
Partial Replication for Software Transactional Memory Systems
(extended abstract of the MSc dissertation)

Pedro Miguel Pereira Ruivo
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Nowadays, transactional in-memory distributed
storage systems are widely used as a mean to increase the
performance of applications that need to access frequently
large amount of shared data. In this context, data replication
has two main advantages: it supports load balancing and
fault-tolerance. However, these advantages need to be weighted
against the costs of replications: namely memory consumption
and coordination costs. This motivates the use of partial
replication. In order to maximize performance and scalability,
these platforms typically rely on weakly consistent partial
replication mechanisms, sacrificing consistency and ensuring
guarantees that are weaker than classic 1-Copy Serializability.

This thesis addresses the problem of supporting partial repli-
cation in transactional in-memory distributed storage systems.
Although solutions have been proposed for partial replication in
database management systems, there are significant differences
between the two type of systems. Namely, transactional in-
memory distributed storage systems avoid many of the costs
involved in the management of database transactions, which
amplifies the costs of replica maintenance. Therefore, the thesis
aims at assessing the efficiency of partial replication in the
context of transactional in-memory distributed storage systems.

The thesis presents the following contributions: proposes a
set of algorithms to support partial replication in transactional
in-memory distributed storage systems; and presents an ex-
perimental evaluation of these algorithms using a prototype
implementation that has been integrated in Infinispan. In
opposition to the algorithms used in the current Infinispan
implementation, based on Two-Phase Commit, our algorithms
avoid deadlock scenarios. Our performance evaluation high-
lights speed-ups when using the proposed algorithms with
respect to the native Infinispan replication mechanism.

Keywords-Partial Replication, Distributed Memory, Transac-
tional Memory, Atomic Multicast

I. INTRODUCTION

Nowadays, transactional in-memory distributed storage
systems are increasingly used to improve the performance
of applications that require frequent access to large amounts
of data, by decoupling the persistent memory access from
the critical path of the application. YouTube, Wikipedia,
Twitter and Facebook are a few examples of applications
that make use of this architectural approach. The key reason
underlying the success of these platforms lies in their ability
to achieve higher performance, scalability and elasticity,
when compared to classical SQL-based database manage-
ment systems. This is achieved thanks to the reliance on
(i) simpler data models, e.g., key/value pairs vs. relational

model, (ii) more efficient application interfaces, namely em-
bedded vs. JDBC/ODBC connections, and (iii) the reliance
on in-memory replication and asynchronous write to disk
vs. (per-transaction) synchronous logging to disk.

In this context, data distribution and replication has two
main advantages: it allows distributing load among multiple
replicas, enhancing throughput; and it ensures the survival of
data if a replica fails. This last point is particularly relevant,
since the data is first stored in volatile memory and made
persistent asynchronously (and would therefore be lost in
case of failure, if it was not replicated).

However, there are also costs inherent to replication that
must not be overlooked. Firstly, replicas consume memory,
reducing the amount of data that can be stored. Also, the
larger the number of replicas, the more expensive it becomes
to ensure their consistency. This motivates the use of partial
replication.

Partial replication tries to overcome these disadvantages
by configuring the storage system in such a way that each
item is replicated in a subset of nodes and no node stores
all the data. This thesis studies the use of partial replica-
tion techniques in the context of transactional in-memory
distributed storage systems. Even though partial replication
has already been applied to distributed databases [1], there
are significant differences in the workloads imposed to both
systems related to the execution of transactions [2] (see the
examples described before). So, several of the platforms
have opted for relaxing consistency, ensuring weaker seman-
tics than the classical 1-Copy Seriliazability [3] in order to
allow more efficient implementations.

In this thesis we present set of replication algorithms. The
algorithms ensure weak consistency criteria, but they rely on
the usage of total order primitives [4] to ensure agreement
on the transaction serialization order. We start by developing
the algorithm for full replication using the Total Order
Broadcast (TOB) primitive, and later evolves it for a partial
replication context. In partial replication, the algorithm relies
on the usage of a Total Order Multicast (TOM) primitive,
to ensure agreement on the transaction serialization order in
a genuine fashion [5] i.e. involving in the coordination for a
transaction T only the nodes responsible for storing a copy
of the data accessed by T . Thanks to their reliance on total
order primitives, the proposed protocols avoid the occurrence
of distributed deadlocks, which represent the key source of

1



inefficiency in Two-Phase Commit (2PC) based replication
schemes [6].

We integrated the proposed algorithms into one of the
mainstream open-source storage platforms, namely Red
Hat’s/JBoss’ Infinispan. Infinispan is a weakly consistent
transactional in-memory distributed storage systems that
represents the reference solution to support clustering of the
well-known JBoss AS (probably the most widely used Java
application server at the time of writing [7]).

We perform an experimental evaluation study in which
we compare the performance of the proposed total order
based schemes with those built-in into Infinispan, which rely
on a classical 2PC-based replication scheme. We consider
both synthetic workloads, which allow to assess the protocol
performance in heterogeneous (and clearly identifiable) sce-
narios, and industry standard benchmarks for OLTP systems,
namely the TPC-C benchmark [8]. Our experimental study
highlights that the proposed total order based schemes
achieve striking speed-ups with respect to classic 2PC-based
solutions in high contention scenarios, while achieving very
similar performance in presence of workloads with very
limited contention.

The rest of this document is organized as follows. Sec-
tion II compares our solution with related work. Section III
briefly describes Infinispan and how it manages replication
and distribution. Section IV presents the mechanisms of par-
tial replication developed to enhance Infinispan. In Section V
the performance of the proposed system is evaluated. Finally,
Section VI concludes this thesis.

II. RELATED WORK

This work results from the confluence of three different
but closely related lines of investigation, namely: trans-
actional in-memory distributed storage systems, database
replication techniques, and distributed software transactional
memory systems.

Transactional in-memory distributed storage systems have
emerged as tools to increase the performance of applications
that require frequent low latency access to large amounts
of data. The first proposed systems did not support trans-
actions [18], [19], but more recent approaches have incor-
porated them in their architectures. Sinfonia [20] provides
support for transactions and replication, but assumes that
transactions are static, i.e., their read and write sets are
known a priori. TxCache [21] relies on a back-end database
to handle update transactions and ensures that read-only
transactions users observe a strongly consistent snapshot of
the cache (namely a consistent view of the system as of
a specific timestamp). Conversely, our solution is designed
to ensure weaker consistency criteria (repeatable-read with
write-skew check being the strictest supported consistency
criterion) and does not rely on any external transactional
store to serialize update transactions.

The area of database replication is very rich in algorithms
that ensure replica consistency in transactional environ-
ments. While most of these systems use full replication [22],
[23], our focus is on those supporting partial replication [1],

[24], [25]. P-Store [5] is probably the solution that is closer
in spirit to the approaches proposed in this thesis. Also P-
Store relies on a genuine algorithm, i.e., only the replicas
involved in a given transaction participate in the coordination
phase that ultimately leads to its commit or abort, and is
built on top of a totally ordered multicast primitive. How-
ever, since P-Store’s algorithm provides stronger consistency
guarantees, it also incurs in additional costs (e.g. always
requiring the certification of read-only transactions accessing
data hosted by remote replicas, the dissemination of the
whole transaction read-set during the commit phase, and a
voting phase to determine the outcome of update transactions
spanning multiple replica groups) when compared to the
solutions proposed in this thesis, which exploit a set of
optimizations that are possible precisely because we target
more relaxed consistency models.

Finally, distributed software transactional memory sys-
tems [2] appeared as an extension to software transac-
tional memory systems [26] developed for multi-core ma-
chines. The vast majority either does not consider fault-
tolerance [27], [28], or are fully replicated [29], [30], [31].

III. INFINISPAN

Infinispan [9] externalizes a simple key/value store inter-
face, providing support for transactions and for two main
operational modes: partial vs. full data replication (referred
to as distribution and replication), depending on whether the
data is replicated on a subset or on the whole set of nodes.

In the partial replication mode, Infinispan relies on a
lightweight consistent hashing scheme [11] to partition data
across replicas, ensuring good load balancing (in terms
of number of keys hosted by each replica) and minimum
reshuffling of keys in presence of joins/departures of nodes
from the platform. Also, it supports replication of each key
across a fixed, user-tunable number of replicas, achieving
fault-tolerance without hampering scalability (unlike full
replication schemes).

Infinispan supports transactions in a weak-consistent
flavour, opting for more relaxed criteria than the classic 1-
Copy Serializability [3]. Specifically, Infinispan supports the
following (weaker) consistency criteria [12]:
• Read Committed (RC) which ensures that a transaction

can only read previously committed values;
• Repeatable Read (RR) which ensures that no two con-

secutive reads within the same transaction can return
different values;

• Repeatable Read with Write Skew Check (RR+WS)
which ensures the same as RR, it checks also if the
value of a key was changed between a consecutive read
and write operation of a transaction (aborting, in such
a case, the transaction).

More in detail, for what concerns read operations, if the
RC consistency criterion is being used, Infinispan simply
returns the latest committed value. If, instead, RR is being
used, whenever a transaction issues a read on a data item,
it stores the returned value into its transactional context,
and returns it in subsequent read operations. It is important

2



to point out that the data is distributed, so read operations
may require contacting other nodes (even though Infinispan
tries to reduce the frequency of remote read operations by
adopting an additional, so called, L1 cache [9]).

Write operations, on the other hand, do not require
distributed interaction during transaction execution. Instead,
whenever a key/value pair is updated/inserted/deleted (sim-
ply referred to as write operation in the following), the
lock on the corresponding key is acquired locally during
the transaction execution phase. If the write skew check is
enabled (namely, the RR+WS consistency criteria are being
used), however, a further check is performed upon issuing
of a write operation: if the transaction had previously read
that key, and its value is found to be different after having
acquired the corresponding lock, the transaction is simply
aborted.

Infinispan uses a classic Two-Phase Commit [13] (2PC) to
ensure atomic updates in all replicas. During the first phase
of 2PC, the nodes attempt to remotely acquire the locks
on all the replicas that are responsible for storing the keys
updated during the local execution of the transaction.

If the lock acquisition phase succeeds on all the contacted
replicas, the transaction originator finally sends a commit
message and commits locally. In presence of conflicting,
concurrent transactions, however, the lock acquisition phase
may fail due to the occurrence of distributed deadlocks. In
Infinispan, deadlocks are detected using a simple timeout
based approach and is coupled with an eager deadlock
detection algorithm that detects circular, direct lock waits
between two transactions (thus not detecting deadlocks due
to chains of more than two transactions in circular transitive
wait); Infinispan resolves the deadlock deterministically by
aborting one of the blocked transactions. If the lock acqui-
sition fails during the prepare phase, a negative vote is sent
to the coordinator, which, in turn, instructs all replicas to
abort the transaction.

IV. TOM-BASED PARTIAL REPLICATION

Due to lack of space, we will only describe the solution for
partial replication. However, the solution for full replication
has the main idea. The main difference is on the total order
primitive used, where in full replication is used a Total Order
Broadcast primitive. As will you see, in partial replication
is used a Total Order Multicast primitive.

As described in the previous section, Infinispan has al-
ready a built-in support for partial replication. Unfortunately,
the 2PC-based replication scheme used by Infinispan is
known to be prone to thrashing at non-minimal contention
levels [6] due to the occurrence of distributed deadlocks.

In this section we present two Total Order Multicast [4]
(TOM) based partial replication algorithms. These algo-
rithms ensure the same weak consistency criteria currently
supported by Infinispan, but, not incurring in distributed
deadlocks, they can sustain much higher throughputs (com-
mitted transactions per second) especially in scenarios of
moderate/high contention.

R1

R2

R3

R4

R5

Execution
1) 2)

2.1)

3)

1) transaction begins
2) transaction starts the commit
2.1) transaction is sent using TOM
3) the transaction is committed globally

(a) Algorithm for RC and RR

R1

R2

R3

R4

R5

Execution
1) 2)

2.1) 2.2)

3)

1) transaction begins
2) transaction starts the commit
2.1) transaction is sent using TOM
2.2) each node sends its vote back
2.3) transaction outcome is sent (commit or abort)
3) the transaction is committed or aborted globally

2.3)

(b) Algorithm for RR+WS

Figure 1: Algorithms developed for the weaker consistency
criteria

In the following, we first introduce the two TOM-based
replication algorithms, and then discuss two alternative
implementations of the TOM primitive, exhibiting a trade-
off between the number communication steps and message
complexity.

A. TOM-based Partial Replication Schemes

Both the partial replication algorithms presented in this
thesis rely on the same base principle: using TOM to achieve
agreement among all replicas whose keys have been updated
by a committing transaction T on T ’s serialization order.

As in Infinispan’s baseline algorithm, in fact, transac-
tions execute locally (with the exception of remote read
operations, which may require to fetch data from remote
nodes) until they enter their commit phase. At this stage,
the entries updated by transactions (along with their previous
read values, in case of RR+WS consistency) are sent, using
TOM, to all the replicas that need to be updated. This set
of replicas is given by the union of the replicas maintaining
a copy of each of the keys modified by the transaction and
is, typically, only a subset of the number of replicas that
compose the system.

By relying on a TOM primitive to disseminate the above

3



messages, we can guarantee that if two replicas deliver two
updates, they do it in the exact same order. Therefore, if
the consistency criteria is either RC or RR (see Figure 1a),
the replicas can immediately apply the updates in the order
in which they are delivered by the TOM primitive. This is
sufficient to guarantee that all replicas apply the updates
generated by all conflicting transactions in the same order,
and is achieved in our implementation by having a single
dedicated thread, which is awakened whenever a transaction
is TOM-delivered, and is in charge of performing the write-
back phase of both local and remote transactions.

On the other hand, if the consistency criterion in use is
RR+WS (see Figure 1b), upon TOM-deliver of a transaction,
replicas need to perform the write skew check in order to
determine the transaction’s outcome. This implies the need
for the replicas to undergo an extra voting phase, during
which each replica performs the write skew (on the keys
of which is responsible) and sends back the result to the
replica that executed the transaction. Before sending the
final commit/abort message, the replica that executed the
transaction needs to wait until it is informed of the successful
outcome of the write skew check of all the updated keys.
Note that, since all the replicas that are responsible for the
same set of keys certify the transaction deterministically and
in the same order, it is guaranteed that they all determine
the same outcome for the transaction. Therefore, in order to
commit a transaction, the transaction coordinator does not
need to wait for positive replies from all the nodes that it had
contacted via the TOM primitive, but only until it receives a
positive vote for each updated key from at least one of the
nodes over which the key is replicated. As in classic 2PC,
instead, the transaction is aborted as soon a negative vote
message is received.

B. Implementing Total Order Multicast

We now address the implementation of the TOM primi-
tive [4] used in the algorithms above. Informally, the TOM
primitive allows disseminating a message m to a subgroup
of the system replicas, denoted as m.dst, while ensuring
agreement on the (total) order of delivery of messages
in presence of i) concurrent TOMs triggered by different
senders, ii) possible overlaps among the recipient sites of
two TOMs, and iii) crashes of (a subset of) sites.

Formally, the TOM primitive guarantees the following
properties: (i) uniform integrity: for any site s and any mes-
sage m, s delivers m at most once, and only if s ∈ m.dst;
(ii) validity: if a correct site s issues a TOM for a message
m, then eventually all correct sites in m.dst delivers m;
(iii) uniform agreement: if site s delivers a message m, then
eventually all correct sites in m.dst deliver m; (iv) uniform
prefix order: for any two messages m and m′, and any two
sites s and s′, such that {s, s′} ⊆ m.dest ∩ m′.dest, if s
delivers m and s′ delivers m′, then either s delivers m′

before m or s′ delivers m before m′; (v) uniform acyclic
order: the relation < is acyclic, where < is defined as
follows: m′ < m if and only if any process delivers m
and m′ in that order.

N1 N2 N3
LC=4 LC=7 LC=10

Legend:
LC: Local Clock
MC: Message Clock
MS: Message State

<Msg 8,Pending>

Data[m] Data[m]
LC=11
<Msg 11,Pending><Msg 5,Pending>

LC=5

<Msg 11,Pending>

<Msg 11,Final><Msg 11,Final><Msg 11,Final>
LC=11

LC=8

LC=11

[MC=11][MC=5]

LC=11

TO-cast(m)

TO-deliver(m)TO-deliver(m)
TO-deliver(m)

LC=11

(a) 3 phases

<Msg 11,Final>

N1 N2 N3
LC=4

LC=7
LC=10

Legend:
LC: Local Clock
MC: Message Clock
MS: Message State

LC=8 LC=11

LC=11

[MC=8]

Data[m,MC=7]

<Msg 8,Pending> <Msg 11,Pending>

TO-cast(m)

Data[m,MC=7]

[MC=11]

TO-deliver(m)

<Msg 7,Pending>

<Msg 11,Final>

LC=11

TO-deliver(m)

<Msg 11,Final>
LC=11

TO-deliver(m)

(b) 2 phases

Figure 2: Total Order Multicast Algorithms

We developed a TOM protocol for JGroups, inspired by
the Skeen’s algorithm described in [15] and used in an early
version of the ISIS toolkit [4], which operates as follows
(see Figure 2a). Each machine has a logical clock that is
incremented when DATA or ORDER messages are received.
The ordered multicast starts when a DATA message is sent
to the group of replicas that participate in the transaction.
When this message is received, each replica increments
its logical clock, assigns the resulting timestamp to the
message, changes the message’s state to Pending and puts
it in an ordered queue; the local order number is then sent
to the replica that originally sent the message. The sender
collects all the sequence numbers assigned by the other
replicas, determines their maximum value, and sends it back
to all replicas in an ORDER message. Upon receiving this
ORDER message, each replica updates the order number of
the corresponding message, changing the order in the queue
if necessary, marks the message as Final and updates its
own logical clock. Finally, messages are delivered to the
application when its state is marked as Final and they are
in the head of the queue (i.e., there are no messages marked
as Pending or Final with a lower timestamp).

We have also developed another version of the total
order multicast protocol in order to understand the trade

4



off of having less communication steps but exchanging
more messages in each round. Its mode of operation is
very similar to the first version, except that, upon delivery
of the DATA message, replicas send the ORDER message
(which piggybacks their logical clock value) to all the
replicas to which the message is being multicast. With
this decentralized approach, a replica can mark a message
as Final, as soon as it receives all the ORDER messages
corresponding to a given DATA message.

This version requires one less communication step to
complete the commit of a transaction, see Figure 2b. How-
ever, the number of point-to-point messages exchanged
between replicas increases quadratically with the number
of participating replicas. The next section compares the two
approaches, identifying the strengths and weaknesses of each
one.

V. EVALUATION

This section presents the experimental evaluation of the
proposed algorithms implementing partial replication in
transactional in-memory distributed storage systems context.
This evaluation is based on a prototype developed by ex-
tending the code of Infinispan and JGroups to implement
the algorithms described above.

A. Experimental Settings

All tests were ran on a cluster with 10 machines, where
each machine is equipped with two 2.13 GHz Quad-Core
Intel(R) Xeon(R) E5506 processors and 16 GB of RAM,
running Linux 2.6.32-33-server and interconnected via a
private Gigabit Ethernet. We integrated the proposed TOM-
based replication solutions in Infinispan 5.0 and JGroups
2.12.

In our experiments, we use a number of machines varying
between 4 and 10, and three distinct configurations of
Infinispan: the native protocol and the TOM-based protocol
with both TOM primitives. The timers to acquire locks
expires after 10 seconds, and it uses the deadlock detection
technique described in Section III. In both configurations
we run experiments with replication degree of 2 and 4,
which means that each key is stored in two or four replicas,
respectively.

We used two different benchmarks to evaluate the system,
Radargun, a benchmark created by RedHat specifically for
this type of caches, namely Infinispan, EhCache [16] and
Oracle Coherence [17]; and TPC-C [8], a more complex and
realistic benchmark.

The workload used with Radargun tests was the fol-
lowing. The application executes as many transactions as
possible for a period of 5 minutes, using 8 threads in each
machine submitting concurrent transactions to the system.
Each transactions is composed of 10 operations. On average,
10% of these operations are writes and there is always at
least one write operation per transaction. This way, there
are no read-only transactions in the workload, because they
do not require replica synchronization. To simulate low
contention scenarios, transactions access random objects

from a set of 100.000 keys and to simulate high contention
scenarios, transactions access random objects from a set of
only 1.000 keys.

TPC-C is a benchmark that simulates a population of
terminal operators executing transactions against a transac-
tional data store. Transactions include entering new orders,
querying the status of existing orders and entering payments
from customers. The configuration we used is the following:
one warehouse, 45% of payment transactions, 5% of query
transactions (which means there will be 95% read-write
transactions and only 5% of read only transactions) and 8
threads executing transactions on each machine.

B. Results

In the following we present a comparative evaluation of
Infinispan’s native solution (labelled as ”2PC”) and the two
versions of our TOM implementation (labelled as ”TOM-2”
and ”TOM-3” for the 2 and 3 communication step variants
of total order multicast, respectively) using two consistency
models: RC and RR+WS (the latter with write skew anomaly
detection enabled). The three performance metrics used in
the plots are: abort rate, throughput of the system (committed
transactions), and commit latency (time to complete the
commit phase).

1) Abort Rate: Figures 3a and 5a depict the abort rate of
the three algorithms in low and high contention scenarios
for both consistency models and a replication degree 2 for
Radargun. As expected, for the TOM algorithms, the abort
rate is virtually non-existent, even for the RR+WS model.
On the other hand, the native algorithm needs to acquire
locks in every participating replicas, causing deadlocks (and
consequently transaction aborts) in case locks are acquired
in different orders at different replicas. This issue becomes
more noticeable as we increase the number of nodes in the
system and, finally, in high contention scenarios, where the
abort rate peaks at 3% for a system with 10 nodes.

Figure 7a depicts the abort rate for TPC-C with a
replication degree 2. This benchmark induces a very high
contention on a small subset of data items. Specifically,
each write transaction must update one out of 10 existing
instances of the, so called, District entity. Let us analyze
first the Read Committed isolation level scenario. In this
scenario, 2PC suffers from an abort rate ranging from 30%
to 45%, which is entirely due to the occurrence of deadlocks.
On the other hand, with the same isolation level, the TOM-
based solutions do not suffer from any aborts.

When considering the Repeatable Read isolation level
with write skew detection, we observe that the 2PC and the
TOM-based solutions incurs on a very similar abort rate,
ranging from 40% to 70%. This depends on the fact that
TPC-C is very likely to generate read-write conflicts which,
in turn, cause the failure of the write-skew check. Note that
failure of the write-skew check represents the only abort
cause for the TOM-based solutions. With 2PC, instead, only
27% of the transaction aborts are imputable to write-skew
check failures, with (distributed) deadlocks being by far the
most common cause of aborts.

5



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 4  5  6  7  8  9  10

A
b

o
rt

 R
a
te

 (
%

)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(a) Abort Rate

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 4  5  6  7  8  9  10

T
h
ro

u
g

h
p

u
t 

(t
x
 c

o
m

m
it

te
d

/s
e
c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(b) Throughput

 1

 10

 100

 4  5  6  7  8  9  10

D
u
ra

ti
o
n
 (

m
se

c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(c) Average Latency

Figure 3: Radargun: Low Contention (Replication Degree
2)

Figures 4a and 6a depict the abort rate with a replication
degree 4 for Radargun. Also in this scenario, analogously to
the case of replication degree 2, the abort rate of TOM-based
solutions is extremely low. Conversely, it is interesting to
notice that, when increasing the replication degree from two
to four, the abort rate grows of a factor close to 2 with 2PC.
This is explicable because the number of replicas involved in
the 2PC doubles, when using replication degree 4. Therefore,
the probability of deadlocks also increases accordingly.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 6  7  8  9  10

A
b

o
rt

 R
a
te

 (
%

)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(a) Abort Rate

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 6  7  8  9  10

T
h
ro

u
g

h
p

u
t 

(t
x
 c

o
m

m
it

te
d

/s
e
c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(b) Throughput

 1

 10

 100

 6  7  8  9  10

D
u
ra

ti
o
n
 (

m
se

c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(c) Average Latency

Figure 4: Radargun: Low Contention (Replication Degree
4)

Figure 8a depicts the abort rate for TPC-C with a repli-
cation degree 4. The plots show an interesting trend: with
2PC, when increasing the replication degree from 2 to
4, the abort rate suffers of a significant increase. This is
particularly true for the RC consistency level, where the
abort rate grows from around 35%, with replication degree
2, to around 65%, with replication degree 4. Again, this
is imputable to the fact that the chances of deadlocks are
higher when more replicas are involved in the 2PC. On the

6



 0

 0.5

 1

 1.5

 2

 2.5

 3

 4  5  6  7  8  9  10

A
b

o
rt

 R
a
te

 (
%

)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(a) Abort Rate

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 4  5  6  7  8  9  10

T
h
ro

u
g

h
p

u
t 

(t
x
 c

o
m

m
it

te
d

/s
e
c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(b) Throughput

 1

 10

 100

 1000

 4  5  6  7  8  9  10

D
u
ra

ti
o
n
 (

m
se

c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(c) Average Latency

Figure 5: Radargun: High Contention (Replication Degree
2)

other hand, the increase of the replication degree from 2
to 4 has a negligible impact in the case of the TOM-based
solutions (thanks to their deadlock freedom property). In
other words, this means that TOM-based solutions, unlike
2PC-based schemes, allow achieving a higher degree of
failure resiliency without determining increases of the abort
rate (that as we will see in the next section have detrimental
effect on performance).

2) Throughput: Figures 3b and 5b present the effects of
the abort rate on the throughput of the system using the

 0

 1

 2

 3

 4

 5

 6

 6  7  8  9  10

A
b

o
rt

 R
a
te

 (
%

)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(a) Abort Rate

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 6  7  8  9  10

T
h
ro

u
g

h
p

u
t 

(t
x
 c

o
m

m
it

te
d

/s
e
c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(b) Throughput

 1

 10

 100

 1000

 6  7  8  9  10

D
u
ra

ti
o
n
 (

m
se

c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(c) Average Latency

Figure 6: Radargun: High Contention (Replication Degree
4)

Radargun benchmark with replication degree 2, measured
as the number of committed transactions per second. In low
contention scenarios, which is the most favourable scenario
for the 2PC protocol, 2PC and TOM-2 have a similar
throughput. However, TOM-3 has the best throughput. This
is explainable by the fact that TOM-3 and 2PC have very
similar communication patterns, but, unlike 2PC, TOM-3
does not incur in any deadlocks. The lower throughput
for the TOM-2 is due to the high number of messages,

7



 0

 10

 20

 30

 40

 50

 60

 70

 80

 4  5  6  7  8  9  10

A
b

o
rt

 R
a
te

 (
%

)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(a) Abort Rate

 0

 20

 40

 60

 80

 100

 120

 4  5  6  7  8  9  10

T
h
ro

u
g

h
p

u
t 

(t
x
 c

o
m

m
it

te
d

/s
e
c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(b) Throughput

 10

 100

 1000

 10000

 4  5  6  7  8  9  10

D
u
ra

ti
o
n
 (

m
se

c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(c) Average Latency

Figure 7: TPC-C (Replication Degree 2)

which originate conflicts in the network and retransmissions,
and additional processing load at the JGroups level. In
the high contention scenario, however, 2PC’s throughput is
severely affected by deadlocks, which results in our solutions
delivering around 40 times higher throughput.

Figure 7b depicts the throughput of the system using TPC-
C with replication degree 2. Due to the high contention
generated by this benchmark, also in these scenarios, the
TOM-based solutions achieve striking throughput gains with
respect to 2PC, which thrashes due to the frequent occur-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 6  7  8  9  10

A
b

o
rt

 R
a
te

 (
%

)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(a) Abort Rate

 0

 20

 40

 60

 80

 100

 120

 6  7  8  9  10

T
h
ro

u
g

h
p

u
t 

(t
x
 c

o
m

m
it

te
d

/s
e
c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(b) Throughput

 10

 100

 1000

 10000

 6  7  8  9  10

D
u
ra

ti
o
n
 (

m
se

c)

Number of Machines

TOM-2 (RC)
TOM-2 (RR+WS)

TOM-3 (RC)
TOM-3 (RR+WS)

2PC (RC)
2PC (RR+WS)

(c) Average Latency

Figure 8: TPC-C (Replication Degree 4)

rence of deadlocks.
Figures 4b and 6b present the throughput using the

Radargun benchmark with replication degree 4. In low con-
tention scenario, we can observe that TOM-2 has the lowest
throughput among the considered protocols. This is due to
the fact that, increasing the replication degree, the number of
messages exchanged by TOM-2 (which grows quadratically
with the replication degree) induces a significant load on
JGroups, whose performance significantly deteriorate (as we
will discuss in the next section). However, TOM-3, whose

8



asymptotic message complexity is linear with the replication
degree (like in the 2PC-based solution), and which does not
suffer of deadlocks (unlike the 2PC-based solution), achieves
the best throughput with both the RC and RR+WS consis-
tency levels. In high contention scenario, the performance
of the 2PC-based solution is significanlty inferior to those
achievable with replication degree 2, since the abort rate
of this solution almost doubles when the replication degree
changes from 2 to 4. Also at high contention, the throughput
achieved by TOM-2 is lower with respect to TOM-3, due
to the fact that the former generates a much higher network
traffic with this degree of replication.

Figure 8b depicts the throughput of the system using
TPC-C with replication degree 4. When contrasting these
plots with those associated with replication degree 2, no
significant differences can be observed at least for the case of
TOM-based solutions (indeed, the performance of the 2PC
protocol show an even worse thrashing phenomenon). Also
the performance of TOM-2 and TOM-3 happen to be very
close, once fixed a given consistency level. This is explicable
considering that this benchmark generates computational
intensive transactions, whose local execution is around 18
times larger than for the case of the Radargun benchmark.
Therefore, the frequency of generation of TOMs, and the
overall load for JGroups, is much lower in this benchmark
when compared to Radargun. At this load level JGroups
is far from saturation, and, consequently, the additional
network traffic generated by TOM-3 with respect to TOM-2
has a negligible impact on performance.

3) Latency: Figures 3c and 5c show the average latency
of the commit phase for Radargun with replication degree 2.
With low contention, we note that the commit phase latency
of all algorithms is similar. In high contention scenarios,
however, the commit phase latency for 2PC becomes up
to 2 orders of magnitude higher than for the TOM-based
solutions. This is explained considering that the commit
latency includes also the time necessary to detect deadlocks
occurring during the commit phase, and that these become
very frequent at high contention levels when using 2PC. The
plots highlight also that the latency for the TOM protocols is
stable in both high and low contention scenarios, contrarily
to what happens when using 2PC, whose performance is
very dependent on the workload of the system.

Analogous results are highlighted by Figure 7c, which
shows the latency of the commit phase for TPC-C with
replication degree 2. Also in this (high contention) scenario,
the commit phase latency is significantly lower for the
TOM-based protocols, being on average around one order
of magnitude shorter than in the case of 2PC.

Figures 4c and 6c show the average latency of the commit
phase for Radargun with replication degree 4. The plots
highlight that the latency for TOM-2 is higher than TOM-3.
As referred before, this happens due to the higher number
of messages exchanged by the latter protocol. As before,
the latency of 2PC is highly dependent of the contention of
the system. In high contention, we have high probability of
deadlock, which take a (relatively) large amount time to be

detected, explaining the high commit latency for 2PC.
Figure 8c presents the latency of the commit phase for

TPC-C with replication degree 4. The plots do not highlight
significant deviations in the trends already observed when
analyzing the scenario of replication degree equal to 2.

C. Discussion
Based on the previous results we can conclude that

using TOM is beneficial in all the analysed scenarios. In
addition, it is clear that the performance of 2PC is extremely
dependent on the workload of the system; on the contrary,
the performance of TOM is fairly stable both in low and
high contention scenarios.

Interestingly, the TOM-3 solution outperforms the 2PC-
based solution even in the most favourable settings for
2PC, namely very low contention and RR+WS consistency
model. We recall that, in these settings TOM-3 incurs in two
additional communication steps with respect to 2PC. Also,
the deadlock probability is below 0.02% with 2PC (being
zero of course for the deadlock-free TOM-based solutions).
Despite such a low deadlock probability, the large penalty
affecting 2PC upon the occurrence of deadlocks has a non-
negligible impact on 2PC performance, which result around
20% lower than for TOM-3.

For what concerns TOM-2, its overall performance is
poorer than that of TOM-3. Despite the fact that TOM-
3 incurs in an additional communication step latency with
respect to TOM-2, our results highlight that the quadratic
message complexity of TOM-2 leads in practice (at least
in our experimental platform) to a detrimental effect on
performance of the Group Communication System, which
offsets the possible gains associated with the reduction in
the number of communication steps.

With Radargun, the difference between RC and RR+WS
consistency model is almost negligible. This is justified
by the fact this is a synthetic benchmark in which the
probability that the same key is read and written by the same
transaction is quite low. Hence, the write skew mechanism
is not activated frequently. However, in the TPC-C results it
is possible to see the effects of this mechanism.

VI. CONCLUSION

In this thesis we presented a solution for supporting
partial replication in transactional in-memory distributed
storage systems. The proposed solution is inspired by al-
gorithms developed in the context of database replication,
and later adapted to support weaker consistency models.
The result consists of a genuine partial replication algorithm
(in which only the replicas of the data updated during a
given transaction participate in its commit phase) which
distributes the load of the system among its nodes. This
solution was implemented in Infinispan and its performance
was compared against the native support offered by the
platform. Unlike the native solution, based on the Two-Phase
Commit protocol, ours prevents deadlocks. The performance
evaluation shows that the proposed solution, based on total
order multicast, achieves a throughput up to forty times
higher than the native one.

9



ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission through the Cloud-TM project (FP7-257784), and
by FCT (INESC-ID multiannual funding) through the PID-
DAC Program funds and the Aristos project (PTDC/EIA-
EIA/102496/2008). Parts of this work have been performed
in collaboration with other members of the Distributed
Systems Group at INESC-ID, namely, Paolo Romano, Maria
Couceiro, Sebastiano Peluso, Diego Didona and João Fer-
nandes.

REFERENCES

[1] A. Sousa, F. Pedone, F. Moura, and R. Oliveira, “Partial
Replication in the Database State Machine,” in Proc. of NCA.
IEEE CS, October 2001, pp. 298–309.

[2] P. Romano, N. Carvalho, and L. Rodrigues, “Towards dis-
tributed software transactional memory systems,” in Proc. of
LADIS. ACM, September 2008, pp. 4:1–4:4.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., 1986.

[4] X. Defago, A. Schiper, and P. Urban, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
put. Surv., vol. 36, no. 4, pp. 372–421, December 2004.

[5] N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine partial
replication in wide area networks,” in Proc of SRDS. IEEE
CS, November 2010, pp. 214–224.

[6] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dan-
gers of replication and a solution,” in Proc. of SIGMOD.
PGS98b/LSRACM, June 1996, pp. 173–182.

[7] “JBoss Application Server.” [Online]. Available:
http://www.jboss.org/jbossas/

[8] TPC Council, “TPC-C Benchmark.” [Online]. Available:
http://www.tpc.org/tpcc

[9] “Infinispan.” [Online]. Available:
http://www.jboss.org/infinispan

[10] “JCache (JSR-107).” [Online]. Available:
http://jcp.org/en/jsr/detail?id=107

[11] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin, “Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the world
wide web,” in Proc. of STOC, May 1997, pp. 654–663.

[12] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil, “A critique of ansi sql isolation levels,” SIGMOD
Rec., vol. 24, pp. 1–10, May 1995.

[13] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, 1st ed. Morgan Kaufmann Publishers Inc., 1992.

[14] “JGroups.” [Online]. Available: http://www.jgroups.org

[15] K. P. Birman and T. A. Joseph, “Reliable communication
in the presence of failures,” ACM Trans. Comput. Syst.,
vol. 5, pp. 47–76, January 1987. [Online]. Available:
http://doi.acm.org/10.1145/7351.7478

[16] “Ehcache.” [Online]. Available:
http://ehcache.org/documentation/overview.html

[17] “Oracle Coherence.” [Online]. Available:
http://coherence.oracle.com

[18] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev., vol. 44,
pp. 35–40, April 2010.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-
value store,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 205–220,
October 2007.

[20] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis, “Sinfonia: a new paradigm for building scal-
able distributed systems,” SIGOPS Oper. Syst. Rev., vol. 41,
pp. 159–174, October 2007.

[21] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and
B. Liskov, “Transactional consistency and automatic man-
agement in an application data cache,” in Proc. of OSDI.
USENIX Association, October 2010, pp. 1–15.

[22] F. Pedone, R. Guerraoui, and A. Schiper, “The database
state machine approach,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 71–98, July 2003.

[23] B. Kemme and G. Alonso, “A suite of database replication
protocols based on group communication primitives,” in Proc.
of ICDCS. IEEE CS, May 1998, p. 156.

[24] N. Schiper, R. Schmidt, and F. Pedone, “Optimistic Algo-
rithms for Partial Database Replication,” in Proc. of OPODIS.
LNCS, Springer, December 2006, pp. 81–93.

[25] D. Serrano, M. Patino-Martinez, R. Jimenez-Peris, and
B. Kemme, “Boosting Database Replication Scalability
through Partial Replication and 1-Copy-Snapshot-Isolation,”
in Proc. of PRDC. IEEE CS, December 2007, pp. 290–297.

[26] N. Shavit and D. Touitou, “Software transactional memory,”
in Proc. of PODC. ACM, Aug 1995, pp. 204–213.

[27] C. Kotselidis, M. Ansari, K. Jarvis, M. Lujn, C. Kirkham,
and I. Watson, “DiSTM: A software transactional memory
framework for clusters,” in Proc. of ICPP. IEEE CS,
September 2008, pp. 51–58.

[28] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Soft-
ware transactional memory for large scale clusters,” in Proc.
of PPoPP. ACM, February 2008, pp. 247–258.

[29] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues,
“D2STM: Dependable distributed software transactional
memory,” in Proc. of PRDC. IEEE CS, November 2009,
pp. 307–313.

[30] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous
Lease-Based Replication of Software Transactional Memory,”
in Proc. of Middleware. LNCS, Springer, November 2010.

[31] R. Palmieri, F. Quaglia, and P. Romano, “AGGRO: Boosting
stm replication via aggressively optimistic transaction pro-
cessing,” Proc. of NCA, pp. 20–27, 2010.

10


