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Abstract. Function as a Service (FaaS) is a relatively recent paradigm
o↵ered by several cloud providers; it allows the development of appli-
cations as a composition of functions that can be executed without the
prior allocation of servers. Current FaaS implementations o↵er very weak
data consistency guarantees to functions that access shared data. The
study of mechanisms that can o↵er stronger guarantees on FaaS in an
e�cient manner is still a research topic. In this work, we address to
problem of o↵ering strong consistency to FaaS applications. We survey
the state-of-the-art Cloud and FaaS systems and their consistency guar-
antees, analysing their tradeo↵s in terms of latency, memory usage and
consistency strength. Based on this analysis, we propose a new archi-
tecture to support transactional support, o↵ering Snapshot Isolation, in
Serverless Computing Environments.
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1 Introduction

Serverless Computing, also known as Function as a Service (FaaS), is a rela-
tively recent paradigm o↵ered by several cloud providers. It allows programmers
to run their applications in the form of high level code functions uploaded in the
cloud. These functions can be executed without the prior allocation of servers,
that are automatically managed by the cloud provider, that dynamically in-
creases or decreases the resources allocated to the execution of each function
in response to demand fluctuations. When using this service, clients are billed
based on the actually used processing power, contrary to other cloud o↵erings
where resources need to be rented and billing is proportional to the rented time,
regardless of the actual usage.

Serverless computing disaggregates the computational and the storage lay-
ers, allowing cloud providers to perform elastic scaling for each of these layers
independently. The computational layer consists of multiple physical nodes con-
taining executor threads, where each executor handles the execution of a single
function. A given functionality of an application may require the execution of
multiple functions. Because di↵erent functions may be executed by di↵erent ex-
ecutor nodes, they may observe inconsistent versions of the same data. In fact,
current FaaS implementations are unable to guarantee even the weakest forms of
consistency, such as Read your Writes[1]. In turn, this may require programmers
to code compensating actions that correct the results of observing inconsistent
states[2].

In theory, it would be interesting to o↵er strong consistency to applications
using the FaaS paradigm, including the support for running transactions that
span multiple functions and can o↵er ACID properties. The challenge is to o↵er
this support in an e�cient manner. First, to ensure consistency, functions are
required to coordinate and to exchange information about the snapshot they
need to read. Second, the FaaS paradigm requires functions to be stateless and
to rely on shared backends and stateful storage services to share state. In many
cloud environments, these backends also do not support strong consistency. This
may force functions to read multiple time from the storage service, in order to
obtain a version that is consistent with the version previously read by other
functions in the same transaction.

It is worth noting that storage for serverless computing does not usually
o↵er strong consistency due to the coordination costs associated with the en-
forcement of strong semantics, instead turning to highly scalable, low latency
storage services like Anna and Redis [3, 4]. There is an inherent tradeo↵ between
the consistency level and the performance of the system. Thus, in our work we
will be partially concerned with the performance aspects and scalability aspects
associated with the implementation of strong consistency. To support our de-
sign, this report makes a survey of the current state-of-the-art systems and their
approach to enforce consistency levels e�ciently, studying their design principles
and the tradeo↵s they between consistency and performance.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 to 6 we present all the
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background related with our work. Section 7 describes the proposed architecture
to be implemented and Section 8 describes how we plan to evaluate our results.
Finally, Section 9 presents the schedule of future work and Section 10 concludes
the report.

2 Goals

This work addresses the problem of supporting transactional consistency sup-
port for applications implemented using the Function as a Service paradigm.
More precisely:

Goals: We aim at extending the current Function as a Service ar-
chitectures with an additional layers and services to allow the execution
of transactions, that span multiple functions, o↵ering strong consistency
criteria, such as snapshot isolation.

In the design of our system we plan to leverage recent research results from
works that have augmented the consistency level supported by FaaS, for instance,
to o↵er transactional causal consistency[5]. The results from these works can give
us insights on the tradeo↵s involved in the development of strong consistency.
The project will produce the following expected results:

Expected results: The work will produce i) a survey of state-of-the-art
FaaS and cloud systems; ii) an implementation of new consistency layer
and services for FaaS, iii) an extensive experimental evaluation of the
performance and scalability of the resulting system.

3 Serverless Computing

We start by making an overview of some of the most popular and commercial
FaaS systems and on how consistency is applied overall in Serverless Computing
environments.

3.1 Function as a Service

Function as a Service is a model that is now supported by the main cloud
providers, such as Amazon, Google and Microsoft, each with its own platform,
namely AWS Lambda[6], Google Cloud Functions[7] and Microsoft Azure Func-
tions[8]. Any of these platforms supports functions written in di↵erent program-
ming languages, such Python, Java, or C#, among others, that can invoke other
services provided by the cloud provider: Lambda function can use Amazon S3[9]
and DynamoDB[10], GCF functions can use the Google Cloud services[11], and
Azure functions can use other Azure services[12]. When using these services, the
ease of programming comes with some drawbacks: not only the code becomes
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Fig. 1. Consistency layers. Yellow boxes represent the main FaaS layers, blue boxes
are the optional. consistency layers

locked to a particular platform but also the global performance of an applica-
tion becomes constrained by the functional and non-functional properties of the
underlying services. For instance, S3 is known to perform well with large items
but incurs big latency overheads[5, 13], and can o↵er poor performance when ex-
ecuting transactions that read and write small objects. Due to this reason, there
is still on-going research that attempts to developed services that can be more
adequate for the support of FaaS applications. For instance, Cloudburst[14] is
a FaaS system that aims at supporting the development of stateful FaaS pro-
grams that uses a low latency autoscaling key-value store (Anna[3]) and a cache
co-located with the executors to reduce latency the latency in the execution of
transactions. A more detailed overview of current FaaS services can be found
in [15].

3.2 Data Consistency in Serverless Computing

The Serverless Computing model requires functions to be stateless in order
to be fully disaggreated from the storage level. Applications that are required to
maintain or access state must do so by interaction with a storage layer. The data
consistency observed by applications is the results of the interaction between the
computing layer and the storage layer, which can be supported by an intermedi-
ate helper layer, as illustrated in Figure 1. In the following, we discuss how each
of these layers can contribute to enforce data consistency for FaaS applications.

Computational Layer The computational layer is mostly comprised of com-
puting nodes running Executor processes, that are in charge of executing a re-
quested function. One strategy to o↵er data consistency to functions consists in
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augmenting the computing layer with a caching service. When a function needs
to access the storage layer, the call is intercepted by the caching service that, in
turn, ensures that a consistent version is returned to the function. The caching
service not only allows to provide data consistency but also has the potential for
improving the performance of the system, as in many cases clients can be directly
served by the cache. Note however, that when there is a cache miss, the caching
service may need to contact the storage service multiple times in order to obtain
a consistent version of the data. A significant challenge in this approach is that
functions that execute on behalf of the same transaction must carry metadata
to support the coordination of multiple caches. Because di↵erent functions are
executed in di↵erent compute nodes, intra-cache consistency is not enough to
ensure the consistency of the entire transaction: inter-cache consistency needs
also to be ensured. An architecture that uses this approach is Hydrocache[5].

Storage Layer The storage layer is comprised of multiple storage nodes. Typ-
ically, the data set is partitioned and di↵erent sets of nodes are responsible for
storing di↵erent partitions. Furthermore, each partition is replicated. Many of
the storage services that can be seamlessly used with FaaS o↵er weak consistency
guarantees, as they favor scalability over consistency. Another strategy to in-
crease the consistency level provide to FaaS applications is to augment the cloud
storage service with support to o↵er stronger guarantees. In some cases, this can
be implemented by wrapping an underlying weak consistent storage service with
a software layer that intercepts requests in the storage nodes. The wrapper may
implement the necessary coordination among storage servers, namely among
servers from di↵erent partitions, to ensure that only consistent versions of data
become visible to clients. The required coordination may assume di↵erent forms,
such as the execution of a two-phase commit among di↵erent storage nodes[16],
storing multiple versions of the same item to increase the chances of returning a
version consistent with the snapshot observed by the client[17, 18], among oth-
ers. Note however that, in many systems, data consistency is guaranteed to each
client in isolation, while in FaaS data consistency needs to be ensured across
multiple functions that execute on behalf of the same transaction.

Intermediate Layer It is also possible to enforce data consistency by using
an intermediate layer that sits between the Computational and Storage layer.
This approach has the advantage of avoiding changes to the cloud layers, that
can be treated as a black-box. The layer intercepts request from the computing
nodes and serves them after obtaining a consistent version. For this purpose, the
intermediate layer may need to keep a copy of the application data or, at least,
metadata regarding the versions kept by the storage layer[13]. Similar approaches
have been used for cloud systems like [19, 20]. The intermediate layer can be
partitioned and/or replicated to allow an higher scalability; in this case, replicas
of the intermediate layer need to execute coordination protocols to ensure the
desired consistency level. A disadvantage of this approach is that it consumes
additional computation and memory resources.
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Combining multiple Layers Multiple layers can be combined to e�ciently
guarantee stronger consistency levels. For instance, caching services on the com-
putational layer can be combined with services provided by the intermediate or
storage layer to allow for faster data access, as done in [21]. Also, implementing a
wrapper for stronger consistency on the storage layer can help the intermediate
layer to fetch a consistent version quicker[20].

In summary, each layer implementation brings particular advantages and dis-
advantages. The computing layers supports fast access times but requires large
amounts of metadata to be transferred between nodes and su↵ers from large la-
tency overheads when there is a cache miss. The storage layer enforces stronger
consistency but requires coordination among storage nodes and may not be
enough to serve consistent data to function executing on di↵erent compute nodes.
Finally, the intermediate layer enforces stronger consistency, independently of
other layers, which allows for more portable solutions at the cost of additional
resource consumption.

4 Consistency Concepts

Currently, FaaS platforms provide little or no support for the execution of
transactions that span multiple functions. Due to this limitation, recent research
work has addressed the implementation of transactional support in FaaS environ-
ments [13, 5], wrapping function composition on a transactional layer providing
ACID properties. The challenge is to design schemes that can support transac-
tions without imposing a large overhead.

Bailis et al. have used the term Highly Available Transactions (HAT)[22] to
characterize transactional implementations that allow client to make progress in
face of network partitions and/or other slow clients. Strongly consistent trans-
actions are not HAT, because they require the execution of consensus and may
block in the presence of network partitions. This, however, may not be a signif-
icant limitation when transactions are executed in a single datacenter. In fact,
studies on data center network partition show that ”... the data center network
exhibits high reliability with more than four 9’s of availability for about 80% of
the links ...”[23]. Thus, the practical drawback on non-HAT transactions can be
small in a FaaS environment, while the benefits that result from the stronger
semantics may be large for programmers.

We will now analyse some of the existing consistency levels following the
analysis made in [22] and [24].

4.1 Eventual Consistency

Eventual Consistency, also known as Convergence, states that, even under
arbitrarily long delays, di↵erent replicas of the same item will eventually converge
to the same value. Most weakly consistent databases ensure at least this property,
often in conjunction with other consistency levels.
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4.2 Single-Object Consistency Levels

Single-object consistency levels address how each process observes the up-
dates performed to a given object, regardless of the updates performed to other
objects. Typically, the guarantees provided to clients are in the context of a ses-

sion, a sequence of operations on individual objects performed by the client in a
context where the client is able to maintain some state regarding its past oper-
ations. A session can be the execution of a single application, from the moment
it starts until it ends, or a sequence of applications that share some context,
for instance a user session from login to logout. The most relevant consistency
criteria are the following (due to space constraints, we omit a few variants; the
interested reader can find a more thorough discussion in [22, 24]).

Monotonic Writes (MW) requires that write operations become visible in
the order they were submitted.

Monotonic Reads (MR) requires that a read by a client always observes at
least the writes that have been already observed by any previous read of that
client. I.e., a read never returns an older version than the ones that have been
observed in the past, even if the client contacts multiple replicas in the same
session.

Read your Writes (RYW) requires that a read by a client always observes a
state where all write operations previously performed by that client have already
been applied.

Pipelined Random Access Memory (PRAM) is the combination of the
three previously defined consistency levels. It ensures that a client always ob-
serves a state that is consistent with some serialization of all operations that
respects the serial order of the operations in its own session.

Write Follows Read (WFR) Let Ri be a read operation and Wj be a write
operation executed by a client after Ri. Let Wi be the set of write operations
that have been applied to originate the state returned by Ri. Then, the write
operation Wj is guaranteed to be performed in a state where at least all writes
in Wi have already been applied.

Causal Consistency (CC), derived from Lamport’s “happens-before” rela-
tion[25], is the combination of Write Follows Read with PRAM. It’s known as
one of the strongest consistency level that is still highly available.

Causal+ Consistency (CC+) is an extension of Causal Consistency, ensuring
that replicas converge to the same value in face of concurrent updates.
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Linearizability is the strongest single-object consistency model, requiring that
operations take place atomically and in an ordering consistent with the real-time
ordering they were submitted.

4.3 Multi-Object Consistency Levels

We now address consistency levels that can be defined to transactions, i.e.,
sequences of operations that read and write multiple objects. In this case, the
consistency model defines de degree of isolation that is ensured among trans-
actions. In the stronger consistency models, transactions are fully isolated from
each other: even if they execute concurrently, the result is equivalent to some
serial execution of the transactions, where each transaction runs alone.

Repeatable Read (RR) requires a transaction to execute all read operations
from the same snapshot. As a result, it enforces multiple read operations on the
same object to return the same value. Di↵erent properties have been labeled
Repeatable Read with di↵erent isolation strengths associated with them. In this
report we follow its commonly used definition in related work, corresponding to
the Item Cut Isolation level defined in Bailis et. al.[22].

Monotonic Atomic View (MAV) [22] enforces the atomic visibility of up-
dates. Once a transaction Tj observes the e↵ects of a transaction Ti, all future
read operations of Tj must reflect the updates of Ti.

Read Atomic (RA) [16] builds upon MAV, enforcing stronger atomicity se-
mantics. Let T0 be a committed transaction that has written X0 and Y0. Let
T1 be a running transactions that has read X0 and T2 be a concurrent transac-
tion committing the updates X2 and Y2. If T1 reads Y , MAV allows T1 to read
Y2. Read Atomic disallows this execution as it would break the atomicity of T2

updates, as Y2 was cowritten with X2 and X has already been read by T1 with
value X0. RA requires T1 to read Y0 or a more recent version of Y which was
not cowritten with more recent versions of any previously read updates from T1.
A readset that follow these constraints is known as an Atomic Readset.

Transactional Causal Consistency (TCC) extends causal consistency to
sets of objects, requiring transaction readsets to form a causal snapshot and
updates to be atomically visible. To form a causal snapshot, the readset must
maintain all its object version dependencies. Let T0 be a committed transaction
that created X0 which depends on a object version Y0. Let T1 be a running
transaction that has read X0. When reading a object version of Y , it must
read a object version that has not occurred before Y0, as it would break the
dependency requirements of X0. T1 can read either Y0, a concurrent version to
it or a more recent version of Y0. However, it can not read a version Y1 that
is dependent on a more recent object version X1, as it already has X0 in its
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snapshot. TCC also requires the atomic visibility of updates. By adding read
dependencies between a transaction writeset, it is transparently obtained by the
causal snapshot property.

Snapshot Isolation (SI) requires users to read from a stable snapshot, en-
suring all committed operations prior to the chosen snapshot are visible. It also
requires that no executed operations are visible to concurrent transactions dur-
ing execution and that no two concurrently committing transactions writesets
intersect. The chosen snapshot can either be the starting point of the transaction
or another past point in time. It is a stronger isolation than TCC, as reading
from a stable snapshot is equivalent to having all prior updates and, hence, all
prior dependencies.

Serializability (1SR) requires transactions to appear in a total order in all
processes. This however does not necessarily correspond to the transaction real-
time execution, so a transaction T0 might have occurred before a transaction T1

but in the total order appear after T1.

Strict Serializability (Strong 1SR) is the strongest possible isolation level.
It is the union of Serializability with Linearizability, ensuring transactions are
totally ordered and the real time ordering of transactions are respected.

Anomalies are defined as execution orderings that break the isolation prop-
erties of a transaction. In literature, the strength of a multi-object consistency
criteria is often defined by which anomalies that level prevents. We make a short
overview of some of the anomalies our previously defined consistency levels pre-
vent. The various examples were taken from [22, 26].

Fuzzy Reads occur when multiple reads on the same object return di↵erent
values.

T1 T2
R(X0)

W(X1)
Commit

R(X1)
Table 1. Fuzzy Read anomaly

Dirty Reads occurs when transactions read either uncommitted, aborted
or intermediate state of a concurrently running transaction.

Fractured Reads occurs when a transaction T1 writes object versions X1

and Y1 and a transaction T2 reads X1 and a Y object version older than Y1.
Lost Update occurs when a transaction T1 reads a object value X0, a

transaction T2 updates X and T1 updates X based on the initial read value X0.

10



T1 T2
W(X1)

R(X1)
Commit

T1 T2
W(X1)
Abort

R(X1)

T1 T2
W(X1)
W(X2)
Commit

R(X1)
Table 2. Dirty Reads. From left to right: Read uncommitted state, Read aborted state,
Read intermediate state.

T0 T1 T2
W(Y0)
Commit

W(X1)
W(Y1)
Commit

R(X1)
R(Y0)

Table 3. Fractured Read anomaly

T1 T2
R(X0)

W(X2)
W(X0 + 10)

Table 4. Lost Update anomaly

Write Skew occurs when multiple transactions concurrently update di↵er-
ent objects present on each other readset. If there were a constraint between
these objects, it would be impossible to serialize the execution.

T1 T2
R(Y0) R(X0)
W(X1) W(Y2)

Table 5. Write Skew anomaly

We finish with a small table representing which anomalies are prevented by
which consistency level and an overall view of the relation between consistency
and isolation levels.

Fuzzy Dirty Fractured Lost Write Real Time
Reads Reads Reads Update Skew Constraint

RR X 7 7 7 7 7
MAV 7 X 7 7 7 7
RA X X X 7 7 7
TCC X X X 7 7 7
SI X X X X 7 7
1SR X X X X X 7

Strong 1SR X X X X X X
Table 6. Anomaly overview
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5 Related Work

In this section we survey a number of systems that o↵er transactional seman-
tics in both Cloud and FaaS settings, and provide an overview of the challenges
and limitations of implementing each consistency level. We make a brief de-
scription of each system, discussing the isolation level it provides, the target
environment, and the proposed solution. Unless otherwise stated, all systems
are built on top of strongly consistent storage.

5.1 Cloud Systems

RAMP RAMP[16] o↵ers the Read Atomic isolation level, ensuring atomic vis-
ibility of transaction updates on a partitioned environment while maintaining
scalability and high availability properties. It maintains atomicity by attaching
metadata do each key version, detecting when readset atomicity is broken.

Three di↵erent variants of RAMP are introduced in [16], each bringing di↵er-
ent tradeo↵s between metadata size and the required number of communication
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round trips for the operations to terminate. Note that transactions are either
read-only or write-only. Support for read-write transactions is possible but only
when the read-set is known a priory (i.e, when transactions are static).

The first variant is named RAMP-Fast. In this variant, metadata scales lin-
early with the number of write operations in the transaction, with each key
version attaching the key versions written on its transaction as metadata. Write
transactions require the execution of a 2-Phase commit protocol. It first writes
the keys into their respecting partitions marked as in “Prepared” state, wait-
ing to be committed. Once all writes finish, a commit message is sent to make
the prepared updates visible. On read transactions, it first obtains all required
keys. Due to message asynchrony, some updates from read transactions may yet
to become visible. To detect this, each key metadata is compared against the
transaction readset to ensure that obtained key versions respect the atomicity.
In the best case, it can return to the client in a single read. However, if an ob-
tained version is mismatched, an extra communication round is used to fetch a
consistent version that may still be in the prepared state.

RAMP-Small takes the opposite tradeo↵ from RAMP-Fast, using constant
sized metadata, in the form of the transaction number, but always requiring two
communication rounds for reads. Write transactions execute as in RAMP-Fast.
To execute read transactions, the first communication round obtains the highest
transaction number that each partition has committed for the requested keys.
Then, with the second round, the protocol sends the list of transaction numbers
obtained and asks for the key version with the highest number presented in the
list from both committed and prepared keys.

The paper also presents a third variant, named RAMP-Hybrid, which we
will not go in detail has the two previous versions already present the inherent
tradeo↵s of implementing RA.

FastCCS FastCCS[17] is an algorithm that o↵ers TCC on top of a partitioned
storage systems in an e�cient manner, providing non-blocking read and write
transactions. Transactions read from a fresh causally consistent snapshot, with
a read latency of at most two rounds even in face of skewed workload, and an
average latency of approximately one round. By using more precise metadata
and vector clocks, it avoids the common pitfall of false dependencies, where the
system does not have enough information to decide whether the obtained values
are consistent.

The client holds a Dependency Vector Clock (DVC), representing the last
seen system state by the client to ensure causality of future requests. On write-
only transactions, a partition is chosen as coordinator, requesting the highest
timestamp of each partition to create a Commit Vector Clock (CVC), represent-
ing the system state when that transaction committed. The coordinator commits
the transaction by sending the CVC to every partition and the client, updating
its DVC with the obtained CVC. Key versions go through three stages: Prepared,
Committed and Visible. When the key version is created, it is on the Prepared
state. After getting the CVC from the coordinator, it passes to the Committed
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state. Only when the version has been committed at all partitions, detected by a
Snapshot Vector Clock (SVC) that each partition holds with the latest gossiped
timestamp from each partition, can it pass to the Visible state.

For reads, the client sends its DVC to the coordinator to ensure the partition
has at least the most recent state seen by the client, possibly updating its SVC
with the system state. Partitions return the key versions whose clocks are dom-
inated by the SVC, meaning that they have been committed in all partitions.
When obtaining the requested keys, the partition obtains the maximum com-
mit timestamp of each partition, creating a Maximum Committed Timestamp
(MCT) vector clock. The MCT is used to check if the obtained keys are the
most recent key version given the snapshot, as partitions may still have keys
on the Committed phase while others are already in the Visible one. Since we
know those transactions have already been committed in some partitions, we
can obtain the keys directly from the prepared or committed state. This ensures
the minimal progression of key updates.

Wren Wren[18] was the first system that implemented TCC with non-blocking
reads on a partitioned, geo-replicated datacenter environment. It does so by
calculating a Local Stable Time (LST), representing which transactions have
been installed in all local partitions of a datacenter, forming a stable causal
snapshot. To maintain Read Your Writes, a client-side cache is implemented to
keep the client updates that are yet to be installed in all partitions.

Wren di↵erentiates local and remote items to avoid coordination with remote
entities to determine which updates can become visible locally. It does so by
calculating the LST and a Remote Stable Time (RST), representing the remote
transactions that have been installed in all local partitions. The LST and RST
are calculated by having each partition gossip their last installed local and remote
update to all local partitions in the datacenter, with the LST and RST being
the the minimum of the local and remote updates respectively. Updates are
represented by Hybrid Logical Clocks, allowing for clocks to move forward in
case of clock skews, removing delays from waiting for clocks to catch up.

When a transaction begins, a partition is chosen as the coordinator, exchang-
ing the client last seen LST and RST to maintain causality. Updates are kept in
a writeset and sent on commit time. When reading, the client first goes trough
its writeset (guaranteeing Read Your Writes), readset (guaranteeing Repeatable
Reads) and client cache (updates not yet visible) before fetching from storage.
When committing, the client last committed clock is sent to the coordinator to
ensure causality. The coordinator sends the updates kept on the client writeset
to their respective local partitions and asks for the partitions proposed commit
timestamp, picking the highest proposed value and sending it to the partitions
and client for committing. Updates are only installed in a partition when no pro-
posed clock from the partition is lower than the committed transaction clock,
ensuring that no update with smaller timestamp is installed after the update
installation.
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Clock-SI Clock-SI[27] is a distributed protocol that implements Snapshot Isola-
tion on partitioned data stores by relying on loosely synchronized physical clocks.
While most systems that implement Snapshot Isolation require a global variable
or centralized timestamp authority to reliably obtain the current snapshot of the
database, Clock-SI diverges by having partition clocks loosely synchronized, re-
quiring no coordination with a separate module or between partitions to obtain
a snapshot.

When a transaction begins, the client contacts a partition, hereby named
originating partition, and obtains the transaction snapshot timestamp by read-
ing the physical clock of the partition. It uses this timestamp to obtain the
desired keys from the snapshot. When reading, there are two cases where the
transaction must temporarily block before returning the requested keys. First,
a concurrent transaction may be in the middle of committing, with its values
possibly belonging to the transaction snapshot. Partitions must wait for the
transaction to commit to avoid returning inconsistent results. Second, the par-
tition may have its clock delayed due to clock skew. In this case, it must wait
for the partition clock to catch up, as it could commit a transaction between
this interval. To avoid these delays, Clock-SI allows for clients to pick an older
snapshot. However, by extending the physical time between snapshot and com-
mit time, it raises the chances of occurring a concurrent write on the same key
space, leading to a transaction aborting. This delay is most useful for read-only
transactions, sacrificing freshness for performance.

On commit time, if a transaction only accessed a single partition, it ensures
no local write conflicts exist and uses the current partition clock as commit times-
tamp. For multiple partition accesses, it uses a 2-Phase Commit protocol with
the originating partition serving as coordinator. Each partition checks for write
conflicts, returning a proposed commit timestamp if none are found or aborting
otherwise. The coordinator picks the highest timestamp as commit timestamp
and commits to the partitions and the client. Committing to partitions with
delayed clocks does not impose an issue, as it will only become visible once the
clock reaches the transaction commit timestamp.

Padhye Padhye PhD thesis[20] studies the challenges of transactional support
in cloud environment using Snapshot Isolation. The author presents two solutions
for transaction management, a decentralized model and a centralized one. We
will focus our analysis on the centralized approach. As the author does not
specify a name for its models, we will call them Padhye models.

The centralized approach is based on a service-base model, using a centralized
lock management system to coordinate transaction writes on commit time, being
partitioned into several processes, each in charge of the locks for a disjoint set
of keys. Each partitions keeps records of the currently obtained locks and latest
commit timestamp of each key. A first-updater-wins approach was chosen for
the write conflict detection, where transactions try to obtain a lock of the key,
with the first one to obtain the lock allowed to commit.
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A timestamp management service is used to serve snapshot and commit
timestamps. To serve a stable snapshot, it chooses the highest timestamp with
which all transactions have either committed or aborted. To serve commit times-
tamps, it keeps information about the last commit timestamp served to return
an higher value.

Updates are sent to the storage during transaction execution to avoid long
commit phases, requiring extra e↵ort into maintaining uncommitted data and
mapping key version to the respecting timestamp on commit time. For read op-
erations, transactions request the necessary keys from storage using the obtained
timestamp from the timestamp manager. On commit time, a partition of the lock
management service is chosen as coordinator, acquiring the necessary locks from
each partition. It checks the latest commit timestamp of each key to be updated
to check for write conflicts. In case a lock is being used, the coordinator waits for
the transaction to finish. To avoid deadlocks, if the waiting transaction has an
higher Transaction ID than the one currently holding the lock, it aborts. If the
transaction commits, then it must also abort due to write conflict, else it can ob-
tain the lock. Once all locks are acquired, it requests a commit timestamp from
the timestamp management service, updating the corresponding uncommitted
keys on storage and committing to the user.

CloudTPS CloudTPS[19] provides transactional support to cloud environ-
ments on top of a weakly consistent storage by creating an intermediate trans-
actional layer, focusing on providing ACID properties. This layer is composed of
several Local Transaction Managers (LTM), partitioning the key space among
them. Each LTM holds the uncommitted data of transactions as well as a full
copy of application data of its key space, relying on the storage layer for dura-
bility only.

To guarantee Atomicity, writes are stored as uncommitted data in their re-
spective LTM. On commit time, a 2-Phase Commit protocol is used, choosing an
LTM to act as coordinator and checking with each partition for write-conflicts.
If no conflicts are found, the coordinator sends the commit requests to partici-
pating LTMs and returns to the client. Updates are not sent to storage during
the 2-Phase Commit to reduce commit time, being periodically sent in the form
of checkpointing. To tolerate faults between checkpoints, transaction state and
data items are replicated in multiple LTMs before returning to the client, which
is faster than sending to storage as they are replicated through IPC calls.

The system itself does not implement any specific consistency level. Consis-
tency rules are applied and maintained within transaction logic, which is checked
on commit time. As such, as long as the transaction is able to commit and is ex-
ecuted properly, the consistency properties will be maintained. However, for the
sake of comparison, we will consider CloudTPS as a Snapshot Isolation system.

In order to ensure Isolation properties, transactions are split into multiple
sub-transactions which are globally ordered by timestamps. Sub-transactions
can only be execute once all conflicting sub-transactions with lower timestamps
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have commited or aborted. This timestamp ordering is assigned by an external
timestamp manager.

5.2 FaaS Systems

AFT Atomic Fault Tolerant shim[13] is an intermediate layer interposing the
FaaS platform and the Cloud Storage, providing Read Atomic isolation guaran-
tees on top of a weakly consistent storage. The AFT shim serves as a transac-
tion manager, tracking each key version read during transaction execution while
maintaining an Atomic Readset throughout the transaction. Writes are bu↵ered
throughout the transaction in the AFT, only writing to storage on commit time
to ensure the atomicity of updates.

On commit time, the AFT first writes the transaction update to storage
for durability. Once persisted, it writes the transaction ID and writeset to a
Transaction Commit Set (TCS) in storage. Only when persisted in the TCS can
the AFT write to a local Metadata Cache, which holds the latest version of each
key, and successfully commit the transaction. This method allows for multiple
AFTs to concurrently commit without any form of coordination due to multi-
versioning of keys, with AFTs periodically sharing their committed transactions
to each other. The write to TCS ensures that even in case of AFT failure before
sharing the committed transaction, it will end up being discovered by a Fault
Manager module, which periodically checks for transaction updates in the TCS
that were not shared between AFTs.

To maintain the atomicity of updates, read operations can only read from
the Metadata Cache present in the AFT. To form an Atomic Readset, each key
version has attached the key versions written in the same transaction. When
reading a key K that has been cowritten with a previously read key L, it must
ensure that the version read for K is as equally recent or newer than the one
cowritten with L. Furthermore, it cannot read a version of K that has been
cowritten with a newer version of L, as it would break atomicity. AFT guar-
antees Read your Writes consistency by first reading from the Atomic Bu↵er
and Repeatable Reads by default due to the restrains imposed by the Atomic
Readset.

Hydrocache Hydrocache[5] is a distributed cache layer algorithm that pro-
vides low latency while guaranteeing TCC in serverless computing environments
without relying on membership. This membershipless approach is achieved by
implementing dependencies at the key level instead of the partition level. Since
functions of the same transaction can be executed at multiple physical nodes, it
must also guarantee Multisite TCC.

To achieve TCC, each cache keeps a Strict Causal Cut, a stronger imple-
mentation of a causal snapshot. A cut di↵erentiates from a causal snapshot by
requiring the snapshot to include all the key version dependencies in the snap-
shot and not allowing concurrent updates to fulfil dependency requirements: it
is either the exact key version of the dependency or a newer version. The cut is
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upheld by periodic key updates from a weakly consistent storage and by fetching
all dependencies of a key when fetching it for the first time. To ensure update
atomicity, keys updated in the same transaction have read dependencies set on
each other, ensuring they are obtained together on the cut. Updates are bu↵ered
until the end of the transaction last function, where dependencies are added and
the transaction commits by writing the updates to storage. These methods form
the Centralized approach of Hydrocache, where all functions of a transaction
execute in a single physical node. It brings the advantage of having a main-
tained cut by the cache, but imposes a bottleneck on parallel function execution
and does not take advantage of the scalability properties of FaaS systems. As
such, it is desirable to execute a transaction throughout multiple physical nodes,
requiring TCC to be achieved on multiple nodes.

To maintain TCC on a multisite environment, Hydrocache implements three
approaches. An Optimistic approach runs the functions without prior prepara-
tion, checking for snapshot violations between function executions. Functions
send the readset and writeset metadata from the transaction when passing the
execution to other functions. Before a function starts, it verifies if it has a com-
patible snapshot with the previous function. If not, it tries to form one by ob-
taining the missing key versions from the previous function executor, having to
abort if unable to form one. It also checks for compatible snapshots when parallel
functions join their outputs. If parallel functions executed on incompatible snap-
shots, the transaction must abort as there is no possible way to recover. Note
these causes for aborts can happen multiple times for the same transaction. As
such, Optimistic brings low averages response time but high tail response la-
tency. A Conservative approach first builds a snapshot across all caches before
executing, making sure the transaction will never abort. It allows for only one
execution of the functions in exchange for an higher average response time due
to the coordination costs between caches.

A Hybrid approach takes the advantages of both implementations. It starts
by running the Optimistic approach while at the same time running a simulation
of the Optimistic dependency checks. This simulation checks for any possible ver-
sion conflicts without having to execute any functions, since Hydrocache assumes
static transactions. With this simulation, Hybrid is able to know in advance if
the Optimistic approach will abort. If it will, it aborts it right away and starts
running the Conservative approach to avoid multiple aborts. For the best case
scenario it runs the Optimistic first try, worst case it runs both the Optimistic
and Conservative approach, averaging better latency than Conservative and tail
latency than Optimistic.

FaaSFS FaaSFS[21] is a shared File System built specifically for FaaS, o↵er-
ing POSIX semantics and linearizability while maintaining scalability and good
performance when compared with other shared file systems. POSIX semantics
allows for an higher level of portability of programs to serverless computing en-
vironment, as it does not require modifications to adapt to specific APIs like
other stateful storage services.
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POSIX semantics are achieved by using multiple optimist execution mech-
anisms. On transaction start, the client obtains a file-system wide read times-
tamp, corresponding to the most recent commit of the file system. It uses it for
Optimistic lock elision, assuming it always holds read and write locks, and for
snapshot reads, making an optimistic use of cache state in conjunction with a
multiversioned backend to obtain older updates if needed. On commit time it
verifies if no concurrent transaction has modified the items it read or wrote.

In order to avoid conflicts, writes and reads are represented at the block level
instead of the usual file level, avoiding aborts for concurrent writes that occur
on the same file but at di↵erent sections. It also allows for cache updates to be
more e�cient, sending less information in the form of blocks instead of whole
files.

Cache updates occur using a lazy approach. On transaction start, the cache
is informed of which blocks have become invalid but are not updated, as it would
incur a significant overhead. Instead, when a read operation requires the block
it requests it from storage, updating its cache.

6 Analysis

We now discuss the advantages and disadvantages of the systems surveyed
in the previous section. Table 7 presents a comparative analysis of the di↵erent
features of each system.

Systems Target Consistency Storage Metadata Memory Read Commit
Consistency Size Usage RTT RTT

RAMP-Fast Cloud RA Strong O(W ) - 2 2
RAMP-Small Cloud RA Strong O(1) - 2 2

Wren Cloud TCC Strong O(1) O(N ⇤R) 2 3
FastCCS Cloud TCC Strong O(N) O(N) 2 2
Clock-SI Cloud SI Strong O(1) O(1) 2* 3*

Padhye Cent. Cloud SI Strong O(1) O(W ) 2 4*
CloudTPS Cloud SI Weak O(1) O(K) 2 4*

AFT FaaS RA Weak O(W ) O(K) 1* 3
Hydrocache FaaS TCC Weak O(K) O(K) 1* 2
FaaSFS FaaS Strong 1SR Strong O(1) O(K) 2 1*

Table 7. System Comparison. W represents writeset, N represents number of parti-
tions, K is key-space, R is number of replicas, Nodes is the number of tree nodes. *
represents that action may include blocking or aborts.

6.1 Target Environment

We can classify the systems into two main categories, according to the type
of environment they target, namely into Cloud systems and FaaS systems. Some
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systems do not explicitly state that they have been designed for Cloud envi-
ronments, but we include them in this broad category as they solve similar
challenges. The distinction is relevant due to the constraints imposed by each
environment. Cloud systems mostly operate with a almost static number of par-
titions and replicas. This simplifies the use of techniques that maintain infor-
mation for each partition, for instance, the use of vector clocks to keep track
of the current snapshot. On the other hand, FaaS systems are designed to ease
auto-scaling, and we can expect the number of servers to change often. To avoid
frequent transformation to data structures, every time there is a membership
change, many system use metadata that is independent from the number of
servers, for instance, per-key metadata.

6.2 O↵ered Consistency Guarantees

In the table, we order the surveyed systems by ascending consistency strength.
Performance degrades as the consistency strength increases, due to the required
additional coordination. This coordination involves the exchange of messages, to
execute a 2-Phase Commit protocol (which can add one or more RTTs to the
latency) and the use of locks (that can also block transactions, adding additional
latency). It is interesting to observe that systems that o↵er stronger consistency
criteria usually require less metadata than system that o↵er weaker guarantees.
This happens because weaker models allow for more concurrency in the system,
which requires additional metadata to capture accurately.

6.3 Storage Consistency

It is relevant to distinguish systems that require a strongly consistent storage
layer from system that can operate on top of weakly consistent stores. Weakly
consistent storage systems are orders of magnitude faster than strongly consis-
tent storage systems, but when using the former one must rely on additional
layers or additional metadata to enforce strong consistency to the application
(as in AFT and Hydrocache).

6.4 Metadata Size

Metadata size defines how much information must be transferred between re-
quests to maintain consistency. Cloud environments are able to minimize meta-
data usage, as they can make assumptions about the number of partitions and
use membership techniques as the ones proposed by FastCSS and Wren. RAMP
supports a choice between constant or linear metadata usage. In FaaS systems
it is harder to reduce the size of metadata, because the numebr of servers may
change often. These systems typically keep metadata for each object read or writ-
ten in a transaction, and may be required to exchange large volumes of metadata,
as it happens in AFT and Hydrocache. Systems enforcing SI or stronger con-
sistency require less metadata, because there is less concurrency in the system
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(in fact, all write transactions are totallky ordered). Therefore, they only use a
single timestamp as metadata; this timestamp is enough to represent a global
state of the system.

6.5 Memory Usage

Memory usage captures the amount of information that needs to be main-
tained in memory to enforce the desired consistency. Memory usage has a di-
rect correlation with consistency of the storage layer, as systems with weaker
storage consistency cannot rely on storage properties to obtain specific key ver-
sions, requiring data or metadata to be kept on memory. AFT, Hydrocache and
CloudTPS all use a weakly consistent storage and require the whole key space
in memory, with stronger storage systems only requiring general system state
information such as vector clocks for TCC systems and write-sets of running
transactions in Padhye. FaaSFS is an outlier in storage consistency and mem-
ory usage tradeo↵, as maintaining Strong 1SR e�ciently requires heavy memory
usage.

6.6 Cost of Read Operations

We capture the cost of a read operation, by counting how many network
round-trips need to be performed to terminate the operation. FaaS systems av-
erage one RTT for read operations, as they require low latency. FaaSFS is an
exception due to its stronger consistency requirements, using an extra RTT to
obtain a read snapshot. Note that due to most FaaS weakly consistent storage,
a key version may be requested multiple times until it obtains a desired version
or aborts. Cloud systems take on average more RTTs, but “fast” approaches
like RAMP-Fast and FastCCS can still achieve averages of one RTT. Wren and
Cloud Snapshot Isolation systems also take one RTT to read, however they in-
clude a first communication round on transaction start to establish a snapshot,
which is accounted for in the read cost. Clock-SI may also have to block for
currently committing transactions, as the transaction updates may be included
in its snapshot.

6.7 Cost of the Commit Operation

We also capture the cost of a commit operation, by counting how many
network round-trips need to be performed, in worst-case, to terminate the oper-
ation. CMost systems take an average of 3 RTTs for committing, representing
the commit request from the client and a 2-Phase Commit protocol required for
partitioned environments. RAMP and FastCCS avoid a communication round
by having the client act as coordinator. Hydrocache does not require a 2-Phase
Commit, transparently committing by sending the writes to storage. The Cloud
SI protocols require an extra communication round for requesting a commit
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timestamp from an external Timestamp Management system. FaaSFS only re-
quires 1 RTT for commit, however it has a much higher abort rate due to its
strict serializability.

Note that strong consistency levels have either locking mechanisms or opti-
mistic approaches that may abort on commit time. These extra costs must be
taken into account in the system performance. Transactions on SI systems must
wait for concurrently running transactions with a lower snapshot to commit, as
conflicts may arise from its writeset.

7 Architecture

We plan to develop a middleware layer, named FaaSSI, to o↵er Snapshot Iso-
lation to transactions executing in the FaaS model. The layer will mainly consist
of a set of servers, that work as an intermediate layer, between the executors and
the storage. More precisely, we plan to implement FaaSSI as an extension to the
Cloudburst system, and our intermediate layer will sit between the Cloudburst
cache and the Anna storage.

7.1 System Components

FaaSSI will use two types of servers, as depicted in Figure 3: a set of conflict
managers and a timestamp management server.
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Fig. 3. FaaS-SI transactional layer. Based on the diagram from [5]. Yellow squares
represent our additions.
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Conflict Managers The conflict managers will be in charge of checking if trans-
actions satisfy SI and commit or abort the transaction accordingly. We follow
the approach of CloudTPS [19], where each conflict manager will be in charge
of a di↵erent data partition, keeping copies of the latest committed values in
memory in order to serve clients that need to access the most recent version.
The executor that runs the sink function of a transactional DAG sends all the
writes to the corresponding conflict managers. Transactions that span multiple
partitions will require coordination among the conflict managers for safe com-
mitting, relying on a 2-Phase Commit protocol. The commit protocol decides if
the transaction can commit or needs to abort. If the transaction commits, writes
are written in stable storage by the managers.

The size of the memory pool of each conflict manager will be a system pa-
rameter. The conflict manager will discard old values, using some policy (at this
point, we plan to use the Least Recently Used policy to release entries in the
cache). Because all writes to a given item are always performed by the conflict
managers, managers can always retrieve any given version of an object, even if it
has already been purged from its memory. This in ensured because managers can
always read their own writes, even for the weakest consistency models provided
by the cloud storage system.

Conflict managers will also be in charge of telling executioners which is the
most recent committed snapshot, to be used as the snapshot that a newly started
transaction will read from. Transactions obtain the transaction snapshot during
the first read operation. For this purpose, they will contact the conflict manager
in charge of the first object that is read by the transaction; this conflict manager
returns the timestamp corresponding to its latest committed transactions it is
aware of.

Timestamp Management Server The timestamp management server will
be responsible for assigning unique, totally ordered timestamps for committing
transactions. The timestamp corresponds to a monotonically increasing sequence
number, obtained by the conflict manager to represent the system state on com-
mit time. When a transaction spans multiple conflict managers, the system will
select deterministically which manager will request the commit timestamp.

Cache SI We will modify the Cloudburst Cache implementation to subscribe
to updates from the Conflict Managers in order to increase the probability of
serving clients with the most recent version from the executor cache. To main-
tain consistency when moving execution between physical nodes, the transaction
snapshot will be passed on between caches.

7.2 Executing Read, Write, and Commit Operations

Read operations When executing read operations, executors first read opti-
mistically from the cache. In case of cache-miss or requiring an older key version
due to the chosen transaction snapshot, the cache contacts simultaneously the
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storage service to obtain a copy of the data and the conflict manager to check
what is the most recent version the transaction should read from given the de-
sired snapshot. If the storage service serves an non-matching version with the
version returned by the conflict manager (this can happen because the cloud
storage service only guarantees Read Your Writes eventual consistency), the
cache will contact the conflict manager to obtain the correct version.

Write operations For write operations, only on transaction commit, once the
transaction SI properties have been verified, will the transaction updates be
applied to storage and updated onto each conflict manager. During transaction
execution, the writeset will be propagated throughout the transaction and used
for conflict detection by the conflict managers.

Commit operations At the end of transaction execution, the sink function
of the transaction must send the transaction writeset and readset to the cor-
responding conflict managers to verify if SI was upheld. The conflict managers
will verify if any write conflicts exist with concurrently committing transactions
or with committed updated occurred during execution. The readset must also
be verified, as optimistic cache reads may have read an older version than the
one required by the snapshot timestamp. Concurrency is handled using a locking
mechanisms, where conflict managers can only verify once it obtains a lock cor-
responding to every key in its writeset and readset. Once both sets are verified,
the conflict managers inform the coordinator. If no verification has failed, the
coordinator sends the commit message to the participant conflict manager, so
they may update its corresponding keys in storage and updates its local infor-
mation, completing the transaction. Otherwise, the transaction must abort and
be retried.

7.3 Incremental Implementation

We plan to develop our system in an incremental manner. In the first imple-
mentation we will use a single conflict manager, which will avoid the need for
distributed coordination during transaction commit. Later, we plan to extend
this version to support multiple conflict managers.

8 Evaluation

We plan to implement a prototype of our system and to deploy in a experi-
mental testbed, such as GRID5000[28], that is compatible with the Cloudburst
middleware. To ease the deployment of the experiments we plan to use kubernets
to deploy the executors. We will assess the feasibility of deploying in the same
infrastructure some representative examples of the previous work, o↵ering di↵er-
ent guarantees, for both traditional cloud applications and for FaaS applications,
such that we can have comparative results. The evaluation will focus on multi-
ple aspects of the system performance, such as transaction latency, throughput,
abort rate, scalability, fault tolerance, and memory usage.
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8.1 Latency

We will measure the average transaction execution time for di↵erent work-
loads. We plan to vary the read/write ratio, the number of functions that are
part of the transcation, the number of objects accessed by each function, and
also the type of function DAG used by the transactions (including the serial
and parallel execution of functions[5]). We plan to understand how the di↵erent
components of our architecture contribute to the latency, including the time re-
quired to obtain a timestamp to execute the transaction and the time required
to perform the commit protocol.

8.2 Throughput

We will measure the maximum number of transactions per second that the
system is able to execute, while still ensuring response time under some pre-
defined latency threshold in the 99% percentile, as suggested in [19].

8.3 Abort Rate

We will also measure the abort rate for di↵erent workloads. The abort rate
depends on several factors, including the characteristics of the workload (in
particular the skew in data access), the level of consistency provided, and the
latency added to the execution of transactions (the longer the transactions, the
more likely are conflicts to occur).

8.4 Scalability

We will measure the impact of system size on the performance of the system.
We plan to vary the data-set size, the number of partitions used in the storage
system, the number of executors, and the number of clients.

8.5 Fault Tolerance

We will measure the impact of failures in the system. We will consider failures
in the servers of the middle layer used to enforce SI and also failures in the
executors. In this context, we will also measure the recovery time observed for
the di↵erent types of faults.

8.6 Memory Usage

We will study the relation between the memory used by the components
in the middle layer and the performance of the system. For that purpose, we
will execute the system by putting di↵erent limits on the memory used by our
servers.
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9 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15: Deliver the MSc dissertation.

10 Conclusions

Serverless computing brings a new way of application development, allow-
ing for a more fine-grained and cost-e�cient scaling and deployment without
worrying about prior allocation of infrastructure. Currently there is a hole for
application that want to go Serverless but require stronger consistency.

In this report, we surveyed the state-of-the-art FaaS and Cloud systems. We
analysed their consistency guarantees, discussing gains and tradeo↵s of each con-
sistency level and implementation. We elaborated a solution to support strong
transactional consistency in Serverless Computing while maintaining an accept-
able latency in this environment. Finally, we defined the evaluation methods and
presented the scheduling for future work.
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