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Abstract. Data deduplication is a technique that reduces the amount
of redundant data that is kept in a storage system. If two or more files
have equal chunks, these chunks are treated as a single unit, and not as
multiple, distinct units, that need to be stored independently. Dedupli-
cation can offer significant savings, in particular, in cloud storage sys-
tems. Unfortunately, if the users of the storage system decide to encrypt
the stored data (namely, for privacy reasons), it becomes hard to apply
deduplication. This report surveys the main techniques that have been
proposed to conciliate deduplication and the possibility of storing data
in encrypted form, in a manner that can ensure data confidentiality for
the clients. Inspired by these works, we propose an architecture that
leverages trusted computing environments to increase the performance
of encrypted deduplication systems.
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1 Introduction

It has been observed that, in systems that store large amounts of data from
multiple users, such as Dropbox [1] and Google Drive [2], it is possible to find
large amounts of repeated data. For instance, when users store program sources
in the cloud, there are many libraries that may be shared by several projects.
Similarly, when users backup their computers, different users are likely to backup
the same files, such as software binaries, music files, among others. Data Dedupli-
cation is a technique that allows to identify files that are identical, or that have
identical pieces (also known as chunks), and treat all copies of the same chunk
as a single unit. In this way, the system needs to maintain just a few copies of
each unique chunk, enough to provide fault tolerance, regardless of the number
of users that store that chunk.

Unfortunately, to apply data deduplication to encrypted data is hard. If the
users encrypt their data before storing it, and use different keys to perform
encryption, the same chunk will result in different encrypted versions. This pre-
vents the storage system from identifying which data is redundant and, therefore,
from applying data deduplication. Encrypted Deduplication is the name given
to techniques that attempt to combine file encryption and data deduplication.
Typically, this combination requires some form of direct or indirect coordination
among different users, to ensure that identical chunks are encrypted with the
same keys. The challenge is to perform this coordination in a manner that is
both efficient and allows to preserve the confidentiality of the information stored
by each user. Our take on confidentiality is the same as the one in the literature,
i.e., “... protect outsourced storage from the unauthorized access by malicious
users or even the cloud providers that host the outsourcing services” [3].

This report surveys the main techniques that have been proposed to concil-
iate deduplication and the possibility of storing data in an encrypted form, in
a manner that can ensure data confidentiality for the clients. Inspired by these
works, we propose an architecture that leverages trusted computing environ-
ments to increase the performance of encrypted deduplication systems.

The rest of the report is organized as follows. Section 2 presents the goals and
the expected results of our work. Section 3 introduces the main concepts relevant
for our work and Section 4 describes the main techniques to implement encrypted
deduplication. Section 5 describes the proposed architecture to be implemented
and Section 6 describes how we plan to evaluate our results. Finally, Section 7
presents the schedule of future work and Section 8 concludes the report.

2 Goals

This work addresses the problem of implementing encrypted deduplication,
while ensuring good performance, and protection against privacy attacks. Namely:

Goals: This work aims at leveraging trusted executed environments
to improve the efficiency and robustness of encrypted deduplication sys-
tems.
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To achieve this goal, we will assume that the storage provider has comput-
ers equipped with Intel processors with the Software Guard Extensions (SGX).
When storing data, the client will interact with trusted software running on the
enclave. The trusted component is in charge of selecting the keys used to encrypt
each chunk, such that data deduplication can be implemented, while ensuring
resilience to several attacks, including frequency analysis.

The project is expected to produce the following results.

Expected results: The work will produce i) a specification of an en-
crypted deduplication algorithm; ii) an implementation of the algorithm
for the Intel SGX architecture, iii) an extensive experimental evaluation
using, for example, a disk I/O block-based benchmark for deduplication
systems, such as DEDISbench [4, 5].

3 Background

In this section, we introduce concepts relevant for our work. We start by in-
troducing deduplication (Section 3.1) and encrypted deduplication (Section 3.2),
then we list the main attacks against encrypted deduplication (Section 3.3), and
finally we introduce Trusted Execution Environment (TEE)s, and their security
mechanisms and properties (Section 3.4).

3.1 Data Deduplication

Data deduplication is a high-coarse grained compression technique that pre-
vents the same content from being stored with a much larger redundancy degree
than strictly needed, since systems only need to store enough copies to provide
fault tolerance, and create pointers to the content. Deduplication identifies dupli-
cated data at the granularity of files or a portion of files, denoted as file chunks.
If two or more files, from the same or different users, share a given chunk, the
system needs to maintain just a few copies of that chunk, enough to provide
fault tolerance, regardless of the number of files that include it.

Unlike traditional compression techniques that eliminate redundancies within
a file or a small group of files (usually stored in the same operation), data dedu-
plication aims to eliminate large data sets stored at different times by uncoor-
dinated users and activities [6].

The effectiveness of deduplication is measured by the deduplication gain.
The deduplication gain is defined as the number of duplicates that are actually
eliminated, thereby reducing the storage space required to store some piece of
data. Studies have shown that data deduplication can achieve significant storage
savings in a production environment, for example, saving 50% on primary storage
[7] and up to 98% on backup storage [8].

Another way to save storage space using deduplication is the use of cross-user
deduplication. This means that each file or chunk is compared with the data of
other users, and if the same copy is already on the server, data deduplication is
performed.
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This method is popular because it saves storage and bandwidth, not only
when a single user has multiple copies of the same data, but also when different
users store copies of the same data.

3.1.1 Chunks The unit of data deduplication is called the chunk. The size of
the chunk and the technique used to divide data into chunks affects the perfor-
mance of the system [6].

One of the most straightforward manners to divide data into chunks is to
consider file boundaries [9], which is known as whole file chunking. Another
simple approach consists in dividing files into fixed-sized chunks(e.g., 4-8 KB
each). Unfortunately, none of these approaches is very effective at producing
chunks that can be deduplicated. For instance, consider two files, where one file
only differs from the other by a single, additional, byte placed at the beginning of
the file. Despite that most of their content is the same, the two files are different
and their fixed-sized chunks would also be all different. This is known as the
boundary-shifting problem [10].

Several algorithms to divide files into chunks have been proposed in the
literature [11–13]. These techniques are orthogonal to our work.

3.1.2 Deduplication Approaches To achieve deduplication, one should
match existing stored data with the data the client wants to store, if there is a
match, deduplication can be performed. This can either happen at the client-side
or at the server-side.

In source-based deduplication the client is responsible for checking if the data
can be deduplicated before sending it to the server. For this purpose, the client
queries the Storage Service (SS) about existing duplicated data, and only uploads
the missing data to the SS. A challenge in this technique is that the client needs
to prove that it owns the data before being given access to the deduplicated
copy. Also, this approach leaks information to clients, regarding the existence of
other clients with the same data.

In target-based deduplication the client always sends the data to the SS,
which is responsible for performing deduplication. This prevents the client from
extracting information about which files are deduplicated, and also allows the
SS to trivially verify that the client owns the data. However, it does not prevent
deduplicated data to consume network resources.

3.2 Encrypted Deduplication

Encrypted deduplication augments deduplication with support for data en-
cryption. Typically, not only the data is stored in encrypted form by the SS,
but the SS also has no access to the plaintext and cannot infer the content that
is being stored. Support for encrypted deduplication is relevant because often
the data is confidential and the clients want to keep information regarding data
ownership private.
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The challenge of implementing encrypted deduplication is to design schemes
that will result in having the same chunks encrypted with the same keys without
violating confidentiality. Notice that, if each client encrypts the chunks indepen-
dently, without any sort of coordination with other clients, the same chunk from
different clients would result in different encrypted chunks, preventing cross-user
deduplication.

3.3 Attacks

Deduplication is more effective when it is applied across multiple users (cross-
user deduplication). However, this approach has serious privacy implications,
which open the doors for many attacks with the intent of getting insight about
the system and the content stored by users.

3.3.1 Brute Force If each user encrypts its own chunks with a different key,
only known to that user, cross-user deduplication becomes almost impossible.
Thus, as we will see later in the text, approaches that support cross-user dedu-
plication have to make sure that the same files are encrypted with the same
keys, even when stored by different users. If not done carefully, this may open
the door for attacks, including brute-force attacks.

One of the simplest strategies to ensure that different clients encrypt the same
file with the same key consists in deriving the encryption key deterministically
from the content of the file [14]. An example of this approach is Message-Locked
Encryption (MLE) [15], that we will present in detail later in the text. This
technique is vulnerable to brute-force attacks, as follows:

Consider that the SS want to check if a given user stores copies of a given
book. Given that the encryption key is derived from the content, the SS can
obtain a copy of the book, derive the key, encrypted the book, and compare the
encrypted version with the files stored by the user. This attack can be executed
even if there are several editions or versions of the book, by using this strategy
for all versions.

As we will discuss, several systems to support encrypted deduplication avoid
the use of MLE, and use other techniques that are less vulnerable to brute-force
attacks.

3.3.2 Deduplication Detection One privacy issue that presents itself when
dealing with systems that provide deduplication is the identification of dedu-
plication, this is, if deduplication occurred on the data that was sent to the
SS. Though it seems harmless at first, a malicious client can discover if a given
file or chunk of data was already stored. This may somehow release personal
information, so it may be a privacy problem.

Most vendors will not try to hide the fact that they use data deduplication.
This can be checked by reading the upload status message, check the upload
speed to see if the file upload is completed in a much shorter time than the
client computer upload bandwidth, or monitor network traffic and measure the
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amount of data transferred (this is the most common de-duplication detection
method). Cross-user source based deduplication [16] is particularly vulnerable
to this sort of attacks.

Suppose that the attacker wants to know information about a given user. If
the attacker suspects that this user owns a certain sensitive file that is unlikely to
be owned by any other user, the attacker can use deduplication to check whether
this conjecture is true. All he needs to do is to send file X to the SS and check if
deduplication has occurred. Dropbox [1] was vulnerable to this attack [17] [16],
a malicious client could infer if other users had stored the same file previously
by observing the network traffic and see the size of the data being transferred.

3.3.3 Frequency Analysis To get insight about the data that has been
stored, attackers developed techniques which allow the mapping of a plaintext to
its ciphertext based on its frequency ranking. Frequency analysis is an inference
attack that has been used to predict and recover plaintexts from substitution-
based ciphertexts. A simple example of a substitution-based ciphertext is the
Caesar Cipher [18], which replaces each letter in a given message by a letter at
some fixed position down the alphabet. This type of attack has been shown to
be useful for breaking deterministic encryption.

During a frequency analysis attack, an attacker has access to a set of plain-
texts and a set of ciphertexts and the goal is to make a relation between each
ciphertext and plaintext in both sets. To launch the attack, an attacker ranks
the plaintexts and ciphertexts which he has access to by their frequency, then
associates each ciphertext to the plaintext in the same frequency rank. In many
cases, the attacker can then infer that the most frequent plaintext chunk maps
to the most frequent ciphertext.

After a mapping between a plaintext and a ciphertext is made, there are
attacks that enhance the severity of classical frequency analysis attacks by ex-
ploiting the locality of chunks [19], designated Locality-Based attacks. Chunk
locality states that chunks are likely to re-occur together with their neighbour
chunks across storage backups. A locality-based attack can occur if a plaintext
chunk M of a prior backup was identified as the original plaintext chunk of a
ciphertext chunk C of the latest backup, then both(left and right) neighbours
of M are also likely to be the original plaintext chunks of the left and right
neighbours of C, this can happen since chunk locality implies that the ordering
of chunks is likely to be preserved across backups.

3.4 Trusted Execution Environments

A TEE is a secure area in the processor that allows to run code and store
data isolated from the operation system and from user level processes. As the
need for digital trust grows and concerns about protecting connected devices
increases, TEEs become more and more important [20, 21]. The motivation for
using TEEs in encrypted deduplication systems is improve performance while
still maintaining security, bandwidth efficiency, and storage efficiency, by running
sensitive operations in TEE.
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Enclaves are a type of TEE technology that has been made available in
many common Intel CPUs. The enclaves, provided by the SGX architecture [22],
are TEEs that leverage hardware mechanisms such as hardware secrets, remote
attestation, sealed storage and memory encryption. The hardware secrets are
the root provisioning and root seal keys. Remote attestation is enforced for the
client in order to prove to the service provider that an enclave is running a
given software, inside a given CPU, with a given security level. Sealed storage
is used to save secret data to untrusted media, required to persist data between
reboots or failures, because the enclave state is stored in volatile memory [22].
The enclave relies on a hardware-guarded memory region called the Enclave
Page Cache (EPC) for hosting any protected code and data. An EPC comprises
4KB pages, and any in-enclave application can use up to 96 MB. If an enclave
has a larger size than the EPC, it encrypts unused pages and evicts them to the
unprotected memory, suffering a performance penalty [23]. SGX provides two
interfaces: ECALLs, used by an application to invoke enclave functionality and
OCALLs, used by the enclave code to access an outside application.

4 Related Work

This section presents related work in the areas of encrypted deduplication,
key-generation, privacy attacks and defenses against such attacks, as well as the
use of TEEs in encrypted deduplication. These are the works that inspire our
proposal to address the goals set in Section 2.

The section is organized as follows: Section 4.1 presents MLE, an approach to
key generation which derives the key from the data content. Section 4.2 presents
Duplicateless Encryption for Simple Storage (DupLESS), a system which em-
ploys a dedicated key server for encrypted deduplication. Section 4.3 presents the
use of MinHash in encrypted deduplication to protect against frequency analysis
attacks. Section 4.4 presents a system that enables tunable-encrypted deduplica-
tion, specifying the trade-off between storage efficiency and data confidentiality.
Finally, Section 4.5 presents a solution that uses TEEs to offload expensive crip-
tographic operations, and improve performance in encrypted deduplication.

4.1 MLE: Message Locking Encryption

Some encrypted deduplication approaches preserve the deduplication capa-
bility by deriving the key for encryption and decryption from the chunk content,
usually via the hash or fingerprint of a given chunk. MLE [15] is an example of
this approach.

The key generation algorithm in a MLE scheme maps a message M to a key
K. The encryption algorithm takes two inputs, a key K and a message M, and
produces as output a ciphertext C. The decryption algorithm takes as input a
key K, and a ciphertext C, and produces a plaintext M, allowing for the recovery
of the original plaintext. MLE also defines a tagging algorithm which maps a
ciphertext C to a tag T, this tag simplifies the identification of duplicates. If M1
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Fig. 1. Convergent Encryption

and M2 are the same, their ciphertext will be the same, and the same tag will
be generated. It is then possible to use the tags to detect duplicates, instead of
comparing the entire ciphertext.

An important property of MLE is Tag Consistency (TC), that ensures the
integrity of the stored ciphertext (meaning that an attacker cannot make an
honest client download and recover a message different than the one that the
client stored encrypted). Some MLE schemes provide a strictly stronger property,
named Strong Tag Consistency (STC), that makes additionally hard to create
(M,C) such that T (C) = T (SKE(K(M),M)) but D(K(M), C) = ⊥, which
prevents an attacker from erasing an honest client’s message.

A trivial form of achieving MLE is by letting the key K be equal to the
message M. However, this solution has no storage advantages since the client
must store as key the entire file, resulting in no storage savings. A requirement
in MLE is that keys must be shorter than messages, and ideally these should
have a fixed, short length. The are several variants of MLE. Most are based on
the use of a hash function H and a Symmetric-Key Encryption (SKE) scheme.

The first major variant is Convergent Encryption (CE) [15], illustrated in
Figure 1, in which the key is the hash of the message M, the ciphertext is the
encryption of M using K using a SKE scheme, and finally, tag T, which is
generated as the hash of the ciphertext:

K = H(M) (1)

C = SKE(K,M) (2)

T = H(C) (3)

Another major variant is Hash and Convergent Encryption 1 (HCE1) [15].
HCE1 still generates the key K as the hash of M, as seen in Equation 1, but it
generates ciphertext C as the concatenation (|| is the concatenation operator)
of the encryption of M and the tag T, generated as the hash of K :

C = SKE(K,M) ||T (4)

T = H(K) (5)

The reasoning behind HCE1 is to provide better performance for the server,
which can retrieve the tag T from the second part of the ciphertext, so it doesn’t
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need to compute it by hashing the ciphertext, which can be possibly long. Un-
fortunately, HCE1 is vulnerable to duplicate faking attacks and cannot ensure
TC.

A duplicate faking attack is one where a legitimate message is undetectably
replaced by a fake one, for example, when a client has already stored C, with a
generated tag T, and later an attacker sends C´ with the same tag T, replacing
the original message.

In order to achieve better performance, while still providing consistency,
two new schemes were introduced, namely Hash and Convergent Encryption
2 (HCE2) [15] and Randomized Convergent Encryption (RCE) [15].

HCE2 is just as efficient as HCE1, it requires two passes through the data,
one for generating the key, and a second one for encryption. HCE2 modifies
HCE1 to directly include a mechanism called protection decryption, which helps
it achieve TC security. The decryption routine now also checks for tags embedded
in the ciphertext by recomputing the tags using the just decrypted message

RCE is even more efficient, since it only requires a single pass through the
data in order to generate the key, encrypt the data, and produce the tag. RCE
is able to achieve such high performance by using a random scheme, while CE,
HCE1, and HCE2 were deterministic.

The RCE encryption scheme first picks a fresh random key L and computes
C = SKE(L,M) and K = H(M) in the same pass, finally, it encrypts L with
K as a one-time-pad, together with tag T, which is generated the same way as
in CE:

L = RAND() (6)

C = SKE(L,M) (7)

K = H(M) (8)

C‘ = C ||K ⊕ L ||T (9)

Table 1 shows the comparison between the multiple schemes of MLE.

Table 1. MLE Schemes Comparison

Scheme Speed
Integrity
TC STC

CE Slow yes yes

HCE1 Fast no no

HCE2 Fast yes no

RCE Faster yes no

HCE1 does not provide tag consistency. The good news is that CE, , and
RCE all implement TC security, so an attacker can’t get the client to recover a
different file than what he uploaded. But only CE provides STC security, which
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means that the server cost reduction provided by HCE1, HCE2 and RCE comes
at a price, i.e. loss of STC security. This lets us conclude that there is a trade-
off between performance and integrity. If we wish to have the best performance
possible and still provide TC, then using RCE is the best option. If we wish to
provide the integrity properties(TC and STC), then the only option is to use
CE.

4.2 DupLESS

CE allows us to store data encrypted, with integrity properties, while still al-
lowing deduplication. However, as discussed before, CE is subject to an inherent
security limitation, namely, the susceptibility to brute force attacks [17].

DupLESS [17] is a system that strengthens the security of encrypted dedupli-
cation against offline brute force attacks. It deploys a dedicated Key Server (KS)
for MLE key generation, separate from the SS. Deduplication is performed at file
level instead of chunk level. DupLESS also introduces deduplication heuristics.
They are used to determine whether if a file that is about to be stored on the
SS should be selected for deduplication, or processed using a randomly generate
key. One example can be very small files, or sensitive files that can be prevented
from being deduplicated.

DupLESS was designed such that it can be integrated into existing systems,
such as Dropbox [1] and Google Drive [2], as illustrated in Figure 2.

DupLESS

Storage 

Service(SS)

Client

Key Server(KS)

Client Module

Key Server 

Module

Fig. 2. DupLESS System Design

To encrypt a plaintext chunk, a client first sends the fingerprint of the plain-
text chunk to the key server, which returns the MLE key via both the fingerprint
and a global secret maintained only by the key server:
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K = H(k ||P ) (10)

where k is the global secret owned by the KS and P is the fingerprint of a given
chunk. This increases the security of MLE and still retains the deduplication
properties.

The advantage of having a dedicated KS is to have a main line of defense
against different types of attacks. If we want to deal with an external attack-
ers, like a compromised SS, a possible solution could be that the KS should
authenticate the clients that is speaking to. If the attacker is more powerful and
resourceful and is able to compromise a client, then we are dealing with brute-
force attacks from this client, but unlike CE, here the offline brute-force attacks
are online, they have to involve the KS, they’re going to be much slower and
easier to detect.

If face of a severe attack, the KS being compromised, the attacker could be
able to retrieve all the keys for all ciphertexts generated on the KS. DupLESS is
not vulnerable to this problem since it uses an Oblivious Pseudorandom Function
(OPRF) [24] protocol based on RSA blind-signatures [25–27] when communicat-
ing with clients; the KS learns nothing about the client input, and the client only
learns K.

An OPRF protocol is something that stands between a client and a server,
as shown in Figure 3, where f is the original input, for example the chunk data.
The server holds a global secret, and the objective of the client is to receive the
output of the OPRF, at end of the communication, the client must not know
anything else than the output, and the server should not know any of the inputs
given by the client.

Key Server(KS) Client

Ks

VK...

H(f)

K = F( Ks,H(f) )

Fig. 3. OPRF Protocol

If the KS is down, overloaded or subjected to a denial-of-service attack,
encryption resorts to SKE, generating a random key as the encryption key. This
ensures availability but there is no deduplication during that period of time.

The significant increase in security comes at the cost of a moderate price in
terms of performance and a small increase in storage requirements relative to the
base system. The low performance overhead is partly due to the optimization of
the client-to-KS OPRF protocol, but also to ensure that DupLESS uses fewer
interactions with SS.
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In short, DupLESS is a system which provides encrypted deduplication with
the aid of a KS. It was the first solution to provide secure deduplication without
compromising resilience.

4.3 MinHash Encryption

Most state-of-the-art encrypted deduplication systems adopt a deterministic
encryption approach to encrypt each plaintext chunk with a key derived from
the content of the chunk itself. However, such a deterministic approach reveals
the underlying frequency distribution of the original plaintext chunks, allowing
attackers to launch frequency analysis attacks against the resulting ciphertexts,
and infer the content of the original plaintext chunk. MLE suffers from another
security issue, which is it cannot fully protect against content leakage, because
the encryption approach is deterministic.

To resist frequency analysis, the idea is to disturb the frequency ordering of
ciphertext chunks. To this end, it was considered an encryption scheme called
MinHash encryption, which derives an encryption key based on the smallest
fingerprint on a set of adjacent chunks, so that some identical plaintext chunks
can be encrypted into multiple different ciphertext chunks.

MinHash encryption works the following way. First, it groups multiple con-
secutive plaintext chunks into segments. We can view a segment as a set of
chunks.

For each segment, it derives a key as the minimum fingerprint of all chunks
in the segment, for example, comparing only the less significant bits. Then it
encrypts all chunks present in the segment using that same key. In backup work-
loads, the segments are often similar with a large fraction of duplicated plaintext
chunks, so the keys or minimum fingerprints that will be generated for similar
segments are likely to be the same. In this way, most duplicated chunks are
encrypted by the same key, making deduplication viable after encryption.

As for security advantages, MinHash encryption has been shown to effectively
reduce the overhead of server-aided MLE since it sends only as many fingerprints
as the number of segments to the KS, increasing bandwith efficiency. It can also
be used to break the deterministic nature of encrypted deduplication and disturb
the frequency ranking of ciphertext chunks.

MinHash is robust against the the locality-based attack, by breaking the
deterministic nature of encrypted deduplication.

Still, there are deduplication issues when using MinHash encryption. Some
of the same plaintext chunks may still reside in different segments, with different
minimum fingerprints and different keys, so the ciphertext chunks they generate
will be different and cannot be deduplicated, resulting in a slight decrease in
storage efficiency.

However, such near-exact data deduplication is enough to change the overall
frequency ranking of the ciphertext chunk by using different keys to encrypt a
small part of the repeated chunks, thereby invalidating the frequency analysis.

Additional issues have been raised in other works [3], namely, that MinHash
provides limited protection and limited configurability. As for limited protec-
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tion, MinHash encryption is based on the assumption of file similarity to ensure
its deduplication effectiveness, so its storage efficiency may not be suitable for
general workloads. More importantly, the randomness of the smallest chunk fin-
gerprint in the segment is limited (otherwise the deduplication effect will be
lost), so MinHash encryption only slightly undermines the certainty of MLE,
and does not provide security guarantees for frequency analysis.

For limited configurability, MinHash does not provide a configurable mecha-
nism to quantify the trade-off between storage efficiency and data confidential-
ity. MinHash encryption disrupts the frequency ordering of ciphertext chunks by
sacrificing storage efficiency (for example, repeated plaintext chunks in different
segments are encrypted with different keys and cannot be deduplicated after
encryption).

4.4 TED

Tunable Encrypted Deduplication (TED) [3] appeared to solve the issues
presented at the end of the previous section. TED is a cryptographic primitive
that provides an adjustable mechanism that allows users to balance storage
efficiency and data confidentiality.

Like in DupLESS [17], TED uses a dedicated KS, which is responsible for key
generation, and a SS responsible for performing deduplication. The only fully
trusted component is the KS. The justification for this assumption is that the
KS is deployed by companies or individuals that outsource deduplication. The
SS can be external, this means that its considered trustworthy but curious.

TED is an encrypted deduplication primitive that aims to achieve Configura-
bility, i.e., quantify the trade-off between storage efficiency and confidentiality
of data such that information leakage is minimized. Also, TED keeps a record,
Count-Min Sketch (CM-Sketch) [28], of the frequency of each chunk. There are
two advantages of using CM-Sketch. First, it limits the amount of memory used
to track the frequency of all chunks, and errors are bounded. Secondly, the
approximate count protects chunk information from being affected by the KS,
which is a security requirement in DupLESS [17].

The principle behind TED is to derive the key of each plaintext chunk based
on two additional inputs: its current frequency f, i.e., the number of duplicate
copies of M that have been upload by all clients; and the balance parameter t,
which controls trade-off between storage efficiency and data confidentiality. The
key K for M is generated by the KS in the following way:

K = H(k ||P || bf/tc) (11)

where k is the global secret owned by the key manager, P is the chunk fingerprint,
and bf/tc is the maximum integer smaller than f/t.

f is a cumulative function, this means that it increases as more copies of the
same data have been uploaded, meaning that key K will be updated as the value
of bf/tc increases.

Therefore, according to the value of t, copies of M will generally be encrypted
with different keys. If t = 1, each copy of M has a different K and TED is reduced
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to SKE; if t → ∞, all duplicates of M have the same K, and TED is reduced to
MLE. Intuitively, t can be seen as the maximum number of duplicate copies of
a ciphertext chunk.

To upload a file in TED (see Figure 4), the client divides the file data into
chunks. It generates a key for each chunk through interaction with the KS,
encrypts each chunk with the corresponding key, and then uploads the chunk to
the SS. In addition, for file reconstruction, the client generates a file recipe, which
lists the chunk fingerprint and chunk size according to the chunk order in the
file, as well as a key recipe that retains the keys of all chunks. It uses the master
key of each client to encrypt the file recipe and key recipe for protection, and
uploads them to the SS together with the ciphertext chunk. The SS performs data
deduplication on the ciphertext chunk. It maintains a fingerprint index, which
is a key-value store, used to track fingerprints of physical chunks for duplicate
detection. The SS does not apply deduplication to metadata, instead, it directly
saves the file recipe and key recipe (in encrypted form) in physical storage.
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CM-Sketch

Key Server
k

Fig. 4. TED File Upload

To download a file (Figure 5), the client first retrieves the file recipe and key
recipe from the SS, and uses its master key to decrypt them. Then it retrieves
the ciphertext chunks from the SS according to the file recipe and decrypts them
with the key stored in the key recipe.

The key generation scheme in Equation 11 raises a security problem. For the
same file with the same chunk sequence, Equation 11 will return the same keys,
which also result in the same ciphertext chunk sequence, allowing the attacker
to infer whether the two encrypted files are initially the same. Therefore, the
key generation must generate different ciphertext chunk sequences for the same
file while maintaining the effectiveness of deduplication.

To solve this issue, TED implements a probabilistic key generation method
that can non-deterministically encrypt the same file (with the same plaintext
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chunk sequence) into different ciphertext chunk sequences, while maintaining
the effectiveness of deduplication.

The insight of TED is to randomly select a chunk’s key from a set of candi-
dates, instead of returning the same key as in Equation 11. Specifically, for each
plaintext chunk M, let x = bf/tc, where f is the current frequency of M, and t
is the balance parameter. After receiving the hash value of M, the key manager
calculates a key seed candidate kx as:

kx = H(k ||h1(M) ||h2(M) || ... ||hr(M) ||x) (12)

Then a key seed is uniformly selected from the candidate set {k0, k1, ..., kx}:

k
$←− {k0, k1, ..., kx−1, kx} (13)

The client can then derive the key of M as

K = H(k ||P ) (14)

where P is the fingerprint of M. TED did not use k as the key of M to prevent
the key manager and attackers who can eavesdrop on the key manager’s reply
from directly accessing the key.

As we observe more duplicates of M (that is, an increasing f ), the most recent
duplicates of M are encrypted based on some old key seeds in {k0, k1, ..., kx} used
before. Therefore, TED maintains the effectiveness of deduplication by allowing
the same key seed to protect some duplicates. At the same time, the generation
of ciphertext chunks is uncertain because they come from a randomly selected
key seed (as opposed to the deterministic key generation in Equation 11).

Generally speaking, a plaintext chunk with a higher frequency will be en-
crypted into a more diverse set of ciphertext chunks, because more candidate
key seeds can be selected as f increases.
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4.5 SGXDedup

Encrypted deduplication retains the effectiveness of deduplication on en-
crypted data and is attractive to outsourced storage. However, the existing en-
crypted deduplication methods are based on expensive encryption primitives,
which can cause a significant drop in performance.

Server-assisted key management (like DupLESS [17] and TED [3]) requires
expensive encryption operations [24] to prevent the key server from knowing the
plaintext chunk and key during key generation.

Intel SGX provides a type of TEE, called a enclave, that allows data pro-
cessing and storage with confidentiality and integrity [29]. The expensive cryp-
tographic operations of encrypted deduplication can be offloaded by directly
running sensitive operations in enclaves, thereby improving the performance of
encrypted deduplication while maintaining its security, bandwidth efficiency, and
storage efficiency.

SGXDedup [30] is a high-performance SGX-based encrypted data dedupli-
cation system. SGXDedup is built on server-aided key management like Dup-
LESS [17], also using MLE key generation, but performs efficient cryptographic
operations inside enclaves. It uses source-based deduplication and Proof-of-ownership
(PoW) [31]. PoW is an encryption method that enhances source-based dedupli-
cation to prevent side channel attacks while maintaining the bandwidth savings
of source-based deduplication.

The idea is to let the SS verify that the client is indeed the owner of the
ciphertext chunk and is authorized to have full access to the ciphertext chunk.
This ensures that a malicious client cannot query the existence of other clients’
chunks. Specifically, in PoW-based source-based deduplication, the client at-
taches a PoW certificate to each fingerprint sent to the SS, and the SS can use
it to verify whether the client is the true owner of the corresponding cipher-
text chunk. The SS-only response after successful proof verification prevents any
malicious client from recognizing ciphertext chunks owned by other clients.

Figure 6 presents the architecture of SGXDedup, which has multiple clients,
a KS, a SS and two enclaves: the key enclave and the PoW enclave.
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↓

KeyGen

Key server

Multiple clients

Plaintext chunks PoW enclave

Fp Sig

Secure channel

Storage 

service
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engine

Fig. 6. SGXDedup Architeccture
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SGXDedup deploys a key enclave in the KS to manage and protect the global
secret of server-aid MLE [15], preventing a malicious or compromised KS from
leaking the secret.

In order to perform MLE key generation, the key enclave and the client first
establish a secure channel based on the shared blinded key, after that the client
submits the fingerprint of the plaintext chunk through the secure channel. The
key enclave calculates the MLE key as a cryptographic hash of the global secret
and fingerprint:

K = H(k ||P ) (15)

It then returns the MLE key through a secure channel. The key enclave
benefits both performance and security. It protects fingerprints and MLE keys
through a secure channel based on a shared blinded key, so that the key server
cannot learn any information from the MLE key generation process.

SGXDedup deploys a PoW enclave on each client to prove the authenticity
of the ciphertext chunk in source-based deduplication. The PoW enclave first
establishes a shared PoW key with the SS. SGXDedup uses Diffie-Hellman Key
Exchange (DHKE) to implement the key agreement.

After the PoW key is generated, the client encrypts each plaintext chunk into
a ciphertext chunk.

The PoW enclave takes the ciphertext chunk as input, calculates the cor-
responding fingerprint, and uses the PoW key shared with the SS to create a
fingerprint signature. Then the client uploads the fingerprint and signature to
the SS.

The SS verifies the authenticity of the fingerprint based on the corresponding
signature and PoW key.

Only when the fingerprint is authenticated, the SS will continue to check
whether the fingerprint corresponds to any duplicate ciphertext chunks that
have been stored. The client verifies the ownership of the ciphertext chunk, not
the ownership of the plaintext, to protect the original information from the SS.

SGXDedup has advantages over previous solutions [17] [3] [19], it has better
bandwidth efficiency because of the use of source-based deduplication, it has
better key generation performance due to the fact that blind fingerprints (OPRF
protocol) is replaced with ECALLs to enclaves, and better secret storing security,
since the secrets are store inside enclaves.

However, SGXDedup does not provide a mechanism to quantify the trade-off
between storage efficiency and data confidentiality, meaning that the same plain-
text will always map to the same ciphertext, making it vulnerable to frequency
analysis attacks. Moreover, since it uses source-based deduplication, the client
only uploads the non-duplicated ciphertext chunks to the cloud, meaning that
it is able to detect if deduplication occured(Deduplication Detection).

4.6 Discussion

In this section, we discuss and compare the previously present work, summa-
rize the tradeoffs that each solution offers and how their mechanisms can assist
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in achieving our goals. Table 2 presents the main aspects and mechanisms of
each solution.

Table 2. Comparison of the main characteristics of different systems and approaches
to deduplication.

System /
Approach

Deduplication
Approach

Crypto approach to
avoid key server analysis

Tunable
Key Generation

Approach

MLE Target and Source based - No CE/HCE1/HCE2/RCE

DupLESS Target-based Blinded Fingerprint No Convergent Encryption(MLE)

MinHash Target-based
Minimum fingerprint
of chunks in segment

No MinHash Encryption

TED Target-based Blinded Fingerprint Yes Probabilistic Key Generation

SGXDedup Source-based Enclaves No Convergent Encryption(MLE)

Deduplication systems and approaches that offer target-based deduplication
such as DupLESS, TED and MinHash incur in extra communication load for
uploading all the data to the server. On the contrary, source-based deduplica-
tion systems such as SGXDedup are intrinsically vulnerable to deduplication
detection from the client-side, despite the use of the enclave.

There is a visible trend in the related work by requiring the support of a key
server, as a trusted third party to support cross user deduplication by centralizing
the key generation. This solution followed by the majority of the systems [3,17,
30] requires the use of heavy cryptographic operation to avoid revealing sensitive
information, such as the chunk content, to the key server. DupLESS and TED use
the OPRF protocol [24], which can impose a significant performance overhead.
Additionally, the constant communication with the KS for the key generation of
each chunk can add significant latency and turn the KS into a bottleneck. In Li et
al. [19] they send the minimum fingerprint of the segment, as this depends on
all the chunks fingerprints inside the segment, and SGXDedup guarantees that
the KS can’t record any information since all the interaction are done between
the client and enclave.

As for quantifying the trade-off between storage efficiency and data confiden-
tiality, only TED provides a tunable mechanism, while other solutions [15,17,19]
do not offer such configurability.

The final relevant characteristic of these systems is their key generation al-
gorithm. Both DupLESS and SGXDedup rely on CE, the most secure variant of
MLE described in Section 4.1, where each chunk will always map to the same
key. MinHash also implements a deterministic key generation mechanism, how-
ever, the key depends not only on the chunk but on the whole segment, since
the key for encryption is generated based on the minimum fingerprint of the
segment chunks. Unfortunately, the use of deterministic mechanisms for the key
generation leaves these systems vulnerable to frequency analysis attacks. Finally,
TED uses probabilistic key generation, meaning that a chunk may map to dif-
ferent keys with the progression of time, hiding possible frequency patterns in
the stored data.

19



The related work aims to design storage services that offer deduplication
while protecting the data content and achieving high performance, in Table 3
we compare these systems against the possible attacks and performance metrics,
described in Section 3.3. Also, we provide an entry for what our goal system
should provide, when compared to these systems.

Table 3. Comparison of the protection against attacks and performance metrics in
different systems and approaches, where N is the number of chunks.

System /
Approach

Protection against
brute force attacks

Protection against
deduplication detection

Protection against
frequency analysis

Key generation
performance

Number of
round trips

MLE No No No High 2 * N

DupLESS Yes Yes No Low 2 * N

MinHash Yes Yes No Low 2 * N

TED Yes Yes Yes, to some degree Low 2 * N

SGXDedup Yes No No High > 2 * N

Goal System Yes Yes Yes, to some degree High N

All previous solutions [3, 17, 19, 30] have protection against brute-force at-
tacks, except MLE, this is due to the fact that all these systems and approaches
employ a dedicated KS, responsible for generating and issuing the keys for en-
crypting chunks, because of this, all clients have to interact with the KS before
encrypting a chunk and sending it to the SS. Also, the KS employs rate-limiting
tactics, which limit the number of requests in a given unit of time, making at-
tacks such as this one not practical. Our goal system should also protect itself
from brute force attacks, by using the same techniques.

Against deduplication detection attacks, DupLESS, TED and MinHash use
target-based deduplication to protect from this attack, this means that the SS
is responsible for performing deduplication on ciphertext chunks.

However, SGXDedup does not have full protection against this attack, due
to the fact that it uses source-based deduplication. A malicious client can always
observe side channels to detect if enclave (on the client-side) uploads or performs
deduplication on the desired chunk. The client can use side channels such as
measuring the network bandwidth or the response time from the enclave, and
others.

Again, our goal system should not allow anyone to detect if deduplication
occured, so the use of target-based deduplication is a must.

Probabilistic key generation ensures that only a fixed number of plaintext
chunks will be encrypted using the same key, and posterior identical plaintext
chunks will use different keys. This approach degrades storage but improves
security against frequency analysis, which is an acceptable trade-off. For this
reason, our goal system shall use the same key generation as TED, protecting
itself against frequency analysis.

Performance during key generation is also an important aspect, as stated
before, DupLESS and TED use the OPRF protocol to avoid input analysis from
the KS, which is a heavy operation. Since this operation is costly, solutions
such as SGXDedup, that use an enclave to perform sensitive criptographic op-
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erations(e.g., key generation) will have a better performance, since it does not
require heavy operations to hide client input. Our goal system will also need to
achieve such key generation performance as SGXDedup.

Finally, all the previous systems require 2 * N round trips to store informa-
tion in the SS, where N is the number of chunks. This is because the keys for
encryption must be obtained by interacting with the KS, and later, all encrypted
chunks must be sent to the SS. Even though solutions such as SGXDedup query
the SS in order to check what chunks it must send, it incurs in extra round-trips
to retrieve that information. Our system should minimize the number of round
trips.

5 Architecture

In this section we present our system architecture. Our design is inspired by
the previously presented systems and aims to achieve the goals that we set in
Section 2. Our scheme removes the dependency on a remote KS, that imposes
a constant latency overhead, by deploying a enclave directly at the SS, with
the functionality of a KS, in order to protect sensitive information from the
untrusted SS. We chose to follow the same scheme as TED, to achieve protection
from the deduplication attacks while leveraging TEEs, similarly to SGXDedup.
This strategy allows our solution to achieve a more efficient and robust storage
system supporting encrypted deduplication.

Similarly to the related work, we assume that clients/users use a cloud storage
system to store their data, they may download or upload data on demand. They
do so by establishing a secure connection with the enclave at the SS, which is
then responsible for encrypting the data and placing it in encrypted storage. The
enclave will locally choose the key to encrypt the chunks, following the protocol
proposed in TED. We now describe in more detail the operation to upload and
download a file in our scheme.
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The operation to upload a file is summarized in Figure 7. A client that wants
to upload a file F, first breaks the file into multiple chunks. It also generates a
file recipe, which lists the chunk hash and the chunk size based on the chunk
order in the file. Then, the client encrypts the file recipe with a client file key Kc
(unique for each client) and sends it to the SS. The client then sends all chunks
and the client file key to the encryption enclave. The encryption enclave will then
generate a key for each chunk, just as in TED, and encrypt each chunk with the
respective key. After all ciphertexts have been generated, the encryption enclave
creates a key recipe, which has the keys for all chunks, it encrypts the key recipe
with the client file key Kc, and stores the ciphertext chunks and the encrypted
file recipe on the SS.

To download a file (see Figure 8), a client retrieves the encrypted file recipe
and the encrypted key recipe from the SS, as well as the ciphertext chunks. It
then decrypts the key and file recipe using the client file key Kc. Finally the client
decrypts each ciphertext text chunk using the respective key, and reconstructs
the file based on the file recipe.
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Our system improves on previous solutions [17] [3] [30] by only needing one
single interaction with the encryption enclave, while in previous work they would
have as many interactions with the KS as the number of chunks, in order to
obtain the key for each chunk.

It also removes the need to perform OPRF [24] blind fingerprints to hide
input information from the key server as previous solutions [17] [3] did, since we
use an enclave to perform key generation and encryption, we trust the encryption
enclave and the code running on it, so we know that its not recording information
about user input.

Our solution is not trivial and brings a major challenge: any in-enclave ap-
plication is limited to 96 MB. If an enclave has a larger size than the EPC, it
encrypts unused pages and evicts them to the unprotected memory, suffering a
performance penalty. For this reason, our frequency table must be designed in a

22



way that accessing it does not incur in extra overhead. We will assume in a first
step that the frequency table size is able to fit inside the enclave. In a second
step, we will come up with a more scalable solution.

From what we presented before, we improve the performance, but what about
security? Attacks such as the ones mentioned in Section 3.3 have as goal the
retrieval of information about the contents stored by clients of the system. Our
system must be able to protect itself against attacks of this sort.

To protect against brute force attacks, our system shall employ rate-limiting
tactics on the encryption enclave, limiting the number of requests per unit of
time, not allowing a malicious SS to perform multiple uploads in a given unit of
time, slowing down the attack time.

As for deduplication detection attacks, we will use target-based deduplica-
tion, the client will always send the plaintext chunks to the encryption enclave.
Also, to avoid any sort of analysis (time or network) done by an attacker, the
encryption enclave will always perform encryption on all plaintext chunks. After
encrypting all plaintext chunks, it will send them to the SS storage.

Finally, to protect against frequency analysis, our system will employ the
same type of key generation as in TED [3], providing probabilistic key generation.
To that end, our encryption enclave will have a secret key used in key generation,
and also a frequency table, to keep the current count of each chunk.

6 Evaluation

To evaluate our solution, we will use similar metrics as previous works, such
as TED [3] and SGXDedup [30]. We will evaluate our system in two different
aspects: 1) performance on the process of uploading data; and 2) security against
malicious users and SSs.

Additionally, we will also use a benchmarking tool called DEDISbench [4,5].
DEDISbench is a disk I/O block-based benchmark for deduplication systems.
In DEDISbench, the data to be written is generated in a realistic fashion that
mimics the content found on real storage distributions. This is a relevant prop-
erty to have since we want to test the system in way that mimics as much as
possible real environments.

6.1 Performance

Previous solutions [17] [3] rely on a dedicated KS to generate the keys for en-
crypting chunks, but to avoid input analysis from the KS these solutions perform
an operation to hide the input. This operation is costly, it degrades performance.
In our system there is no need to hide the input from the enclave, as the en-
clave is trusted and the code running on it has been attested. To evaluate the
performance penalty, we will measure how much time our system takes from the
moment a client starts uploading a file until that file has been safely stored in
the SS.
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6.2 Security

To evaluate the security of the system, we will simulate malicious users and
storage services that try to perform each one of the attacks mentioned in Section
3.3. For brute force attacks, we will take into consideration the time it takes to
evict an user who has been trying to repeatedly upload files in a small time
window. For deduplication detection, we will create many clients who will try to
upload the same file repeatedly and analyze if there is any indicator which can tell
if deduplication occurred. Finally, for defense against frequency analysis attacks,
we will compare the effect of probabilistic key generation vs deterministic key
generation.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 14 - May 9: detailed design and implementation of the proposed
architecture, including preliminary tests.

– May 10 - June 10: perform the complete experimental evaluation of the
results.

– June 11 - July 23: write a paper describing the project.
– July 24 - September 15: finish the writing of the dissertation.
– September 15: deliver the MSc dissertation.

8 Conclusions

With the increasing growth of data in the wild, the need for online storage ser-
vices increased too. To allow the storing of duplicate data without compromising
storage efficiency, new techniques to keep storage efficiency were introduced.

Data deduplication is a technique that reduces the amount of redundant data
that is kept in a storage system. If data is already stored, it creates a pointer to
that copy of the data, instead of storing additional copies of the data.

To address user privacy, encrypted deduplication was introduced. The idea
is to combine deduplication with confidentiality, allowing users to store their
data encrypted, while allowing storage services to maintain the deduplication
capability.

There are multiple attacks that can occur in these types of systems, these
attacks have as an objective to get insight about what’s stored in the system,
and information about the user data. To solve these issues, many techniques
were used, such as dedicated key servers, rate limiting techniques, probabilistic
key generation, and enclaves.

In this work, we propose a secure way of performing encrypted deduplication
without the need of dedicated KS, while still providing a tunable mechanism
that balances the trade-off between storage efficiency and data confidentiality.
Our solution is based on Intel SGX enclaves and aims to address the limitations
of these TEEs.
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