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Abstract
Function-as-a-Service (FaaS) is a relatively recent paradigm

supported by many cloud providers that supports the ex-

ecution of applications without prior allocation of servers.

Applications are written as a composition of stateless func-

tions, organized in a graph. Different functions may execute

in different servers, that are provisioned automatically by

the cloud provider. Functions may read and write from/to

stable storage using a storage service of their choice. For

cost/efficiency reasons, most FaaS applications use storage

services that cannot provide strong consistency to functions

executing in different servers. In this thesis we study effi-

cient ways of extending a weakly consistent data store with

additional services that can offer transactional support and

strong consistency (namely, snapshot isolation) to FaaS appli-

cations. Some previous works that aim at achieving the same

goals force all storage read/write requests to be forwarded

to one or more consistency servers, that are responsible for

ensuring that a consistent version of the data is returned

to the functions. In this work we propose and evaluate a

different strategy, where functions read optimistically from

storage and use the consistency servers to obtain metadata

that is used to check if the version returned by the storage

system is consistent. This strategy decreases the load on the

consistency server, improving the scalability of the system.

Our experimental evaluation shows that our solution offers

1.4 higher throughput then alternative protocols, while using

only 5% of their resources.

1 Introduction
The Serverless Computing paradigm, also known as Function-

as-a-Service (FaaS), is a recent paradigm supported by many

cloud providers. This paradigm allows programmers to run

their applications in the cloud without allocating servers

beforehand. To use this paradigm, programmers must code

their applications as a composition of stateless functions,

organized in an execution graph. Functions are executed in

servers chosen automatically by the cloud provider, without

any client intervention. Clients are billed based on the com-

puting power effectively used, in opposition to reservation-

based models, where clients are billed proportionally to the

reserved time, regardless of the resource usage.

FaaS architectures disaggregates computational and stor-

age layers, allowing for an independent and finer-grained

elastic scaling of each layer. FaaS requires functions to be

stateless for a better scaling of the computational layer. Thus,

functions are required to use a storage layer in order to

share state. In abstract, the FaaS paradigm does not restrict

the type of storage service to be used by the programmers,

which are free to choose a storage service that offers the

consistency level required by the application. However, for

cost/efficiency reasons, most FaaS applications use storage

services that cannot provide strong consistency to functions

executing in different servers. In particular, if one wants

to obtain transactional guarantees, the different functions

need to share a single transactional context, that needs to

be exported by the storage service and passed from func-

tion to function. As a result, many FaaS applications rely

on weakly consistent data access to storage. This may lead

to applications observing intermediate and/or inconsistent

states, producing undesirable results.

In this thesis, we address the problem of offering transac-

tional storage access to Function-as-a-Service applications.

For cost/efficiency reasons, most FaaS applications use stor-

age services that cannot provide strong consistency to func-

tions executing in different servers. In this thesis we study

efficient ways of extending a weakly consistent data store

with additional services that can offer transactional support

and strong consistency (namely, snapshot isolation) to a FaaS

application composed of multiple functions that may execute

in different workers.

A significant challenge in offering transactional support

to FaaS applications consists in coordinating different work-

ers in an efficient manner. Some previous works that aim at

achieving similar goals force all storage read/write requests

to be forwarded to one or more consistency servers, that

are responsible for ensuring that a consistent version of the

data is returned to the functions. This solution decreases the

performance and the scalability of the FaaS system. In this
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work we propose and evaluate a different strategy, where

functions read optimistically from storage and use the con-

sistency servers to obtain metadata that is used to check if

the version returned by the storage system is consistent. We

then propose two different techniques to handle inconsistent

results from storage system, with the ultimate goal of reduc-

ing the load these consistency servers. We experimentally

show that our solution offers 1.4 higher throughput then

alternative protocols, while using only 5% of their resources.

2 Related Work
The simplest way to offer transactional support to appli-

cations would be to use a storage service that supports it,

usually an SQL database. However, as different functions

may be executed by different executor nodes, they may read

inconsistently from one another, as transactional support is

guaranteed in a per-function basis and not on the whole com-

position. This is the case for most storage services available

for FaaS applications, such as DynamoDB[1] and Amazon

S3[2].

In this section we will go over the state of the art in re-

gards to systems that offer transactional support over storage

services that do not natively support this abstraction. We

cover not only FaaS specific systems as well as other cloud-

modeled services that use non-transactional storage.

2.1 FaaS Transactional Support
The topic of transactional support for FaaS has recently

gained traction in the literature. In this section we will go

over three recent systems, namelyHydrocache [15], AFT [12]

and Beldi[16].These systems introduce techniques to over-

come two of the main challenges when it comes to transac-

tional support in FaaS. The first one comes from the base

design of FaaS, where functionsmust be stateless. The second

one comes from using weakly consistent storage systems

that only offer Eventual Consistency.

Hydrocache [15] offers transactional support in the form

of Transactional Causal Consistency(TCC), a weak form of

transactional consistency, guaranteeing that all functions

read consistent versions of the objects and writes are done

atomically at the end of the function graph. Each object

is stored with metadata of all explicit dependencies of the

write transaction. Specifically, it includes which objects (and

which versions of those objects) are in the causal past of the

write transaction. When a function reads an object, it gathers

this information, which is passed from each function in the

function graph, to guarantee that all functions read from a

consistent causal cut. To reduce the number of accesses to

the storage service, each server keeps a cache of the objects

read and written in the past. This system, while also not

supporting strongly consistent transactions (i.e, consistency

models that force the ordering of concurrent transactions,

like Snapshot Isolation or Strict Serializability), requires the

exchange of lengthy metadata between functions, limiting

its performance. Transactions may also abort due to the lack

of compatible objects with its current read set due to the

optimistic reads from the cache.

Atomic Fault Tolerant Shim (AFT) [12] is a system that

offers transactional guarantees to FaaS using a relatively

weak isolation level in the form of Read Atomic. This system

uses an intermediate layer, interposing between the computa-

tional and storage layers. This layer is composed of multiple

transactional managers. Clients only need to contact one

transactional manager to ensure the transaction consistency,

avoiding the metadata transfer costs of systems like Hydro-

cache. Each AFT keeps an index, mapping each object to

its most recent version known by the AFT, avoiding coor-

dination between AFTs in exchange of less fresh reads. To

guarantee Read Atomic, each AFT keeps metadata for each

object about the objects and versions that were written in

the same transaction, guaranteeing the transaction atomicity

and avoiding fractured reads. Although the lack of coordina-

tion between AFTs brings benefits in regards to latency, not

only does it make it impossible for this system to offer strong

transactional guarantees while it may also force transactions

to abort due to lack of compatible versions in an AFT.

Beldi [16] is a system that offers transactional suport with

Opacity[7] guarantees, ensuring that transactions never ob-

serve inconsistent state, even if the transaction aborts. Al-

though data is kept in a storage layer with strong consis-

tency guarantees, Beldi relies on an additional storage sys-

tem, shared by all functions, to keep metadata about cur-

rently executing transactions. This additional storage layer

needs to support multiple atomic insertions in a log, keep-

ing all executed operations of each transaction. The values

kept in the log include information about locks, used for

concurrency control to guarantee the transactions isolation

properties. The entries in this log are totally ordered by re-

lying on a protocol similar to 2-Phase-Locking. This order

is then used to order concurrent operations that access the

same objects. A disadvantage of this system is that all read

and write operations require consulting the log, making the

system inefficient.

2.2 Transactional Support for other Cloud-based
Applications

CloudTPS[17] is a system that offers strong consistency on

top of a storage layer that offers weak consistency simi-

larly to AFT, relying on an intermediate layer composed

of multiple Local Transaction Managers (LTM). Each LTM

is responsible for a partition of the data set, executing the

certification of transactions that interact with its partition.

LTMs are also responsible for serving read requests, ensur-

ing the consistency and isolation properties of transactions,

relying on the storage layer only for transaction durability.

CloudTPS uses a sequencer to ensure total order of trans-

actions, guaranteeing Strict Serializability. Not only is the
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usage of this sequencer a possible bottleneck in the system

scalability, but most applications do not require an isolation

level as strong as Strict Serializability, which adds unneces-

sary costs to latency. Note that CloudTPS can be adopted

to use storage layers that ensure many consistency levels

and transactional support. For comparison sake, we consider

the system is using the weakest forms of consistency and

transactional support.

Padhye PhD thesis[11] introduces a similar architecture to

CloudTPS to offer strong transactional support in the form

of Snapshot Isolation to cloud environments, using a service

composed of multiple replicas of a conflict detection service.

Each replica is responsible for ensuring that no conflicts

exist between concurrent transactions for their partition of

the data set. Padhye uses a strongly consistent storage layer

to serve read requests and keep object data yet to be com-

mitted, allowing the conflict detection service to only keep

information about the most recent versions of each object,

using this information to identify write conflicts. Padhye

also uses a sequencer that serves the timestamps to be used

by transactions to read from a consistent cut. However, this

sequencer keeps information about the state of all transac-

tions, allowing it to always serve timestamps corresponding

to stable cuts, i.e, cuts where all transactions in the past

have finished. Although Padhyes conflict detection service

uses less memory than other alternatives (since the service

does not keep object data), the usage of a strongly consis-

tent storage layer introduces latency overheads to all read

requests. Furthermore, the usage of the sequencer still holds

as a possible bottleneck to the system.

2.3 Commit Timestamp
Previous systems relied on a sequencer to obtain commit

timestamps. This method not only introduces overheads in

the form of extra communication rounds as well and in-

troducing bottlenecks to the system. In an highly scalable

environment where low latency’s are required as in FaaS,

we pretend to minimize these costs.

ClockSI[6] is a protocol that offers Snapshot Isolation to

partitioned systems using synchronized physical clocks, al-

lowing the multiple partitions to serve timestamps of consis-

tent cuts to clients without requiring extra communication

rounds between partitions. Furthermore, this protocol does

not require a sequencer, as commit timestamps are negoti-

ated between partitions using a 2-Phase-Commit protocol.

Due to possible clock skews between partitions, read re-

quests may use a timestamp that is in the future of a certain

partition, forcing the read request to block until the partition

clock reaches the timestamp value. Using common clock syn-

chronization techniques like NTP[3], the maximum blocking

time could be in the order of milliseconds, introducing an

high latency overhead in FaaS.

Table 1 shows a summary of the related work. As we can

see, there are many systems that offer transactional support

Environment

Strong

Transactional

Storage

Isolation

Level

Read Requests

Target

Beldi FaaS ✓ Opacity Storage

Padhye Cloud ✓
Snapshot

Isolation

Storage

HydroCache FaaS ✗ TCC Storage

AFT FaaS ✗
Read

Atomic

Transactional

Manager

CloudTPS Cloud ✗
Strict

Serializability

Transactional

Manager

FaaSSI FaaS ✗
Snapshot

Isolation

Transactional Manager

+

Storage

Table 1. State of the art comparison

to various environments and conditions. However, there

are no systems that support strong consistency in FaaS in

an efficient manner (Beldi offers latency’s in the order of

seconds when other systems offer them in the milliseconds).

While cloud systems show examples of transactional support

on top of storage systems with multiple consistency levels in

the form of intermediate layers, the excessive use of this layer

brings overheads in the form of lack of scalability, which

weights heavier in a high scalable environment like FaaS.

3 FaaSSI
The goal of FaaSSI was to design a system that would offer

strong transactional support in FaaS while keeping all the ad-

vantages of this environment. As such, we designed a system

that would be scalable with the increase of executor nodes

while imposing small cost overheads over the base FaaS im-

plementation. We also designed our system with consistency

interoperability in mind, so functions that would require

weaker consistency properties would not have additional

overhead imposed.

FaaSSI was designed to be executed in a datacenter, having

been developed as an extension to Cloudburst [13]. We used

Anna [14] as storage layer, which only supports eventual

consistency. By using a weakly consistent store we do not

penalize the performance of applications that only require

weak consistency guarantees. This choice allows users to, in

a single system, choose the appropriate consistency model

for their applications. If the user only requires eventual con-

sistency he can contact Anna without any additional service

nor penalty in performance. If he requires TCC she can use a

system like Hydrocache [15]. Finally, if he requires Snapshot

Isolation she can use FaaSSI.

Like most previous work [11, 12, 17], our system relies on

an intermediate layer interposing between the computational

and storage layers. This layer is responsible for implementing

concurrency control, applying writes, and helping clients to

read consistent values from storage. This architecture may

be used to support multiple variants of strong consistency

but, for this work, we focus on Snapshot Isolation.

3



FaaSSI

Conflict Manager

Value Cache

Version Cache

Conflict Manager

Value Cache

Version Cache

Conflict Manager

Value Cache

Version Cache

Figure 1. Detailed look of FaaSSI intermediate layer

Contrary to previous work however, not all read requests

need to be served by the intermediate layer. This is possible

because FaaSSI leverages the fact that the storage layer can

return consistent results for most requests. As such, the

intermediate layer is mostly used for consistency checking,

and only in a fraction of the requests is the intermediate

layer required to serve data values to the clients.

3.1 Architecture
The intermediate layer is composed by a set of Conflict Man-
agers. Each conflict manager is responsible for certifying

transactions on commit time and answering read requests

from clients. We follow an approach similar to CloudTPS[17],

where each conflict manager is responsible for a partition

of the space of data. Figure 1 shows a more detailed view of

the intermediate layer.

Each conflict manager keeps a version cache and a data

cache of the last written objects to help serve clients the

most recent copy of popular items. The size of the conflict

managers caches is a system parameter. When the memory

runs out, the items are discarded according to a substitution

policy that may be configured. On our current version, we

exclusively use LRU (Least Recently Used) as substitution
policy.

The conflict managers are also responsible for persisting

the writes to Anna, sticking themselves to an Anna replica

for each object, guaranteeing that they are always able to

obtain the most recent object values. This is required to

ensure that a cache can safely flush cached values and/or

versions when needed with the guarantee that it will be able

to obtain the value when necessary.

FaaSSI implements a commit protocol similar to ClockSI [6],

relying on synchronized clocks to order concurrent transac-

tions. This protocol may introduce delays to read requests

proportional do the precision of the clock synchronization.

The evolution of clock synchronization algorithms for data-

centers, like Sundial [9], allows clocks to be synchronized in

the order of 100𝑛𝑠 , making the protocol very efficient.

3.2 Read Operations
A transaction reads the consistent state of the system on a

timestamp defined when the transaction starts executing.

This timestamp is defined based on the properties the client

requires. A client can request an older timestamp to avoid

Cloudburst

Function Scheduler

M
onitoring & R

esource

M
anagem

ent

Autoscaling Key-Value Store (Anna)

Compute Node
Executor Executor

Executor

Function Scheduler

Compute Node
Executor Executor

Executor

Function Scheduler

Compute Node
Executor Executor

Executor

FaaSSI

Conflict Manager Conflict Manager Conflict Manager

Executor Executor Executor

Figure 2. FaaSSI transactional layer. Based on the diagram

of [15]. Yellow sections represent FaaSSI additions.

delays due to clock skews and currently committing trans-

actions or he can obtain one by calculating the maximum

between the commit timestamp of the clients last write trans-

action and the clock value of the function graph scheduler

on graph function start, ensuring that the client reads their

own writes.

When a Cloudburst computational node must read an ob-

ject, it sends a read request to Anna and, simultaneously,

to the corresponding conflict manager to obtain the most

recent version of the object (Alg. 1, Lines 14 and 15). This

is necessary since Anna only supports eventual consistency

and may not return the most recent version of the object. If

the version returned by Anna is consistent with the version

indicated by the conflict manager, the read operation finishes.

Otherwise, we present two distinct protocols for obtaining a

consistent version: FaaSSI-Pessimistic and FaaSSI-Optimistic.

We analyse the performance of each of these techniques in

Section 4.2.1.

FaaSSI-Pessimistic: In FaaSSI-Pessimistic, the compu-

tational node contacts the conflict manager once again to

obtain the content of the most recent version (Alg. 1, Line 3).

As noted previously, the conflict manager can always obtain

this value, even if it is not present in the cache. In cases where

the version returned by Anna is inconsistent, the method

adopted by FaaSSI-Pessimistic introduces an overhead with

regard to methods where all versions are routed through the

intermediate layer. However, as we will see, in most cases,

that version returned by the storage system is consistent, and

this second step is not needed. Thus, the method adopted by

FaaSSI-Pessimistic significantly reduces the load imposed on

the intermediate layer while also reducing latency. In fact,

in the case where the object is not in the cache of the inter-

mediate layer, it is more efficient to read directly from Anna

than having the intermediate layer performing the read and

forwarding the result back to the worker.

FaaSSI-Optimistic: In FaaSSI-Optimistic, the computa-

tional node keeps contacting the storage layer until a consis-

tent version is obtained. The advantage of this strategy is that
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it avoids to overload the conflict manager with additional

requests. The disadvantage is that there is no guarantee that

the desired version is returned in just one additional read

operation. If the storage layer takes time to propagate ver-

sions among replicas of the storage nodes, multiple read

request may need to be performed before the desired version

is returned.

Just like in ClockSI, a read request may also block due to

the clock skew between partitions, introducing an overhead

in latency (Alg. 4, Lines 9). However, as described in Clock-SI,

a client may opt to read from a snapshot in the past, reducing

the chances of being blocked, waiting for the most recent

version, while reading. Note however that reading from the

past increases the chances of a read-write transaction to

abort, as we are working with an older snapshot of the sys-

tem. Also, if a concurrent transaction is committing a value

that might belong to a cut, the conflict manager must wait

for the committing transaction to finish before returning the

correct object version to the client (Alg. 4, Lines 14). If the

committing transaction commits successfully, the conflict

manager returned to the client the object data instead of the

respective versions. This optimization is due to the fact that

in this scenario, where the transaction has just created the

values to be returned, the probability of Anna returning the

consistent version is very low.

Algorithm 1 Read Protocol

1: function Read_Keys(keys, snapshot, write_set)

2: retry_keys← ∅
3: key_value_set← ∅
4:

5: ⊲ It first checks the write-set to ensure Read-Your-Writes

6: for all k ∈ keys do
7: if ∃⟨𝑘, 𝑣⟩ ∈ write_set then
8: key_value_set← key_value_set ∪ {⟨𝑘, 𝑣⟩ }
9: keys← keys \ k
10: end if
11: end for
12:

13: ⊲ Request simultaneously the key versions from the conflict managers and

values from KVS

14: cm_versions←Read_CM_Versions(keys, snapshot)

15: kvs_values←Read_KVS(keys, snapshot)

16: for all ⟨𝑘, 𝑣, 𝑠_𝑘𝑣𝑠 ⟩ ∈ kvs_values do
17: ⊲ If the versions obtained from the KVS and the conflict manager do not

match, the key must be requested again

18: if ∃⟨𝑘, 𝑠_𝑐𝑚⟩ ∈ cm_versions ∧ s_kvs ≠ s_cm then
19: retry_keys← retry_keys ∪𝑘
20: else
21: key_value_set← key_value_set ∪⟨𝑘, 𝑣⟩
22: end if
23: end for
24:

25: if retry_keys ≠ ∅ then
26: ⊲ Either executes the FaaSSI-Pessimistic or FaaSSI-Optimistic

27: key_value_set← key_value_set ∪ FaaSSI-Pessimistic (retry_keys, snap-

shot) or FaaSSI-Optimistic (retry_keys, snapshot, cm_versions)

28: end if
29:

30: return key_value_set

31: end function

Algorithm 2 FaaSSI-Pessimistic

1: function FaaSSI-Pessimistic(keys, snapshot)

2: key_value_set← ∅
3: cm_values←Read_CM_Values(retry_keys, snapshot)

4: for all ⟨𝑘, 𝑣⟩ ∈ cm_values do
5: key_value_set← key_value_set ∪⟨𝑘, 𝑣⟩
6: end for
7:

8: return key_value_set

9: end function

Algorithm 3 FaaSSI-Optimistic

1: function FaaSSI-Optimistic(keys, snapshot, cm_versions)

2: key_value_set← ∅
3: retry_keys← keys

4: while retry_keys ≠ ∅ do
5: kvs_values←Read_KVS(retry_keys, snapshot)

6: for all ⟨𝑘, 𝑣, 𝑠_𝑘𝑣𝑠 ⟩ ∈ kvs_values do
7: if ∃⟨𝑘, 𝑠_𝑐𝑚⟩ ∈ cm_versions ∧ s_kvs ≠ s_cm then
8: retry_keys← retry_keys ∪𝑘
9: else
10: key_value_set← key_value_set ∪⟨𝑘, 𝑣⟩
11: end if
12: end for
13: end while
14:

15: return key_value_set

16: end function

Algorithm 4 Read Request Conflict Manager

1: ⊲ State kept by the conflict manager

2: cm.versions← ∅
3: cm.commit_prepared← ∅
4:

5: upon receive ⟨read, keys, tx_snapshot⟩ from 𝑐𝑙𝑖𝑒𝑛𝑡 do
6: return_values← ∅
7: storage_requests← ∅
8: ⊲We first check if the conflict manager clock is up to date with the snapshot

9: if tx_snapshot > Clock() then
10: wait tx_snapshot ≤ Clock()

11: end if
12: for all k ∈ keys do
13: ⊲ Check if any concurrent commit may belong to this snapshot

14: if ∃⟨𝑘, prepare_timestamp⟩ ∈ cm.versions ∧prepare_timestamp ≤
tx_snapshot then

15: wait �⟨𝑘, prepare_timestamp⟩ in cm.commit_prepared

16: end if
17: if ∃⟨𝑘, 𝑣, commit_timestamp⟩ in cm.cache ∧commit_timestamp≤

tx_snapshot then
18: return_values← return_values ∪⟨𝑘, 𝑣, commit_timestamp⟩
19: else
20: storage_requests← storage_requests ∪⟨𝑘 ⟩
21: end if
22: end for
23:

24: if ∃⟨𝑘 ⟩ in storage_requests then
25: kvs_results← kvs.get(storage_requests, tx_snapshot)

26: return_values← return_values ∪ kvs_results

27: cm.cache← cm.cache ∪ kvs_results

28: end if
29:

30: send ⟨read_response, return_values⟩ to client

31: end upon

3.3 Write Operations
When a function graph executes with Snapshot Isolation

guarantees, all writes are stored in a buffer, passed between

functions. The sink function of the graph (this is, the last

function of the graph) sends the data to be written, in con-

junction with the timestamp used for the transaction read
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operations, to the corresponding conflict managers. If the

data of the write set belongs to multiple conflict managers,

one of them is elected as coordinator for the commit pro-

tocol, using a 2-Phase-Commit protocol. If the transaction

is committed successfully, the conflict managers write the

updates to the storage layers.

3.4 Snapshot Isolation Commit Protocol
When a transaction is about to commit, it first checks if the

write set belongs to multiple conflict managers or to a sin-

gle one. If it only belongs to a single conflict manager, then

the certification occurs locally, with no need to communi-

cate with other conflict managers, as its own synchronized

clock is enough to safely obtain a commit timestamp for

the transaction. Otherwise, the transaction must undergo a

2-Phase-Commit process.

The participating conflict managers must first certify the

write-set of the objects belonging to its partition. If any write

conflict surfaces, the transaction must abort, with an abort

message sent to the transaction coordinator. Otherwise, it

sends a provisional commit timestamp to the coordinator,

symbolizing that the transaction may proceed.

The coordinator of the transaction, chosen randomly among

the participating conflict managers, must wait for all provi-

sional commit timestamps. If any abort message is received,

the coordinator sends an abort message to all participants

and the client, deleting all temporary versions created. Oth-

erwise, when the coordinator obtains all provisional times-

tamps, the coordinator can calculate the final commit times-

tamp. The final commit timestamp is calculated by the coor-

dinator using the maximum between all provisional times-

tamps.

When a transaction finishes, each conflict manager gives

a provisional timestamp to the transaction, corresponding

to the value of its synchronized clock. This timestamp is

used to verify if any write conflicts exist between objects

of each conflict manager. If the transaction passes the local

certification process, the provisional timestamp is sent to the

coordinator. This process allows the transaction to commit if

the written values are still valid in the instance correspond-

ing to the final timestamp. When calculated, the coordinator

sends this value to the participating conflict managers with

the order to persist the state of the new objects in Anna.

During the 2-Phase-Commit protocol, the transactionwrite-

set is blocked, and other concurrent transactions that try to

write on the same object space as the write-set must wait.

This is necessary to ensure that only one transaction is able

to commit on concurrent writes to the same object space. To

avoid deadlocks between concurrent transactions, we use a

wait-die strategy where the transaction with the most recent

timestamp aborts and transactions with older timestamps

than the one currently holding the lock wait.

For correctness proof of the commit protocol, we point

to [6].

Algorithm 5 Commit Protocol

1: ⊲ State kept by the conflict manager

2: cm.versions← ∅
3: cm.commit_prepared← ∅
4: cm.commit_pending← ∅
5: cm.prepare_timestamps← ∅
6:

7: upon receive ⟨begin, key_values: set of ⟨𝑘, 𝑣⟩, tx_snapshot⟩ from client do
8: commit_groups← ∅
9: ⊲ Check which partition is responsible for which key

10: for all k ∈ key_values do
11: partition← hash(k)

12: commit_groups←commit_groups ∪{partition, ⟨𝑘, 𝑣⟩ }
13: end for
14: ⊲ Send the prepare requests to the responsible partitions

15: for all partition ∈ commit_groups do
16: send ⟨commit_prepare, commit_groups[partition],tx_snapshot⟩ to par-

tition

17: end for
18: end upon
19:

20: upon receive ⟨commit_prepare, key_values: set of ⟨𝑘, 𝑣⟩, tx_snapshot⟩ from
coordinator do

21: ⊲ Transactions without a snapshot can always commit, so we skip testing

22: if tx_snapshot ≠MAX_TIMESTAMP then
23: for all k ∈ key_values do
24: ⊲ If exists a version more recent than tx_snapshot, transaction must

abort

25: if ∃⟨𝑘, 𝑠_𝑐𝑚⟩ ∈ cm.versions ∧ s_cm > tx_snapshot then
26: send ⟨abort⟩ to coordinator

27: end if
28: ⊲ Transaction may have to wait for a concurrently committing trans-

action

29: if ∃⟨𝑘, s_prepared⟩ ∈ cm.commit_pending ∧ s_prepared ≤
tx_snapshot then

30: cm.commit_pending ← cm.commit_pending

∪⟨key_values, prepare_timestamp⟩
31: end if
32: end for
33: end if
34: ⊲ If no conflict detected, we can read the local clock and send the prepare

timestamp

35: prepare_timestamp←Clock()

36: cm.commit_prepared ← cm.commit_prepared

∪⟨key_values, prepare_timestamp⟩
37:

38: send ⟨prepare_response, prepare_timestamp⟩ to coordinator

39: end upon
40:

41: upon receive ⟨prepare_response, prepare_timestamp⟩ from partition do
42: cm.prepare_timestamp← cm.prepare_timestamps ∪ prepare_timestamp

43: ⊲ Wait for all prepare timestamps to commit

44: if cm.prepare_timestamps = commit_groups then
45: commit_timestamp← max(cm.prepare_timestamps)

46: for all partition ∈ commit_groups do
47: send ⟨commit, commit_timestamp⟩ to partition

48: end for
49: end if
50: end upon
51: upon receive ⟨commit, commit_timestamp⟩ from coordinator do
52: kvs.write(cm.commit_pending, commit_timestamp)

53: cm.versions← cm.versions ∪ cm.commit_pending

54: send ⟨commit, commit_timestamp⟩ to client

55: end upon
56: upon receive ⟨abort⟩ from 𝑝 do
57: for all partition ∈ commit_groups do
58: send ⟨abort⟩ to partition

59: end for
60: send ⟨abort⟩ to client

61: end upon

3.5 Fault Tolerance
In this thesis we have not addressed the problem of ensur-

ing that the consistency managers are fault-tolerant. This

aspect is orthogonal to our contributions and can be solved
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with replication techniques that are well described in the

literature[11, 17]. The most straightforward approach to

achieve this goal would be to replicate each consistency

server using a Paxos group [8], in a manner similar to what

is implemented in Spanner [5]. It should be noted however

that, when there is a leader change, the new leader is not

guaranteed to read immediately the writes performed by the

previous leader (because Read-Your-Writes consistency may

not be provided to different clients); thus, the new leader

would need to use the metadata obtained from the previ-

ous leader to check the consistency of the objects read from

storage.

4 Evaluation
In this chapter we will evaluate the performance of FaaSSI.

We compare multiple versions of FaaSSI, implementing dif-

ferent protocols in order to assert the potential advantages

and limitations of our proposed techniques.

4.1 Experimental Workbench
Our evaluation is based on executions of a prototype of

our system in the experimental platform Grid’5000 using its

dedicated servers. Each server is composed of 1 Intel Xeon

Gold 5220 CPU with 18 cores, 96𝐺𝐵 RAM and 480𝐺𝐵 of SSD

storage. The servers were connected by 25𝐺𝑏𝑝𝑠 switches.

The observed latency between cluster was approximately

0.15𝑚𝑠 . Clocks were synchronized using NTP.

For this experiments we were able to allocate 21 physical

machines in a single cluster, used to run multiple virtual

machines with the following physical machine distribution:

3 machines for client execution, 4 for Cloudburst function

executors, 8 for Anna storage system, 4 for our conflict man-

ager, 1 for the system managers (like the scheduler and mon-

itoring systems of Cloudburst and others) and 1 machine for

kubernetes control plane’s components.

The experimental load used was based on the test benches

used in [15]. The experiments were executed with 12 con-

current clients. Each client executes 2 000 function graph

requests sequentially, with each graph composed of 6 func-

tions, each executing 2 read requests for a total of 12 read

operations per transaction. Apart from these requests, each

client has a probability to execute a write function graph,

writing 10 objects. We use a read/write ratio of 33%, simi-

lar value used in benchmarks such as TPC-C. The data set

is composed of 100 000 keys, each with 2 048 bytes of data.

The data set was split between 32 partitions, with a repli-

cation factor of 4 (i.e. each key has 4 replicas) and a gossip

interval of 3 seconds (i.e. each partition propagates the latest

updates of its replicas every 3 seconds). We use 21 executing

nodes, each one with 4 threads (as pictured in Figure 2) so

each client has always one executor available to execute its

graph. We remove the data cache from Cloudburst to not

influence the system performance. Due to limitations of our
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Figure 3. Skew effect on read protocol

workbench, we are only capable of scaling Cloudburst and

the function executors to a limited number of clients. To

stress-test the performance, we use a bandwidth limiter on

the conflict manager machines.

4.2 Read Protocol
We start by analysing the performance of our read protocol

when compared with previous systems. More specifically, we

compare our techniques with systems that impose all of the

reading load in the intermediate layer like CloudTPS [17].We

implemented a version of CloudTPS as a variant of FaaSSI,

which we have named FaaSSI-TPS. We measure the median

and P99 latency of each system as well as the throughput. We

use only one Conflict Manager and removed the value cache,

with the version cache having unbounded memory. We vary

the key access using an uniform and zipfian distribution.

Each client has a unique distribution of the set of objects, and

no transaction requests the same object twice to guarantee

a larger fan-out of object access. We limited the bandwidth

of the conflict manager machine to 100𝑚𝑏𝑖𝑡/𝑠 .

4.2.1 Effect of the Access Skew. We begin by studying

the impact of the access skew on the percentage of reads

that return inconsistent key values and on the number of

average read rounds.

Considering the percentage of times a read returns an in-

consistent value, the difference between the performance of

FaaSSI-Pessimistic and FaaSSI-Optimistic is less of 1%, thus
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we have opted to present a single set of bars in Figure 3a

(FaaSSI-TPS always returns consistent values). As shown, for

uniform distributions, approximately 2.5% of of read oper-

ations return inconsistent results. For a skewed workload,

using a Zipfian of 1, we observed that less than 25% of read

operations return inconsistent values. However, this value

can grow up to 50% with higher skews. The key observation

is that, for lower skews, Anna returns consistent results in a

large fraction of read requests.

Naturally, the probability of reading a consistent value

from Anna impacts the average number of rounds needed

to conclude a read operation, as depicted in Figure 3b. Since

we are not using the value cache, FaaSSI-TPS will always re-

quire 2 communication rounds, as the conflict manager will

always need to contact the Anna replica to obtain the value.

If the key is consistent in storage, both FaaSSI-Pessimistic

and FaaSSI-Optimistic will require 1 round. However, if the

value is inconsistent, FaaSSI-Pessimistic may suffer a penalty

of 2 extra rounds and FaaSSI-Optimistic may suffer an even

larger round penalty (in our experiments, where we use 4

replicas, this can approximate 3 extra rounds, as the number

of requests to storage is statistically correlated with the num-

ber of replicas present in Anna). The figure also shows that,

for the uniform distribution, both FaaSSI-Pessimistic and

FaaSSI-Optimistic are very close to only one communication

round, as Anna returns mostly consistent results.With the in-

crease of access skew, the number of rounds slowly increase

for FaaSSI-Pessimistic (because more requests require the

value from the conflict manager), while FaaSSI-Optimistic

quickly increases to its average of 4 rounds.

We now compare the performance of different techniques.

As we can see in Figure 4a, both FaaSSI-Pessimistic and

FaaSSI-Optimistic show less then half the median latency

of transactions then FaaSSI-TPS, reducing the latency by

58% and 49% respectively when compared to FaaSSI-TPS.

This translates in FaaSSI-Pessimistic and FaaSSI-Optimistic

offering approximately twice the throughput of FaaSSI-TPS,

as depicted in Figure 4b.

When the access skew increases, we see an increase in

transaction latency on all systems, with FaaSSI-Pessimistic

and FaaSSI-Optimistic still outperforming FaaSSI-TPS by

20% and 38% respectively. One could expect that FaaSSI-

TPS would depict the same performance for different skews,

given that the protocol always reads consistent versions

from storage. However, with the increase of skew, we can

observe an increase of load in the data replicas that serve

the conflict managers. This phenomenon also affects FaaSSI-

Pessimistic, that relies on the conflict managers to perform

the second roundwhen the first round fails. In fact, for higher

skews, we even see FaaSSI-Optimistic outperforming FaaSSI-

Pessimistic, even if it perform more read rounds on average,

given that it allows to distributed the load of read opera-

tions among the different replicas. Finally, we can see that

for all access distributions, FaaSSI-Optimistic shows a worse
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tail latency than FaaSSI-Pessimistic and, for skewed work-

loads, also worse than FaaSSI-TPS, as it may require multiple

accesses to storage to obtain a consistent value.

We recall that in our experiments, Anna is executed using

“in memory" storage mode, i.e., replicas store data in memory

and not on disk. The higher overhead of fetching data from

disk could impact the trade-offs of each system.

4.3 Eventual Consistency Comparison
Finally, we analyse the impact of enforcing snapshot isola-

tion when compared with an eventual consistency baseline

that uses only Cloudburst and Anna. We use the same test

bench as Section 4.2.1. We normalize the performance of

our multiple techniques with regard to the latency of the

eventually consistent system. As shown in Figure 5, our so-

lution incurs a 71% overhead over eventual consistency for
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read transactions on uniform distributions, while FaaSSI-TPS

shows up to 4× the latency of the eventual consistent solu-

tion. This overhead is mainly due to the contact with the

conflict manager, which even though for an uniform distri-

bution FaaSSI-Pessimistic and FaaSSI-Optimistic reads only

require one round, the scalability of the conflict manager is

still lower than that of Anna, leading to a latency increase.

With the increase in skew, FaaSSI performance degrades, as

already depicted in Section 4.2.1, while the eventual consis-

tency system slightly improves in performance.

4.4 Cache Size
We now analyse the impact on the performance of the size of

the version and value cache maintained by the conflict man-

agers. We aim at analyzing how different cache sizes affect

the system performance. We use FaaSSI-Pessimistic to test

both caches. We use a key granularity for the cache replace-

ment policy, with each key holding a maximum of 3 versions

in cache. We use the same workload as in Section 4.2.1. We

removed the bandwidth limiter and use a zipfian distribution

of 1. We vary the cache sizes as a percentage of the total

number of keys in the system, using a total of 100 000 keys.

We present our results in Figure 6. We normalize the results

w.r.t to the maximum cache size latency.

We first analyse the impact of the version cache, using

a value cache size of 0. As depicted in Figure 6a, the cache

size appears to have little impact on the performance: the

values obtained with different cache sizes are within 10% of

the value obtained when all objects can be cached. Even the
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system with the cache disabled exhibits a performance that

is only 2% worse than the performance of the system that

can cache all objects.

When looking at how the size of the value cache affects

the performance, we have observed a similar trend, as de-

picted in Figure 6b. In fact, the observed results are somehow

unexpected: maintaining a cache of key values at the con-

flict managers has a negative impact on the performance.

We speculate that, since all machines are running in the

same cluster connected by a high-speed network, the latency

added from remote reads has a lower impact than the com-

putational overhead of managing the cache. In the future, we

plan on further investigating these results and optimizing

the caching system for improved performance.

4.5 Conflict Manager Scalability
We now analyse how the use of multiple conflict managers

affects the system performance. We first evaluate the read

performance with increasing number of conflict managers.

Once again we use the base workload of Section 4.2.1. We

use a zipfian distribution of 1.5 to evaluate the worst-case

scenario in terms of conflict manager load using FaaSSI-

Pessimistic. As we increase the number of conflict managers

in the system, we proportionally decrease the bandwidth

limiter of each machine, maintaining a constant bandwidth

to the set of conflict managers.

Note that, in this experiment, the workload is the same

for all configurations. Thus, the latency observe when us-

ing a single conflict manager (left green bars) should be

approximately the same, regardless of the bandwidth, as the

bottleneck is the serialization of requests at the manager.

The plots depicted in Figure 7 show some fluctuation around

48𝑚𝑠 , which appears to be noise from the experiments. A

similar reasoning could be applied to the results with two

conflict managers (blue bars), etc.

For any fixed value of the aggregate bandwidth, the Fig-

ure 7 shows that the latency decreases as we increase the

number of conflict managers, given that different requests

can be processed in parallel by different conflict managers.
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However, the performance gains in terms of response paral-

lelism appears to be capped at 4 conflict managers, as we see

the diminishing returns as more conflict managers are added.

For the configuration with total bandwidth of 1 600𝑚𝑏𝑖𝑡/𝑠 ,
the latency decrease when using 16 conflict managers is

approximately 25%.

5 Conclusions and Future Work
In this thesis, we have addressed the problem of offering

transactional storage access to Function-as-a-Service appli-

cations. In particular, we have studied mechanisms that can

augment a weakly storage service with support to snapshot

isolation. The benefits of using a weakly storage service in

this context is that applications that require strong consis-

tency may coexist with applications with weaker require-

ments without imposing any performance penalty on the

latter. We have designed and evaluated a system, that we

have named FaaSSI, to achieve this goal. Like previous works

that aims at achieving similar goals, FaaSSI uses a set of con-

sistency servers that are used to validate transactions when

they attempt to commit. However, unlike previous work, we

do not require all read operation to be routed via the consis-

tency servers.We combine an optimistic access to the storage

service with a parallel request for metadata to the consis-

tency servers.We proposemultiple protocols for maintaining

consistency even in cases where the updates are still being

propagated among replicas. For lightly skewed workloads,

this allows the workers to read consistent versions directly

from storage in a single round, alleviating the load imposed

on the consistency servers. This increases the scalability of

the system. In the future, we plan to study mechanisms that

can reduce the average latency of the system, using com-

putational side caching layer, similar to those supported by

HydroCache or FaasTCC [10]. We also plan to implement a

stateful FaaS-oriented version of the TPC-C [4] benchmark

and make a performance study of our system against related

work using this benchmark.

Acknowledgements
This work is part of a broader effort of understanding the challenges of

offering different consistency levels to FaaS applications. In this context, I

have benefited from the interaction of other members of the Distributed

Systems Group at INESC-ID working on similar topics and, in particular,

from the discussions with Taras Lykhenko. This work was supported by

national funds through Fundação para a Ciência e a Tecnologia (FCT) as

part of the projects with references UID/CEC/50021/2019 and COSMOS

(financed by the OE with ref. PTDC/EEICOM/29271/2017 and by Programa

Operacional Regional de Lisboa in its FEDER component with ref. Lisbon-

01-0145-FEDER-029271). Experiments presented in this paper were carried

out using the Grid’5000 testbed, supported by a scientific interest group

hosted by Inria and including CNRS, RENATER and several Universities as

well as other organizations (see https://www.grid5000.fr).

References
[1] [n.d.]. Amazon DynamoDB. https://aws.amazon.com/dynamodb/.

Accessed: 11/12/2020.

[2] [n.d.]. Amazon S3. https://aws.amazon.com/s3/. Accessed: 11/12/2020.
[3] [n.d.]. "The network time procotol". http://www.ntp.org/. Accessed:

07/07/2021.

[4] [n.d.]. TPC-C. http://www.tpc.org/tpcc/. Accessed: 27/10/2021.
[5] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman, S.

Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,

E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,

R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D.

Woodford. 2013. Spanner: Google’s Globally Distributed Database.

ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages. https:
//doi.org/10.1145/2491245

[6] J. Du, S. Elnikety, and W. Zwaenepoel. 2013. Clock-SI: Snapshot Isola-

tion for Partitioned Data Stores Using Loosely Synchronized Clocks.

In Proceedings of the 2013 IEEE 32nd International Symposium on Re-
liable Distributed Systems (SRDS ’13). IEEE Computer Society, Braga,

Portugal, 173–184. https://doi.org/10.1109/SRDS.2013.26
[7] R. Guerraoui and M. Kapalka. 2008. On the Correctness of Transac-

tional Memory. In PPoPP. Salt Lake City (UT), USA, 175–184.

[8] L. Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 37.

[9] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild, D. Platt, S.

Sabato, M. Yu, N. Dukkipati, P. Chandra, and A. Vahdat. 2020. Sundial:

Fault-tolerant Clock Synchronization for Datacenters. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 1171–1186. https://www.usenix.org/conference/
osdi20/presentation/li-yuliang

[10] T. Lykhenko, R. Soares, and L. Rodrigues. 2021. FaaSTCC: Efficient

Transactional Causal Consistency for Serverless Computing. In Pro-
ceedings of the 22nd ACM/IFIP International Middleware Conference
(Middleware ’21). Association for Computing Machinery, Virtual Event,

Canada. https://doi.org/10.1145/3464298.3493392
[11] V. Padhye. 2014. Transaction and data consistency models for cloud

applications. Ph.D. University of Minnesota, Minneapolis, MN, USA.

[12] V. Sreekanti, C. Wu, S. Chhatrapati, J.E.Gonzalez, J.M.Hellerstein,

and J.M.Faleiro. 2020. A Fault-Tolerance Shim for Serverless Com-

puting. In EuroSys ’20: Proceedings of the Fifteenth European Con-
ference on Computer Systems (EuroSys ’20). Association for Com-

puting Machinery, Heraklion, Greece, Article 15, 15 pages. https:
//doi.org/10.1145/3342195.3387535

[13] V. Sreekanti, C. Wu, X.C. Lin, J. Schleier-Smith, J.E. Gonzalez, J.M.

Hellerstein, and A. Tumanov. 2020. Cloudburst: Stateful Functions-

as-a-Service. Proc. VLDB Endow. 13, 12 (July 2020), 2438–2452. https:
//doi.org/10.14778/3407790.3407836

[14] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein. 2018. Anna: A KVS for Any

Scale. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). Paris, France, 401–412. https://doi.org/10.1109/ICDE.2018.
00044

[15] C. Wu, V. Sreekanti, and J.M.Hellerstein. 2020. Transactional Causal

Consistency for Serverless Computing. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’20). Association for Computing Machinery, Portland, OR, USA, 83–97.

https://doi.org/10.1145/3318464.3389710
[16] H. Zhang, A. Cardoza, P.B. Chen, S. Angel, and V. Liu. 2020. Fault-

tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20). USENIX Association, 1187–1204. https://www.usenix.
org/conference/osdi20/presentation/zhang-haoran

[17] W. Zhou, G. Pierre, and C. Chi. 2012. CloudTPS: Scalable Transactions

for Web Applications in the Cloud. IEEE Trans. Serv. Comput. 5, 4 (Jan.
2012), 525–539. https://doi.org/10.1109/TSC.2011.18

10

https://www.grid5000.fr
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
http://www.ntp.org/
http://www.tpc.org/tpcc/
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://doi.org/10.1109/SRDS.2013.26
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://doi.org/10.1145/3464298.3493392
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1145/3318464.3389710
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.1109/TSC.2011.18

	Abstract
	1 Introduction
	2 Related Work
	2.1 FaaS Transactional Support
	2.2 Transactional Support for other Cloud-based Applications
	2.3 Commit Timestamp

	3 FaaSSI
	3.1 Architecture
	3.2 Read Operations
	3.3 Write Operations
	3.4 Snapshot Isolation Commit Protocol
	3.5 Fault Tolerance

	4 Evaluation
	4.1 Experimental Workbench
	4.2 Read Protocol
	4.3 Eventual Consistency Comparison
	4.4 Cache Size
	4.5 Conflict Manager Scalability

	5 Conclusions and Future Work
	References

