple,
yet effective, approach that defines the heat of a vertex simply
by counting the number of updates it receives and counting the
number of messages it sends and receives during the incremental
computational task. This information is crucial to the Hourglass
Partitioner component, as it takes a major role in the partitioning
task.

This component also keeps track of the current dataset heat,
given by the sum of its partitions’ heat and empirically measured
by analyzing each machine load information. This information is
then used by the Hourglass Bidder to create valid assignments be-
tween machines and partitions, preventing the outburst of machine
capacity.

3.3 Historical Data Digester
On Amazon, spot-instances work on a auction based system. Evic-
tions occur when the current market price for a given instance
type is above the bid placed for that same instance. Previous work
[8, 10, 24] has consistently used techniques based on historical data
of spot market prices to predict evictions probabilities or the ex-
pected time before an eviction occurs under a certain bid value.
This information is crucial to control, to some extent, the evictions
occurring in the system. A way of predicting the probability of
failure for a given instance under a certain bid is essential to ensure
the system’s availability and the computational task progress.

This component provides two services that are used byHourglass
Bidder during the deployment selection phase. In this section we
present the two services and detail how they are implemented. On
Section 3.4 we explain how they are used.

The historical data is organized by instance type, it is defined
by a group of datapoints representing spot market price changes.
These datapoints contain the spot market price and the timestamp
when such market value become effective.

Bid Oracle Service: This service, based on historical spot mar-
ket prices, returns the bid value that should be issued for a given
instance in order to met the probability of failure for the intended
period duration. The service receives as input the target instance
type, its current market price, the target probability of failure and
the duration of the period. The process of finding the bid value goes
as follows:

(1) The service scans the data finding all datapoints where the
target resource type had the current market value. If the
collected set of datapoints is not statistically significant, the
service does add all datapoints where the market value is
equal to the current market value ± 0.01 cents (the price unit
on Amazon). This procedure is repeated until a significant
number of datapoints are collected.

(2) The service computes all past time periods (for the requested
duration) that started with the current market price. This is

4



done by creating a set, for each of the collected data points,
containing that datapoint followed by all other datapoints
in the historical timeline that fit into that period.

(3) For each of the sets obtained in the previous step, the service
finds the highest price that the resource type reached during
that period of time. This price represents the bid price that
would have precluded evictions during that specific period.
The service then creates an ordered list l , in descending order,
with all the obtained values.

(4) The service returns the ⌊p ∗ n⌋-th element in l , where p ∈

[0, 1] is the eviction probability and n is the list l length. This
value is the bid price that with a probability 1−p would have
caused no evictions on the historical periods considered.

Cost Estimation Service: This service is used to estimate the
cost of an instance for a given period of time. On Amazon, the
cost paid for each instance is defined in the beginning of each
billing hour as the current market price of the target instance. This
service receives as input the target instance type, its current market
price and the duration of intended time period. The result is the
estimated cost of that instance for that period. The cost is estimated
as follows. As the Bid Oracle service, the Cost Estimator, based on
historical data, computes all past time periods that started with the
current market price (steps 1 and 2). Then, for each of those periods
computes how much renting that type of resource costed. Finally,
it returns the average among those costs.

3.4 Hourglass Bidder
Hourglass is responsible for, at user defined time periods, find
the assignment for the existing partitions and machines that is
expected to minimize the deployment cost. This is selected based
on the current market values and always respecting the associated
capacity constraints. To solve this problem, Hourglass uses a sub-
component called Hourglass Bidder that is responsible for, in the
end of each time period, cast an optimization problem to find such
deployment configuration.

When creating the assignment between partitions and machines,
some aspects, important to ensure the proper functioning of the
system and meet user defined goals, need to be considered. The
aspects are the following:

• Eviction Rate: In the AWS auction system, bids have a di-
rect impact in the probability of failure for a given machine.
In order to meet the expected eviction rate, Hourglass al-
lows the user to specify the probability of failure that it is
willing to accept. The target bids are then obtained using the
bid oracle service (Section 3.3).

• Partition’s Heat: Partitions have associated heat values
that represent the minimum amount of resources that a ma-
chine must have in order to withstand the associated com-
putational task to that partition. When assigning partitions,
the system must ensure that every machine is assigned a set
of partitions that do not burst its capacity.

• Expected Instance Cost: As explained in Section 3.3, the
price per instance is different from the price paid. The previ-
ously described cost estimation service is used to estimate
the price of a given instance.

All things considered, the goal of Hourglass Bidder is to find
an assignment between the existing partitions and the possible
instances that may be requested to the deployment infrastructure.
This assignment must respect the above mentioned aspects and
minimize the expected deployment cost.

3.4.1 Deployment as an Optimization Problem.

The deployment problem is formulated as an optimization prob-
lem. Hourglass Bidder uses a constraint solver to find the best pos-
sible assignment in every moment. ConsideringM as the set of all
available machines for time period t and P the set of all existing
partitions. The objective of Hourglass Bidder in time t is to return
the set of boolean variables xpmt , true if partition p is assigned to
machinem on time t and false otherwise. γmt denotes the binary de-
cision variable that becomes 1 if a machinem allocates any partition
in time t

More formally, the above described problem is defined as follows:

minimize:
∑
m∈M

(γmt ∗ µ̂mt ), t ∈ T ,m ∈ M (1)

s.t. x
pm
t − γmt ≤ 0, ∀m ∈ M,∀p ∈ P , t ∈ T (2)∑

m∈M
x
pm
t = 1,∀p ∈ P (3)∑

p∈P
(x
pm
t ∗ σp ) ≤ βm ,∀m ∈ M (4)

Constraint 1 in the above formulation ensures that if at least
one partition is assigned to a machine, the estimated cost of this
machine (µ̂mt ) is considered in the cost computation. Constraint 2
ensures that each partition is assigned to one and only one machine.
Constraint 3 ensures that the sizes of partitions (σp ) assigned to a
given machine do not outburst its capacity (βm ). Hourglass uses
CPLEX3 to solve the above formulation. The current implementa-
tion allows the system to obtain the solution up to a problem size
of 3000 partitions under one minute.

3.5 Fault and Eviction Handling
The Hourglass architecture consists of four components, each
representing a single point of failure. The goal of our prototype is
to show the potential cost reductions that Hourglass can achieve
and it is not implemented to tolerate failures in any of those four
components. We consider addressing these concerns orthogonal to
the contributions of this paper. Nevertheless, in a real implementa-
tion of the system, this components would need to be replicated.
Standard machine replication techniques [18] can be employed to
make each component robust to failures.

Apart from failures of the Hourglass components, Hourglass
has to deal with failures and evictions of the machines that in-
stantiate the graph partitions. The procedure to recover from such
failures is similar to the reconfiguration procedure. Thus, when a
failure is detected, Hourglass Bidder first finds the optimal deploy-
ment for the partitions that were instantiated in the lost machines.
Then, it triggers the starting phase by booting the new machines
and coordinating them, with the incremental graph processing sys-
tem, how these machines recover the application state. There are
3https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

5

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/


two situations to consider. First, if the failure/eviction happens in
between computational phases, the recovered partitions simply
read the latest checkpoint from the persistent storage. Second, if
the eviction/failure occurs during the computational phase. In this
case, Hourglass notifies to the processing system that the compu-
tational phase is aborted, which notifies the remaining partitions
to rollback to the previous consistent checkpoint. Finally, the com-
putational phase is restarted once all partitions are instantiated.
We assume that the underlying system has its own fault tolerant
mechanisms to ensure that not update is lost until its effects are
reflected in a checkpoint. This is a common assumption as this
system normally batch updates in a centralized component and
only scatter them at the beginning of each computational phase.

One of the consequences of failures/evictions is that Hourglass
has to handle resources being acquired at different points in time.
Thus, the end of a time-slot may not match the end of the billing
hour for all resources. Hourglass can handle multiple of these
timelines temporarily. Nevertheless, it tries to merge these into a
single timeline: when the time-slot is about to end, timeliness for
resources whose end of the current billing hour is closer than a
given threshold (less than 30 minutes for instance) are merged with
the main timeline (the one in which time-slots with the billing hours
are synchronized). Of course, this has an impact on deployment
cost. Nevertheless, the alternative would be to maintain multiple
timelines indefinitely which adds computational overhead. Also,
this alternative would negatively impact cost, as the system would
be reconfiguring the system by parts and not in one-shot, reducing
the quality of the deployment configurations.

4 EVALUATION
Hourglass main goal, as a deployment engine for incremental
graph processing systems, is to reduce deployment costs without
significantly affect the system performance and availability. As dis-
cussed in Section 3, there are several factors, either related to the
graph processing task or to the deployment environment interac-
tion, that can impact the outcome results. In this section, we intend
to study the impact of several factors, such as heat distribution tech-
nique, bidding strategy and others, on the possible savings achieved
by Hourglass. Our goal is to understand the best configuration
for the system under different market conditions, user constraints
and underlying graph processing system characteristics.

4.1 Experimental Setup
The experiments carried out consider five different types of in-
stances from the C4 compute optimized instance family provided
by Amazon4. All instances run Ubuntu Server 14.04 LTS.

Due to the lack of open-source incremental graph processing
systems, in order to evaluate the computational impact of some
decisions we created a prototype that resembles a typical vertex-
centric implementation, identical to the Kineograph[4] system.

Experiments use two different applications. The SSSP application,
that calculates the distance from all vertices to a single vertex, and
the TunkRank[22] application, similar to PageRank [2] applied on
social network context.

4https://aws.amazon.com/ec2/instance-types/

Table 1: Graph dataset description.

Dataset #Vertices #Edges Type
Orkut 3,072,441 117,185,083 Social Network

Synthetic1 4,000,000 400,000,000 Synthetic

Table 1 describes the datasets used in the experimental evalua-
tion. The syntetic graph was obtained using the R-MAT [3] gener-
ator with the same parameters used by benchmark graph5005 to
generate scale-free graphs.

4.2 Cost Analysis Simulator
All costs presented on this section were obtained by running differ-
ent experiments on a simulator created to emulate the characteris-
tics of the target deployment environment rather than experiments
on the AWS environment for several reasons. First, prices for spot-
instances often change on a daily basis, therefore, in order to obtain
meaningful results we should consider time frames which are not
smaller than few days, otherwise, the results would be of little in-
terest. Due to the large number of experiments that were carried
out, and the limited existing budget, running all experiments with
several days per experiment would have been impossible. Also,
when comparing different strategies, it is important to consider the
same time period, where the price variations are exactly the same,
to provide a fair point of comparison.

All costs presented were obtained by simulating the target ex-
periment over a AWS price trace that goes from July 13 to August
9, 2017 (about 650 hours) for the us-east region. Unless otherwise
stated, the simulator emulates the AWS conditions, the system uses
the historical bidding strategy with a 25% probability of failure and
one hour time slots, meaning that in the end of every billing hour
a new assignment is selected.

4.3 Heterogeneous Transient Resource Usage
Using transient resources, Hourglass should be able to signifi-
cantly reduce the deployment costs compared to the usage of re-
served resources, as the prices for spot-instances can some times
reach a 90% discount. In this experiment we intend to show how the
usage of multiple instances types further improves the cost savings
achieved over only considering a single type of spot-instance.

Figure 3 shows the obtained costs by running the system with a
set of 16 partitions with a heat value of 3.75Gb each (60Gb total) for
different deployment strategies. Only OD strategy considers only
on-demand instances to hold graph partitions and is used as the
baseline comparison. The Hourglass strategy considers the usage
of all types of spot-instances and the other strategies consider
the usage of only one type, from the above described types, of
spot-instances. The figure shows a stacked area graphic that for
each strategy shows the cost spent in each type of instance. The
simulation, for strategies that consider spot-instances, decides to
use on-demand resources if the price for the available spot-instances
is above the price for on-demand.

As expected, all strategies that consider spot-instances obtain
cost savings from 40% to 75% over the cost of only using on-demand

5http://graph500.org/?page_id=12

6

https://aws.amazon.com/ec2/instance-types/
http://graph500.org/?page_id=12


Figure 3: Cost reductions over different machine usage
strategies.

Figure 4: Execution time and cost analysis for the synthetic
dataset.

resources. The best cost reductions are achieved by the Hourglass
strategy that considers all types of spot-instances. As spot-instances
have independent market values, by considering all types of spot-
instances, Hourglass is able to efficiently choose replacement in-
stances for machine types whose price went up.

4.4 Batch Execution Time and Cost Analysis
As explained before, for the same dataset, smaller partitions are
able to achieve the best cost savings over large partitions. However,
as discussed in Section 3.1, as the size of partitions decreases and
the potential number of machines performing the computation
increases, the execution time is expected to increase, assuming that
the amount of resources in the system is kept the same.

We analyzed the deployment cost, batch execution time and
messages exchanged during computation to study if the different
heat distribution strategies produce the expected results. Figure 4
compares the execution time and deployment cost associated to
the synthetic dataset (60GB heat). The figure shows the execution
time to process a batch of 10 million updates and perform the in-
cremental computation of both applications, for different numbers

Figure 5: Execution time and messages exchange analysis
for the synthetic dataset.

of partitions, namely one 60Gb heat partition, two 30Gb heat par-
titions, four 15Gb partitions, eight 7.5Gb partitions and sixteen
3.75Gb partitions. The batch execution time was measured using
the worst deployment for the computational time, that is, using
the smallest possible machine for every partition. The figure also
shows the associated deployment cost for each configuration over
the duration of the cost simulation (about 650 hours). Results show
that, in fact, larger partitions improve batch execution time and
increase deployment costs, having small partitions with the oppo-
site trade-off. The hot/cold separation also proves to be a better
compromise between cost and execution time than just picking an
intermediary partition size. Figure 5 shows the relation between
batch execution time and the number of messages exchanged re-
motely during computation for the SSSP application. Analyzing
the results, assuming that all deployment settings have in total
the same amount of resources, just divided across into different
numbers of machines. It is pretty clear the relation between the
execution time and the number of exchanged messages. The results
for the hot/cold separation show how the hot vertex placement
on the same partitions help to reduce the number of exchanged
messages.

4.5 Update Staleness Analysis
In the previous section we evaluated the impact that different heat
distribution strategies have in the batch execution time for theworst
deployment case. Although these results show that, in fact, the heat
distribution impacts the batch execution time the way we predicted,
there are other aspects that need to be considered. First, the worst
case scenario is not always the deployment configuration being
used. Second, the performance of the system is also impacted by
other factors, as periodic reconfigurations, spot evictions and state
checkpointing. Considering this, we find the batch execution time
to be a good performance metric but lacks the temporal continuity
necessary to cover the above mentioned aspects. To solve this
problemwe decided to use another performance metric, the average
update staleness over a time period. This metric measures the time
passed since an update was received by the system until its effects
become reflected in the persistent state of the graph (reliably stored),

7



Figure 6: Update staleness and cost analysis for the synthetic
dataset.

averaged for the amount of updates received during a specific time
period. This metric reflects all the above mentioned aspects and is
therefore a more complete performance metric.

To measure this metric we extended the previously described
cost simulator. The simulator allows us to know, at each moment in
time, the machines being used and the assigned partitions to each
one of these machines. We can also know from this simulation the
failures that occurred and when they occurred. This information,
together with data obtained from real executions in the Amazon
environment, allows us to do a very good estimation of the update
staleness over the same period duration of cost estimation (around
650 hours). To do this, we executed the batch processing phase for
every dataset and incremental application in all possible deploy-
ment configurations that were observed during the cost simulation
process, and for different batch sizes that can accumulate from con-
sequent failures or reassignment phases. Apart from this, we also
measured machine’s startup times and partition’s read and write
checkpoint times for all possible partition sizes that were tested.

Figure 6 shows the obtained results for the synthetic dataset.
Results for the orkut dataset lead to similar conclusions and is not
here presented due to space constraints. Analyzing the results, the
different partitioning objectives met the initial expectations and
follow the same trend as the batch execution times. More precisely,
when executing for performance, Hourglass is able to achieve
performance results that are not worse than 2%, reaching discounts
of 50% over the same baseline cost. When executing to reduce cost,
Hourglass is able to achieve cost reductions up to 78% over the
baseline cost with no more than 10% performance degradation.
The hot/cold separation again shows a good compromise between
between cost and execution time.

4.6 Reassignment Frequency Analysis
So far, all experiments considered a reassignment period of one hour.
This means that in the end of every billing hour, Hourglass Bidder
initiates the process to select a new assignment for the next time
period. In this section we analyze the impact of selecting different
reassignment periods. The results presented in this section are for a

Figure 7: Reassignment impact on performance and deploy-
ment cost analysis.

Figure 8: Reassignment frequency impact on the mean time
between failures.

60Gb heat dataset deployment, using the partitioning method that
improves cost savings, running the the SSSP application.

The reassignment period impacts several aspects. It impacts the
deployment cost, as larger reassignment periods reduce the system
ability to adapt to price market changes. Figure 7 shows this impact
in the deployment cost and also in the system’s performance. The
performance degradation is mainly due to one factor. For larger re-
assignment periods, smaller machines have the cheapest estimated
costs as they have more stable prices. Therefore, by increasing the
reassignment period, we are indirectly prioritizing smaller instances
that reduce the system performance.

If increasing the reassignment period degrades both performance
and cost one may ask what is the benefit of increasing this period.
Selecting the smallest reassignment period seems to be the best
solution for all cases. However, the reassignment period duration
imposes a possible hard barrier in the system availability, that is, it
is necessary to interrupt the system to possibly start new machines.
This may have significant impact in performance if this period is

8



Figure 9: Probability of failure impact on deployment cost
and performance.

smaller than the time the system takes to process at least one up-
date batch and checkpoint the current state. This leads to situations
where the system is constantly interrupting the ongoing computa-
tion and preventing computational progress. So, another important
aspect to the system is the Mean Time Between Failures (MTBF),
here translated as the mean time between reassignments. This is
the time the system has on average without any interference, either
due to a spot instance’s failure or to the end of the current time slot.
Figure 8 shows the obtained MTBF under different reassignment
periods. These periods were obtained by running the simulation
and include both pauses due to planned reconfigurations and spot
failures. We can see that, as the time slot duration increases the
MTBF also increases. The reassignment period should be selected
so that the MTBF is greater than the time the system usually takes
to process at least one update batch and checkpoint the graph state.

4.7 Historical Bid Strategy Under Different
Probabilities of Failure

As explained on Section 3.3, the bid value used to request spot
instances will dictate if an instance gets revoked or gets to the end
of the target time period. Hourglass allows the specification of
the target probability of failure for the spot-instances. An approach
based on past historical data is then used to find the bid value that
matches the target probability of failure.

The probability of failure will impact the eviction rate of spot-
instances. In this Section we analyze, for a dataset of 60Gb size
running the SSSP application, with partitions that reduce the de-
ployment cost, the impact of different probabilities of failure in
performance and cost for the historical bidding strategy. The ob-
served results are representative of the impact that this failure
probability has over the mentioned aspects for different datasets,
applications, reassignment periods and partitioning methods, not
here presented again due to space constraints.

Figure 9 shows the impact that different probabilities of failure
(10%, 25%, 50%, 75% and 100%) have in the deployment cost and
system’s performance. The obtained results are explained by a
simple factor, eviction rate. Lower probabilities of failure have

less failures that translate into higher MTBF periods and better
performance. Higher probabilities of failure induce higher eviction
rates, deteriorating the performance due to the increased number of
faults. However, these faults reduce the deployment cost due to the
free computing that the system gets in the last hour of eachmachine
before the eviction. For systems that can tolerate the performance
degradation, a higher probability of failure translates into cheaper
deployments. For example, for the analyzed dataset, a probability
of failure of 100% is able to achieve a deployment cost that is 88%
cheaper than the on-demand baseline and with a performance
degradation of 25% over the same baseline.

5 RELATEDWORK
GraphProcessing. Static graph processing systems are designed

to run algorithms over a static graph data model. In vertex-centric
approaches, such as Google’s Pregel [15], computation proceeds
iteratively following the Bulk Synchronous Parallel (BSP) execution
model [1] using synchronization barriers between iterations. To
mitigate the performance degradation caused by the global syn-
chronization barriers of the BSP model, approaches such as Gira-
phUC [7] use an asynchronous execution model. In this model, ver-
tices process computational messages as soon as they are received,
without waiting for synchronous barriers. This model outperforms
synchronous approaches for CPU intensive algorithms but degrades
in I/O intensive applications due to the lack of batching [25].

Nonetheless, the major shortcoming of static graph processing
systems is the assumption that the underlying graph structure does
not change. In fact, when the graph structure changes, the algo-
rithms need to be run from scratch which is very inefficient [19]. To
overcome the limitations of static graph processing systems, propos-
als such as Kineograph [4], GraphIn [19] and iGraph [11], allow for
incremental graph processing where the underlying graph structure
can change and the computation is adjusted accordingly. Nonethe-
less, despite flexible, incremental graph processing approaches are
oblivious to the underlying environment heterogeneity.

TransientResourceUsage. Major cloud providers such as Ama-
zon, Google and Microsoft offer transient resources in their plat-
forms. Transient resources are usually offered at a significant dis-
count over the non-transient counterparts with the downside that
these resources can be terminated at any time without notice. It
follows naturally that a careful management of transient resources
can be an effective way to reduce deployment costs, provided that
the dynamic resource availability can be tolerated. This observation,
on which the contributions of Hourglass rest, has been exploited
before in systems such as Pado [27] and Proteus [8].

Pado [27] is a general data processing engine that leverages idle
resources of over-provisioned nodes, to run batch data analytic
jobs on a mix of reserved and transient resources. The system
receives as input a Directed Acyclic Graph (DAG) of computations
representing the job that is going to be processed. The goal is to
find the computations that would cause the larger recomputation
costs if evicted, and assign these to the non-transient resources
and all the others to transient resources. This is effective for offline
analytical jobs, where the input is well known and finite, but it
does not fit an incremental graph processing model. This is because

9



the graph computation is highly dependent on the type of updates
received, making the computation cost unpredictable.

Proteus [8] exploits transient resources to perform statistical
machine learning. It iteratively processes training data to converge
on model parameter values that, once trained, can predict outcomes
based on the computed model. Proteus’ end goal is to reduce the
expected cost to process a finite workload which is done by creating
an assignment to transient and non-transient resources that is
expected to reduce the overall cost per workload. This means that
the system may acquire more resources, more expensive for that
particularmoment, if it expects that it will reduce the time to process
the remaining workload and reduce the overall cost of processing
the workload. On an incremental graph processing system, the
deployment is continuous and the workload is considered infinite,
making Proteus’s optimization goal unfit for our model.

6 CONCLUSION
In this work we analyzed incremental graph processing systems,
that allow the underlying graph structure to change and adapt the
computation values obtained from the target algorithm being exe-
cuted to the graph mutations. The graphs that model domains of
interest present a fast changing structure that needs to be constantly
analyzed, motivating long lived deployment that become very ex-
pensive. We identified that most incremental graph processing
systems are oblivious of the underlying deployment environment,
missing opportunities to significantly reduce operational costs.

In order to fill this gap between the existing systems and deploy-
ment environment we proposed Hourglass, a deployment engine
for incremental graph processing systems. The system leverages
heterogeneous transient resource usage to significantly reduce the
associated operational costs. The system is constantly analyzing
market price variations for the target transient resources and, on
user defined reassignment periods, selects the cheapest deployment
configuration for the next time period.

The obtained results show that Hourglass is able to achieve
cost savings of 50% with residual impact on performance and up
to a 88% cost reductions with a performance degradation less than
25% over the traditional reserved resources deployments.

Acknowledgments. This work has been partially supported by
Fundação para a Ciência e Tecnologia (FCT) through projects with
references PTDC/ EEI-SCR/ 1741/ 2014 (Abyss) and UID/ CEC/
50021/ 2013. Also, we would like to acknowledge the AWS Program
for Research and Education.

REFERENCES
[1] 1990. A bridging model for parallel computation. Commun. ACM 33, 8 (1990),

103–111.
[2] S Brin and L Page. 1998. The anatomy of a large scale hypertextual Web search

engine. Computer Networks and ISDN Systems 30, 1/7 (1998), 107–17.
[3] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

Recursive Model for Graph Mining.. In SDM, Michael W. Berry, Umeshwar Dayal,
Chandrika Kamath, and David B. Skillicorn (Eds.). SIAM, 442–446.

[4] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph:
Taking the Pulse of a Fast-changing and Connected World. In Proceedings of the
7th ACM European Conference on Computer Systems (EuroSys ’12). ACM, Bern,
Switzerland, 85–98.

[5] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-scale.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804–1815.

[6] Je Gonzalez, Y Low, and H Gu. 2012. Powergraph: Distributed graph-parallel
computation on natural graphs. OSDI’12 Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation (2012), 17–30.

[7] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barrierless
Asynchronous Parallel Execution in Pregel-like Graph Processing Systems. Proc.
VLDB Endow. 8, 9 (May 2015), 950–961.

[8] AaronHarlap, Alexey Tumanov, AndrewChung, Gregory R. Ganger, and Phillip B.
Gibbons. 2017. Proteus: Agile ML Elasticity Through Tiered Reliability in Dy-
namic Resource Markets. In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys ’17). Belgrade, Serbia, 589–604.

[9] Jiewen Huang and Daniel J. Abadi. 2016. Leopard: Lightweight Edge-oriented
Partitioning and Replication for Dynamic Graphs. Proc. VLDB Endow. 9, 7 (March
2016), 540–551.

[10] Bahman Javadi, Ruppa K. Thulasiramy, and Rajkumar Buyya. 2011. Statistical
Modeling of Spot Instance Prices in Public Cloud Environments. In Proceedings
of the 2011 Fourth IEEE International Conference on Utility and Cloud Computing
(UCC ’11). IEEE Computer Society, Washington, DC, USA, 219–228.

[11] Wuyang Ju, Jianxin Li, Weiren Yu, and Richong Zhang. 2016. iGraph: An Incre-
mental Data Processing System for Dynamic Graph. Front. Comput. Sci. 10, 3
(June 2016), 462–476.

[12] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2008.
Community Structure in Large Networks: Natural Cluster Sizes and the Absence
of Large Well-Defined Clusters. CoRR abs/0810.1355 (2008).

[13] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). Portland, Oregon, 450–462.

[14] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. 2010. GraphLab: A New Framework for Parallel
Machine Learning. CoRR abs/1006.4990 (2010).

[15] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’10). ACM, Indianapolis, Indiana,
USA, 135–146.

[16] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything
you always wanted to know about multicore graph processing but were afraid
to ask. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 631–643.

[17] Christian Mayer, Muhammad Adnan Tariq, Chen Li, and Kurt Rothermel. 2016.
GrapH: Heterogeneity-Aware Graph Computation with Adaptive Partitioning. In
Proceedings of the 36th International Conference on Distributed Computing Systems
(ICDCS). 118–128.

[18] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.

[19] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jeffrey
Young, Matthew Wolf, and Karsten Schwan. 2016. GraphIn: An Online High
Performance Incremental Graph Processing Framework. Springer International
Publishing, Cham, 319–333.

[20] GeorgeM. Slota, Sivasankaran Rajamanickam, Karen D. Devine, and KameshMad-
duri. 2016. Partitioning Trillion-edge Graphs in Minutes. CoRR abs/1610.07220
(2016).

[21] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2017. Graph-
Grind: Addressing Load Imbalance of Graph Partitioning. In Proceedings of the
International Conference on Supercomputing (ICS ’17). ACM, Chicago, Illinois,
16:1–16:10.

[22] Daniel Tunkelang. 2009. A twitter analog to pagerank. Retrieved from http:
//thenoisychannel.com/2009/01/13/a-twitter-analog-topagerank. (2009).

[23] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale Cluster Management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). Bordeaux, France, Article 18, 17 pages.

[24] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, George Kesidis, and Qianlin
Liang. 2017. Exploiting Spot and Burstable Instances for Improving the Cost-
efficacy of In-Memory Caches on the Public Cloud. In Proceedings of the Twelfth
European Conference on Computer Systems (EuroSys ’17). ACM, Belgrade, Serbia,
620–634.

[25] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015.
SYNC or ASYNC: Time to Fuse for Distributed Graph-parallel Computation.
SIGPLAN Not. 50, 8 (Jan. 2015), 194–204.

[26] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-
munities based on Ground-truth. CoRR abs/1205.6233 (2012).

[27] Youngseok Yang, Geon-Woo Kim, Won Wook Song, Yunseong Lee, Andrew
Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun. 2017. Pado: A Data
Processing Engine for Harnessing Transient Resources in Datacenters. In Pro-
ceedings of the Twelfth European Conference on Computer Systems (EuroSys ’17).
Belgrade, Serbia, 575–588.

10

http://thenoisychannel. com/2009/01/13/a-twitter-analog-topagerank
http://thenoisychannel. com/2009/01/13/a-twitter-analog-topagerank

	Abstract
	1 Introduction
	2 Challenges
	3 Hourglass
	3.1 Hourglass Partitioner
	3.2 Heat Analyzer
	3.3 Historical Data Digester
	3.4 Hourglass Bidder
	3.5 Fault and Eviction Handling

	4 Evaluation
	4.1 Experimental Setup
	4.2 Cost Analysis Simulator
	4.3 Heterogeneous Transient Resource Usage
	4.4 Batch Execution Time and Cost Analysis
	4.5 Update Staleness Analysis
	4.6 Reassignment Frequency Analysis
	4.7 Historical Bid Strategy Under Different Probabilities of Failure 

	5 Related Work
	6 Conclusion
	References

