WMM - Wireless Mesh Monitoring

(extended abstract of the MSc dissertation)

Ricardo Pinto
Departamento de Engenharia Informatica

Instituto Superior Técnico

Advisor: Professor Luis Rodrigues

Abstract—This work presents a novel adaptive cluster-based
monitoring scheme for wireless mesh networks. Nodes self-
organize in semi-circular clusters and monitoring information
from each cluster is aggregated by the cluster head and
forwarded to the monitoring station. Clustering takes into
account existing data-flows in the mesh network, to minimize
the interference of the monitoring traffic on active streams.

I. INTRODUCTION

Within the short span of a decade wireless networks
have revolutionized the way we use our devices, bringing
us cable-free mobility, always-on connectivity, and reduced
infrastructure costs. Wireless Mesh Networks (WMNs) have
emerged as a key technology to ease the deployment of
wireless networks. A WMN is a multi-hop network, dynam-
ically self-organized, self-configured, self-healing, resilient
to device failures, and highly scalable; where all the nodes
in the network assure the availability of one or more paths
among each other[1], [2].

As in any other network, an important activity that needs
to be supported in WMN:Ss is network monitoring, in order to
allow operators to gather information about the network op-
eration and quickly detect anomalies or performance degra-
dation. Therefore, it is necessary that every node reports its
performance data, introducing extra traffic in the network,
which can contribute to a significant increase in overhead. If
performed incorrectly, network monitoring traffic may have
a negative impact on network performance. Therefore it is
important to use the most adequate monitoring solutions that
minimize the usage of network resources.

This work proposes a novel strategy to perform network
monitoring on WMNSs. The key goal of our approach is to
devise a monitoring strategy that reduces the impact of the
monitoring traffic on the existing data streams that may be
active in the network.

We employ a cluster based solution, i.e., nodes of the
WMN self-organize into clusters such that cluster-heads can
aggregate information before it is sent to one (or more)
monitoring stations. The use of clusters for information
aggregation is not new and has been used, for instance,
in wireless sensor networks[3][4]. However, our solution
embodies the following novel techniques:

o Clusters are semi-circular, such that information always
flows in the direction of the monitoring station;

o Cluster formation is aware of existing data-flows in the
WMN, to minimize the interference of the monitoring
traffic on active streams.

The rest of this work is organized as follows. SectionII
provides a survey of the related work. Section III describes
our architecture and the clustering algorithm. SectionIV
evaluates the performance of our solution. Finally, Section V
concludes the paper.

II. RELATED WORK

The Simple Network Management Protocol (SNMP) [5]
is the de-facto protocol for management of most networks.
SNMP was originally designed for static wired networks
and uses a centralized approach for monitoring purposes.
Devices run SNMP agents which are periodically polled and
send information to a centralized device in the network. The
use of this model in WMN:s is limited due to the inherent
poor scalability.

MeshMon is a multi-tiered framework [6] that only mon-
itors a small subset of metrics (baseline metrics) when the
network performance is satisfactory. The indication of a
potential problem is perceived when those metrics cross a
determined threshold, causing the system to transition to
collect more detailed metrics. Overhead reduction is then
achieved by only transmitting the necessary metrics for a
specific problem set, limiting the amount of information
available for a full network diagnosis at any given point.

MeshFlow [7] is a probe-based solution. Each node sends
a special packet that contains a summary of properties of
data packets passing through a mesh router. For each hop
in the route the packet traverses more information is added
and hence the growth of the packet size can affect scalability.
Existing records in the packet can be shortened by functions
like average or maximum values, but the detailed informa-
tion is lost if such aggregations are performed. Furthermore,
the system does not scale very well as node density rises.

MMAN [8] relies on multiple monitoring stations that
collaborate and combine information. A number of these
stations are deployed throughout the network and act as
passive monitors. This solution requires the stations to be
equipped with two radio interfaces: one for listening to
the traffic and another to transmit monitoring information
stations. Albeit not injecting additional traffic, the stations

increase deployment cost by requiring an extra radio inter-
face and an extra network to transfer monitoring data.

DAMON [9] uses an agent-sink architecture for moni-
toring mobile networks. Agents in the nodes discover the
sinks automatically through periodic beacons (initiated by
the sinks). Beacons can also transport agent-instructions
that update the nodes and enable the adaptation to new
requirements. The proximity to a sink is determined by the
hop count carried in the beacon. The system is only scalable
if the number of sinks grows with the number of nodes, and
that growth must be done to preserve the balance of node-
to-sink numbers, in order to achieve load balancing.

JANUS [10] is a distributed framework that uses Pas-
try [11], a DHT (Distributed Hash Table) peer-to-peer over-
lay network, to make information available to all nodes in
the system. JANUS also uses Scribe on top of Pastry, in
order to build a multicast tree for distribution of publish-
subscribe events. While peer-to-peer networks do scale well
in an Internet paradigm, in a resource constraint environment
such as a WMN, the scalability is poor.

The above systems do not perform well with a large
number of nodes. Hierarchical systems should be designed to
account for unbalanced distribution of nodes through the net-
work. Clustering has been proposed as a technique to tackle
the monitoring problem in WMNs through an organized
hierarchy of clusters that dynamically and autonomously
reconfigure the structure as the network topology changes.
The cluster-head is a special node in the hierarchy that
is elected to coordinate and publish information, and to
build and maintain a local network view (aggregation and
correlation of data) of its cluster members.

A clustering solution was proposed in [12]. The cluster
formation is random and its preconfigured to j-hops, being j
a configurable parameter. Cluster size has to be determined
before deploying the nodes, which may raise problems if the
network density increases.

Mesh-Mon [13] is another clustering solution which op-
erates according to three principles: each mesh node must
monitor itself, each mesh node must monitor its k-hop
neighbors, and each node must help in forming a hierarchical
overlay network for propagation of monitoring information.
Periodically, nodes probe each other to measure bandwidth
and latency among clients and mesh nodes, which may in-
terfere with application traffic. Cluster-heads are selected by
its k-hop neighbors. Assuming global topology is available,
all the nodes can be ranked according to their degree of
importance and thus elect the cluster-head.

We have identified some of the limitations of the moni-
toring systems for WMNs and will focus our solution in a
cluster-based design with focus on: i) scalability; ii) routing-
protocol independence; iii) minimization of monitoring traf-
fic; and iv) less application traffic interference.

III. MY WORK

We propose a cluster-based hierarchical approach where
nodes self-organize into k-hop clusters. In each cluster there

. . gateway
A k\\ //'/74 §\\\:\\ O cluster-head
/ \ e 4
O) - ! ~ O node
CB\ CR CP% X Q

AN

/N \
\

sfeleYeleYolololololcReYe

Figure 1. Architecture.

is a self-elected leader (cluster-head) to which the monitor-
ing information is routed from the other cluster nodes. The
cluster-head aggregates and forwards such information to
the gateway through one or several nodes as illustrated in
Figure 1.

A. Routing

The routing of monitoring information to the gateway
should be done independently of routing protocols used
by applications to promote the non-interference of both
monitoring and application traffic. A simple and pragmatic
process to discover such information is to use similar mech-
anisms to those proposed by B.A.T.M.A.N.[14].

For this purpose, the gateway periodically sends a BEA-
CON that is forwarded to the entire network using the
protocol described below.

The BEACON message has three fields: the gateway
address; an epoch number, that is incremented every-time the
gateway sends a new beacon; and a hopcount value, which
is initially set to zero by the gateway and is incremented by
one unit every time a node forwards the BEACON.

When a node p receives a BEACON,, from node g it stores
the beacon in a log and starts a quarantine timer, in order
to wait for other possible retransmissions of the beacon.
The goal of the quarantine period is to ensure that a node
forwards the beacon with the correct hop count value. The
log at each node keeps the record of all BEACON, messages
from the past e epochs (e is a configurable parameter of
the protocol). At the end of the quarantine period, the node
searches its log for the lowest hop count from all stable
beacon sources. Let the beacon count for a source g of a
BEACON message, denoted bc,, be the number of epochs for
which a BEACON, appears in the log (bc, < e). A source
q is said to be stable if for every other source r in the log
we have bc, > bec,. From all stable sources, the node p
selects the source ¢ that has sent the BEACON message with
lower hop count. Finally, node p sets ¢ as its next hop to
the gateway, increases the hop count and forwards a new
BEACON message to all its neighbors.

As a result of the procedure above all nodes collect the
following information: i) distance in number of hops to the
gateway and; ii) next hop node to be used when forwarding
monitoring information to the gateway.

Route Stability: The algorithm above has the disadvantage
that the omission of a single BEACON message may cause a
node to change its next hop to the gateway. Let ¢ be current
next hop neighbor for routing messages to the gateway. In

order to promote route stability a node p only replaces ¢ by
another neighbor ¢’ if the difference between their beacon
counts, bcy — bey, is greater than a stability threshold. In
all our experiments we have set the size of the log e to 10
epochs and the value of the stability threshold to 2.

B. Clustering

The goal of the clustering algorithm is to ensure that nodes
self-organize in clusters with the following properties:

« All nodes belong to a single cluster;

e In each cluster, there is one and no more than one
cluster-head.

o The shortest path between any two cluster-heads has at
least k + 1-hops.

« Gateways are always cluster-heads (minimizing the cost
to route the monitoring information)

For this purpose, all network nodes execute the algorithm
described below. In this algorithm, nodes can be in four
possible states, namely:

e QUARANTINE;
e UNCLUSTERED;
e CLUSTERED;

e CLUSTER-HEAD.

A node initiates the operation of the algorithm in the
QUARANTINE state. In this state nodes first wait until they
have acquired their distance to the gateway, according to the
algorithm described in Section III-A. As soon as the distance
to the gateway has been computed, nodes initiate a timer,
with a value defined by Eq. 1 or Eq. 2, and set their state to
UNCLUSTERED.

distgw + A(s),
ifdisty,%(2k +1) =0

Sel f Election.(distg.,) =

a X distg, + A(s),
otherwise
ey

In both Eq. 1 and Eq.2 « is a constant that increases the
time of self-election of non-optimal nodes and the A is a
random value between 0 and 1 that avoids multiple nodes to
self-elect at the same time and thus reducing the convergence
time. The cluster-head election equations aim at promoting
to cluster-head the nodes that are more favorable to minimize
the traffic costs when collecting monitoring information. In
particular, it aims at ensuring that cluster-heads closer to
the monitoring station are elected before the cluster-heads
farther away, and that cluster-heads are within £ hops from
each other, as illustrated in Figure 2.

When the timer expires and the node is still in the
UNCLUSTERED state, it self-elects as a cluster-head, setting
its state to CLUSTER-HEAD, and starts broadcasting periodic
HELLO messages which contain the cluster-head address, a
TTL set to k£ and the distance (in hops) to its gateway.

If during the unclustered period a node receives a HELLO
message from a cluster-head candidate ¢, the node aborts the
timer and sets its state to CLUSTERED, and its cluster-head is

gateway

cluster-head

Figure 2.

Circular Clustering.

‘ O node

: ! <cluster id>, <hops to gateway>

Figure 3. Semi-Circular Clustering.

set to c. Further, the node decrements the TTL of the HELLO
message and retransmits it if the TTL values is still greater
than zero. Nodes retransmit HELLO messages and select the
best next hop towards their cluster-head executing the same
procedures presented in Section III-A, for the processing of
BEACON messages.

Cluster-heads are responsible for aggregating the monitor-
ing information sent periodically by the nodes and for send-
ing that result to the closest gateway. The rate of aggregation
is a multiple of the nodes’ send rate (in our experiences we
used double the rate) By introducing an aggregation layer
between the nodes and the gateway, the system becomes
more flexible and adaptable to the underlying network con-
ditions. Cluster-heads can perform multiple operations to the
data collected: averages, maximum or minimum, compress
data or execute other complex operations.

Semi-circular Clustering: Most clustering algorithms, in-
cluding the algorithm described above, create topologies
where the cluster-head is in the center of the cluster. One
problem of this configuration is that, since the information
is first routed to the cluster-head and only later to the
monitoring station, in some cases, the information may be
initially routed in the opposite direction of the gateway,
which results in suboptimal routing.

Therefore, we propose to use a variant of the algorithm
above, that favors the construction of semi-circular clusters,
as illustrated in Figure 3. In this topology, the cluster-head
of a node is never farther away from the monitoring station
than the source of the information.

To create a semi-circular clustering, nodes set their un-
clustered timer according to Eq. 2. Furthermore, nodes only
rebroadcast HELLO messages if the distance to the sink of
the source is lower than the node’s distance to the gateway.

dist g + A(S),
ifdistg,%(k+1)=0

Sel fElection(distgy) =)
a X distg, + A(s),
otherwise

Gateways: The gateways, that serve as endpoints of
monitoring information execute a slightly different algorithm
from the remaining nodes. In particular, these nodes always
start in the CLUSTER-HEAD state. This prevents monitoring
information from nodes in the vicinity of the gateway to
perform an additional hop to another cluster-head.

Optimized Routing: Nodes that are best next hop towards
the cluster-heads wait for the reception of the monitoring
message before sending their own messages, aggregating
two monitoring messages in just one packet, reducing the
monitoring overhead.

C. Adaptive Information Transfer

Our solution includes a module of Adaptive Information
Transfer (AIT) that monitors the network conditions and
reacts to them. This module estimates the amount of traffic
being forwarded by each node and in order to minimize the
interference that monitoring traffic may have on the appli-
cations running on the mesh. To this end, BEACON message
propagation is either delayed proportionally to the traffic
being forwarded by the node or delayed to a maximum time
if the node is forwarding latency sensitive traffic. Indirectly,
this forces the BEACON message quality from nodes that
are forwarding traffic to drop and, consequently, nodes will
not choose them as best next hops. Figure4 illustrates this
adaptive behavior. The cluster-head and subsequent nodes
are going to choose the node with higher BEACON quality
as its best next hop. In case the node is participating in the
routing of a latency-sensitive stream, the monitoring traffic
is going to interfere directly with the stream traffic. To avoid
this, nodes that are actively forwarding application data (with
a bold circle), will delay the BEACON propagation which
causes a passive quality decrease in the nodes’ routing table.
The cluster-head and subsequent nodes will then choose
another neighbor to send the monitoring data, forcing the
monitoring traffic route to take a disjoint path from the
application data traffic route.

D. Multiple Gateways

The presence of multiple gateways may cause the dissem-
ination of redundant BEACON messages, given that nodes
select a single gateway. To limit the flooding of redundant
messages, every node receiving more than one BEACON
message will only rebroadcast it if the received message
has higher quality than other BEACON messages. In case of
equal quality, the one with lowest hop count is preferred.

‘A<‘O<'O\ O original route gatenay
S \O(O*’,O
hel o]
\Oé, - Ok . ’traﬂic aware route

cluster-head

node

ocoe

node transmitting or
receiving data

Figure 4. BEACON message delayed propagation.

IV. EVALUATION

To assess the performance of the monitoring system, we
resort both to simulations and to a prototyoe of testbed that
we developed to that purpose. We compared the performance
of the mentioned system with a simple SNMP setup based
on the OLSR routing protocol.

A. Simulation Environment

The ns-2 simulator was used to evaluate the system’s
performance. The WMN is comprised of 100 static nodes,
deployed randomly in a S00m x 800m space, with a trans-
mission range of 100m. The propagation model used is the
Two Ray Ground with the 802.11 MAC. For each test, we
have generated 10 different scenarios using the BonnMotion
tool[15], and each simulation was executed for 5 minutes.
In each scenario, the gateway was placed in the bottom left
corner of the space, in order to simulate a scenario where
data traverses a large number of hops.

We conducted a series of experiments in order to assess
the system’s functionality and test the resulting:

o Clustering;

o Monitoring traffic and its delivery ratio;
« Route stability;

o Impact on multimedia streams;

o Adaptive Information Transfer (AIT).

1) Clustering: Both clustering methods (circular and
semi-circular) were tested in the mentioned scenarios. We
have measured the average number of clusters created and
the average number of members per cluster (Figure 5).
As expected, the circular method, which includes nodes in
all of 2-hop neighborhood of the cluster-head, creates less
clusters and those clusters have more members than the
semi-clustering method, which creates more clusters due to
the fact that each node only joins the cluster if it’s cluster-
head is closer to the gateway than the node.

The time of cluster establishment, measured as the interval
between the election of the cluster-head and the last node
to join the cluster, is relatively the same in both methods:
9.11ms for the circular and 8.15ms for the semi-circular
clustering.

2) Monitoring traffic and delivery ratio: In order to
assess the system’s performance, we performed stress tests,
by increasing the rate at which the nodes send the monitoring
information to the gateways until the network is saturated. In
these and the following tests that involve monitoring traffic,
each node generates monitoring messages with 100 bytes.

16

15+ [Circular
14 - [Semi—circular

13
12
11

O =MWk
T

1
Clusters

1
Members

Figure 5. Clustering performance.

%

=)

=

SNMP

Circular

Semi-circular
Circular 20%
Circular 40%
Semi-circular 20%
Semi—circular 40%

SEG

IS
OoEECEN

Monitoring traffic (MBytes)

CmNWEULGO KOS

1/10 1/5 173 12 1

Send rate (messages / s)

(a) Monitoring traffic.

SNMP

Circular

Semi-circular
Circular 20%
Circular 40%
Semi~circular 20%
Semi—circular 40%

OOEECOEE

i h il i b

Delivery Ratio

1/10 /5 1/3 1/2 1

Send rate (messages / s)

(b) Delivery ratio.

Figure 6. Monitoring traffic and delivery ratio comparison.

Figure 6(a) and Figure 6(b) show respectively, the moni-
toring traffic generated and the delivery ratio of monitoring
messages for the three systems with variable send rates.
The delivery ratio remains high in both clustering meth-
ods, in the other hand, with SNMP, it drops significantly for
a send rate of one message per second. Such drop is due to
the fact that the monitoring traffic is not maintained locally,

T T
Monitoring messages latency

50 4

Latency (ms)

1 (JKUW 7
sk 4

0 L L L L L L L
0 100 200 300 400 500 600 700 800

Time (s)

(a) Monitoring messages’ latency.

T T T T T T T
Monitoring messages delivery

Delivery

L L L L L L L
0 100 200 300 400 500 600 700 800

Time (s)

(b) Monitoring messages’ delivery (Note: 1 is delivered, 0 is not
delivered).

Figure 7. Route stability.

as it is with our system, and because OLSR generates more
signaling traffic than the HELLO and BEACON messages,
which in turn are going to occupy the channel and allow
less information to be transmitted. There are differences
between the traffic generated in both clustering methods,
in the circular method, nodes that have cluster-heads further
away from the gateway than themselves, have to send the
monitoring information to the cluster-head, then the cluster-
head sends it back to the gateway, creating a back and forth
effect that consumes more traffic.

Although the metric of delivery ratio vs traffic is favorable
to our system, this benefit comes at the cost of a higher
end-to-end latency: the monitoring information generated in
a node, proceeds to its cluster-head, which waits a period
of time before sending the aggregated information towards
the gateway (the default waiting period is a function of
the node’s send rate). Aggregation at the cluster-head level
allows to apply compression schemes that further reduce the
traffic sent to the gateway. Figure 6(a) also show the results
when the aggregation function is able to reduce the size of
monitoring information by 20% and 40%.

3) Route stability: To test the route stability, we tailored
a scenario where we selected a random node a (3-hops away
from gateway) and identified its best next hop towards the
gateway denoted as node b. Afterwards, we forced node b
to go down, and observed that node a chose node c (10-
hops away from gateway) as its best next hop. Later, we
forced node b up again and after some time, observed node
a switching back its best next hop to node b.

In node a’s perspective, when node b went down (Fig-
ure 7(b)), its BEACON quality started dropping and it chose
node c as its best next hop. As node ¢ was far away from
the gateway than node b, the monitoring messages latency
increased, as seen in Figure 7(a). When node b went up
again, its as BEACON messages started reaching node a
again and when they reached equal quality as node ¢’s, node
a switched its best next hop to node b again, due to gateway
proximity factor.

In a loss free scenario, when node b goes down, node
a, using a stability threshold of 2, would need 3 epochs
to switch its best next hop to node c (assuming all of
node ¢’s BEACON messages are delivered). However, in a
medium with interferences, BEACON messages will collide
and switch time could be a little higher as shown in
Figure 7(a): around 35 seconds.

4) Impact on Multimedia streams: To test the impact of
the monitoring information traffic on multimedia streams, we
simulated a VoIP call in the network using the G.729 codec,
which uses 20ms frames of 20 bytes each. The stream uses
a route of 3 hops, traversing nodes near the gateway.

To measure the call quality the following metric[16] is
used:

R 94.2 — 0.024d
— 0.11(d—177.3) H (d — 177.3) 3)

30In (1 + 15¢)

where:

o d =25+ dyyfter + dnetwork is the total ear to mouth
delay (25ms), delay in the buffer and the network
latency;

e €= €petwork + (1 - €network) Couf fer 18 the total packet
loss factored by a packet delay variation buffer) and;

e« Hx) = 1 if x > 0; 0 otherwise, is the Heaviside
function.

Quality is defined by the R-score (Eq.3) which states that
a score of 70 provides a medium call quality in VoIP.

We measured all relevant metrics for calculating the R-
score of the stream in scenarios without monitoring traffic
(plain scenario) and with variable send rates.

Depicted in Figure 8(a) is the latency degradation for
various monitoring information send rates. Since OLSR
exchanges far more information per second than our routing
approach, the impact on latency is higher as send rates go
higher, because the VoIP packets compete for transmission
with both monitoring packets and routing packets. The semi-
circular clustering provides the smallest negative impact on
latency.

350

300 -
P E Plain
2 L Semi—circular
£ 250 W Circular
2 W SNMP
5 200
=
—
o 150
g
Z oo

50 -

0
1/10 177 1/5

Send Rate (messages / s)

(a) Latency of VoIP call.

g a5r
g 40
2 O Plain
g 35 O Semi—circular
> 3t W Circular
z H SNMP
g 25
T 201
~
S
£ I5F
% 10

0

1/10 177 1/5

Send Rate (messages / s)

(b) Packet Delay Variation of VoIP call.

0.14

0.12 |
2 O Plain
g 0.1 - O Semi—circular
- B Circular
2 o008k Bl SNMP
&
&
g" 0.06 -
g
< 0041

1/10 1/7 1/5

Send Rate (messages / s)

(c) Packet Loss of VoIP call.

Send Rate (messages / s)

(d) R-score of VoIP call.

Figure 8. Metrics of VoIP call.

In terms of packet delay variation (Figure 8(b)), the
circular clustering method is the worst performer, since the
burst of information sent by cluster-heads is higher due to
having higher members per cluster.

Packet loss difference is negligible except for the send
rate of one message every three seconds (Figure 8(c)). In
particular for SNMP, the packet loss is higher due to the
fact that all nodes route the monitoring packets directly to

03 £
025 -
; o2r E:
]
3
E 015F
]
£
=
5 0lf
2]
005 -
0
SNMP Circular Semi—Circular
Figure 9. Maximum monitoring throughput comparison.

O Plain

[W/ Beacons delayed
[l W/o Beacons delayed
B sNvP

100 rrmrmrr s s

R-score

1/10 177 1/5

Send Rate (messages / s)

Figure 10. R-score of VoIP call.

the gateway, increasing neighborhood interference.

Figure 8(d) illustrates the combined effect of these factors,
using the R-score metric previously described.

Maximum monitoring throughput: In this test, a VoIP
call using the G.729 codec was placed horizontally in the
middle of the network and we evaluated the maximum
send rate possible without the call quality lowering the 70
threshold.

Analyzing Figure 9, we can see that a higher monitoring
rate can be sustained by our architecture than with SNMP,
without bringing the quality below the target threshold.
The semi-circular clustering can achieve a send rate of
one message every 3.4 seconds, without compromising call
quality, while SNMP can only achieve 1 message every 8
seconds (a 42,5% increase in performance).

5) Adaptive Information Transfer: To test the Adaptive
Information Transfer, a VoIP call, was created near the
cluster-head with the purpose of interfering with the packets
sent by it.

The adaptive mechanisms, based on the delay of BEACON
propagation, changed the paths used by the cluster-head to
reach the gateway, increasing call quality (measured mainly
through the R-score), as we can see by the data presented

gateway

. \
" }[lg\pglirgglg N O cluster-head
\ \
\\\ \\
N) . node
\
MOSOSOSOK
N ’
. .

traffic aware route

<node id, cluster id>

Figure 11. Testbed Topology for Adaptive Information Transfer tests.
Call Quality
msg/s | AIT Latency (ms) Jitter (ms) Loss
AIT | real simul real simul | real simul
110 off 12.10 | (11.21) | 5.42 (1.04) | 0.015 | (0)
on 7.79 (10.96) | 3.12 (0.95) | 0.15 0)
5 off 1351 | (11.12) | 6.58 (1.04) | 0.15 0)
on 11.99 | (11.20) | 3.58 (1.07) | 0.15 (0)
13 off 26.66 | (11.43) | 7.334 | (1.18) | 1.1 0)
on 14.90 | (11.25) | 4.21 (1.09) | 0.46 (0)
1 off 43.89 | (11.68) | 29.02 | (1.4) 4.4 0
on 20.86 | (11.44) | 6.50 (1.27) | 1.1 (0)
Table I
PERFORMANCE OF THE ADAPTIVE MECHANISMS IN THE LA FONERA
TESTBED.

in Figure IV-AS.

B. Experimental Testbed

The experimental testbed was deployed in the IST-
Taguspark campus, comprising of eight La Fonera+[17],
equipped with one EEE 802.11b/802.11g wireless card, one
LAN port and one WAN port, running the OpenWrt[18]
8.09 firmware. Our system was developed in python and the
exchanged traffic between nodes was done via iperf (both
packages included in the OpenWrt repository).

All devices were scattered in order to achieve the max-
imum number of hops in the minimum amount of space.
The reduced space for deployment restricted the amount of
nodes that were possible to connect in the mesh network
and the spectrum occupation by the IST-Taguspark own
wireless infrastructure decreased the number of tests that
could be performed in such conditions. To test the adaptive
information transfer, we used the topology in Figure 11.

We let the clusters emerge, and the transfer of monitoring
information start before node 8 transmitted during two
minutes a 64kbit/s stream. The quality of the stream was
measured during those two minutes either with the mecha-
nism on and off, and with different monitoring information
send rates. The results are presented in Table I, being the
effects of the AIT mechanisms clearly visible.

We have also replicated the experiment on the simulator,
using a scenario that mimics the deployment setting. The
results for the simulation are depicted between parenthesis
in the left column, for compairison purposes. Although ex-
perimental results differ from the simulated ones, reflecting
the well known limitations of the simulation models, the
relative performance is similar: the stream is less affected
when traffic from the cluster-head is diverted to other paths.

V. CONCLUSIONS

In this work we have proposed an architecture to monitor
the nodes of a WMN. Our solution combines different
functionalities: it is based on semi-circular clusters that
optimize the routing of monitoring information and imple-
ments adaptive mechanisms that minimize the impact of the
exchange of monitoring information on the streams that are
present in the network. We have evaluated our architecture
and associated protocols running extensive simulations and
using a experimental testbed with 8 La Fonera+ devices.

Results show that the proposed solution, in our experi-
ments, can reach a 42,5% increase in monitoring information
throughput without affecting the quality of service of an on-
going VoIP call. As future work it would be interesting to
test several aggregation functions to reduce the amount of
information that needs to be transferred in the network.

ACKNOWLEDGMENTS

This work was performed at INESC-ID and partially
supported by the Redico project (PTDC/EIA/71752/2006)
and by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds. Parts of this work have been
performed in collaboration with other members of the Dis-
tributed Systems Group at INESC-ID, namely, José Mocito.

REFERENCES

[1] I. Akyildiz, X. Wang, and W. Wang, “Wireless mesh net-
works: a survey,” Computer Networks ISDN Systems, vol. 47,
no. 4, pp. 445-487, 2005.

[2] A. Hamidian, C. Palazzi, T. Chong, J. Navarro, U. Korner,
and M. Gerla, “Deployment and evaluation of a wireless mesh
network,” Advances in Mesh Networks, 2009.

[3] A. A. Abbasi and M. Younis, “A survey on clustering al-
gorithms for wireless sensor networks,” Comput. Commun.,
vol. 30, no. 14-15, pp. 2826-2841, 2007.

[4] T. Anker, D. Bickson, D. Dolev, and B. Hod, “Efficient clus-
tering for improving network performance in wireless sensor
networks,” in EWSN’08: Proceedings of the 5th European
conference on Wireless sensor networks. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 221-236.

[S] M. Schoffstall, M. Fedor, J. Davin, and J. Case, “Simple
network management protocol (snmp),” United States, 1990.

[6] R. Raghavendra, P. Acharya, E. Belding, and K. Almeroth,
“Meshmon: a multi-tiered framework for wireless mesh net-
workmonitoring,” in MobiHoc S3 ’'09: Proceedings of the
2009 MobiHoc S3 workshop on MobiHoc S3. New York,
NY, USA: ACM, 2009, pp. 45-48.

[7] F. Huang, Y. Yang, and L. He, “A flow-based network
monitoring framework for wireless mesh networks,” Wireless
Communications, IEEE, 2007.

[8] H. Kazemi, G. Hadjichristofi, and L. A. DaSilva, “Mman - a
monitor for mobile ad hoc networks: design, implementation,
and experimental evaluation,” in WiNTECH ’08: Proceedings
of the third ACM international workshop on Wireless network
testbeds, experimental evaluation and characterization. New
York, NY, USA: ACM, 2008.

[9] K. N. Ramach, E. M. Belding-royer, and K. C. Almeroth,
“Damon: A distributed architecture for monitoring multi-hop
mobile networks,” in In Proceedings of IEEE SECON, 2004.

[10] N. Scalabrino, R. Riggio, D. Miorandi, and I. Chlamtac,
“Janus: A framework for distributed management of wireless
mesh networks,” in Proceedings of the 3rd International
Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities, 2007.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems,” in In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware),
2001, pp. 329-350.

[12] F. Sailhan, L. Fallon, K. Quinn, P. Farrell, S. Collins,
D. Parker, S. Ghamri-Doudane, and Y. Huang, “Wireless
mesh network monitoring: Design, implementation and ex-
periments,” in Globecom Workshops, 2007 IEEE, Nov. 2007,

pp. 1-6.

[13] S.Nanda and D. Kotz, “Mesh-mon: A multi-radio mesh mon-
itoring and management system,” Computer Communications,
vol. 31, no. 8, pp. 1588-1601, 2008.

[14] D. Johnson, N. Ntlatlapa, and C. Aichele, “A simple prag-
matic approach to mesh routing using batman,” in 2nd IFIP
International Symposium on Wireless Communications and
Information Technology in Developing Countries, CSIR, Pre-
toria, South Africa, 2008, p. 10.

[15] BonnMotion a Mobility Scenario Generation and Analysis
Tool, University of Bonn, Jun. 2009.

[16] R. G. Cole and J. H. Rosenbluth, “Voice over ip performance
monitoring,” SIGCOMM Comput. Commun. Rev., vol. 31,
no. 2, pp. 9-24, 2001.

[17] “Fon,” http://www.fon.com.

[18] “Openwrt,” http://www.openwrt.org.

