
Modelling Adaptive Services for Distributed Systems

Liliana Rosa
IST/INESC-ID

lrosa@gsd.inesc-id.pt

Antónia Lopes
University of Lisbon

mal@di.fc.ul.pt

Luís Rodrigues
IST/INESC-ID
ler@ist.utl.pt

ABSTRACT
There exists a growing class of distributed applications that
require adaptive middleware services, i.e., services that are
able to monitor changes in the execution environment and
in the user’s requirements, reacting to these changes by
adapting their behaviour. This paper proposes modelling
primitives that allow to describe the adaptation logic of dis-
tributed applications that use reconfigurable service compo-
sitions.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Adaptive systems, context-awareness, distributed systems,
service composition

1. INTRODUCTION
Today, more and more distributed systems are required to

have the ability to operate in highly dynamic environments.
Such systems must cope with aspects such as resource vari-
ability, changes in the user’s requirements, faults and intru-
sions, etc, by dynamically self-adapting their behaviour.

Unfortunately, building adaptive distributed applications,
that monitor changes in their operational context and are
able react to those changes, is an inherently complex task.
Our work aims at reducing this complexity for distributed
systems whose adaptiveness can be achieved through the use
of adaptive middleware services. To achieve this goal, we
have developed an architecture to support the construction
of such systems. The architecture comprises general-purpose
and application-specific components. General-purpose com-
ponents are responsible for tasks such as the management
and dissemination of contextual information as well as the
adaptation management, and can be used in the construc-
tion of different adaptive applications. They interact with
application-specific components that encode the application’s

c©ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SAC 2008. To copy, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003.

adaptation logic and address issues such as which contextual
information needs to be monitored, when and how adapta-
tion must take place, and what kind of adaptation must be
performed.

In this paper, our focus is on the modelling of application
adaptability. We present modelling primitives that allow
to describe the adaptation logic of adaptive distributed ap-
plications. The role of these primitives is twofold. First,
they provide means for expressing adaptation explicitly, at
a high-level of abstraction, separated from the description
of the individual middleware services in use. This facilitates
the conception and validation of a design solution, and the
comparison between different design alternatives. Second,
they support the definition of models that can be used as the
basis for automatically obtain part of the implementation of
the architecture’s application-specific components. This fa-
cilitates significantly the construction of adaptive systems
as it contributes to the reduction of the development effort
and eases system modification and evolution.

The modelling approach that we developed considers that
the core part of an application uses a set of channels, each
offering a given quality of service (QoS). Each channel is
realized through a composition of middleware services that
can be dynamically reconfigured whenever the current com-
position is not accomplishing what it is intended to do, or
better functionality is possible. Support for describing dif-
ferent aspects of the adaptation logic, such as the user’s
preferences, the properties of the individual services, and
the relevant context information, is provided by five com-
plementary elements: service, channel, sensor, context, and
application models. Additionally, the adaptation logic mod-
elling includes a high-level policy defining when and how the
service compositions in place should be reconfigured.

In previous work, we have developed a service composition
framework that supports the implementation and execution
of such reconfigurable service compositions [16] and a con-
cretization of the architecture generic components [15]. This
infrastructure was used on the construction of prototypes of
some case studies and we applied our modelling approach
to these examples. In this paper, for illustration purpose,
we use a simplified version of a middleware application for
database replication.

This paper is organized as follows. Section 2 gives an ap-
proach overview, focusing the architecture and the example
used for illustration purposes thorough the paper. Section 3
describes the modelling approach that was developed, intro-
ducing the different kinds of models that are used. Section 4
contains a discussion of the models described in the previous



C
ontextSensor

C
ontextSensor

Node Node

Adaptation
Manager

AD

R
econfiguration

A
gent

R
econfiguration

A
gent

Application Application
Context 
Monitor

CI

SI

SS SS

Figure 1: System architecture

section. Section 5 addresses the related work and, finally,
Section 6 concludes this paper.

2. APPROACH OVERVIEW
Our approach addresses the construction of adaptive dis-

tributed systems whose adaptation logic can be separated
from the core application logic, and achieved through the
use of adaptive middleware services [12]. As argued in [10],
when an application needs to adapt it is usually not because
the core problem domain of the application has changed but
rather a non-functional requirement or behaviour of some
service within the application, such as the network commu-
nication protocol, needs to change.

An application is considered to be structured in terms of
a core application layer (or just application, for short) that
uses a fixed set of channels. Each channel is realized through
a reconfigurable composition of domain-specific and general-
purpose middleware services, as depicted in Figure 2. Adap-
tation may happen in reaction to changes in the user’s re-
quirements, which are assumed to be collected by the core
application layer, or to changes in the system operational
envelope.

2.1 Architecture
To support the construction of such adaptive systems,

we have developed the architecture sketched in Figure 1,
where we have represented the general-purpose components
by grey boxes.

In this architecture, the system has two types of com-
ponents involved in the adaptation management — local
Reconfiguration Agents and a central Adaptation Manager.
Adaptation is controlled by the Adaptation Manager, enforc-
ing the adaptation decisions communicated by an application-
specific component (AD). The adaptation manager is also
responsible for guiding the nodes during the adaptation pro-
cess, either preparing them for reconfiguration, coordinating
them, or ordering specific reconfigurations. At each node,
the Reconfiguration Agent is responsible for performing the
necessary reconfigurations of the local service compositions,
as ordered by the manager. These reconfigurations can be
achieved through the addition, removal, and exchange of
services, as well as the fine-tuning of service parameters.
Additionally, the architecture has two types of components
involved in the gathering, management, and dissemination
of contextual information — local Context Sensors and a
central Context Monitor. Context information comprises
all relevant information whose evolution can trigger adapta-
tion. This information can have different sources [4], such as

user’s preferences or devices characteristics, and is captured
by the local sensors. All captured information is concen-
trated in the context monitor. The Context Monitor keeps
all information and makes it available to an application-
specific component (CI) that interprets this information and
is able to detect the relevant changes. These changes need
to be communicated to the adaptation manager. The con-
text monitor is also responsible for informing the generic
sensor of each node about the context information that it
has to gather locally. It is an application-specific compo-
nent (SI) that defines which context information should be
collected by the generic Context Sensor in each node and
sent to the context monitor. The generic context sensor
may obtain this information from the local service composi-
tions and also from application-specific sensors (SS) locally
deployed. The need for such specific sensors depends on the
situation. For example, keeping information on the error
rates of different services, can be achieved simply through
the use of a generic sensor that collects information from all
the target services, through a request/reply approach. On
the other hand, to keep information on the available band-
width at specific intervals or CPU usage, we would need to
deploy specific sensors.

2.2 Example
For illustration purpose, we shall use a middleware solu-

tion for database replication based in the results of the GOR-
DA project [1]. The system is composed by a set of database
servers. The database is fully replicated, i.e., a replica of
the entire database exists at each server. At each server, an
application service is in charge of serving multiple remote
clients; it includes an interface with remote clients through
which SQL queries are routed. Additionally, the applica-
tion service also includes the interface with a management
console which can be used, for instance, to activate auditing
services and other management operations.

The application service uses a JDBC [13] interface to per-
form queries to the database in the Data channel. The
queries are processed by a replication service that executes
locally the transaction and, at commit time, communicates
with the remaining replicas to ensure serializability. For
that purpose, the replication uses a group communication
service implementing totally ordered atomic broadcast [2].
A description of the database consistency algorithm is out-
side the scope of this paper (the interested reader may refer
to [1]). The service composition of the Data channel may
include an optional auditing service, that can be present
at each node for performance monitoring and management.
This service role is to keep track of information regarding
the queries processed at the local server.

The application uses another channel— Control channel,
for administrative purposes, for instance, to temporarily
shutdown a replica for maintenance. The channel composi-
tion includes a management service that, among other tasks,
executes the reintegration procedure when a replica recov-
ers from a crash. The service composition is illustrated in
Figure 2.

Two different total order services are available to be used
in the service composition, namely a sequencer based total
order service and a rotating-token based total order service.
The first service offers better performance in systems with
unbalanced load, when most queries are performed by a sin-
gle node. The second service performs best in highly loaded,



O.S.

Auditing

Replication

Total Order

DB Replic. Application

Data Control

Management

Figure 2: A possible configuration of the database
replication application

well balanced systems given that it reduces the contention
in low-level resources [2].

The adaptable behaviour of the application results from
the reconfiguration of the service composition associated to
the channels used by the application. More concretely, its
adaptation logic includes rules defining that (i) the Auditing
service is added or removed from the service composition
according to the user’s preferences and (ii) the sequencer
based total order service may be replaced by the rotating-
token based total order service (and vice-versa) depending
on the observed load pattern. The next section is concerned
with the modelling of this kind of adaptive systems.

3. MODELLING ADAPTATION LOGIC
In our approach, the adaptable behaviour of a system re-

sults from the dynamic reconfiguration of the service com-
position associated to the channels used by the core layer.
To support the definition of the runtime adaptation of these
service compositions at a high-level of abstraction, we have
developed primitives for the specification of high-level adap-
tation policies. These policies allow to specify when and how
the service composition associated with each channel has to
be reconfigured in terms of a logical view of channels, ser-
vices, and service compositions. The choice of these policies
was driven by the adaptation requirements of previous sys-
tems built using the protocol composition framework [16],
as described in [14].

As shown in Figure 3, the specification of an adaptation
policy uses elements described in other models: the ser-
vice model, that provides a logical description of the ser-
vices that are available and can be used in service composi-
tions; the channel model, that provides a logical description
of the channels whose service compositions can be adapted;
the context model, that describes the context information re-
quired to define the situations in which adaptation is needed.
Additionally, modelling the adaptation logic of an applica-
tion also involves the definition of an application model and
a sensor model, as explained in the next sections.

3.1 Service Model
A service model describes the services that are available

for composition in terms of a type hierarchy, reflecting the
functionality provided by those services. As usual, this no-
tion of sub-typing subsumes the is a relationship. Moreover,
all the super-type characteristics also apply to the elements
of the subtype. Service types can be concrete, designating a
specific service for which an implementation is available, or

uses
uses uses

Application
Model

uses

Service
Model

Channel
Model

Context
Model

Sensor
Model

Adaptation
Policy

uses

Figure 3: Models for describing adaptation

abstract, representing simply the characteristics of a group
of other service types. Naturally, the service type hierarchy
can have multiple levels. Figure 4 depicts part of the ser-
vice type hierarchy for the database replication application.
In this model, TokenTOService and SequencerTOService are
concrete services, sub-types of the abstract type TotalOrder-
Service.

The service type hierarchy supports the specification of
adaptation policies in an abstract and flexible way. For in-
stance, it is possible to specify a rule that applies to any
service of a given abstract type, without concerns regarding
the concrete service used in the composition at a particular
moment in time. This is particularly important because the
concrete service may change as a result of a reconfiguration.
When an application uses multiple service compositions si-
multaneously, the type architecture also allows to specify re-
configuration rules that apply to all services of a given type,
without requiring a specific enumeration of these services.

In addition to the type hierarchy, the service model also
describes the configuration parameters of each service type
and the context information that it provides. It is consid-
ered that a service can provide context information in two
manners. One consists in maintaining context information
in its local state that can be queried, for instance, the aver-
age message load at each node. Another consists in having
the service raising an alarm event when some exception con-
dition occurs, for instance, when a replica failure is detected.
The full description of services in the service model has the
following structure:

{ abs t rac t } s e r v i c e s e r v i c eTyp e i s
subtypeOf [ s e r v i c eTyp e ]∗
parameters [ p a r ame t e rS i gna tu r e ]∗
que r i e s [ q u e r yS i g n a t u r e ]∗
t raps [ trapName [ a t t r i bu teName ; type ] ∗ ] ∗

For instance, the Total Order is an abstract service that
could be described as follows:

abs t rac t s e r v i c e To t a lO r d e r S e r v i c e i s
subtypeOf S e r v i c e
parameters f a i l u r eD e t e c t i o nT imeou t : long ,

r e t r a n sm i s s i o nT imeou t : l ong
t raps noConnect ion

s e r v i c e R e p l i c a t i o n S e r v i c e i s
subtypeOf S e r v i c e
que r i e s s e r v i c e L o a d : i n t

This service model fragment describes that the TotalOrder
abstract service has two configurable parameters – failure-
DetectionTimeout and retransmissionTimeout, and throws
the noConnection trap when connectivity is lost. From this
incurs that both SequencerTO and TokenTO services will
also have these parameters and trap. In our example, the
service model also describes that the Replication service of-
fers a possible query to the sensed information serviceLoad,



given in terms of the number of SQL queries processed in a
fixed time interval.

3.2 Channel Model
As discussed in Section 2, in our approach, the connection

between the application and service layers relies uniquely on
the notion of channel. At runtime, a channel is associated
with a stack of service instances that process the information
sent by the application, and produce and deliver information
to the application. Typically, as illustrated in Figure 2, at
the bottom of the stack, there is an interface to the operating
system level services. For instance, a stack of services may
send and receive messages using a socket interface, or save
data in the persistent store using the file system interface.

As illustrated by our example, an application may use
multiple channels simultaneously, each one for a different
purpose, i.e., a different QoS. In order to support the spec-
ification of the reconfiguration actions scope, in a flexible
manner, channels are described in a channel model also in
terms of a hierarchy of types defining a subtype relation-
ship. To some extend, the channel types in this hierarchy
reflect the types of QoS that are expected from the channel
instances.

Figure 4 depicts the hierarchy defined by the channel
model developed for the example. The possibility of defin-
ing QoS at different levels of abstraction, allows to describe
adaptation policies that are reusable across different sys-
tems. Naturally, the importance of this model becomes more
clear with examples that have richer hierarchies.

3.3 Application Model
The application model is quite simple and mainly describes

the concrete channels that are used by the application and
their type. If the application captures user-defined prefer-
ences and these preferences need to be passed to the service
layer, the application model also defines how this context
information is provided and where. Changes in the rele-
vant user-defined preferences are modelled as context traps,
raised by the application, and sent through the channels
where they are relevant. The description of an application
in the application model has the following structure:

use channel channelName : channe lType
t raps [ trapname [ a t t r i bu teName : type ] ∗ ] ∗

Our database replication application, which uses two dif-
ferent channels, is described by the application model pre-
sented below. The channel Data is of type DataChannel
and the channel Control of type ControlChannel. The ac-
tivation/deactivation of the auditing service is triggered by
the user’s preferences that are passed to the service layer by
the traps auditingOn and auditingOff in the channel Data.
This is described as follows:

use channel Data : DataChannel
t raps
aud i t i ngOn
a u d i t i n gO f f

use channel Con t r o l : Con t ro lChanne l

3.4 Sensor and Context Model
Another important element of the adaptation logic is the

context definition, i.e., the surrounding environment charac-
teristics, determinant to the system behaviour. These char-
acteristics need to be sensed and, to be used as context

information, the captured data has to be abstracted. The
role of the sensor and context models is, precisely, to define
these two aspects.

In our approach, the description of context information
relies on two types of mechanisms: observables and events.
Observables model the context information part that is kept
in the context monitor state, while events are indications
of asynchronous changes in the context. Events can carry
extra information, as the identity of the node that raised the
event.
Sensor Model. This model consists of a set of observables
and events, modelling context information that needs to be
provided to the context monitor by appropriated sensors.
This context information is often obtained from the services
in compositions, through queries and traps. Observables
and events are described as follows:

observab le r e tu rnType accessName ( [ paramete r
] ∗ )

[ p e r i o d i c a l l y : number ]∗
event eventName

[ a t t r i bu teName : r e tu rnType ]∗

Observables have a return value and may also have one
or more parameters. The observable definition may indicate
that periodical capture is required, with a certain sampling
time (for instance, through the query of a sensor that has
that information). Events may have attributes, carrying
different types of information. In the database replication
example, the sensor model declares events representing the
change in the user’s preferences regarding the auditing ser-
vice and defines an observable representing the service load.
Recall that this information is declared to be sensed by the
Replication service, in a periodic manner. Hence, if we en-
sure that this service is always present in the service com-
position, we can be sure that the solution does not require
any specific sensor for sensing this information.

observab le i n t s e r v i c e L o ad ( node Id )
p e r i o d i c a l l y : TIME

Context Model. This model consists of a set of observ-
ables and events modelling context information that is pro-
vided by the context monitor to the adaptation manager and
that can be used in the definition of the adaptation policy.
Typically, this kind of information is obtained by interpret-
ing, combining, and/or constraining information obtained
from different sources. This information is produced from
the sensed context information through a number of com-
putations. It can be described as follows:

observab le r e tu rnType accessName ( [ paramete r
] ∗ )

[ p e r i o d i c a l l y : number ]∗
exp r e s s i onOfRe tu rnType

event eventName
[ a t t r i bu teName : type ]∗
[when [ c o n d i t i o n ]
with [ a t t r i bu teName=exp re s s i onOfType ] ∗ ] ∗

The definition of an observable includes an expression de-
scribing how its value is calculated from other observables
and/or events, namely, those defined in the sensor model.
An event definition includes at least one pair of when and
with clauses. The when clause allows to express what is
the condition, expressed in terms of other events or changes
in other observables, that once evaluated to true, triggers



Channel

DataChannel

Service

TotalOrderService

TokenTOService SequencerTOService ManagementService

AuditingService
ControlChannel

Figure 4: Service and channel hierarchies for the database replication application

the event publishing. Through the with clause it is possi-
ble to express the values of each event’s attribute. These
values can, for instance, be inherited from other events or
calculated using observables. Below, we present a fragment
of the context model of our running example declaring two
observables and three events.

observab le i n t AverageLoad ( )
p e r i o d i c a l l y : TIME

(SUM i : Nodes ( ) s e r v i c e L o ad ( i ) ) /
Nodes ( ) . l e n g t h ( )

observab le i n t NumbOverloadedNodes ( )
p e r i o d i c a l l y : 2xTIME

COUNT i : Nodes ( ) | s e r v i c e L o a d ( i )>
( AverageLoad ( )+LIMIT)

event S ing l eNodeOve r l oaded
i d : node Id
when NumbOverloadedNodes ( )==1
with i d=i : Nodes ( ) | s e r v i c e L o a d ( i )>

( AverageLoad ( )+LIMIT)

event NoSing leNodeOver loaded
when NumbOverloadedNodes ( ) !=1

event Aud i t i ngP r e f e r enc eChange
i d : nodeId , withAud : boo l
when aud i t i ngOn with i d=aud i t i n gOn . i d

withAud=t r u e
when a u d i t i n gO f f with i d=a u d i t i n g O f f . i d

withAud=f a l s e

The logical architecture of the service compositions asso-
ciated with channels is an important information that, in
most of the applications, needs to be taken into account
while specifying adaptation. For this reason, this informa-
tion is considered to be part of any system context infor-
mation and, hence, is provided by the infrastructure. In
this way, in addition to application-specific sensed events
and observables, every context model includes some built-
in observables capturing the logical structure of the current
service compositions. For instance, it includes observable
bool hasService(ServiceType,ChannelType,nodeId), that al-
lows to know if a certain service type is present in the service
composition of a channel type in a given node. Every ser-
vice composition is associated to a specific node. The list of
nodes with service compositions is also a built-in observable,
accessed as Nodes().

3.5 Adaptation Policy
An adaptation policy defines when adaptation should be

performed, how the application should be adapted, and what
to adapt, i.e., which are the adaptation targets [6]. This de-
scription can be achieved by a set of rules, described us-
ing a policy specification language [14]. Each rule follows

an event-condition-action (ECA) [11] style, specifying the
events that trigger the rule, the conditions that must ap-
ply to activate the rule, and the reconfiguration actions to
be applied. All the elements needed to specify these rules
are defined by the previous models.

More concretely, in each rule, the conditions that trigger
the adaptation are expressed in terms of context information
produced by the context monitor. The elements defined in
the context model are used to refer context changes. The
adaptation to be carried out, when the rule is triggered, is
expressed in terms of a number of actions that can be per-
formed on the current service compositions. The reconfigu-
ration actions available are: tuning parameters that change
the behaviour of a service and add, remove, or replace an
ordered set of services by another one. Finally, the adapta-
tion target expresses which nodes, services, and channels of
the distributed application should be affected by the recon-
figuration actions, in what is called action scope. This scope
is specified in terms of the target elements defined in service
and channel models.

An adaptation policy is a set of rules that define all cir-
cumstances that require adaptation and the corrective ac-
tion to be taken. Each rule has the following general syntax:

When t r i g g e r C o n d i t i o n
[ With s t a t eC o n d i t i o n ]
Do { r e c o n f i g u r a t i o nA c t i o n

[Where nodeScope ]
[ For s e r v i c e S c o p e ]
[ Apply compos i t i onScope ]}+

The triggerCondition is a context model defined event and
specifies when the rule is triggered. The stateCondition is a
function of one or more context model defined observables
that specify the conditions that need to be satisfied so that
the rule can be applied. Each reconfigurationAction has a
scope composed of a node scope (defining the target nodes),
a service scope (determining the target services using the
types defined in the service model), and a channel scope
(describing the target channels using the hierarchy on the
channel model). The scopes are optional and, by default,
an action is considered to target all nodes/services/compo-
sitions. In the database replication example, the adaptation
policy includes the following rules:

When S ing l eNodeOve r l oaded
With ! h a s S e r v i c e ( SequencerTOServ ice ,

DataChannel , S i n g l eNodeOve r l o ad ed . i d )
Do c h ang eS e r v i c e s ( [ SequencerTOServ ice ] )

For To t a lO r d e r S e r v i c e

When S ing l eNodeOve r l oaded
With ! i s S e qu en c e r ( S i n g l eNodeOve r l o ad ed . i d )
Do s e tPa ramete r ( s e tSequence r ,

S i n g l eNodeOve r l o ad ed . i d )
For SequencerTOServ ice



When Aud i t i ngP r e f e r enc eChange &&
Aud i t i ngP re f e r enceChange .w i thAud

With ! h a s S e r v i c e ( Aud i t i n gS e r v i c e ,
DataChannel ,
Aud i t i n gP r e f e r e n c eChang e . i d )

Do addS e r v i c e s ( [ A u d i t i n g S e r v i c e ] , above )
Where Aud i t i n gP r e f e r e n c eChang e . i d
For R e p l i c a t i o n S e r v i c e
Apply DataChannel

The first rule states that, when a SingleNodeOverloaded
event occurs, if the TotalOrderService is in place, it must be
exchanged by a SequencerTotalOrder. Moreover, the new
service parameter setSequencer has to be set to the node
id with highest load, carried by the trigger. The second
rule states that, when a trigger AuditingPreferenceChange
event occurs, if the node does not have the Auditing ser-
vice already active, it is added to the Data channel, above
the service with type Replication in the composition. For
more details on the policy specification language, please re-
fer to [14].

4. DISCUSSION
In this paper, we addressed the modelling of adaptive mid-

dleware services for distributed systems. Having adopted an
infrastructured-centred view of adaptive systems construc-
tion, we focused on the definition of modelling primitives
that allow developers to represent the adaptation logic of
an adaptive distributed system at a high-level abstraction.

As shown, the adoption of appropriate abstractions of the
involved elements, permits the formulation of general rules
for adaptation at the structural and behavioural level of ser-
vice compositions. Furthermore, these rules are amenable to
different kinds of analysis useful in the validation of design
solutions. For instance, the analysis of dependencies be-
tween different aspects of the adaptation may lead to the
detection of conflicts that invalidate a solution. Similarly,
the analysis of the set of reachable service compositions may
lead to the detection of situations in which context informa-
tion that is supposed to be collected from a service compo-
sition is not provided by any of its elements (for instance,
because it is possible to reach a state in which the single
service that may provide that information is absent).

Adaptation models are abstract representations, for which
concrete implementations have to be developed. The fact
that the proposed models are tailored to a specific architec-
ture makes them particularly useful during the construction
of implementations. They help developers to build imple-
mentations that are consistent with what was designed, in
two different ways. On the one hand, the channel, service,
and application models explicitly state what is expected
from each channel (QoS), from each service (configurable
parameters and sensed information), and from the applica-
tion layer (used channels and user’s requirements that need
to be delivered to the service layer). On the other hand, the
context and sensor models and the adaptation policy can
be used as the basis for automatically generating some of
the infrastructure-specific code that realizes the described
adaptation logic (components CI and AD of Figure 1).

Techniques for supporting this model-driven process are
currently being investigated and, hence, our experience us-
ing these models in the development of case studies is limited
to the first aspect. We applied our modelling approach to

some case studies for which prototype implementations us-
ing RAppia [16] were developed and we found it significantly
helped to understand the problem, conceive and validate so-
lutions and, subsequently, it contributed to the reduction of
system development and implementation time.

5. RELATED WORK
There is a large amount of work devoted to the develop-

ment of frameworks and middleware infrastructures to facil-
itate the implementation of adaptive systems [10, 8, 18, 7,
5, 6]. There are architecture-based adaptation frameworks
such as Rainbow [8], whose main goal is to be general pur-
pose, applicable to a wide variety of systems with different
architecture styles. Rainbow incorporates mechanisms to
monitor and adapt systems to surrounding changes, mainly
aims at providing a reusable infrastructure, with specializa-
tion mechanisms to fill in any particular needs. Being an
approach that aims at a broaden applicability, the set of
tailorable parts that need to be customized or even devel-
oped from scratch still requires some effort. In contrast, our
approach relies on a more tight architecture, with a strong
structure, but demanding less effort to address specific ap-
plication’s needs in a way that is consistent with what was
designed and previously validated.

In the context of composition frameworks, support for
adaptation has already been addressed, namely in Ensem-
ble [17] and Cactus [5]. However, they focus more on the
mechanisms to support protocol composition and reconfigu-
ration, than on the models that allow to capture the adap-
tive properties of the protocols with high-level abstractions.

In most of the existing approaches, modelling of the adap-
tation logic is not addressed; it is simply programmed, even
with high-level models describing the components’ informa-
tion and interconnection [3]. As far as modelling techniques
for adaptive systems are concerned, the approach presented
in [9] is the most closed related to ours. In this approach, ap-
plication adaptability can be addressed at high levels of ab-
straction through infrastructure-independent models, which
can be transformed into code for a specific infrastructure us-
ing appropriated tools. Because the approach is component-
based, the proposed abstractions for modelling application
adaptability are not suitable for expressing the adaptation
logic of systems with the structure of those that our ap-
proach targets.

6. CONCLUSIONS
This paper addresses the modelling of adaptive middle-

ware services for distributed systems. We propose mod-
elling primitives that aim at reducing the complexity and
effort required for developing adaptive distributed systems.
These primitives have several advantages: i) they allow to
describe the application-specific adaptation logic using high-
level constructs; ii) they provide the basis to perform the au-
tomatic generation of the application-specific components;
and iii) they allow to facilitate the evaluation and valida-
tion of design solutions. We have illustrated the expressive-
ness of our primitives in the context of building an adaptive
middleware solution for database replication.

7. ACKNOWLEDGMENTS
This work was partially funded by FCT project MICAS

(POSI/EIA/60692/2004) through POSI and FEDER.



8. REFERENCES
[1] Undisclosed for double-blind review purposes.

[2] Undisclosed for double-blind review purposes.

[3] T. Batista and N. Rodriguez. Dynamic reconfiguration
of component-based applications. In PDSE ’00:
Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed
Systems, pages 32–40, Washington, DC, USA, 2000.
IEEE Computer Society.

[4] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical report, Hanover,
NH, USA, 2000.

[5] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting.
Constructing adaptive software in distributed systems.
In ICDCS ’01: Proceedings of the The 21st
International Conference on Distributed Computing
Systems, pages 635–643, Washington, DC, USA, 2001.
IEEE Computer Society.

[6] F. J. da Silva e Silva, F. Kon, J. Yoder, and
R. Johnson. A pattern language for adaptive
distributed systems. In SugarLoafPLoP’2005:
Proceedings of the 5th Latin American Conference on
Pattern Languages of Programming, pages 19–48,
2005.

[7] P.-C. David and T. Ledoux. An infrastructure for
adaptable middleware. In On the Move to Meaningful
Internet Systems, 2002 - DOA/CoopIS/ODBASE
2002 Confederated International Conferences DOA,
CoopIS and ODBASE 2002, pages 773–790, London,
UK, 2002. Springer-Verlag.

[8] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

[9] K. Geihs, M. U. Khan, R. Reichle, A. Solberg,
S. Hallsteinsen, and S. Merral. Modeling of
component-based adaptive distributed applications. In
SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 718–722, New York, NY,
USA, 2006. ACM Press.

[10] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework. In
POLICY ’03: Proceedings of the 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks, pages 3–14, Washington, DC,
USA, 2003. IEEE Computer Society.

[11] D. McCarthy and U. Dayal. The architecture of an
active database management system. In SIGMOD ’89:
Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, pages 215–224,
New York, NY, USA, 1989. ACM Press.

[12] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. C. Cheng. A taxonomy of compositional
adaptation. Technical Report MSU-CSE-04-17,
Department of Computer Science, Michigan State
University, East Lansing, Michigan, May 2004.

[13] G. Reese. Database programming with JDBC and
JAVA. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 1997.

[14] L. Rosa, A. Lopes, and L. Rodrigues. Policy-driven
adaptation of protocol stacks. In ICAS ’06:
Proceedings of the International Conference on

Autonomic and Autonomous Systems, pages 5–12,
Washington, DC, USA, 2006. IEEE Computer Society.

[15] L. Rosa, A. Lopes, and L. Rodrigues. A framework to
support multiple reconfiguration strategies. In
Autonomics’07: Proceedings of the International
Conference on Autonomic Computing and
Communication Systems, page to appear, Washington,
DC, USA, 2007. IEEE Computer Society.

[16] L. Rosa, L. Rodrigues, and A. Lopes. Appia to
R-Appia: Refactoring a protocol composition
framework for dynamic reconfiguration. DI/FCUL TR
07–4, Department of Informatics, University of
Lisbon, March 2007.

[17] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using
ensemble. Softw. Pract. Exper., 28(9):963–979, 1998.

[18] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz,
and D. Bakken. Quo’s runtime support for quality of
service in distributed objects. In Proceedings of the
IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware’98), pages 207–222, London, UK, 1998.
Springer.


