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Abstract

Total order broadcast protocols have been successfully

applied as the basis for the construction of many fault-

tolerant distributed systems. Unfortunately, the implemen-

tation of such a primitive can be expensive both in terms

of communication steps and of number of messages ex-

changed. To alleviate this problem, optimistic total order

protocols have been proposed. This paper addresses the

problem of offering optimistic total order in geographically

wide-area systems. We present a protocol that outperforms

previous work, by minimizing the average latency of the op-

timistic notification.

1. Introduction

Total order broadcast protocols have been successfully

applied as the basis for the construction of many fault-

tolerant distributed systems, from clock synchronization [8]

to database replication [5, 2]. The purpose of such a pro-

tocol is to provide a communication primitive that allows

processes to agree on the set of messages they deliver and

also on their delivery order.

Unfortunately, the implementation of such a primitive

can be expensive both in terms of communication steps and

of number of messages exchanged. This problem is exacer-

bated in wide-area networks, where the performance of the

algorithm may be limited by the presence of high-latency

links. To alleviate this problem, optimistic total order proto-

cols have been proposed [9, 10]. Such protocols provide to

the application an early indication of the estimated defini-

tive total order. The application can use this estimate to

perform a number of actions optimistically, which are later

committed when the final definitive order is established.

The goal is to execute some application steps in parallel

with the communication steps of the total order algorithm.

∗This work has been partially supported by the project IST-STREP

004758, GORDA: Open Replication of Databases.

To the best of our knowledge, the protocol that is able to

offer the smaller latency in the optimistic delivery notifica-

tion in wide-area networks has been proposed by Sousa et

al. in [9]. The protocol is an optimistic variant of the well

known sequencer based total order algorithm.

In this paper we show that the algorithm used in [9] fails

to offer the optimal average latency of optimistic deliveries.

Departing from this observation we discuss how the opti-

mal delays can be computed and, subsequently, propose an

efficient heuristic to approximate the optimal result in an

cost-effective manner. The resulting protocol is evaluated

and compared with the original protocol.

This paper is structured as follows. In Section 2 we pro-

vide an overview of the optimistic total order protocol pro-

posed in [9]. Section 3 highlights why the strategy followed

in that protocol is suboptimal and discusses the optimal so-

lution. An heuristic that approximates the optimal solution

is presented in Section 4. An evaluation of the resulting al-

gorithm is given in Section 5. Finally, in Section 6 we pro-

vide the concluding remarks.

2. Statistically Estimated Total Order

In this section we provide a brief overview of the opti-

mistic total order presented in [9]. This protocol, that we

will refer to as SETO (Statistically Estimated Total Or-

der), was developed specifically targeting wide area net-

works and was inspired by the ideas originally presented

in [6], where the spontaneous ordering properties of local

area networks are used to provide optimistic deliveries in

sequencer-based total order protocols.

2.1. Overview

The notion of optimistic total order was first proposed in

the context of local-area broadcast networks [6]. In many of

such networks, the spontaneous order of message reception

is the same in all processes. Moreover, in sequencer-based

total order protocols the total order is usually determined
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Figure 1. Local and wide-area links.

by the spontaneous order of message reception in the se-

quencer process. Based on these two observations a process

may estimate the final total order of messages based on its

local receiving order and, therefore, provide an optimistic

delivery as soon as a message is received from the network.

Such approach is unfeasible in large-scale networks. The

long latency in wide-area links causes different processes to

receive the same message at different points in time. Con-

sider the topology depicted in Figure 1. Assume that pro-

cess a multicasts a message m1 and that, at the same time,

the sequencer s multicasts a message m2. Clearly, the se-

quencer will receive m2 < m1, given that m1 would require

12ms to reach the sequencer. On the other hand, process b

will receive m1 < m2, as m1 will take only 2ms to reach b

while m2 will require 12ms. From this example, it should

be obvious that the spontaneous total order provided by the

network at b is not a good estimate of the observed order at

the sequencer.

To address the problem above, [9] proposed to introduce

artificial delays in the message reception to compensate for

the differences in the network delays. It is easier to describe

the intuition of the protocol by using a concrete example.

Consider again the network of Figure 1. Assume also that

we are able to provide to each process an estimate of the

network topology and of the delays associated with each

link. In this case, b could infer that message m1 would take

10ms more to reach s than to reach b. By adding a delay of

10ms to all messages received from a, it would mimic the

reception order of a’s messages at s. A similar reasoning

could be applied to messages from other processes.

2.2. The SETO algorithm

We now provide a precise description of the algorithm

(Figure 2) used in the original SETO protocol to estimate

the delays that should be added to each message. The algo-

rithm is the same that has been published in [9] and is de-

picted here for self-containment. We recall that the rationale

behind the solution is to make every process equidistant in

respect to the sequencer. This way, the spontaneous order

observed in the sequencer will be the same as the optimistic

1: Initialization:

2: g ← 0 {Global sequence number}
3: l← 0 {Local sequence number}
4: R← ∅ {Messages received}
5: S ← ∅ {Sequence numbers}
6: O ← ∅ {Messages opt-delivered}
7: F ← ∅ {Messages fnl-delivered}
8: delay[1..n]← 0
9: r delay[1..n]← 0 {Delays requested to the sequencer}

10: procedure TO multicast(m)
11: R multicast(DATA(m, max(delay[]− delay[seq]))

12: upon R deliver(DATA(m, d)) do

13: R← R ∪ {(m, d, now + delay[m.sender])}

14: upon ∃(m, d, t) ∈ R : now ≥ t ∧m /∈ O ∧m /∈ F do

15: opt delivery(m)
16: O ← O ∪m
17: if p = seq then

18: g ← g + 1
19: R multicast(SEQ(m, g))
20: r delay[m.sender]← d
21: delay[p]← max(rdelay[])

22: upon R deliver(SEQ(m, s)) do

23: S ← S ∪ {(m, s, now)}

24: upon ∃(m, d, o) ∈ R : (m, l + 1, t) ∈ S ∧m /∈ F do

25: fnl delivery(m)
26: if ∃(m′, d′, o′) ∈ R : (m′, l, t′) ∈ S then

27: ∆← (t− t′)− (o− o′)
28: if ∆ > 0 then

29: adjust(m′.sender, m.sender, ∆)
30: else

31: adjust(m.sender, m′.sender, |∆|)
32: l← l + 1
33: F ← F ∪ {m}

34: procedure adjust(i, j, d)
35: v ← (delay[i]× α) + (delay[i]− d)× (1− α)
36: if v ≥ 0 then

37: delay[i]← v
38: else

39: delay[i]← 0
40: delay[j]← delay[j] + |v|

Figure 2. Original SETO algorithm.

order artificially induced in each process.

In simple terms, the algorithm provides a multicast prim-

itive (line 10) that ensures regular total order delivery in a

group of processes. When a message arrives from the net-

work (line 12) it is queued for optimistic delivery (line 13)

after a certain period of time, which was previously esti-

mated to approximate the spontaneous order as seen by the

sequencer process. When that time comes (line 14) the mes-

sage is optimistically delivered (line 15). When this hap-

pens in the sequencer process, the sequence number to that

message is also generated (line 18) and is multicast to every

process (line 19). Upon reception of the sequence num-

ber (line 22) the message is authoritatively delivered to the

application. This description is obviously simplistic, as it

omits the parts that deals specifically with the estimation of

the delays to apply to optimistic message deliveries. Those

parts will now be described.

First we will deal with the estimation of the delays on

all processes other than the sequencer. When messages are



received from the network their optimistic delivery time is

recorded (line 13). Also, when the sequence numbers are

received from the sequencer, the time is also recorded (line

23). During the authoritative delivery of messages both

recorded times are used to compare the optimistic and au-

thoritative order of the current a last delivered messages

(line 27). This comparison then determines the adjustments

that must be made to the artificial delays (lines 28-31).

The second part is the estimation of delays in the se-

quencer process. This procedure cannot be the same as used

in other processes because the basic delay estimation mech-

anism uses the sequencer itself as a reference to compen-

sate distance divergences between processes. The way the

protocol copes with this problem is to make the sequencer

delay its own messages by the maximum amount of time a

message it sent takes to reach any other process. Consider

the network depicted in Figure 3(a). The messages sent by

the sequencer s would have to be delayed by 9ms which

corresponds to the maximum time a message sent from s

takes to reach any other process (in this case p2). Note that,

in the algorithm, instead of having the sequencer actively

determine the maximum delay to any process, each process

suggests a delay based on the delays it is applying to mes-

sages from other processes (line 11). The sequencer then

chooses the suggestion that has the highest value (line 21).

In the next section we address the limitations of SETO

and discuss how it can be improved.

3. On the Latency of SETO

Let δ
j
i denote the latency of the optimistic delivery of

messages from process pi at process pj . Figure 3(b) illus-

trates the values of δ
j
i for all processes, as the result of ap-

plying the original SETO algorithm to the topology of Fig-

ure 3(a). In this case, given that the sequencer (p3) delays

its own messages, we have δ1
3 = 7, δ2

3 = 9 and δ3
3 = 9. If

all processes transmit at the same rate, we have an average

message latency of 7.66ms as a result of this configuration.

The question addressed in this paper is the following: is this

set of optimistic delivery latencies optimal?

Figures 3(c) and 3(d) depict alternative sets of delivery

latencies for the optimistic delivery that would also respect

the total order. Again, considering that all processes send

at the same rate, the average latency derived from config-

uration of Figure 3(c) is 9.66ms and that of Figure 3(d) is

7.00ms. Thus, it is clear that SETO does not offer the opti-

mal latency of optimistic delivery. Note that it is possible to

find many other assignments that would also provide a basis

for totally ordering the messages. In fact, any delay assign-

ment that respects the following constraint can be used to

establish a total order:

δ
i
k − δ

i
l = δ

j

k − δ
j

l ∀i, j, k, l ∈ 1, ..., N (1)

δi
k − δi

l is the amount of time between the reception of

messages from pk and pl at process pi. This value may be

negative – whenever pi receives the message from pl after

the one from pk. Equation (1) states that given a pair of pro-

cesses pk and pl, k, l = 1, ..., N , the time interval between

the reception of messages from these processes is always

the same, independently of the receiver we consider.

Consider the permutation that defines the total order of

messages
∏

=< π1, ..., πn >, where πk ∈ {1, ..N} is the

index of the process sending the message to be received in

the k-th position. Another way to express equation (1), is

the following:

δi
π1+k

− δi
π1

= δj
π1+k

− δj
π1

∀i, j ∈ 1, ...,N, k ∈ 1, ...,N − 1. (2)

This equation expresses that the time interval between

the reception of any message πk+1 and the reception of the

first message in the total order π1 is the same at all the pro-

cesses. Obviously, in equation (2) the time differences un-

der comparison are always positive, in opposition to those

in equation (1). Clearly, all the assignments of Figure 3 re-

spect the constraint above and are, therefore correct. Still,

the same question remains: is the configuration from Fig-

ure 3(d) the optimal?

3.1. Optimal Assignment

In this paper we seek solutions that minimize the overall

average latency (OAL) of all optimistic deliveries, denoted

∆avg. Let ri be the rate at which process pi sends mes-

sages. ∆avg is defined as:

∆avg =

PN
i,j=1

riδ
j
i

N
PN

j=1 rj

(3)

Minimizing the overall average latency of all optimistic

deliveries is equivalent to Minimize the Overall Latency

(MOL) and this problem can be mathematically formulated

in linear programming as:
MOL:

min

N
X

i,j=1

riδ
j
i (4)

s.t.:

δ1
i − δ1

i+1 = δ
j
i − δ

j
i+1

, i = 1, ..., N − 1, j = 2, ...,N (5)

δ
j
i ≥ 0, i, j = 1, . . . , N. (6)

Equation (4) states the objective function to be mini-

mized: the weighted sum of all the latencies. Equation (5)

ensures that the latencies under decision will give rise to a

total order. It can be easily derived from equation (1) that,
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Figure 3. SETO latency and alternative configurations.

as we stated above, it assures total order. Finally, equation

(6) ensures that all the latencies are non-negative.

Let ω
j
i denote the network delay of messages from pro-

cess pi to process pj and let x
j
i denote the delay these

messages should suffer to accomplish the corresponding la-

tency δ
j
i , i, j = 1, ..., N . Consequently, by rewriting δ

j
i

as δ
j
i = ω

j
i + x

j
i , and considering x

j
i as the new decision

variables, the MOL can be reformulated as:

min

N
X

i,j=1

rix
j
i (7)

s.t.:

(ω1
i + x1

i ) − (ω1
i+1 + x1

i+1) = (ωj
i + x

j
i ) − (ωj

i+1
+ x

j
i+1

),

i = 1, ..., N − 1, j = 2, ...,N (8)

x
j
i ≥ 0, i, j = 1, . . . , N. (9)

In this new formulation, equation (7) states the objective

function to be minimized: the weighted sum of the delays to

impose to all the messages. Equation (8) ensure total order,

while equation (9) guarantees for the non negativity of the

delays.

This problem has N2 decision variables and (N − 1)2

constraints of type (8). Instances of the MOL problem can

be solved using a solver of Linear Programming models,

such as ILOG CPLEX [1]. In our case, we used ILOG

CPLEX 9.0 to obtain the optimal solutions of all the in-

stances under testing. When applying the solver to the

topology of Figure 3(a) we obtained the delays depicted in

Figure 3(d) which correspond to the optimal solution.

4. Fast SETO

As noted in the previous section, it is possible to derive

the optimal solution using a solver of linear programming

models. Unfortunately, it may be unpractical to install and

execute such solver in each protocol stack of every process

of the distributed system. Therefore, in this section we pro-

vide a heuristic to calculate the delays to be applied to each

incoming message, that approximates the optimal solution.

This section also provides a complete protocol that gath-

ers the topology information required for the solver or the

heuristic and provides an optimistic delivery that outper-

forms the original SETO algorithm described in Section 2.2.

4.1. Rationale for the Heuristic

Our heuristic works as follows. We incrementally build

a network by adding one process at a time. The first process

to be added defines the first message in the total order
∏

,

named π1 (see Section 3). This first process has complete

freedom to set the delay it imposes on its own messages

(which may be zero).

Whenever another process is added to the network it tries

to set itself as close as possible to π1 in the total order
∏

,

subject to the restrictions from equations (2) and (9). Note

that the later a process is inserted in the network, the larger

the set of constraints it has to satisfy; therefore, it is likely

that later processes may be required to add longer delays to

their own messages.

A key point in the heuristic is the order by which pro-

cesses are inserted in the network. To define this order, we

use the following insight. Consider process pk. When pro-

cess pk is added to the network, the delay that this process

has to impose to its own messages xk
k depends of the con-

straints imposed by processes p1, . . ., pk−1 previously in-

serted. Consider now the next process to be added to the

system pk+1 and ωk+1
k the latency of the link between pk

and pk+1. If xk
k > ωk+1

k , pk+1 will be forced to impose

a delay to its own messages of at least ωk+1
k − xk

k. This

will happen if pk is very close to pk+1 and is forced to im-

pose a long delay to its own messages. This means that the

closer a process is to other processes, the more likely it is

to influence the delays imposed on the messages from those

processes. Thus, processes that are closer to other processes

should impose the minimum delays to their own messages.



Since processes that are inserted earlier in the network are

more likely to impose smaller delays (as they have less con-

straints to satisfy), these processes should be the ones to

be inserted first. The heuristic described in the next para-

graphs, uses a precise metric to capture the fuzzy notion of

“closeness” introduced here.

The paragraph above explains the negative impact of set-

ting xk
k such that xk

k > ωk+1
k . It is interesting to note how-

ever, that it may not be always desirable to set xk
k = 0.

In fact, by setting xk
k = 0, we are forcing pk+1 to set

xk+1
k+1 = ωk+1

k . So, there is a trade-off between the delay

process pk imposes on its own messages and the delay that

other processes will later have to impose on their own mes-

sages. In the heuristic below we also specify a concrete

formula to capture this balance.

4.2. Optimal Delay Approximation

The specification of the heuristic is presented in Figure 4.

The procedure works in a stepwise fashion, computing de-

lays for one process at a time.

First, let us introduce the notation used. A process in the

group is denoted by pi, where i is the process identifier. The

cost metric used provides a measure of the distance each

process has to all the remaining processes. Let ω
j
i denote

the latency of the transmission delay between processes i

and j, and ri the rate at which process pi sends messages.

The cost ci associated with process pi is given by the fol-

lowing expression:

ci =

PN
j=1

ω
j
i

ri

The heuristic considers a group of N processes where

each process holds complete information about all the trans-

mission delays of all processes. This information can be

expressed in a N × N matrix that we call Ω, as illus-

trated in Figure 5, where the rows are the processes and

the columns are the transmission delays of messages from

each of the corresponding processes, i.e., position Ω(i, j)
holds the transmission delay ω

j
i of messages from process

j to process i. Every process also maintains a similar ma-

trix χ, holding the delays each process applies to messages

from the others (including themselves) from which the final

delay matrix ∆ can be derived. We recall that the final de-

lay δ
j
i is defined as δ

j
i = ω

j
i + x

j
i . Figure 5 illustrates the

values of these matrices in the optimum configuration for

the topology of Figure 3(a).

The heuristic proposed runs on an average of O(N2)
steps (where N is the number of processes in P ). The main

cycle introduces a process at each iteration which is done

exactly N − 1 times. Each of these iterations includes four

cycles each of which executes O(♯S) iterations, with ♯S go-

ing from 1 to N .

Initialization:

P {processes in the communication group}
N ← #P
S ← ∅ {selected processes}
for all i ∈ P do

ci ←

PN
j=1 ω

j
i

ri

for all j ∈ P do

xj

i
← 0

procedure selectNextMin()
next← i : ci = min{ck, ∀k /∈ S}
S ← S ∪ {next}
return next

procedure firstDelay()
iMin ← i : ci = min{ck, ∀k ∈ P}
iNextMin ← i : ci = min{ck, ∀k ∈ P \ {iMin}}
iMax← i : ci = max{ck, ∀k ∈ P}

α← ωiNextMin
iMin −

ωiNextMin
iMin

×(ciNextMin−ciMin)

ciMax−ciMin
return α

procedure FastSETOHeuristic()
first← selectNextMin()

xfirst

first
← firstDelay()

ref ← first
while (S 6= P ) do

next← selectNextMin()
for all i ∈ S do

zi ← ωi
next − δi

ref

zmax ← max{zi, i ∈ S}
for all i ∈ S : i 6= next do

xi
next ← δi

ref + zmax − ωi
next

shiftnext ← 0
for all i ∈ S do

xnext
i ← δnext

ref + δref
i
− δref

ref
− ωnext

i

shiftnext ← min(shiftnext, xnext
i )

for all i ∈ S do

xnext
i ← xnext

i + |shiftnext|
if zmax < 0 then

ref = next

Figure 4. Heuristic.

We now illustrate its execution step by step for the topol-

ogy of Figure 5. In this example, we assume that all pro-

cesses transmit at the same rate. The algorithm is initiated

by computing the costs for each process: c1 = 7 + 5 = 12,

c2 = 9 + 5 = 14 and c3 = 7 + 9 = 16. Thus, the first

process to be added to the network is process p1. Node p1

has no constraint in the delay it may impose to its own mes-

sages. Therefore, it uses the formula depicted in Figure 4

(line 17) to set this value. In the case of the current ex-

ample, the resulting value is 2.5. This concludes Step 1 of

the algorithm. The value of the matrices after this step are

depicted in Figure 6.

On Step 2, the next process with the lowest cost is pro-

cess p2. We first discover the delay x2
2 that p2 needs to im-

pose on its own messages. Note that we want to minimize

x2
2 subject to the constraint δ1

2 − δ1
1 = δ2

2 − δ2
1 . Given that a

message sent by p2 at time 0 is received at p1 at time 5, we

have δ1
2 − δ1

1 = 5 − 2.5 = 2.5. Also, given that a message

sent by p1 at time 0 is received at p2 at time 5, to respect

the constraint we need to set x2
2 = 7.5. The value of the
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Figure 6. Execution of the heuristic.

matrices after Step 2 are depicted in Figure 6.

In the final step, we need to add the last process p3. Note

that the value of x3
3 needs to be minimized having now two

constraints to satisfy. When looking at the reception order

at process p1, it is possible to see that messages from p3

have to be delivered 4.5ms after messages from p1. When

looking at the reception order at process p2, it is possible to

see that messages from p3 have to be delivered 4ms after

messages from p1. The limiting factor is therefore the in-

terval at p1, that forces p3 to set x3
3 = 11.5, resulting in the

final matrices depicted in Figure 6.

Note that, in this case, the final average cost for the con-

figuration derived from our heuristic is ∆avg = 7.16 which

is within 3% of the optimum computed by the solver. In the

evaluation we present results for other networks as well.

4.3. Algorithm

We now present an augment version of the SETO algo-

rithm, that we have named Fast SETO, that can work with

the heuristic or by calling a solver to obtain the minimum

optimistic latency. The complete Fast SETO algorithm is

specified in Figure 7. The algorithm works in four steps.

In the first step, every process collects round-trip delays

from all the other processes and estimates the corresponding

transmission delays. This step is omitted in the algorithm

specification for clarity sake, given there are multiple ways

of collecting round-trip estimations and that procedure is

orthogonal to the main algorithm. For instance, if TCP is

used as the underlying transport protocol, the round-trip es-

timation could be extracted from the TCP implementation

1: Initialization:

2: P ← p1, ..., pn {Process group}
3: delay[1..n]← 0 {Delay applied to messages}
4: tdelay[1..n]← 0 {Transmission delays to the process}
5: ctdelay[1..n][1..n]← 0 {Complete transmission delay matrix}

6: procedure computeDelays()
7: {computes delays using the solver or the heuristic}

8: upon R deliver(DELAY(new delay[]) do

9: if sender = seq then

10: ctdelay[new delay.sender] = new delay
11: else

12: delay = new delay

13: procedure updateDelays()
14: R unicast(seq,DELAY(tdelay))

15: upon allDelaysGathered() do

16: c delay ← computeDelays()
17: for all pi ∈ P do

18: R unicast(pi,DELAY(c delay[pi])

19: procedure TO multicast(m)
20: R multicast(DATA(m))

21: upon R deliver(DATA(m) do

22: R← R ∪ {(m, now + delay[m.sender])}

23: upon ∃(m, d, t, md) ∈ R : now ≥ t ∧m /∈ O ∧m /∈ F do

24: opt delivery(m)
25: O ← O ∪m
26: if p = seq then

27: g ← g + 1
28: R multicast(SEQ(m, g))

29: upon R deliver(SEQ(m, s)) do

30: S ← S ∪ {(m, s, now)}

31: upon ∃(m, d, o) ∈ R : (m, l + 1, t) ∈ S ∧m /∈ F do

32: fnl delivery(m)
33: l← l + 1
34: F ← F ∪ {m}

Figure 7. Fast SETO algorithm.

without any extra cost. In the second step, all processes

send the gathered delay information to a specific process.

This process’s identity can be easily derived from the group

membership; for instance, it can be the process with the

smallest identifier. The process gathers all the delay infor-

mation and computes the optimal delay when a solver is

available, or approximates the optimal solution using the

heuristic described in Section 4.2 when the use of a solver

is impractical. Finally, it sends to each process in the group

the corresponding line in the delay matrix, which holds the

delays that must be enforced by that specific process.

Our algorithm clearly differs from the original SETO al-

gorithm by requiring complete knowledge of the transmis-

sion delays between all processes, which translates into the

exchange of distance vectors between all nodes. The origi-

nal SETO requires no such information, making use of only

local clock values to determine the artificial delays. How-

ever, our proposal significantly improves the overall average

latency of the system, as will be shown in the next section.



5. Evaluation

In this section we evaluate our proposed algorithm

against the optimal delay assignment and the original SETO

algorithm. The evaluation tests were performed in a sim-

ulated environment that consists of a network topology,

transmission rates associated with each node and three mod-

els that describe the three algorithms at stake: optimal as-

signment, original SETO and Fast SETO using the heuris-

tic. The network topologies used were generated with

BRITE [3]. The tests were performed in networks with 30

nodes (10 nodes for the last evaluation test) that where ran-

domly placed in a topological space.

5.1. Network Plane Size

We first compare the performance of the optimal assign-

ment, original SETO and Fast SETO when the network

plane size is changed. BRITE allows for the definition of

the plane size by specifying the dimension of one side. In

the experiments performed we made this side vary between

1000 and 5000 units. For each space dimension 20 network

topologies were generated, and the results shown are aver-

age values of the observations on those networks. Also, in

the original SETO algorithm a randomly selected sequencer

was used.

The results are depicted in Figure 8. The explanation for

these results lies in the way the original SETO algorithm

determines the delay imposed by the sequencer to its own

messages, which is equal to the longest link that reaches

the sequencer. This value then conditions the adjustments

in the remaining nodes and produces the observed results.

The results also show the improvements obtained by Fast

SETO in regard to the original algorithm and also its prox-

imity to the optimal solution. In the experiments, the orig-

inal SETO algorithm was, on average, 66% to 114% worst

than the optimal assignment. Fast SETO with the heuristic

was, on average, 16% to 33% worst than the optimal assign-

ment, which shows the significant gains obtained by using

our proposed algorithm.

5.2. Process Transmission Rates

We now compare the performance of the optimal assign-

ment, original SETO and Fast SETO when the transmission

rates of the processes in the network are changed. This time

we set the topological space to a constant value. Each exper-

iment consisted in generating 20 different topologies where

all nodes exhibited an average transmission rate of 300 mes-

sages per second, with a predefined variance. The standard

deviation of the transmission rates for each experiment was

made variable between 0% to 100%. As in the previous
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Figure 9. Relative rates.

experiment, the sequencer for the original SETO algorithm

experiments was randomly selected.

Figures 9(a) and 9(b) hold the results for both the exper-

iments comparing the original SETO with the optimal as-

signment and Fast SETO with also the optimal assignment,

respectively. Each figure presents the results as differences

from each algorithm to the optimal assignment. The three

lines presented in each figure are the minimum, maximum

and average values observed from all the 20 topologies for

each standard deviation value.

As expected, the average overall cost of the Fast SETO

algorithm suffers less variation than the original SETO al-

gorithm. The reason for this is that Fast SETO takes into

account the transmission rates when computing the artifi-

cial delays. The original SETO algorithm makes no use of

this information, which makes its results more dependent of

the specific topology where it is executing.

5.3. Sequencer Position

The final evaluation compared the three algorithms:

original SETO, Fast SETO and optimal assignment, in re-

gard to the sequencer position in the original SETO algo-

rithm. This “position” refers to the identifier of the node

that performs the sequencer role. For the experiments we

used a network of 10 nodes with transmission rates uni-

formly distributed by all nodes and varying from 0 to 100
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messages per second. For each sequencer position 20 net-

work topologies where generated. The same 20 network

topologies where used in all tests for the different positions,

and the average overall cost of the 20 observations was used

to produce the results presented in Figure 10.

The lines that represent the optimal assignment and the

Fast SETO algorithm are obviously straight lines, because

both algorithms results are not dependent of the sequencer

position. As for the original SETO line, it is quite irregular

and varies from little below 500ms to almost 700ms, and

always stays above the other algorithms lines. This clearly

shows how the results of this algorithm depend on the se-

quencer position for a given network topology.

For this, the first step of the heuristic we propose for the

Fast SETO algorithm may be quite useful for improving the

results of the original SETO algorithm by helping to choose

the best sequencer location.

6. Conclusion

In this paper we have studied the problem of minimizing

the latency of optimistic delivery in total order protocols for

wide-area networks. The contributions of the paper are the

following. Firstly, we have shown that previous solutions

do not provide the optimal solution. We have formalized

the problem of finding the optimum with a linear program-

ming model and have shown how to find the optimal solu-

tion when a solver is available. Secondly, we have proposed

an heuristic that allows to approximate the optimal solution;

the heuristic can be used whenever is impractical to have a

solver available at every process. Finally we have compared

the performance of the optimal solution, as well as the re-

sults from our heuristic, with the results from the SETO pro-

tocol of [9] (to the best of our knowledge, the previous best

results for optimistic delivery in wide-area networks). We

show that SETO performs considerably worse than the op-

timal assignment and that our heuristic, for all the networks

tested, is within 16%-33% (as opposed to 66%-114% for

the original SETO algorithm) of the optimum and is more

immune to variations in the topology.

This paper has not addressed the accuracy of optimistic

protocols. Experimental results regarding this issue can be

found in [9, 7]. These results show that an optimistic ap-

proach like the one described in this paper is useful when

executed in stable networks. To deal with network instabil-

ity, we have also proposed a protocol that allows the switch-

ing between total order algorithm implementations when

necessary [4].
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