
Policy-Driven Adaptation of Protocol Stacks∗

Liliana Rosa, Antónia Lopes, and Lúıs Rodrigues
University of Lisbon

lrosa@lasige.di.fc.ul.pt {mal,ler}@di.fc.ul.pt

October 5, 2010

Abstract

Today’s mobile applications need to execute in a wide range of het-
erogeneous devices, that operate in different conditions. In this context,
dynamic adaptation of the underlying communication support is funda-
mental to achieve adequate performance. We address the problem of sup-
porting dynamic adaptation of communication protocol stacks through a
policy-oriented approach, which promotes the separation of adaptation
from protocol logic. In this paper, we provide an approach overview,
and focus on the policy language and modeling primitives that allow to
capture the adaptation requirements identified from the experience with
Appia framework.

1 Introduction
Mobile applications are required to operate in highly dynamic settings, where
the resources available to the application, such as battery power, processing ca-
pacity, network bandwidth, among others, change dramatically in runtime. To
offer good performance in such an environment there are several requirements:
dynamic resource management, negotiation of communication protocols and the
ability to change applications’ behavior during runtime in response to environ-
ment changes. This cannot be achieved with static reconfiguration approaches
or exclusively via offline performance tuning of the application and communi-
cation code. Dynamic adaptation succeeds in giving answer to such demands
offering the possibility of applications and communications protocols react to
changes in the environment, without interruption of vital services.

In these environments performance can be improved by using different pro-
tocol stacks, tailored to the current conditions. Given that, a protocol stack is

∗Selected portions of this report have been published in the Proceedings of the IEEE Self-
adaptability and self-management of context-aware systems workshop (SELF), Santa Clara
(CA), USA, July 2006. This work was partially funded by LaSIGE and by FCT project MICAS
– Middleware for Context-aware and Adaptive Systems – POSI/EIA/60692/2004 through
POSI and FEDER. We also have to thank to MiNEMA - Middleware for Network Eccentric
and Mobile Applications, an European Science Foundation (ESF) Scientific Programme.

C
ontext sensors

R
econfiguration A

gent

Application
Protocol

Composition

C
ontext sensors

R
econfiguration A

gent

Application
Protocol

Composition

Context
Monitor

Policy
Specification

Reconfiguration Manager

NodeNodeAdaptation Manager

Figure 1: System architecture

a composition of protocols offering a specific quality of service, it is fundamen-
tal to have the ability to dynamically adapt the protocol stack in reaction to
changes in the environment, offering the best quality of service possible.

Often, the adaptation logic is hard-coded in the implementation, entangled
with the application or protocol logic. However, it is hard or even impossible to
reason about the adaptation logic, reuse it in different contexts and tune it at
runtime. Therefore, we adopted a policy-driven approach where the adaptation
logic is described through high-level policies, decoupled from the protocol logic.

The adoption of a policy-driven approach has many advantages. It facilitates
the development of adaptive software. By expressing adaptation in a high-
level language, one is not required to understand every detail of the protocol
implementation when defining or reading a given policy. In addition, it is easier
to analyze the dependencies between different aspects of the adaptation and
detect potential conflicts. Moreover, by separating adaptation from the protocol
logic one opens the door to reuse of adaptation strategies in different contexts.
Finally, the level of decoupling achieved with this approach makes easier to
support the change in the adaptation logic during runtime, without requiring
the system to be recompiled and redeployed.

We developed a framework for policy-driven adaptation of communication
protocols. In this paper, we focus on the policy language and on the specific
modeling primitives that allow designers to have fine-grain control on how the
protocol stacks should be reconfigured.

2 Approach
Our approach assumes that the system is composed by a set of nodes. In each
node, communication is supported by a protocol composition. Each protocol
composition includes one or more communication channels. Each channel offers
a quality of service that is implemented by a (potentially different) stack of
protocols in each node. Our goal is to support dynamic adaptation of the
protocol stacks.

In our approach, as illustrated in Figure 1, a centralized adaptation manager
controls the adaptation, fulfilling a given adaptation policy. All the context in-
formation required by the adaptation manager to enforce the adaptation policy
is provided by a context monitor. This monitor collects and processes con-
text information from each node that participates in the distributed application

through a set of context sensors executing at each node; sensors acquire the rel-
evant local information and disseminate it to the monitor. The context monitor
provides two complementary interfaces to the adaptation manager: an event-
based interface, that allows the context monitor to notify the adaptation man-
ager whenever a relevant context change occurs. And a query-based interface,
that allows the adaptation manager to read context information on-demand.

Whenever a change in the protocol composition of one or more nodes is
required, the adaptation manager controls the reconfiguration through coordi-
nation with reconfiguration agents executing at each node.

Naturally, our approach requires the runtime system to support dynamic
reconfiguration of the protocol composition that executes at each node. For that
purpose our work capitalizes on the reconfiguration capabilities of the Appia [8]
protocol specification, composition, and execution framework that is introduced
in the next paragraphs.
Appia Framework. The Appia framework supports implementation and exe-
cution of modular protocol compositions. Each module is a protocol, responsible
for providing a particular service. A session is a protocol instance which main-
tains the protocol state.

A stack of protocols is called a quality of service (QoS) as it defines a set
of properties to be enforced on the message flow. Each channel used by an
application is associated with an instantiation of a QoS, i.e., a stack of sessions
of the corresponding protocols. Each node in an Appia composition can offer
more than one quality of service, therefore, a node can have more than one
channel running. Also sessions can be shared by different channels in the same
node.

Sessions interact through the exchange of events. Events are typed and each
protocol is responsible for declaring which types of events the corresponding
sessions require, accept and produce. This information allows the Appia runtime
system to optimize the flow of events in the stack.

The Appia composition model allows the designer to define rich communi-
cation services based on a library of protocols. Currently, the Appia library
includes more than forty protocols. However, the ability to specify multiple
compositions does not, per se, support the dynamic reconfiguration of the pro-
tocol stacks. To make such reconfiguration possible, on the one hand, control
agents are being currently developed for Appia [9] that perform tasks such as: i)
to ensure that each channel affected by the reconfiguration reaches a quiescent
state before reconfiguration takes place; ii) to capture the relevant state that
needs to be carried to the new configuration; iii) to deploy the new protocols
stacks; iv) to install the state carried from the previous configuration and; v) to
coordinate with the adaptation manager and other nodes whenever necessary.
On the other hand, we developed a language for expressing adaptation poli-
cies at a high-level of abstraction defined over a logical view of protocol stacks.
Components are able to carry out the reconfiguration actions dictated by these
policies are also currently being developed. The adaptation policy language is
the main focus of this paper.

3 Adaptation Requirements
When using Appia, protocol stack reconfiguration can be achieved by chang-
ing the local state of one or more sessions (typically, protocol parameters), by
adding, removing or exchanging protocols of the QoS associated with a channel,
or by changing the whole QoS.

In order to identify the relevant modeling primitives for our policy language,
we have made an effort to capture the adaptation requirements of previous
systems built using the Appia framework. Appia has been used to support a
wide range of applications: multi-user object-oriented environments, distributed
real-time games, collaborative mobile application, and database replication [12,
11, 9, 5]. This experience allowed to identify the following needs.

3.1 Changing Protocol Parameters
The change of protocol parameters is a common way of achieving runtime re-
configuration of system’s behavior. This kind of change in the behavior of the
system is useful for tuning the protocols to specific network’s characteristics, for
instance, workload, bandwidth, error rate, among others. Many Appia proto-
cols include a set of parameters that can be adjusted at runtime. For example,
with a high workload, increasing protocol’s timeout parameter avoids a network
overflow with retransmissions. Other examples of protocol parameters that of-
ten need to be changed at runtime are the maximum number of retransmissions,
and the frame size (for message fragmentation and reassembly).

The relevant information that triggers this adaptation can be originated by
either the network or other environment elements. For instance, the need to
reconfigure may be due to changes perceived in a device (e.g., battery power
or the use of a wired/wireless connection). Moreover, the changes that require
reconfiguration of protocol parameters can be local to a node, a group of nodes,
or global. Local changes usually affect only those nodes where the change was
perceived. Hence, is important to provide means to define the topological scope
of reconfiguration applicability.

In addition, different protocols may have common configuration parameters,
being necessary to specify the affected protocols. These target protocols are
defined through a protocol scope. Besides, since each node can have several
channels, it is also necessary to specify the affected channels. This is done
through a channel scope.

3.2 Changing a QoS
We identified three patterns for changing a QoS in Appia stacks: replace a
protocol by another; add/remove a single protocol to a QoS; and replace a QoS
by an alternative QoS.

The first pattern is used when one wants to replace an implementation of
a given protocol by another. For instance, Appia offers at least four different
implementations of a total order protocol [1]. Each implementation is optimized
for a specific load/network topology.

The second pattern, where a single protocol is added or removed from a
QoS, has been used for logging and debugging purposes. Appia includes a set

of protocols that can log, delay, or reorder events that are exchanged in the
stack, and are used for debugging communication protocols. These protocols
can be added or removed from a stack without requiring any modification of the
remaining ones. Their functionality naturally depends on the position in which
they are placed. For instance, an event logging protocol can be added in several
positions. The higher is the position in the stack, the lower is the number of
events it will record, thus positioning must be defined when adding a protocol.
Additional guaranties as encryption or validation can also be achieved through
the addition of appropriate protocols.

The third pattern, to replace the QoS associated with a channel by a new
QoS, is typically needed when there is a significant change in the operational
conditions that requires changes in a large number of protocols. Similarly to
changing parameters, the change of a QoS can be limited to specific target
nodes.

Experience also demonstrated that triggering of this reconfiguration type is
commonly due to change not only on the environment but also on the state of
the application. For example, a change in a network trust level will affect all
network nodes by adding message encryption service, while a change in a node’s
trust level will add verification guaranties to that node only. This requires
the use of application-dependent sensors that monitor specific aspects of the
application state. These sensors supply the required contextual information to
the context monitor.

4 Adaptation Policies
We now describe the primitives we have developed for the specification of adap-
tation policies. These primitives allow to specify adaptation policies in terms
of a logical view of protocol stacks. They were developed taking into account
the requirements identified in the previous section and assuming the system
architecture introduced in Section 2.

Policies are defined by sets of adaptation rules. The formulation of adapta-
tion rules is inspired by Event-Condition-Action rules [7], a generic mechanism
able to abstract a wide variety of reactive behaviors particularly suited to de-
scribe dynamic reconfiguration (e.g., [6, 10]). An adaptation rule has the general
syntax:

WHEN triggerCondition

[WITH stateCondition]

DO

{reconfigurationAction

[WHERE topologicalScope]

[FOR protocolScope][APPLY channelScope]}+

The triggerCondition is an event expression and specifies when the rule is
triggered. The stateCondition determines the conditions in which the given
reconfigurationActions are fired. Each reconfigurationAction has a topological
scope(defining the target nodes), a protocol scope(determining the target ses-
sions), and a channel scope(describing the target channels). The scopes are

optional and, by default, an action is considered to target all nodes/protocol-
s/channels.

4.1 Context Models
The definition of an adaptation policy is conditioned by the kind of contextual
information that is sensed and how it is made available to the rest of the system,
namely to the adaptation manager. This is defined through, what we call, a
context model. A context model defines at a high-level of abstraction what is
sensed by the context monitor and how the sensed data is abstracted. This
encompasses the definition of the two interfaces offered by the context monitor
to the adaptation manager that were mentioned in Section 2: an event-based
interface and a query-based interface. The first interface defines which events
are published by the context monitor, the kind of data carried by each event,
and how we can gain access to this data. The second interface defines the
observables through which is possible to gain access to contextual data and the
operations through which it is possible to manipulate this data. We consider
that primitive types s.a. int and bool are built-in as well as the usual operators
over these types. Moreover, we also assume the existence of a primitive type
NodeId, representing network nodes and a type Set(NodeId), denoting a set of
nodes.

A context model may define, for instance, that (1) the bandwidth in each
node is monitored and made available as an integer through the operation get-
Bandwidth(nodeId); (2) whenever a significant change of this resource is per-
ceived, it is published an instance of the event BandwidthEvent with attributes
value:double and node:NodeId carrying the information about the new value
of the bandwidth and the identification of the node, respectively; (3) JoinN-
odeEvent is published when a node joins the network.

4.2 When
The When part is mandatory and consists of a triggerCondition, describing
which events trigger the rule. In fact, triggerCondition is an event expression
of the form

event: condition {or event:condition}+

where the condition concerns the data carried by the corresponding event. In
this way, it is possible to filter event instances that are not relevant as well as
specify that instances of different events may trigger the same rule.

Consider, for instance, the following declaration.
WHEN BandwidthEvent: BandwidthEvent.value < MIN

or JoinNodeEvent

It describes that both the occurrence of BandwidthEvent or JoinNodeEvent may
trigger the underlying rule. In the first case, the rule will only be triggered if
bandwidth is less than MIN (a constant value). In the second case no other
evaluations are required.

4.3 With
Under With label it is stated in which conditions the underlying reconfiguration
actions should be fired. These are boolean expressions over the state of the
system and its environment made available by the context monitor as defined
in the underlying context model. They complement the conditions on the event
attributes expressed with the When primitive. Once the rule is triggered, with-
conditions are evaluated to determine if it is necessary to react or not. When
these conditions evaluate to true, we say that the rule is activated. This clause
can be omitted, meaning that rule triggering always results in firing of its set of
actions.

The following example illustrates the use of the With declaration, assuming
a context model including the definition of a type Network with attributes
numberOfNodes and numberOfWiredNodes. This means that this information is
maintained by the context monitor and that their state is kept updated through
relevant sensors and event filters.

WITH Network.numberOfNodes () >10 &&
Network.numberOfWiredNodes () >3

This example describes a composite constraint on the context state. It states
that the underlying action would be fired only if, in the current state, the system
has at least ten nodes and at least three of them are wired.

4.4 Do
Do declaration determines the group of elementary actions that have to be
performed when the rule is activated. The definition of this group is twofold.
On the one hand, we can define a sequence of actions, knowing that the order
will be followed by the adaptation manager. The execution of each action may
require the coordination with the reconfiguration agents in one or multiple nodes
of the system. On the other hand, each of these actions can be composed in the
sense that it involves the execution of a set of elementary actions, for which no
execution order is guaranteed.

Elementary actions available for adapting the system will be described in
detail in the next subsection. Each action has a scope of applicability defined
by a topological, protocol and a channel scope. The topological scope concerns
the target nodes of the action and it is described under Where label, by an
expression with type Set(NodeId). The channel scope concerns the channels that
can be affected by the action and is defined, under Apply label, by a channel
expression. The protocol scope concerns the target sessions and is defined, under
For label, by a session expression. Session expressions are defined in terms of
protocol and channel expressions as described in the next paragraphs.

The specification of protocol and channel scopes relies on grouping protocols
and channels according to their functionalities. To do so, we assume fixed hier-
archies of protocol types and of channel types [2] defining a subtype relationship
and also identifying those that are abstract types. These hierarchies are domain
dependent, in the sense that applications with different domains may require
different hierarchies, but are subject to some constraints.

Protocol types can represent concrete, such as TCP communication protocol,
or abstract protocols, such as Transport protocol (Figure 2). The root of the
hierarchy is fixed and defined by the abstract type Protocol (every other protocol
type is a subtype of Protocol) and a protocol type may be a subtype of more
than one type. Channel types may also represent concrete or abstract channels.
A fragment of a channel hierarchy is depicted in Figure 3. The root of a channel
hierarchy is always the abstract channel type Channel.

Protocol and channel expressions are defined in terms of the elements of the
underlying type hierarchy, according to the follow syntax:
TypeExp := ♦Type | Type |

TypeExp and TypeExp |
TypeExp or TypeExp

A TypeExp denotes a set of types. More concretely, ♦Type denotes the
singleton set with the type Type; Type denotes those types in the hierarchy
that are subtypes of Type (including itself); TypeExp and TypeExp denotes the
intersection of the corresponding sets; and TypeExp or TypeExp denotes the
union of both sets.

TransportProtocol

Protocol

TCPTranspProtocolUDPTranspProtocol

FragmentationProtocol

. . .

Figure 2: A fragment of a protocol type hierarchy.

AudioChannel

Channel

VoiceChannelControlChannel

DataChannel

. . .

Figure 3: A fragment of a channel type hierarchy
Session expressions are defined in terms of protocol and channel expressions

as follows.
SessionExp :=

ProtocolTypeExp | ChannelTypeExp |
SessionExp below ProtocolTypeExp |
SessionExp above ProtocolTypeExp |
SessionExp and SessionExp |
SessionExp or SessionExp

A SessionExp denotes a set of sessions in use in a particular instant of
time. Session expressions allow to select sessions by their protocol type, the

channels to which they belong, and their relative position in a channel QoS. More
concretely: (1) the first expression denotes the set of sessions that are instances
of a protocol type in ProtocolTypeExp; (2) the second expression denotes the set
of sessions that belong to a channel with a type in ChannelTypeExp; (3) the third
expression denotes the set of sessions in SessionExp that, in some channel, are
immediately below a session that is an instance of ProtocolType (and similarly
for the expression with above); (4) SessionExp and SessionExp denotes the
intersection of the corresponding sets and (5) SessionExp or SessionExp denotes
their union.

When dealing with shared sessions, performing actions can be problematic:
an action that targets a session of a given channel has side effects on the other
channels that share that session. The channel scope of an action supports the
explicit definition of the channels that can be affected by an action.

We present below an example of a rule body. When the rule is activated,
the two actions are executed in sequence: action1 targets the wired nodes and
is applied to the sessions of transport protocol that belong to an audio channel;
action2 targets the mobile nodes and is applied to the sessions of transport or
fragmentation protocol that belong to a data channel.
DO

action1
WHERE Network.wiredNodes ()
FOR TransportProtocol and AudioChannel
action2
WHERE Network.mobileNodes ()
FOR (TransportProtocol or FragmentationProtocol) and DataChannel

4.5 Reconfiguration Actions
4.5.1 Changing protocol parameters

The action setValue(parameter,newValue) allows to change the parameter ’s value
and set it to a newValue during runtime. The topological scope defines the nodes
that are affected by the action. In these nodes, the set of target sessions —the
sessions to which the action will be applied— is defined by the protocol scope.
Given that the channel scope constrains the channels that can be affected, if a
target session does not belong to any channel in the channel scope, the appli-
cation of the action to that session has no visible effect. Moreover, if a target
session is shared between channels x and y and only x is in the channel scope,
the session is split in two (one section for each channel) and the change of the
parameter’s value is only performed on the session of channel x. The application
of the action to sessions that are instances of protocols that do not have the
given protocol parameter, has no visible effect.

The setValue action can be used, for instance, to exchange the timeout value
in all sessions of TransportProtocol, whenever the available bandwidth is below
a specific MINBD value:
WHEN BandwidthEvent: BandwidthEvent.value < MINBD
DO

setValue(timeoutvalue ,NEWVALUE)
FOR TransportProtocol

This rule is triggered by a decrease in available bandwidth, below the MINBD
value. Since no With label is defined, whenever this rule is triggered it becomes
immediately activated. The action does not have a topological nor a channel
scope and, hence, the action affects the sessions with type TransportProtocol in
all channels in use and all nodes in the network. Furthermore, the sharing of
sessions does not change.

4.5.2 Removing/exchanging guaranties

The actions removeProtocol() and changeProtocol(newProtocol) support the re-
moval and exchange of guaranties, respectively. In case of an exchange of pro-
tocol, the parameter newProtocol identifies the new protocol, which must be a
concrete protocol from the underlying protocol type hierarchy.

The set of sessions that will be removed/exchanged is defined by the topo-
logical, protocol and channel scopes. The target sessions are all sessions in
protocolScope that reside in nodes in the topologicalScope. As before, if a target
session does not belong to any channel in the channel scope, then the applica-
tion of the action to that session has no visible effect. Furthermore, if a target
session is shared between channels x and y and only x is in the channelScope,
the session is split in two and the removal/exchange is only performed on the
session of channel x.

4.5.3 Adding guaranties

Addition of guaranties to stacks is supported by the action addProtocol(newProtocol,position)
where newProtocol is the concrete protocol that provides the guaranty to be
added. The relative position of the new protocol in the stack is given in the
simplest form: below or above. The protocolScope identifies below/above which
sessions must the new service be added. The effect of this rule is the addition
of new sessions of newProtocol immediately below/above all sessions in proto-
colScope that reside in a node in topologicalScope, placing these sessions on the
channels that are defined by the channelScope.

The new sessions are not shared by different channels, even if these channels
share the session that defines the insertion point. Moreover, if the insertion
point session is shared, protocols can be added in all channels or only in the
channels of specific types defined through channelScope.

To illustrate these actions, consider a scenario in which it is desirable to
dynamically add and remove a debug protocol from the protocol stack of a
channel used for communication. In this scenario debug is necessary whenever
the system has an error related to communication but should be removed as
soon as this error disappears. We assume that this information is made available
by the context monitor through the publication of events ErrorStartEvent and
ErrorEndEvent with the attribute type with the value COMM.
WHEN ErrorStartEvent:ErrorStartEvent.type ==COMM
DO addProtocol(DebugProtocol ,above)

WHERE {ErrorStartEvent.NodeId}
FOR TransportProtocol

APPLY DataChannel

WHEN ErrorEndEvent:ErrorEndEvent.type == COMMUNICATION
DO removeProtocol ()

WHERE {ErrorEndEvent.NodeId}
FOR DebugProtocol above TransportProtocol
APPLY DataChannel

These rules will affect only the channels of type DataChannel residing in the
node where the error was detected/solved, whose identification is carried by the
trigger event. Thus, preventing the removal of sessions of DebugProtocol from
the stack that were not inserted by the first rule. We assume that DataChannel
is the type of channels used by the application for communication.

4.5.4 Exchanging QoS of channels

The action changeQoS(newQoS) allows to exchange the quality of service en-
sured by channels of a specified type, for a whole new QoS. The new QoS is
defined by newQoS, a sequence of concrete protocols in the stack, from bottom
to top. The set of concrete channels affected by the action is defined by its
channel and topological scope: all channels in use with type in channelScope
residing in nodes in topologicalScope (the protocolScope if specified, is ignored).
The instantiation of the QoS associated with a channel x whose QoS is required
to change may include a session s shared with a channel y that should remain
unaffected. The effect of the rule is to associate to x an instance of newQoS,
keeping the shared session s in the channel y.

For instance, consider that we have a mobile device that can access to both
wireless and wired connectivity. To make the best of each case, a different quality
of service for the communication stack is used. Assuming a context model with
an event NewConnectivityEvent that is published whenever a device has a new
connection available, carrying information on the connection (wired or wireless),
we can define the following reconfiguration action.
WHEN
NewConnectivityEvent :! NewConnectivityEvent.wired

WITH
Network.isLaptop(NewConnectivityEvent.NodeId)

DO changeQoS(WirelessQoS)
WHERE {NewConnectivityEvent.NodeId}
APPLY DataChannel

This rule affects the channels with type DataChannel residing in the node
where the new connection is available, being this information carried by the
trigger event. WirelessQoS is the stack configuration for a wireless connectivity
quality of service.

5 Related Work
Adaptation is a challenging problem that must be addressed at all levels of a
system’s design and implementation; it needs to integrate many different so-
lutions including algorithms to capture and infer common patterns in the way
the context change; application and interfaces that can change their behavior

to adjust to dynamic resource changes; software architectures that support dy-
namic reconfiguration, among others. In this section we will mainly address
the platforms that are closer to our work, namely: Coyote [3], Chisel [6] and
Poema [10].

Coyote is a protocol composition and execution framework where fine-grain
modules, also called microprotocols, communicate through the exchange of
events. Events are processed by event handlers that are defined at compile
time. Dynamic reconfiguration may be achieved by activating or deactivating
handlers in runtime and, hence, Coyote does not address the problem of speci-
fying dynamic reconfiguration policies using an high-level approach.

Chisel is a policy-driven, context-aware framework for dynamic adaptation
based on triggering events, conditions evaluation and behavior change. Adapta-
tion targets service objects, whose dynamic behavior change relies on metatypes,
a characterization of an object’s own model. Metatypes allow to add new non-
functional behaviors to object, without stopping its execution. Since adaptation
is achieved only by adding new behaviors, policy specification is based on ON-
DO-IF primitives and triggering events definition based on a NEW primitive.
Chisel’s approach is oriented to adaptation of applications and, hence, the policy
specification language does not offer the primitives for specifying the adaptation
of protocol stacks.

Poema is a policy-based framework that supports runtime application re-
configuration by allowing the specification of different reconfiguration patterns.
This framework relies on the Ponder [4] generic specification language for poli-
cies definition through declarative event-condition-action rules, that can be re-
fined to different application areas. In our work, we have identified concrete
conditions, actions, and scopes that are relevant to the area of protocol recon-
figuration.

6 Conclusion
Adaptive protocol stacks are a key element to build efficient systems in dynamic
environments such as mobile networks. However, reconfiguration of protocol
stacks often involves fine-grain control over which protocol layers are used, how
these layers are combined, and how the parameter of the corresponding layers
are set. Since this exercise is often performed by the protocol developer, the
result tends to be entangled with the algorithmic logic.

In this paper we have proposed a set of primitives that capture common
requirements that emerge when reconfiguring protocol stacks. Based on our
experience with the Appia framework, we have identified the relevant triggers,
conditions, actions, and scopes to support the description of adaptation policies
for protocol stacks in a high level language. Using this approach, policies can
be reused and combined with other policies designed for different protocols.
To illustrate our approach, we have rewritten policies from a previous Appia
prototype using our policy language.

The rules defined in a policy are assumed to be evaluated sequentially. There-
fore, we require that a single flow of control is used to evaluate the conditions

and apply the policy. Furthermore, most of actions we have identified require
coordination among all (target) participants. The extension of this work to cope
with decentralized control where different rules can be applied concurrently at
different nodes with loose or no coordination is postponed for future work.

Future work will also focus in scalability and liability concerns, analyzing
different distributed management approaches. Moreover, we will validate our
approach by implementing a prototype and evaluate performance aspects.

References

[1] The Appia web site. http://appia.di.fc.ul.pt.
[2] B. Awerbuch and D. Peleg. Concurrent on-line tracking of mobile users. In

SIGCOMM. ACM, September 1991.
[3] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu. Coyote: A

system for constructing fine-grain configurable communication services. ACM
Transactions on Computer Systems, 16(4), 1998.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification
language. In POLICY ’01: Proceedings of the International Workshop on Policies
for Distributed Systems and Networks. Springer-Verlag, 2001.

[5] Globdata. An efficient software tool for global data access. Globdata home page
URL: http://globdata.iti.es.

[6] J. Keeney and V. Cahill. Chisel: A policy-driven, context-aware, dynamic adap-
tation framework. In POLICY ’03: Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and Networks, Washington, DC,
USA, 2003. IEEE Computer Society.

[7] D. R. McCarthy and U. Dayal. The architecture of an active database manage-
ment system. In ACM-SIGMOD International Conference on Management of
Data. ACM Press, 1989.

[8] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel sup-
porting multiple coordinated channels. In Proceedings of The 21st International
Conference on Distributed Computing Systems (ICDCS-21), pages 707–710. IEEE
Computer Society, 2001.

[9] J. Mocito, L. Rosa, N. Almeida, H. Miranda, L. Rodrigues, and L. A. Context
adaptation of the communication stack. In ICDCSW ’05: Proceedings of the Third
International Workshop on Mobile Distributed Computing (MDC) (ICDCSW’05).
IEEE Computer Society, 2005.

[10] R. Montanari, E. Lupu, and C. Stefanelli. Policy-based dynamic reconfiguration
of mobile-code applications. Computer, 37(7), 2004.

[11] M. J. Monteiro, J. Pereira, and L. Rodrigues. Integration of flight simulator 2002
with an epidemic multicast protocol. In International Workshop on Large-Scale
Group Communication,(in conjuction with The 22nd Symposium on Reliable Dis-
tributed Systems), 2003.

[12] S. Teixeira, P. Vicente, A. Pinto, H. Miranda, L. Rodrigues, J. Martins, and
A. Rito-Silva. Configuring the communication mw to support multi-user object-
oriented environments. In R. Meersman, Z. Tari, and et al., editors, On the Move
to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE Proceedings,
Lecture Notes in Computer Science. Springer, 2002.

