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Abstract

Reliable multicast protocols can strongly simplify the design of distributed
applications. However, it is hard to sustain a high multicast throughput when
groups are large and heterogeneous. In an attempt to overcome this limita-
tion, previous work has focused on weakening reliability properties. In this
paper we introduce a novel reliability model that exploits semantic knowl-
edge to decide in which specific conditions messages can be purged without
compromising application correctness. This model is based on the concept
of message obsolescence: A message becomes obsolete when its content or
purpose is overwritten by a subsequent message. We show that message ob-
solescence can be expressed in a generic way and can be used to configure the
system to achieve higher multicast throughput.

1 Introduction

The issue of achieving high and stable throughput in reliable multicast protocols has
been addressed by several recent research efforts [4, 18, 2]. Two main impairments
to support a sustained high throughput in this type of protocols have been identified:
i) some protocols can be inherently non-scalable;ii) heterogeneous groups represent
an hostile environment where any single slow-receiver can, due to the flow control
mechanisms, become the bottleneck of the whole system.
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The first problem has been addressed by the design of more scalable protocols
that implement efficient mechanisms to disseminate messages and collect stability
information [10]. The second problem is more difficult to tackle since no protocol
can force a node to execute faster than its own resources allow. The problem can be
circumvented by relaxing the reliability of multicast, for instance, by not delivering
all messages to processes that are significantly slower than the majority of group
members [4]. Unfortunately, when strong reliability is lost, most of the simplicity
that was gained at the application level is also lost.

In this paper we propose a deterministic reliability model that makes use of mes-
sage semantics to allow messages to be purged without compromising application
correctness. The model is based on the concept ofmessage obsolescence: A mes-
sage becomes obsolete when its content or purpose is overwritten by a subsequent
message. We show with practical examples that that obsolescence can be expressed
in a generic way and used in different contexts.

The paper shows that a reliable multicast protocol that purges obsolete messages
can sustain higher throughput and discusses how the pattern of obsolescence that an
application exhibits is related to different system parameters.

The paper is structured as follows: In Section 2 we address the issue of multi-
cast flow control and its role in the performance of heterogeneous multicast groups.
Section 3 introduces the concept of message obsolescence and shows how it can
be expressed by the application at the protocol interface. Section 4 addresses our
semantically reliable multicast protocol and, using both analytical and simulation
models, shows how the protocol’s performance can be assessed and related to traf-
fic characteristics and system parameters. Section 5 illustrates the protocol using a
concrete application. Section 6 compares our protocol with related work and Sec-
tion 7 concludes the paper.

2 Motivation

The problem of achieving and sustaining high multicast throughput is intrinsically
related to flow control in multicast protocols. A multicast system, composed of
a source, intermediate network links and routers, and sinks, can be described as
a pipeline. Each stage of the pipeline has a maximum capacity, determined by
characteristics such as processing power, memory or bandwidth. If input continu-
ally exceeds the capacity of any given stage, that stage becomes overloaded and its
performance degrades, affecting the entire message flow. For instance, when over-
loaded, a network can exhibit a much lower bandwidth than its maximum capac-
ity [12]. Workstation and server performance also suffer severe degradation when
memory capacity is exceed, a phenomenon known as thrashing [7].

Flow control mechanisms in network protocols ensure that the source does not
produce more messages than any recipient or network component can handle, thus
enabling full but safe use of available resources. This is commonly achieved by
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Figure 1: Behavior of reliable multicast under load: One element of the group slows
down by sleeping an increasing amount of time (x axis) between message deliveries.

dynamically evaluating resource availability and adapting to it, for instance using
the classical window-based mechanism as in TCP/IP [5]. Specifically, individual
stages of the pipeline tolerate transient degradation periods of posterior stages by
temporarily buffering messages. When storage space becomes exhausted they prop-
agate this information to the previous stage. Eventually, the source is reached and
forced to diminish its sending rate. Back-pressure on the preceding stage can be es-
tablished through explicit messages or implicitly, for instance by not acknowledging
the reception of previous messages.

In the context of multicast communication all recipients and links to recipients
are part of a common pipeline, rooted at the multicast source. Regardless of the
specific flow control mechanism used, a single slow recipient eventually forces the
source to slow down, degrading overall group performance.

To illustrate this behavior, we have simulated a simple reliable multicast pro-



tocol, using a small constant number of elements and an extension to multicast of
the classical window-based mechanism [11]. This scenario allows us to concentrate
on degradation due to flow control, without interference from phenomena such as
ack implosion [8] that would surface in large groups. Further information about
experimental conditions can be found in Section 4.4.

Specifically, we use one element of the group as the sender, producing messages
at a constant rate. One other element is a fast receiver, consuming messages as soon
as they are available. The third is the slow receiver, delayed by constant amount of
time at the application level between two message deliveries.

Figure 1a shows the average throughput in messages per second (y axis) as
measured leaving the sender for different delays introduced at the slow receiver (x

axis). Notice that when the delay at the receiver is too big to keep up with the
sender, flow control forces the sender to wait, thereby decreasing its throughput and
affecting all receivers.

Figure 1b illustrates another inconvenient of the situation, showing average
buffer ocupancy at the sender and at each receiver raising when the delay at the
receiver forces the sender to slow down. In these circumstances transient perfor-
mance degradation conditions within a single stage of the pipeline will immedi-
ately affect the whole system. For instance, the variability of the interval between
messages grows because it becomes dependent on the retransmission mechanism.
Consequently, variability of inter-arrival times at fast receivers is also affected, as
depicted in Figure 1c.

Naturally, if reliability is strictly required,i.e., if all recipients must eventually
deliver all messages, either the sender adjusts to the slowest receiver or messages
indefinitely accumulate for delivery within the system. Thus, the only definitive
solution to this problem would be to replace the slowest component with a faster
one. Unfortunately, transient problems by different machines may induce the same
behavior as a consistently slow single node [3].

An alternative path to address the problem is to weaken reliability requirements,
so that slower receivers are not required to deliver all messages and thus do not
need to slow down the sender. However, pure unreliable protocols, that randomly
drop messages, are of little use to many applications. Even if some mechanism is
implemented to notify the receiver that some messages have been dropped, the ap-
plication might be unable to take any corrective measure since it has no knowledge
of that message’s content.

This has lead to further research on providing some useful information to the
application about messages that have been lost. For instance, it has been proposed
the parallel use of two multicast protocols: An unreliable protocol used for payload
and a reliable protocol used to convey meta-data describing the content of data
messages sent on the payload channel [16]. Using this information, the receiver
may evaluate the relevance of lost messages and explicitly request retransmission
when needed.

Our approach is inspired on this principle, but exploits the semantic knowledge



at the sender side instead. As we will explain later in the text, this allows us to
make the same optimizations without requiring the maintenance of two parallel
communication channels and without requiring the involvement of the application
in managing retransmissions.

3 Message obsolescence

The basic idea behind our approach is that in a distributed application some mes-
sages overwrite the content and purpose of other messages sent in the past, there-
fore making them irrelevant. If obsolete messages have not been yet delivered to
the application, they can be safely purged without compromising the application’s
correctness. In order to use this concept we must:i) identify which applications ex-
hibit message obsolescence; andii) show that it is possible to express this property
in a generic form. In the remaining of this section we will address these two issues.

3.1 Applications with message obsolescence

Applications embodying operations with overwrite semantics, in particular, appli-
cations managing read-write items are the most obvious example of applications
that exhibit message obsolescence. In these applications, any update of a given
item is made obsolete by subsequent update operations. Recognizing this fact,
some applications deal with obsolescence directly. For instance, distributed file-
systems, such as NFS, cache write operations in the client to minimize network
traffic [19]. Other examples include weakly consistent distributed shared memory
systems, where memory operations are bounded by synchronization primitives to
delay distribution of updates [17].

However, it is not always possible to implement these optimizations at the ap-
plication level. If the distribution of updates is unpredictable and its dissemination
has timing constraints, the application should forward the updates to the network as
soon as possible. At that point, the message becomes out of reach of the application
and cannot be discarded even if shortly after it becomes obsolete. Typical examples
are applications such as on-line trading systems, where new quotes have to be con-
tinuously disseminated to a large number of recipients (a concrete example in given
in Section 5).

Not only applications with read-write semantics exhibit the obsolescence prop-
erty. For instance, many distributed algorithms are structured in logical rounds and,
when the algorithm advances to the next round messages from previous rounds be-
come obsolete. Recognizing this property, Oliveiraet al. [9] have formalized the
notion ofk-stubborn channel; a channel where reliability has to be ensured just for
the lastk messages (note that the number of rounds is not knowna priori). The same
authors have shown how the fundamental problem of distributed consensus [9, 13]
can be solved in asynchronous distributed systems augmented with failure detectors



andk-stubborn channels. Ak-stubborn channel can be seen has a particular case of
obsolescence.

3.2 Expressing obsolescence

In order to be useful for a wide range of applications, obsolescence must be ex-
pressed at the protocol interface in a generic way. Furthermore, the interface must
not be tied to message content, to ensure that protocol and application implementa-
tions can be kept separate.

We formalize obsolescence as a relation on messages. For each pair of messages
(m;m0) in the relation, we say that the first,m, is obsoleted by the second,m0. The
intuitive meaning of this relation is that if(m;m0) is in the relation and if the system
eventually deliversm0, the application is correct regardless ofm being delivered or
not. We assume that this relation is transitive, anti-symmetric and coherent with
causal order of events. One way to propagate obsolescence information is to tag
each message with the identifiers of all messages that are made obsolete.

The expressiveness of this definition can be illustrated by a few examples. In
a strictly reliable channel, no message can be discarded and the relation is empty.
On the other extreme, a relation where every message obsoletes all preceding mes-
sages results in a1�stubborn channel [9]. A more complex example is presented in
Section 5.

This definition is also generic as the message content needs not be known by the
protocol implementation. It suffices to annotate each message upon multicast with
the identifiers of previous messages that it obsoletes.

4 Semantically reliable protocol

Using information conveyed by the obsolescence relation, it is possible to modify
a reliable multicast protocol in order to purge obsolete messages when the system
is congested. In this section we establish what is the expected performance of such
protocol by presenting a simple analytical model for the efficiency of the purging
procedure and test it by means of simulation. The analytical model can then be used
to derive rules to properly configure the protocol in order to obtain the maximum
possible throughput.

4.1 Purging obsolete messages

The protocol to purge obsolete messages is actually quite simple. The idea is that
messages carry control information regarding the obsolescence relation. To prevent
further overhead, when the system is not overloaded this information is not taken
into account by the protocol and all messages are reliably delivered to the applica-
tion.
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Figure 2: Simplified system model.

Message obsolescence is only applied to prevent congestion. When buffer oc-
cupancy raises above a high-water mark the protocol scans the buffers for obsolete
messages and purges them. Buffers are only parsed for obsolete messages when a
large number of messages is stored locally, thus increasing the probability of find-
ing related messages and effectively reducing buffer occupancy. As soon as buffer
occupancy lowers, the protocol resumes reliable operation.

Over time, if enough messages can be purged the protocol will oscillate between
reliable and congested mode without exercising back-pressure. If not, purging some
messages at least ensures that back-pressure is weaker, minimizing upstream con-
gestion. Note that the purging algorithm is activated first at the slower stage of the
pipeline, the one whose buffers reach the high-water mark sooner. This may pre-
vent other stages from becoming congested, strongly reducing the probability that
alternating transient problematic receivers permanently congest all stages upstream.

Given the simplicity of the protocol, the interesting open issue is to understand
which are the system parameters that affect the effectiveness of the approach and
how these systems parameters can be related with the obsolescence pattern of the
application’s traffic. Our purpose is to obtain a model that allows the application
designer to easily check whether our semantically reliable protocol allows higher
throughputs to be sustained.

4.2 Analytical model

In order to assess the performance of our protocol, in terms of how different through-
puts can be accommodated within the same group, we consider a simplified system
model constituted by a single sender, a fast receiver and a slow receiver (see Fig-
ure 2).

The sender produces messages at rateTs. For each receiver, messages are placed
in a buffer with capacity forN messages. If a message cannot be inserted in one of
the buffers, the sender blocks until buffer space becomes available. A fast receiver
removes messages from its buffer as soon as they become available. On the other
hand, the slow receiver removes messages from its buffer at rateTr. Considering
Tr < Ts, the slow receiver’s buffer eventually fills up. When this happens, the
protocol searches the buffer for obsolete messages, freeing space to store arriving
messages. If the system remains overloaded for a long period, the buffer will even-
tually be filled just with unrelated messages. Therefore, new messages can only be



accepted if they obsolete one of the messages in the buffer.
The estimation of performance thus depends on knowing the distance in the

input stream between related messages. Unless obsolescence is strictly periodic,
this is a random variable. LetD be the distance between each message and the
latest message obsoleted by it, andf(x) = P (D = x) the probability mass function
of D. Value f(0) is assumed to be the probability of not existing any obsoleted
predecessor message.

The probability of a message being obsoleted by a new message is thus given
byR� =

P
x�1 f(x), which is an estimate of maximum ratio of messages that can

be purged by the protocol under continued congestion. However, this is not a good
estimate of how the protocol would behave, as it implicitly assumes an unbounded
amount of previous buffered messages.

Knowing that when the system is congested buffers are full, a more reason-
able assumption is to consider that buffer size determines the maximum distance
between two related messages such that one of them can be discarded. Total prob-
ability of an obsoleted predecessor existing in the buffer is thusR =

PN

x=1 f(x),
whereN is the maximum number of messages buffered for each receiver. This gives
an estimate of the ratio of messages that can be purged by the protocol under con-
tinued congestion. UsingR and given maximum sender and receiver throughputs
Ts andTr, it is possible to derive the effective throughputsT andT 0 (see Figure 2):

T = min(Ts;
Tr

1� R
) (1)

T 0 = min(T; Tr) (2)

Naturally, if probability accumulates at low values of distance,i.e., if the prob-
ability of a message being made obsolete by a close subsequent message is high,
the purging procedure is very effective. On the other hand, if the distance is large,
it is likely that the buffers become exhausted before any message has the chance to
become obsolete. It is also clear that, for the same obsolescence distribution, the
algorithm performs best for larger buffer sizes.

4.3 Applying the model

To exercise the model we have selected the following pattern of message obsoles-
cence: Message traffic consists of two distinct types of messages:i) independent
messages that do not make other messages obsolete and that are not made obsolete
by any other message; andii) overwrite messages that obsolete their predecessors
and are made obsolete by their successor with a given probability. The distribution
is characterized as follows:
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Figure 3: Despite the increasingly slow receiver, throughput at the sender remains
unaffected for as long as obsolescence allows enough messages to be purged.

fr;d(x) =

(
1� 1

r
( x = 0

1

r
(1� 1

rd
)x�1 1

rd
( x > 0

(3)

The parameterr models the relative distribution of independent and overwrite
messages: On the average, one everyr messages has overwrite semantics. Thus,
r directly establishes an absolute upper bound on purging. The parameterd repre-
sents the diversity of overwrite messages, dictating the probability of two overwrite
messages being related and thus sensitivity to buffer sizeN . With this distribution
we can explore boundary conditions that limit the performance of our protocol.

For instance, Figure 3 shows several aspects of protocol performance for this
traffic pattern as predicted by our model. In particular, Figure 3a shows the expected
behavior of a group where one element is increasingly slower but where traffic is
distributed according tofr;1 using large buffers. This result, should be compared
to Figure 1a, where global throughput is limited by the slower receiver. Figure 3b
explains why different throughputs are accommodated by depicting the amount of
messages that are purged. Figure 4 shows the sensitivity to different buffer sizes
of different combinations of parametersr andd in a situation whereTs = 1000
msg/sec andTr = 400 msg/sec and thus messages must be purged in order not to
impact overall performance.

This simple analytical model does not take into consideration several issues that
may affect the efficiency of the algorithm. To start with, it does not consider the
effect of the purging procedure itself in the content of the buffer, which means that
even if onlyN messages are stored, they are likely not to be the lastN messages.
Furthermore, existing networks are not fully reliable and may deliver packets out
of order. Thus, the actual distribution of messages in the recipient’s buffers is even
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Figure 4: Depending on the obsolescence pattern of traffic, here determined by
parametersr andd, buffer sizeN must be adjusted in order to obtain maximum
throughput.

more unpredictable than considered above, where we assume that all messages are
received in FIFO order. Thus the buffer might hold anyN previous messages or
even some posterior messages.

Additionally, in a real system we do not have a single buffer for each pair of
sender-receiver nodes. Instead, we have two buffers, one at the sender and the other
at the recipient, where purging may be applied. Naturally, if obsolete messages
are purged in the sender’s buffer, there are less chances that obsolete information
reaches recipients. On the other hand, there is less load imposed downstream.

Although a detailed analytical model could be developed, simulations have
shown that this simpler and easier to use model provides a good approximation
of the system behavior, as described below.

4.4 Simulation

In order to verify the validity of the analytical model and to study the impact of
practical issues of protocol design, we resorted to simulation. In contrast to the
analytical model, simulation allows us to consider the effect of message reordering
and non-contiguous buffers.

We use a discrete event simulation model using real code for the protocol and
a random model for the application and the network. This setup allows a precise
simulation of the components of interest by using a highly accurate timer to measure
the duration of the relevant events. The complexity of the remaining system is
abstracted as a random model for event duration. This approach has been shown to
accurately represent real-time characteristics of the system being simulated while
allowing centralized failure injection and omniscient observation [1].
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Figure 5: Simulation results.

A full-fledged reliable multicast protocol requires the combined used of several
mechanisms. For instance, some form of negative or positive acknowledgement has
to be used to mark messages as delivered. Inappropriate use of these mechanisms
may lead to problems such as ack implosion [8]. In this paper we are interested
in assessing the impact of message obsolescence and flow control, without being
obfuscated by other aspects of protocol design. Thus, in these initial simulations
we have chosen a small group of just three elements, such that buffer overflow is
the only limiting factor in the protocol performance.

No process failures are assumed and thus no mechanism is used to change the
membership of the group. Local network failure is also not considered. However,
receive omission failures due to unavailability of buffer space are considered and
used as an implicit back-pressure mechanism in the implementation of window-
based flow-control.

Simulations shown in this section use traffic generated with constant intervals,
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Figure 6: Simulation shows that both buffer occupancy and variability at the sender
remain low despite congestion at the receiver.

mainly because jitter introduced by buffer overflow becomes easier to illustrate.1Destination
processes consume messages from the receiver queue also at a constant rate. In
addition, the obsolescence pattern of the traffic is generated according to the dis-
tribution introduced in the previous section and described byfr;d(x) (Equation 3),
enabling direct comparison of results.

Figure 5 presents simulation results directly comparable to those of Figure 4.
The observed purging rate with high values ofN andd is higher than expected.
This can be attributed to purged messages contributing to approximate related pairs
of messages that otherwise would be too far to be found within the same buffer.

In addition, Figures 6a and 6b can be compared to their counterparts in Fig-
ure 1, showing that in the interval where purging is effective (i.e., approximately
between1000�sec and1500�sec) buffer occupancy and jitter at the sender remain
low. Semantically reliable broadcast effectively decouples fast components from
slow components in terms of congestion.

We now illustrate the difference between applying the purge procedure just at
the recipient or both at the recipient and at the sender. Figure 7 shows simulation
results for a scenario where both the sender and the recipients have a buffer size
of N = 10 and purging is performed at both ends. Notice that, since congestion
propagates back from the bottleneck, purging is first performed exclusively at the
receiver until the buffer fills up with unrelated messages. After that, back-pressure
is exercised and messages start being purged also at the sender side. The result
is approximately equivalent to a contiguous buffer when each half alone results
in substantial purging. If not, the results are lower. Nonetheless, purging at both
ends might still be useful for tolerating bottlenecks in different components of the

1Later in Section 5 we show simulations using traffic generated with exponentially distributed
intervals.
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Figure 7: Comparison of purging rates in a system configured with two buffers of
sizeN = 10 with expected analytical results both forN = 10 andN = 20.

system.

4.5 System configuration

These results support that when message obsolescence is taken into account higher
throughputs can be sustained. The improvement is also directly related with the
message obsolescence pattern and the amount of buffering accessible during purg-
ing.

Complete characterization of the application’s obsolescence pattern can be achieved
by profiling the application and deriving the probability mass function ofD from
observed frequencies.

Taking into consideration other factors such as available storage and impact in
end-to-end delay, buffer size can then be determined in order to maximize the esti-
mated purging rate under load given byR. Furthermore, this also permits evaluation
of what is the maximum processing delay that can be tolerated before the source is
affected by congestion.

5 Case-study

This section illustrates the configuration of the semantically reliable multicast to a
concrete example. We show how our analytical model can be used to predict the
system behavior and configure system parameters such as buffer sizes. Finally we
show simulation data for the resulting system.



Number of Stocks: 25 100 750 Total: 875
Frequency: 50% 40% 10%

Table 1: Profiling information on updates: A small number of stocks is responsible
for a large number of operations.

5.1 On-line trading system

As a case study we use an on-line trading system, more specifically, we study the
publishing system that is used to disseminate information about operations and
quotes to the traders’s workstations. This system needs to sustain a high throughput
to a large number of members [15].

Both the timeliness and the reliability of the updates are extremely important
in this context. Reliability is important because trader decisions are made based on
available data and unreliable multicast may lead to the loss of critical information by
some traders. Timeliness is also important because all traders, for fairness, should
have the same information at approximately the same time. Unfortunately, when
one of the recipients is congested, flow control can degrade the performance of
the complete system. This is not acceptable and may force the exclusion of slow
members [15].

Thus, this application is a good example of a case where the reliability con-
straints conflict with other system requirements (in this case timeliness) leading, in
the worst case, to a complete denial of service during load peaks, ironically, when
service is most valuable. The notion of message obsolescence may provide the
means to achieve a reasonable tradeoff in this setting. Instead of introducing an
arbitrary loss of messages, that could lead to some traders completely missing in-
formation about some stocks, obsolescence allows to introduce a selective purge of
messages during congestion periods.

In the following, we assume that two consecutive messages containing informa-
tion for the same stock are related, as the second obsoletes the first. This means
that every trader always obtains the most up-to-date information about every stock,
such as price and traded volume. Also, since purging of obsolete messages is per-
formed first at the source of congestion, receivers with enough resources to sustain
the throughput receive all operations despite the presence of some congested mem-
bers in the group.

5.2 Obsolescence model of stock-trading

The distribution of trading operations by stocks has been reported to be highly
skewed, such that a small subset of total stocks is accountable for a large subset
of operations. Table 1 shows frequency data used in the design of a stock trading
system [14]. Assuming that successive operations are independent, the probability



N 10 20 30
analytical 0.11 0.20 0.27

simulation with N 0.11 0.20 0.27

Table 2: Analytical and simulation results.

mass function of the distance can be modeled using the geometrical distribution for
each frequency class. The resulting distribution is:
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It should be noted that in a real system, operations on the same stock tend to
appear in bursts, even for infrequently traded stocks, due to fixation of the same
trigger value for several operations and batching of small operations by market op-
erators. If information about the same stock appears in bursts this augments the
opportunity for purging obsolete information. However, we consider that each op-
eration is independent and ignore this effect, resulting in a conservative prediction
of efficiency.

5.3 System configuration

Given the obsolescence distribution described above, it is now necessary to find
the ideal buffer size, considering both the optimization of throughput and end-to-
end latency under load. Besides using traffic generated according to the previous
distribution and with exponential inter-arrival times, experimental conditions are
the same as in the previous section.

Although the application eventually receives a message that overwrites every
purged message, this information is received with some additional delay. We name
the interval between the sending of a message and the reception of that message or
some other subsequent message that conveys the same informationsemantic latency
and use it as a measure of quality of service. The final decision on what buffer size
is chosen should take semantic latency into account. Normally, if the system is not
congested, latency is limited only by transmission overhead and acceptance by the
receiver. When the system is congested, buffers are full and thus any message might
have to wait for all preceding messages in the buffer to be delivered, making buffer
size relevant in semantic latency.

Results shown in Table 2 confirm the predictions of the analytical model: Purg-
ing is more effective for higher buffer sizes. In Figure 8 we present semantic latency,
i.e., interval between price fixation and subsequent notification of a slow receiver.
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Figure 8: Results of simulation with different buffer sizes: Larger buffers sizes
tolerate bigger delays without congestion at the receiver but result in greater end-
to-end latency.

The figure plots latency in terms of multiples of the average inter-arrival time (y

axis) against receiver perturbation in percent of the same average inter-arrival time
(x axis) and shows only stable system configurations, which are those that do not
result in throughput degradation or exclusion of slow members. Notice that strict
reliability would not allow stable configurations where any receiver is slower than
the sender (i.e. to the right of the solid line) as the group would slow down or mem-
bers would have to be excluded. For semantic reliability, the congestion points are
depicted as a solid dots where purging is no longer enough to completely isolate the
effect of slow receivers.

With a buffer size ofN = 10 an increase of the processing delay in the order of
10% is tolerated; with a buffer size ofN = 20, 30% increase is tolerated; finally,
a buffer size ofN = 30, allows an increase of the processing delay in the order of
40%. Notice that for the same receiver delay, the semantic latency increases with
the buffer size, as increasingly older messages are selected for purging. However,
this delay is a mild inconvenience when compared with the unpredictable delays
that would result from throughput degradation at the sender.

6 Related work

To our knowledge, multicast protocols that address the issue of balancing high ef-
ficiency with adverse conditions such as congestion, variable message delays or
network omissions rely on a mixture of accepting message loss and exploiting
application-level semantic knowledge [4, 6, 2, 18].

The specific problem of ensuring stable throughput of reliable multicast has
been addressed by Birmanet al. [4]. The proposed solution, Bimodal multicast,
offers probabilistic reliability guarantees. In contrast, our approach is not proba-
bilistic. Instead, we require the sender to selectively mark which messages can be
purged by the protocol in overload conditions. Bimodal multicast does not require



the sender to make this selection but requires the receiver to take corrective mea-
sure whenever a message is delivered to only some members of the group. If the
loss compromises correctness the receiver may be forced to exclude itself from the
group and rejoin later in order to get a correct copy of the state.

Application Level Framing [6] (ALF) requires the receiver to explicitly request
retransmissions of lost messages that are considered relevant. As we have noted
in Section 2, it may be hard to assess the relevance of a dropped message when
its content is unknown. In the context of reliable process groups ALF seems to
force too much complexity into applications, compromising the simplicity of the
programming model.

Our work is also inspired in the�-causal [2] and deadline constrained [18]
causal protocols. These protocols use time to define obsolescence relations among
messages allowing timing constraints to be met at the cost of discarding delayed
messages.

7 Conclusions and future work

In the paper we have motivated and illustrated the advantages of using the notion of
message obsolescence in the design of protocols for high throughput applications.
The resulting protocol selectively purges messages that are consuming important
system resources without compromising application correctness.

The paper has proposed a simple analytical model that enables reasoning about
the efficiency of the protocol and the configuration of system parameters according
to the obsolescence function of the target application. This model was validated
through simulation. When applied to a traffic profile of an on-line trading system,
our protocol is easily configured to allow a receiver to exhibit processing delays
40% higher than those required to process all messages in due time without disturb-
ing the sender.

We draw the conclusion that semantic reliability is a viable approach to ensure
global performance in the presence of perturbed group members. We are currently
extending this work to study how the notion of message obsolescence interacts with
other aspects of reliable communication, such as ordering constraints and member-
ship.
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