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Abstract—The work described in the thesis proposes a Geo-
distributed key-value datastore, named ChainReaction, that
offers causal+ consistency, with high performance, fault-tole-
rance, and scalability. ChainReaction avoids the bottlenecks of
linearizability while providing competitive performance when
compared with systems merely offering eventual consistency.
We have experimentally evaluated the benefits of our approach
by applying the Yahoo! Cloud Serving Benchmark.

I. INTRODUCTION

To manage the tradeoffs among consistency and perfor-
mance, in particular for systems supporting Geo-replication,
is one of the most challenging aspects in the design of
datastores for cloud-computing applications. Some of these
tradeoffs have been captured by the well-known CAP The-
orem [1], that states that is impossible to offer simultane-
ously consistency, availability, and partition-tolerance. As a
result, several datastores have been proposed in the last few
years, implementing different combinations of consistency
guarantees and replication protocols [2], [3], [4], [5], [6],
[7], [8]. Some solutions opt to weaken consistency, offering
only eventual consistency, in order to achieve the desired
efficiency. Unfortunately, week consistency imposes a com-
plexity burden on the application programmer. On the other
hand, solutions that use stronger consistency models, such
as linearizability, provide very intuitive semantics to the
programmers but suffer from scalability problems.

The work developed makes a step forward in this path,
by proposing a novel datastore design, named ChainReac-
tion. Our solution relies on a specialized variant of chain-
replication [9], that offers the causal+ consistency criteria
(recently formalized in [8]) and is able to leverage from
the existence of multiple replicas to distribute the load
of read-requests. As a result, ChainReaction avoids the
bottlenecks of linearizability while providing competitive
performance when compared with systems merely offering
eventual consistency. Furthermore, ChainReaction can be
deployed either on a single datacenter or on Geo-replicated
scenarios, over multiple datacenters. Finally, and similarly
to [8] our solution also provides a transactional construct
that allows a client to read the value of multiple objects in
a causal+ consistent way.

We have experimentally evaluated the benefits of our
approach by applying the Yahoo! Cloud Serving Benchmark
to a prototype deployment that includes our own solution as

well as Apache Cassandra [2], FAWN-KV [3], and a system
that emulates COPS [8].

The remaining of this document is organized as follows.
Section II addresses related work. Section III discusses the
operation of ChainReaction in a single datacenter, Section IV
presents our extensions to support Geo-replication, and
Section V describes the support for GET-TRANSACTIONS.
Section VI provides insights on the current implementation.
Section VII presents the results of the experimental evalua-
tion. Section VIII concludes the document.

II. RELATED WORK

A datastore for Geo-replicated systems, in a cloud com-
puting environment, must address the occurrence of faults,
client locality (latency), and avoid blocking in face of
network partitions. Therefore, it has to implement some
form of replication, including replication over the wide-area.
Ideally, such datastore would provide lineralizability [10], as
this is probably the most intuitive model for programmers.
Unfortunately, as the CAP theorem shows, a strongly consis-
tent system may block (and therefore become unavailable) if
a network partition occurs, something that is not unlikely in
a Geo-replicated scenario. Furthermore, even if no partitions
occur, strong consistency is generally expensive to support
in a replicated system, because of the need to totally order
all write operations. Therefore, datastores for these envi-
ronments need to make some tradeoff between consistency,
availability, and efficiency.

Among the most relevant techniques to implement data
replication we can enumerate: active replication (typi-
cally, based on some form of Paxos [11] variant), passive
replication (often, primary-backup), quorums, and chain-
replication. We will not provide a description of all of
these techniques since they are well understood today. We
just provide a brief introduction to chain replication[9]
given that this technique provides linearizability, somewhat
high throughput, and availability. This approach organizes
replicas in a chain topology. Write operations are directed
to the head of the chain and are propagated until they
reach the tail. At this point the tail sends a reply to the
client and the write finishes. Contrary to write operations,
read operations are always routed to the tail. Since all
the values stored in the tail are guaranteed to have been
propagated to all replicas, reads are always consistent. Chain
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replication exhibits a higher latency than multicast-based
replication solutions but, on the other hand, it is extremely
resource efficient and, therefore, it has been adopted in
several practical systems. FAWN-KV [3] and Hyperdex [12]
are two datastores that offer strong consistency using chain-
replication as the main replication technique. CRAQ [6]
is also based on chain replication but, for performance,
supports eventual consistency by not constraining reads to
be executed on the tail.

Apache Cassandra [2] supports Geo-replication and uses a
quorum technique to maintain replicas consistent. However
quorums can only be configured to offer weak consistency
guarantees, namely eventual consistency. Quorums are also
used by Amazon’s Dynamo [4], although it only provides
eventual consistency over the wide-area resorting to conflict
resolution mechanisms based on vector clocks. Also the
work described in [13] provides a simple adaptation of the
chain replication protocol to a Geo-replicated scenario in-
cluding multiple datacenters. This solution avoids intra-chain
links over the wide area network. Google Megastore [14]
is also deployable in a multi datacenter scenario providing
serializable transactions over the wide area network, and
relies on (blocking) consensus to ensure consistency.

COPS [8] is a datastore designed to provide high scal-
ability over the wide-area. For this purpose, COPS has
proposed a weak consistency model that, in opposition
to eventual consistency, can provide precise guarantees to
the application developer. This consistency model, named
causal+, ensures that operations are executed in an order that
respects causal order [15] and that concurrent operations are
eventually ordered in a consistent way across datacenters1.
To provide such guarantees, COPS requires clients to main-
tain metadata that encodes dependencies among operations.
These dependencies are included in the write requests issued
by a client. COPS also introduces a new type of operations
named get-transactions. These operations allow a client to
read a set of keys ensuring that the dependencies of all keys
have been met before the values are returned.

III. SINGLE SITE CHAINREACTION

We now describe the operation of ChainReaction in a
single site. The description of the extensions required to
support Geo-replication is postponed to Section IV. We
start by briefly discussing the consistency model offered by
ChainReaction, followed by a general overview and, subse-
quently, a description of each component of the architecture.

A. Consistency Model

We have opted to offer the causal+ consistency mo-
del [16], [17], [8]. We have selected causal+ because it pro-
vides a good tradeoff among consistency and performance.
Contrary to linearizability, causal+ allows for a reasonable
amount of parallelism in the processing of concurrent re-
quests while still ensuring that concurrent write operations

1In fact, a similar consistency model has been used before, for instance
in[16], [17] , but was only coined as causal+ in [8].
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Figure 1. Overview of the ChainReaction architecture.

are totally ordered, thus avoiding the existence of divergent
replicas (a common problem of causal consistency). On
the other hand, and in opposition to eventual consistency,
it provides precise guarantees about the state observed by
applications. Similarly to COPS [8], our system also supports
GET-TRANSACTIONS, that allows an application to obtain a
causal+ consistent snapshot of a set of objects.

B. Architecture Overview

The architecture of ChainReaction is based on the FAWN-
KV system [3]. We consider that each datacenter is com-
posed of multiple data servers (back-ends) and multiple
client proxies (front-ends). Data servers are responsible
for serving read and write requests for one or more data
items. Client proxies receive the requests from end-users
(for instance a browser) or client applications and redirect
the requests to the appropriate data server. An overview of
ChainReaction architecture is presented in Figure 1.

Data servers self-organize in a DHT ring such that con-
sistent hashing can be used to assign data items to data
servers. Each data item is replicated across R consecutive
data servers in the DHT ring. Data servers execute the chain-
replication protocol to keep the copies of the data consistent:
the first node in the ring serving the data item acts as head
of the chain and the last node acts as tail of the chain. Note
that, since consistent hashing is used, a data server may
serve multiple data items, thus, being a member of multiple
chains (i.e., head node for one chain, tail for another, and a
middle node for R− 2 chains).

We further assume that, in each datacenter, the number
of servers, although large, can be maintained in a one-hop
DHT [18]. Therefore, each node in the system, including
the client proxies, can always locally map keys to servers
without resorting to DHT routing or to an external directory.

Considering the architecture above, we now describe the
lifecycle of a typical request in the FAWN-KV system which
employs a classical chain-replication solution. ChainReac-
tion uses a variant of this workflow that will be explained
in the next subsections. The client request is received by a
client proxy. The proxy uses consistent hashing to select the
first server to process the request: if it is a write request it
is forwarded to the head data server of the corresponding
chain; if it is a read request, it is forwarded directly to the
tail data server. In the write case, the request is processed
by the head and then propagated “down” in the chain until
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it reaches the tail. For both read and write operations the
tail sends the reply to the proxy which, in turn, forwards an
answer back to the source of the request.

C. A Chain Replication Variant
The operation of the original chain replication protocol,

briefly sketched above, is able to offer linearizable execu-
tions. In fact, read and write operations are serialized at
a single node, the tail of the chain. The drawback of this
approach is that the existing replicas are not leveraged to
promote load balancing among concurrent read operations.
In ChainReaction we decided to provide causal+ consis-
tency as this allows us to make a much better utilization of
the resources required to provide fault-tolerance.

Our approach departs from the following observation: if
a node x, in the chain, is causally consistent with respect to
some client operations, then all nodes that are predecessors
of x in the chain are also causally consistent. This property
trivially derives from the update invariant of the original
chain replication protocol. Therefore, assume that a node
observes a value returned by node x for a given object O,
as a result of a read or a write operation op. Future read
operations over O that causally depend on op are constrained
to read from any replica between the head of the chain and
node x, in order to obtain a consistent state (according to
the causal+ criteria). However, as soon as the operation op
becomes stable (i.e., when it reaches the tail), new read
operations are no longer constrained, and a consistent state
can be obtained by reading any server in the chain.

ChainReaction uses this insight to distribute the load of
concurrent read requests among all replicas. Furthermore,
it permits to extend the chain (in order to have additional
replicas for load balancing) without increasing the latency
of write operations, by allowing writes to return as soon as
they are processed by the first k replicas (where k defines
the fault-tolerance of the chain, k is usually lower than the
total number of replicas). The propagation of writes from
node k until the tail of the chain can be performed lazily.

To ensure the correctness of read operations according
to the causal+ consistency model across multiple objects,
clients are required to know the chain position of the node
that processed its last read request for each object they have
read. To store this information we use a similar strategy as
the one used in COPS. We maintain metadata entries stored
by a client library. However, contrary to COPS, we do not
require each individual datacenter to offer linearizability as
this is an impairment to scalability ([8] relies on a classical
chain-replication solution to provide this). Additionally, we
ensure that the results of write operations only become
visible when all their causal dependencies have become
stable in the local datacenter. This allows the versions
divergence to be only one level deep, which avoids violation
of the causal order when accessing multiple objects.

D. Client Interface and Library
The basic API offered by ChainReaction is similar to that

of most existing distributed key-value storage systems. The

operations available for clients are the following. PUT (key,
val) that allows to assign (write) the value val to an object
identified by key. val ← GET (key), that returns (reads)
the value of the object identified by the key, reflecting the
outcome of previous PUT operations.

These operations are provided by a client library that
is responsible for managing client metadata, which is then
automatically added to requests and extracted from replies.
When considering a system deployed over a single datacen-
ter, the metadata stored by the client library is in the form of
a table, which includes one entry for each accessed object.
Each entry comprises a tuple on the form (key, version,
chainIndex). The chainIndex consists of an identifier that
captures the chain position of the node that processed and
replied to the last request of the client for the object to which
the metadata refers. When a client makes a read operation
on a data item identified by key, it must present the metadata
above. Furthermore, ChainReaction can update the metadata
as a result of executing such an operation.

E. Processing of Put Operations
We now provide a detailed description on how PUT

operations are executed in ChainReaction. When a client
issues a PUT operation using the Client API, the client library
makes a request to a client proxy including the key and
the value val. The client library tags this request with the
metadata relative to the last PUT performed by that client
as well as the metadata that relate to the GET operations
performed over any objects since that PUT. Metadata is
only maintained for objects whose version is not stable yet;
stable versions do not put constraints on the execution of
PUT or GET operations (we discuss GET operation further
ahead). This allows to control the amount of metadata that
is required to be stored at each client.

Because we aim at boosting the performance of read
operations while ensuring causal+ consistency guarantees,
we have opted to delay (slightly) the execution of PUT
operations on chains, as to ensure that the version of any
object from which the current PUT casually depends has
become stable in its respective chain (i.e., the version has
been applied to the respective tail). This ensures that no
client is able to read mutually inconsistent versions of
two distinct objects. This is achieved using a dependency
stabilization procedure, that consist in using a specialized
read operation to obtain all the versions in the causal past
from the tails of the corresponding chains (this may involve
waiting until such versions are stable).

As soon as the dependencies have stabilized, the proxy
uses consistent hashing to discover which data server is
the head node of the chain associated with the target key,
and forwards the PUT request to that node. The head then
processes the PUT operation, assigning a new version to the
object, and forwarding the request down the chain, as in the
original chain replication protocol, until the k element of
the chain is reached (we call this the eager propagation
phase). At this point, a result is returned to the proxy,
which includes the most recent version of the object and
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a chainIndex representing the kth node. The proxy, in turn,
forwards the reply to the client library. Finally, the library
extracts the metadata and updates the corresponding entry
in the table (updating the values of the object version and
chainIndex).

In parallel with the processing of the reply, the update
continues to be propagated in a lazy fashion until it reaches
the tail of the chain. As we have noted, a data server may be
required to process and forward write requests for different
items. Updates being propagated in lazy mode have lower
priority than operations that are being propagated in eager
mode. This ensures that the latency of write operations of a
given data item is not negatively affected by the additional
replication degree of another item. When the PUT reaches
the tail, the version written is said to be stable and an
acknowledgment message is sent upwards in the chain (up
to the head) to notify the remaining nodes. This message
includes the key and version of the object so that a node
can set that version of the object to a stable state.

F. Processing of Get Operations
Upon receiving the GET request, the client library consults

the metadata entry for the requested key and forwards the
request along with the version and the chainIndex to the
client proxy. The client proxy uses the chainIndex included
in the metadata to decide to which data server the GET
operation is forwarded to. If chainIndex is equal to R, the
size of the chain (i.e., the version is stable), the request can
be sent to any node in the chain at random. Otherwise, it
selects a target data server t at random with an index from 0
(the head of the chain) to chainIndex. This strategy allows to
distribute the load of the read requests among the multiple
causally consistent servers. The selected server t processes
the request and returns to the proxy the value of the data
item, and the version read. Then the client proxy returns the
value and the metadata to the client library which, in turn,
uses this information to update its local metadata. Assume
that a GET operation obtains version newversion from node
with index tindex. The metadata is updated as follows: i)
If the newversion is already stable, chainIndex is set to R;
ii) If newversion is the same as pversion, chainIndex is set
to max(chainIndex,tindex); iii) If newversion is greater than
pversion, chainIndex is set to tindex.

G. Fault-Tolerance
The mechanisms employed by ChainReaction to recover

from the failure of a node are the same as in chain replica-
tion. However, unlike the original chain replication, we can
continue to serve clients even if the tail fails. If a node fails,
two particular actions are taken: i) Chain recovery by adding
to the tail of the chain a node that already is in the system
(i.e., recover the original chain size); ii) Minimal chain repair
for resuming normal operations (with a reduced number of
nodes). Moreover, a node can later join the system (and the
DHT) for load balance and distribution purposes.

In our system a chain with R nodes can sustain R−k node
failures, as it cannot process any PUT operation with less

than k nodes. When a node fails a chain must be extended,
therefore a node is added in the tail of the chain. To add this
node, we must guarantee that the current tail (T ) propagates
its current state to the new tail (T+). During the state transfer
T+ is in a quarantine mode and all new updates propagated
by T are saved locally for future execution. When the state
transfer ends, node T+ is finally added to the chain and
applies pending updates sent by T . Moreover, we can have
the following 3 types of failures and corresponding repairs:

Head Failure: When the head node fails (H), its succes-
sor (H+,) takes over as the new head, as H+ contains most
of the previous state of H . All updates that were in H but
were not propagated to H+ are retransmitted by the client
proxy when the failure is detected.

Tail Failure: The failure of a tail node (T ), its easily
recovered by replacing the tail with T predecessor, say T−.
Due to the properties of the chain, T− is guaranteed to have
newer or equal state to the failing tail T .

Failure of a middle node: When a middle node fails
(X) between nodes A and B, the failure is recovered by
connecting A to B without any state transfer, however node
A may have to retransmit some pending PUT operations that
were sent to X but did not arrive to B. Since our solution
only allows for version divergence to be one level deep, node
A has to retransmit at most a single version per object (the
same occurs during state transfers). The failure of node with
index k (or of its predecessor) is treated in the same way.

In all cases, failures are almost transparent to the client,
that it will only notice a small delay in receiving the response
mostly, due to the time required for detecting the failure of
a node. It is worth noticing that the above procedures are
also applied if a node leaves the chain in an orderly fashion
(for instance, due to maintenance).

Finally, the reconfiguration of a chain, after a node leav-
ing/crash or when a node joins, may invalidate part of the
metadata stored by the client library, namely the semantics
of the chainIndex. However, since the last version read is
also stored in the metadata, this scenario can be easily and
safely detected. If the node serving GET request does not
have a version equal or newer than the last seen by the
client, the request will be routed upwards in the chain until
it finds a node that contains the required version (usually its
immediate predecessor).

IV. SUPPORTING GEO-REPLICATION

We now describe how ChainReaction addresses a scenario
where data is replicated across multiple datacenters. We sup-
port Geo-replication by introducing a minimal set of changes
with regard to the operation on a single site. However,
metadata needs to be enriched to account for the fact that
multiple replicas are maintained at different datacenters and
that concurrent write operations may now be executed across
multiple datacenters simultaneously. We start by describing
the modifications to the metadata and then we describe the
changes to the operation of the algorithms.

First, the version of a data item is no longer identified by
a single version number but by a version vector (similarly
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to what happens in classical systems such as Lazy Replica-
tion [19]). Similarly, instead of keeping a single chainIndex,
a chainIndexVector is maintained, that keeps an estimate
of how far the current version has been propagated across
chains in each datacenter.

We can now describe how the protocols for PUT and GET
operations needs to be modified to address Geo-replication.
For simplicity of exposition, we assume that datacenters are
numbered from 0 to D − 1, where D is the number of
datacenters, and that each datacenter number corresponds
to the position of its entry in the version vector and chain-
IndexVector.

A. Processing of Put Operation
The initial steps of the PUT operation are similar to the

steps of the single datacenter case. Let’s assume that the op-
eration takes place in datacenter i. The operation is received
by a client proxy, the dependency stabilization procedure
executed, and then the request is forwarded to the head of
the corresponding chain. The operation is processed and the
object is assigned with a new version, by incrementing the
ith entry of the version vector. The updated is pushed down
in the chain until it reaches node k. At this point a reply
is returned to the proxy, that initializes the corresponding
chainIndexVector as follows: all entries of the vector are set
to 0 (i.e., the conservative assumption that only the heads of
the sibling chains in remote datacenters will become aware
of the update) except for the ith entry that is set to k. This
metadata is then returned to the client library. In parallel, the
update continues to be propagated lazily down in the chain.
When the update finally reaches the tail, an acknowledgment
is sent upward (to stabilize the update) and to the tails of
the sibling chains in remote datacenters (since all siblings
execute this procedure, the global stability of the update is
eventually detected in all datacenters).

Also, as soon as the update is processed by the head
of the chain, the update is scheduled to be transferred
in background to the remote datacenters. When a remote
update arrives at a data center, it is sent to the head of
the corresponding chain. If the update is more recent than
the update locally known, it is propagated down the chain.
Otherwise, it is discarded as it has already been superseded
by a more recent update.

It is worth noting that each datacenter may configure a
different value of k for the local chain, as the configuration
of this parameter may depend on the characteristics of the
hardware and software being used in each datacenter.

B. Processing of Get Operation
The processing of a GET operation in a Geo-replicated

scenario is mostly identical to the processing in a single
datacenter scenario. The only difference is that, when dat-
acenter i receives a query, the set of potential targets to
serve the query is defined using the ith position of the
chainIndexVector. Finally, it may happen that the head of
the local chain does not have yet the required version
(because updates are propagated among different datacenters

asynchronously). In this case, the GET operation can be
redirected to another datacenter or blocked until a fresh
enough update is available.

C. Conflict Resolution
Since the metadata carries dependency information, oper-

ations that are causally related with each other are always
processed in the right order. In particular, a read that depends
(even if transitively) from a given write, will be blocked
until it can observe that, or a subsequent write, even if it is
submitted to a different datacenter.

On the other hand, concurrent updates can be processed in
parallel in different datacenters. However, similarly to many
other systems that ensure convergence of conflicting ob-
ject versions, ChainReaction’s conflict resolution method is
based on the last writer wins rule [20]. A conflict resolution
mechanism is needed to ensure the causal+ consistency of
concurrent write operations. For this purpose, each update is
also timestamped with the physical clock value of the proxy
that receives the request. Note that timestamps are only
used as a tiebreak if operations are concurrent. Therefore,
physical clocks do not need to be tightly synchronized
although, for fairness, it is desirable that clocks are loosely
synchronized (for instance, using NTP). Finally, if two
concurrent operations happen to have the same timestamp,
the identifier of the datacenter is used as the last tiebreaker.

D. Fault-Tolerance over the Wide-Area
In ChainReaction, we have opted to return from a PUT

operation as soon as it has been propagated to k nodes in
a single datacenter. Propagation of the values to other dat-
acenters is processed asynchronously. Therefore, in the rare
case a datacenter becomes unavailable before the updates
are propagated, causally dependent requests may be blocked
until the datacenter recovers. If the datacenter is unable to
recover, those updates may then been lost.

There is nothing fundamental in our approach that pre-
vents the enforcement of stronger guarantees. For instance,
the reply could be postponed until an acknowledgment is
received from d datacenters, instead of waiting just for
the acknowledgment of the local kth replica (the algorithm
would need to be slightly modified, to trigger the propa-
gation of an acknowledgment when the update reaches the
kth node in the chain, both for local and remote updates).
This would ensure survivability of the update in case of
disaster. Note that the client can always re-submit the request
to another datacenter if no reply is received after some pre-
configured period of time. Although such extensions would
be trivial to implement, they would impose an excessive
latency on PUT operation, so we have not implement them.
In a production environment, it could make sense to have
this as an optional feature, for critical PUT operations.

V. PROVIDING GET-TRANSACTIONS

The work presented in [8] has introduced a transactional
construct which enables a client to read multiple objects
in a single operation in a causal+ consistent manner. This
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construct is named GET-TRANSACTION, an operation which
can significantly simplify the work of developers, as it offers
a stronger form of consistency on read operations over
multiple objects. To use this transactional operation a client
must issue a call to the Client Library through the following
interface:

val1, ..., valN ← GET-TRANSACTION (key1, ..., keyN)
Consider a scenario where client c1 updates two objects.

More precisely, c1 updates twice objects X and Y, exactly
in this order, creating the following sequence of causally
related updates x1 → y1 → x2 → y2. Lets now assume that
another client c2 concurrently reads objects X and Y, also
in this sequence. If c2 reads values x1 and y2 this does not
violate causality. However, each of these values belongs to
a different snapshot of the database, and this may violate
the purposes of client c1. For interesting examples of the
potential negative effects of reads from different snapshots,
we refer the reader to [8].

To support GET-TRANSACTION operations the system
must ensure that no concurrent writes are processed by the
head of any of the chains that maintain one of the requested
objects, while the GET-TRANSACTION is being processed.
For this purpose, our implementation uses a sequencer
process similar to the one used in [21]. All PUT operations
and reads that are part of a certain GET-TRANSACTION are
attributed a sequence number and are enqueued in each chain
head queue considering the sequence numbers of operations.
An interesting feature of this scheme is that, in opposition
to [8], we do not require the existence of 2 rounds to process
a GET-TRANSACTION.

With this in mind, a GET-TRANSACTION is processed as
follows. The client proxy receives the GET-TRANSACTION
and requests a sequence number for each chain where the
keys are stores. Then, the individual reads are sent to the
head of the corresponding chains the value is returned to
the proxy. The proxy waits for all values, along with the
corresponding metadata, assembles a reply, and sends it back
to the client library. Similar to what happens with PUT and
GET operations, upon receiving the reply from the client
proxy, the client library extracts the metadata enclosed in
the reply, and updates its local metadata. Notice that the
metadata enclosed in the reply is equivalent to the metadata
of multiple GET operations.

GET-TRANSACTIONS in a Geo-replicated scenario have
the following additional complexity. Assume that a GET-
TRANSACTION is being processed by datacenter i but it
includes dependencies from values read in a different dat-
acenter. Such updates may have not yet been propagated
to datacenter i when the GET-TRANSACTION is processed.
In this case, the read is aborted and retried in a (slower)
two-phase procedure. First, the proxy reads all dependencies
that have failed from the corresponding heads, using a
specialized (blocking) read operation (the same as used in
the dependency stabilization procedure) but directed to the
head of the chains. Then, the GET-TRANSACTION is reissued
as described above (and it is guaranteed to succeed).

VI. IMPLEMENTATION ISSUES

We have implemented ChainReaction on top of a version
of FAWN-KV, that we have optimized. These optimizations
were mostly related to the client proxies (frontends), key
distribution over the chains, and read/write processing im-
proving the overall performance of the FAWN-KV system.
We also extended FAWN-KV to support multi-versioned
objects in order to implement some aspects of our solution.

To efficiently encode and transmit dependency informa-
tion between datacenters, we resort to an implementation of
Adaptable Bloom Filters [22]. To this end, whenever a client
issues a get or put operation, ChainReaction returns to that
client, as part of the metadata, a bloom filter which encodes
the identifier of the accessed object. This bloom filter is
stored by the Client Library in a list named AccessedObjects.
When the client issues a put operation, it tags its request with
a bloom filter, named dependency filter, which is locally
computed by the client library by performing a binary OR
over all bloom filters locally stored in the AccessedObjects
set. Upon receiving the reply, the ClientLibrary removes all
bloom filters from the local AccessedObjsects set, and stores
the bloom filter encoded in the returned metadata.

The dependency filter tagged by the Client Library on
the put request, and the bloom filter that is returned to the
issuer of the PUT (we will refer to this bloom filter as reply
filter in the following text), are used by the datacenter that
receives the PUT operation as follows: When a PUT request
is propagated across datacenters it is tagged with both the
dependency filter and the reply filter that are associated
with the local corresponding PUT request. On the remote
datacenter the client proxy receives the PUT request and
places it in a waiting queue for being processed in the near
future.

The two bloom filters associated with PUT requests encode
causal dependencies among them. If a wide-area-put request
op1 has a dependency filter that contains all bits of a reply
filter associated with another wide-area-put request op2, we
say that op2 is potentially causally dependent of op1. We say
potentially because bloom filters can provide false positives,
as the relevant bits of the dependency filter of op1 can be
set to one due to the inclusion of other identifiers in the
bloom filter. The use of adaptable bloom filters allows us
to trade the expected false positive rate with the size of the
bloom filters. In our experiments, we have configured the
false positive rate of bloom filters to 10%, which resulted in
bloom filters with 163 bits.

VII. EXPERIMENTAL EVALUATION

In this section we present experimental results, includ-
ing comparative performance measures with three other
systems: FAWN-KV, Cassandra, and COPS. We conducted
experiments in four distinct scenarios, as follows: i) we
have first assessed the throughput and latency of operations
on ChainReaction in a single datacenter, and compare its
results with those of FAWN-KV and Cassandra; ii) then
we have assessed the performance of the system in a
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Geo-replicated scenario (using 2 virtual datacenters), again
comparing the performance with FAWN-KV and Cassandra;
iii) we measured the performance of ChainReaction using
a custom workload able to exercise GET-TRANSACTIONS;
iv) finally, we measured the size of the metadata required
by our solution and the overhead that it incurs. Through-
put results were obtained from five independent runs of
each test. Latency results reflect the values provided by
YCSB in a single random run. Finally, the results from
the metadata overhead e were obtained from ten different
clients. Confidence intervals are plotted in all figures. The
interested reader can refer to the Thesis where additional
experimental results are presented and discussed, including
operation latency results and metadata overhead results (not
presented here due to the lack of space).

A. Single Datacenter Scenario

We first compare the performance of ChainReaction
against FAWN-KV [3] and Apache Cassandra 0.8.10 in a
single datacenter scenario. For sake of fairness, in the
comparisons we have used the version of FAWN-KV with
the same optimizations that we have implemented for Chain-
Reaction. Our experimental setup uses 9 data nodes plus one
additional independent node to generate the workload. Each
node runs Ubuntu 10.04.3 LTS and has 2x4 core Intel Xeon
E5506 CPUs, 16GB RAM, and 1TB Hard Drive. All nodes
are connected by a 1Gbit Ethernet network. In our tests we
used 5 different system configurations, as described below:

Cassandra-E and Cassandra-L: Deployments of Apache
Cassandra configured to provide eventual consistency with
a replication factor of 6 nodes. In the first deployment write
operations are applied on 3 nodes while read operations are
processed at a single node. In the second deployment both
operations are processed by a majority of replicas (4 nodes).

FAWN-KV 3 and FAWN-KV 6: Deployments of the optimized
version of FAWN-KV configured with a replication factor of
3 and 6 nodes, respectively, which provides linearizability
(chain replication).

ChainReaction: Single Site deployment of ChainReaction,
configured with R = 6 and k = 3. Provides causal+
consistency.

All configurations have been subject to the Yahoo! Cloud
Serving Benchmark (YCSB) version 0.1.3[23]. We choose
to run standard YCSB workloads with a total of 1,000,000
objects. In all our experiments each object had a size of
1 Kbyte. We have also created a micro benchmark by using
custom workloads with a single object varying the write/read
ratio from 50/50 to 0/100. The latter allows assessing the
behavior of our solution when a single chain is active. All the
workloads were generated by a single node simulating 200
clients that, together, submit a total of 2,000,000 operations.

The throughput results are presented in Figure 2. Fig-
ure 2(a) shows that ChainReaction in a single datacenter
outperforms both FAWN-KV and Cassandra in all standard
YCSB workloads. In workloads A and F (which are write-
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Figure 2. Throughput (single site).

intensive) the performance of ChainReaction approaches
that of Cassandra-E and FAWN-KV 3. This is expected,
since ChainReaction is not optimized for write operations.
In fact, for write-intensive workloads, it is expected that
our solution under-performs when compared to FAWN-KV,
given that ChainReaction needs to write on 6 nodes instead
of 3 and also has to make sure, at each write operation,
that all dependencies are stable before executing the next
write operation. Fortunately, this effect is compensated by
the gains in the read operations.

For workloads B and D, which are read-heavy, one expects
ChainReaction to outperform all other solutions. Indeed, the
throughput of ChainReaction in workload B is 178% better
than that of Cassandra-E and 45% better than that of FAWN-
KV 3. Performance results for workload D (Figure 2(a))
are similar to those of workload B. Notice that the latency
of read operations for our solution is much better when
compared with the remaining solutions (Figures ?? and
??). Additionally, in workload C (read-only) ChainReaction
exhibits a boost in performance of 177% in relation to
Cassandra-E and of 72% in relation to FAWN-KV 3.

The micro benchmark that relies on the custom single
object workloads has the purpose of showing that our
solution makes a better use of the available resources in a
chain, when compared with the remaining tested solutions.
In the write-heavy workload (50/50) one can observe that
Cassandra-E outperforms our solution by 70%. This can be
explained by the fact that Cassandra is highly optimized for
write operations specially on a single object. However, when
we rise the number of read operations our solution starts
to outperform Cassandra by 13%, 20%, 34%, and 39% in
workloads 25/75, 15/85, 10/90, and 5/95, respectively.
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Figure 3. Throughput (multiple sites).

Additionally, ChainReaction outperforms FAWN-KV 3
and FAWN-KV 6 in all single object custom workloads. The
performance increases as the percentage of read operations
grows. Moreover, the throughput of the latter systems is
always the same, which can be explained by the fact that
the performance is bounded by a bottleneck on the tail node.
If a linear speedup was achievable, our solution operating
with 6 replicas would exhibit a throughput 6 times higher
than FAWN-KV on a read-only workload (0/100 workload)
with a single object. Although the speedup is sub-linear.
As depicted in Figure 2(b), the throughput is still 4.3 times
higher than that of FAWN-KV 3. The sub-linear growth is
due to processing delays in proxies and network latency
variations.

B. Geo-Replication

To evaluate the performance of our solution in a Geo-
replicated scenario, we ran the same systems, by configuring
nodes in our test setup to be divided in two groups with high
latency between them to emulate 2 distant datacenters. In
this test setup, each datacenter was attributed 4 machines,
and we used two machines to run the Yahoo! benchmark
(each YCSB client issues requests to one datacenter). The
additional latency between nodes associated to different
datacenters, was achieved by introducing a delay of 120
ms (in RTT) with a jitter of 10 ms. We selected these
values as we measured them with the PING command to
www.facebook.com (Oregon) from our lab. Each system
considered the following configurations:

Cassandra-E and Cassandra-L: Eventual-consistency with
4 replicas at each datacenter. In the first deployment write
operations are applied on 2 nodes and read operations

are processed at a single node. In the second deployment
operations are processed by a majority of replicas at each
datacenter (3 nodes in each datacenter).

FAWN-KV 3 and FAWN-KV 6: Deployment of FAWN-KV
configured with a replication factor of 4 and 6, respectively.
In this case the chain can have nodes in both datacenters.

ChainReaction: Deployment of our solution with a replica-
tion factor of 4 for each datacenter and a k equal to 2.

CR-L: We introduced a new system deployment that consists
of ChainReaction configured to offer linearizability on the
local datacenter with a replication factor of 4 nodes. This
deployment allows to compare the performance with systems
that offer stronger local guarantees and weaker guarantees
over the wide-area (in particular, COPS).

We employed the same workloads as in the previous
experiments. However, in this case we run two YCSB clients
(one for each datacenter) with 100 threads each. We also
divided the workload among the two sites, meaning that
each workload generator performs 1,000,000 operations on
top of 1,000,000 objects. We aggregated the results of the
two clients and present them in the following plots.

The throughput results are presented in Figure 3. Con-
sidering the standard YCSB workloads, we can see that
ChainReaction outperforms the remaining solutions in all
workloads except the write-heavy workloads (A and F)
where Cassandra-E and CR-L are better. These results
indicate that ChainReaction, Cassandra-E, and CR-L are the
most adequate solutions for a geo-replicated deployment.
The difference in performance between our solution and
Cassandra-E is due to the fact that Cassandra offers weaker
guarantees that our system and is also optimized for write
operations resulting in an increase in performance. When
comparing with CR-L our system needs to guarantee that
a version is committed before proceeding with a write
operation while CR-L does not, leading to some delay in
write operations.

On read-heavy workloads (B and D), our solution sur-
passes both Cassandra-E and CR-L achieving 56%/22%
better throughput in workload B and 38%/26% better perfor-
mance in workload D. Finally, on workload C our solution
exhibits an increase in performance of 62% and 53% in
comparison with Cassandra-E and CR-L, respectively.

The low throughput of Cassandra-L and both FAWN-
KV deployments is due to the fact that write operations
always have to cross the wide-area network, inducing a great
latency in operations. Moreover, in FAWN-KV (original
chain replication) when the objects’ chain tail is on a remote
datacenter, read operations on that objects must cross the
wide-area. Additionally, ChainReaction has a significantly
higher throughput than FAWN-KV 3 ranging from 1,028%
(workload F) to 3,012% (workload C) better (3 orders of
magnitude). The comparison of the results for the remaining
systems is similar.

The results for the micro benchmark (Figure 3(b)) in the
Geo-replicated scenario are interesting because they show
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that the original Chain Replication protocol is not adaptable
to a Geo-replicated scenario. The large error bars for both
FAWN-KV deployments are a result of the difference in
throughput in each datacenter. The client that has the tail
of the object in the local datacenter has a better read
throughput than the client on the remote datacenter, resulting
in a great difference in each datacenter performance. Our
solution outperforms FAWN-KV 3 in all workloads with
a difference that ranges from 188% (Workload 5/95) to
1,249% (Workload 50/50).

Also, the results show that Cassandra-E outperforms our
solution in all single object workloads with exception of
the read-only workload (where our solution is 15% better).
This happens because Cassandra behaves better with a single
object and is optimized for write operations.

C. Support for Get-Transactions

In this experiment we evaluate the performance of GET-
TRANSACTION operations in the Geo-replicated scenario.
In this case we only executed ChainReaction (the other
solutions do not support this operation) deployed in the
8 machines (4 in each simulated datacenter) like in the
previous scenario. We have attempted to perform similar
tests with COPS unfortunately, we were unable to success-
fully deploy this system across multiple nodes. We have
created three custom workloads and changed the YCSB
source in order to issue GET-TRANSACTION operations.
The created workloads comprise the following distribution
of write, read and GET-TRANSACTION operations: 10%
writes, 85% reads, 5% GET-TRANSACTIONS on workload
10/85/5, 5% writes, 90% reads, 5% GET-TRANSACTIONS on
workload 5/90/5, and 95% reads, 5% GET-TRANSACTIONS
on workload 0/95/5. A total of 500,000 operations were
executed over 10,000 objects, where a GET-TRANSACTION
includes 2 to 5 keys (chosen randomly). This workload was
executed by 2 YCSB clients (one at each datacenter) with
100 threads each.

Results depicted on Figure 4 show that the throughput
for executed workloads is quite reasonable. We achieve an
aggregate throughput that approximates of 12,000 operations
per second in all workloads showing that the percentage of
write and read operations do not affect the performance of
GET-TRANSACTIONS and vice-versa.
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Figure 4. Throughput for GET-TRANSACTION workloads.

In terms of operation latency we can state (see full
Thesis for more details) that the introduction of GET-
TRANSACTIONS does not affects the latency of write and
read operations in the three workloads. On the other hand,
since we give priority to the other two operations, the
average latency for GET-TRANSACTIONS is in the order of
approximately 400 ms (which we consider acceptable from
a practical point of view).

D. Fault-Tolerance Experiments
To assess the behavior of our solution when failures occur

we deployed ChainReaction in a single data center with
9 data nodes and a single chain, with a replication factor
of 6 and a k equal to 3. A single chain was used so that
the failures could be targeted to the different zones of the
chain. We used the custom-made workloads 50/50 and 5/95
to measure the average throughput of our solution during
a period of 140 seconds. During the workload we failed a
single node at 60 seconds. We tested two scenarios of failure:
a) a random node between the head and node k (including
k); b) a random node between k and the tail (excluding k).
The workloads were executed with 100 client threads that
issue 3,000,000 operations over a single object.
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(a) Node between the head of the chain and node k.
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(b) Node between kand the tail of the chain.

Figure 5. Throughput in face of failures.

The results for the average throughput during execution
time can be observed in Figure 5. In the first scenario,
depicted by Figure 5(a), one can observe that the failure
of a node between the head of the chain and node k results
in a drop in throughput. This drop reaches approximately
2000 operations per second in both workloads and is due to
the fact that write operations are stalled until the failure is
detected and the chain is repaired. Also, 20 seconds after the
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failure of the node the throughput starts increasing reaching
its initial peak 30 seconds after the failure. The results
for the second scenario, depicted in Figure 5(b), show that
the failure of a node after node k has a reduced impact
in the performance of the system, as the write operations
can terminate with no problems. Also, the variations of the
throughput during the repair of the chain are due to the fact
that read operations are processed by only 5 nodes while the
chain is being repaired.

VIII. CONCLUSIONS

The work described in the thesis proposes ChainReaction,
a distributed key-value store that offers high-performance,
scalability, and high-availability. Our solution offers the
recently formalized causal+ consistency guarantees which
are useful for programmers. Similarly to COPS, we also
provide a transactional construct called GET-TRANSACTION,
that allows to get a consistent view over a set of objects. This
datastore can be deployed in a single datacenter scenario or
across multiple datacenters, in a Geo-replicated scenario. We
have implemented a prototype of ChainReaction and used
the Yahoo! Cloud Serving Benchmark to test our solution
against existing datastores. Experimental results using this
testbed show that ChainReaction outperforms Cassandra and
FAWN-KV in most workloads that were run on YCSB.
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