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O equiĺıbrio entre coerência, disponibilidade e escalabilidade, nomeadamente em sistemas que supor-

tam Geo-replicação, é um dos maiores desafios na construção de sistemas de base de dados distribúıdos

para aplicações baseadas em computação em núvem. Desta forma, várias combinações entre garantias de

coerência e protocolos de replicação têm sido propostos nos últimos anos.

O trabalho descrito nesta tese tenta avançar esta área de investigação através da proposta de uma

nova arquitectura para um sistema de base de dados distribúıdo. Esta arquitectura permite oferecer

garantias de coerência causal+, tolerância a faltas, escalabilidade e um elevado desempenho. Introduzimos

uma nova técnica de replicação baseada na replicação em cadeia, esta última oferece garantias de coerẽncia

atómica e elevado desempenho de uma forma simples. A nossa abordagem permite evitar os pontos

de estrangulamento associados a soluções que oferecem garantias de coerência atómica e oferece um

desempenho competitivo com soluções que oferecem garantias mais fracas (coerência eventual). Para mais,

o ChainReaction pode ser instalado num único ou em vários centros de dados distribúıdos geograficamente.

Os benef́ıcios do ChainReaction foram avaliados experimentalmente através da utilização do Yahoo!

Cloud Serving Benchmark para testar um protótipo da nossa solução em comparação com o Apache

Cassandra e o FAWN-KV. Por fim, a nossa solução também oferece uma primitiva transaccional que

permite a um cliente obter o valor de vários objectos de uma forma coerente. Resultados experimentais

mostram que esta extensão não resulta num impacto negativo no desempenho do ChainReaction.





Managing the tradeoffs among consistency, availability, and scalability, namely in systems support-

ing Geo-replication, is one of the most challenging aspects of the design of distributed datastores for

cloud-computing applications. As a result, several combinations of different consistency guarantees and

replication protocols have been proposed in the last few years.

The work described in this thesis makes a step forward in this path, by proposing a novel distributed

datastore design, named ChainReaction, that offers causal+ consistency, with high performance, fault-

tolerance, and scalability. We introduce a new replication technique based on Chain Replication, a

replication technique that provides linearizability and high performance in a very simple way. Our ap-

proach avoids the bottlenecks of linearizability while providing competitive performance when compared

with systems merely offering eventual consistency. Furthermore, ChainReaction can be deployed both in

a single datacenter and Geo-replicated scenarios, over multiple datacenters.

We have experimentally evaluated the benefits of our approach by applying the Yahoo! Cloud Serving

Benchmark to a prototype deployment that includes our own solution as well as Apache Cassandra and

FAWN-KV. Finally, our solution also provides a transactional construct that allows a client to obtain a

consistent snapshot of multiple objects. Experimental results show that this extension has no negative

impact on the performance of ChainReaction.
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1
This work focuses on providing a data storage service for distributed applications. The need for

distributed storage has been increasing in the last few years as the services are being moved to the

Internet and require to serve a large number of users. Moreover, with the emergence of the Cloud

Computing, applications built according to this paradigm are able to provide services for a large number

of users worldwide. To support this kind of operation, systems that provide data storage to these kind

of applications usually need to offer consistency of the data, high service availability and scalability in

order to provide a good user experience.

One way to provide availability and scalability is by the use of replication, which places multiple

copies of the data in different servers in order to survive to server failures (availability) and to distribute

the request load (scalability). On the other hand, the existence of multiple data replicas introduces

a challenge which is how to maintain replicas consistent. Distributed Consensus (Lamport 1998) is a

fundamental technique that allows to maintain replicas consistent, however this technique exhibits low

performance when used with a large number of servers (exhibits low scalability). Moreover, the CAP

Theorem (Brewer 2000) states that is not possible to achieve both consistency, availability and partition

tolerance in a distributed system. This way, one has to choose to offer two of the three properties

described (CA, CP, AP). This led to a research effort in trying to find the best tradeoff among these

properties and also to maintain the scalability required by such data storage systems.

1.1 Motivation

Whit the aim of providing storage for distributed applications, in the last few years several datastore

systems were proposed (Lakshman & Malik 2010; Andersen, Franklin, Kaminsky, Phanishayee, Tan, &

Vasudevan 2011; Hastorun, Jampani, Kakulapati, Pilchin, Sivasubramanian, Vosshall, & Vogels 2007;

Cooper, Ramakrishnan, Srivastava, Silberstein, Bohannon, Jacobsen, Puz, Weaver, & Yerneni 2008; Ter-

race & Freedman 2009; Sovran, Power, Aguilera, & Li 2011; Lloyd, Freedman, Kaminsky, & Andersen

2011). These systems implement replication protocols that offer different combinations of consistency,

availability and scalability guarantees. Some of them choose to offer weak consistency guarantees (for

example, eventual consistency) to achieve the desired level of availability, partition tolerance and scala-

bility, even if this imposes a burden on the application programmer as she will be aware of the existence
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of multiple replicas. On the other hand, other solutions offer strong consistency guarantees, such as

linearizability, providing a better programming model but suffering from scalability issues.

There is a lack of solutions that try to offer a consistency model between the strongest model (lin-

earizability) and the weaker model (eventual consistency), providing useful guarantees to the programmer

while maintaining the availability and scalability required by distributed applications. Moreover, with

the emergence of the Cloud Computing, there are new scenarios in the operation of distributed systems.

An application developer can choose to deploy an application among multiple datacenters (that offer the

cloud platform) in order to provide better access latency to local clients. However, most of the existing

data storage systems are not prepared to cope with data management in such scenario. So it would be

an interesting challenge to provide a system that offers a solution for both problems, which would offer

a useful consistency model over a Geo-replicated deployment.

In this work we answer to this challenge by presenting a new replication technique that implements

the recently formalized causal+ consistency model (Lloyd, Freedman, Kaminsky, & Andersen 2011),

which offers the causal ordering of operations while maintaining the availability and scalability required

by Cloud Computing applications. We also show how this technique can be applied in a datastore system

and ported to a Geo-replicated scenario.

1.2 Contributions

This work addresses the problem of providing data storage to Geo-replicated applications built ac-

cording to the Cloud Computing paradigm. More precisely, the thesis analyzes, implements and evaluates

techniques to provide replication while offering causal+ consistency, high performance, and high avail-

ability. As a result, the thesis makes the following contributions:

• New replication technique, based on chain-replication, that offers causal+ consistency;

• Architecture of a data storage system that incorporates the developed replication technique;

• Extension of the architecture for a Geo-replicated scenario;

1.3 Results

The results produced by this thesis can be enumerated as follows:

• A prototype implementation of the described architecture;
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• An experimental evaluation of the new replication technique by applying the Yahoo! Cloud Serving

Benchmark to our prototype and also to Apache Cassandra (Lakshman & Malik 2010), FAWN-

KV (Andersen, Franklin, Kaminsky, Phanishayee, Tan, & Vasudevan 2011), and an emulation of

COPS (Lloyd, Freedman, Kaminsky, & Andersen 2011).

• An improved version of the FAWN-KV system;

1.4 Research History

This work was performed in the context of the HPCI project (High-Performance Computing over the

Large-Scale Internet). One of the project main goals is to develop solutions for the large-scale distributed

systems over the Internet.

In the beginning, the main focus of this work was to study the different existing consistency models

and examples of replication techniques that implement them. As a result of that study this work would

produce a new replication technique that would improve an existent one. However, during the biblio-

graphic research a new consistency model (causal+) was introduced in (Lloyd, Freedman, Kaminsky, &

Andersen 2011). We found this model very interesting since it offers useful guarantees to the programmers

while maintaining the availability and scalability of the system, also this model could be deployed in a

Geo-replicated scenario counting with multiple datacenters. During that time, we were also investigating

the details behind the Chain Replication technique, which offers linearizability in a simple way while

offering high performance. This way, the main idea behind this work emerged from the combination of

the causal+ consistency model and the Chain Replication technique.

During my work, I benefited from the fruitful collaboration with the remaining members of the GSD

team, namely João Leitão, João Paiva, Oksana Denysyuk and Miguel Branco.

A previous description of this work was published in (Almeida, Leitão, & Rodrigues 2012).

1.5 Structure of the Document

The rest of this documents is organized in the following chapters:

Chapter 2: Introduction of the main concepts related to this work. Description of the main consistency

models and replication techniques. Examples of existing data storage systems.

Chapter 3: Description of the architecture of the ChainReaction system. Detailed explanation of the

new replication protocol and operation on a single and multiple datacenter scenarios.
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Chapter 4: Insight on the implementation details of the prototype with some details about the original

implementation of FAWN-KV and its improvements.

Chapter 5: Results of the experimental evaluation of our prototype against other systems in different

scenarios.

Chapter 6: Conclusion of the document and future work.



2
This chapter surveys the main concepts and systems that are relevant for our work. We start by

describing key concepts to understand the rest of the document. Then we will introduce different data

consistency models and replication techniques. Finally, we describe a number of relevant systems that

implement different variants and combinations of these models and replications techniques. These systems

can also be classified as suitable for a single datacenter scenario or for both a single and a Geo-replication

scenario.

2.1 Concepts

In this section we introduce the concepts that are required to understand the work that was de-

veloped. We start by describing the concept of a Key Value Store (or Datastore). Then we will make

an introduction to the concept of Concurrency Control and Replication Management. Finally, we will

present the description of Geo Replicated applications and the challenges of offering Concurrency Control

and Replication mechanisms in this type of applications.

2.1.1 Key Value Stores

Key Value Store systems result from the NoSQL approach that was motivated by the fact that the

traditional RDBMS (Relational Database Management System) could not achieve the scalability and

performance required by the products of companies like Google, Amazon, and Facebook. In traditional

SQL systems the data is structured using complex schemas, that allow for arbitrary dynamic queries

over the data. The complex structure of data and of the queries requires a large amount of processing

resulting in some overhead on operations. This overhead is even higher in a scenario where the data

is spread among different machines, resulting in poor performance and low scalability of SQL systems.

Also these systems are not adaptable for applications built according to the object-oriented paradigm

resulting in additional effort from the programmer to use them. Therefore, the Key Value Stores are able

to store data in a schema-less way, avoiding the complexities and overhead imposed by SQL. The data

is stored in “key - value” pairs in which the value usually represents an object (of any type) and the

key is usually a string that uniquely identifies the object. The basic operations of a Key Value Store are
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updates and queries. An update writes the value corresponding to a certain key, while a query allows to

retrieve the value identified by a key. There are also some Key Value Stores that support different types

of operations that allow for more complex semantics of even transactional semantics.

These systems are highly optimized for basic operations (updates and queries) achieving much better

performance and scalability than SQL systems for object-oriented data models. Also, they can be easily

adapted for a distributed scenario in which data is maintained in a redundant manner on several servers.

Moreover, these systems can scale easily by adding more servers, which also provides fault-tolerance in

case of a server failures. However, these systems usually do not offer the ACID (Atomicity, Consistency,

Isolation, Durability) guarantees of traditional RDBMS, offering weaker guarantees and transactions that

only include a single data item.

2.1.2 Concurrency Control

Two operations on a given object execute in serial order if one starts after the other terminates.

Otherwise, the operations are said to execute concurrently. While the outcome of a serial execution of

operations is often clear to the programmer, the result of a concurrent execution may not be intuitive.

For instance, consider an empty FIFO queue object and a method insert. If “insert(b)” is executed

after “insert(a)”, it is clear that ’a’ should be at the head of the queue and ’b’ at the tail. But what

are the legal outcomes when both operations are executed concurrently?

The problem is exacerbated when we consider sequences of operations, typically known as trans-

actions. The concurrent execution of two transactions may yield many different interleavings of their

individual operations. Many of these interleavings may result in outcomes that are not intended by the

programmer of the transactional code (which assumed that her code would be executed in isolation or

could not foresee all possible interleavings).

One way to avoid the problems above is to avoid concurrency, by forcing all operations and transac-

tions to execute in serial order. Unfortunately this strategy may result in extremely long waiting times

when the system is subject to high loads. Furthermore, it would prevent the infrastructure from fully

using existing resources (for instance, by preventing operations or transactions from running in parallel

in different cores or machines). This is unacceptable, in particular because many operations access inde-

pendent data structures and so, their concurrent execution does not mutually interfere. Therefore, any

practical system must support concurrent execution of operations and implement mechanisms to ensure

that, despite concurrency, operations still return the “expected” outcomes.

A data consistency model defines which outcomes of a concurrent execution are deemed correct

and which outcomes are deemed incorrect. The mechanisms required to prevent incorrect outcomes are

known as concurrency control mechanisms. As we have noted before, it is often intuitive to programmers
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and users to consider that the system behaves as if all operations and/or transactions were executed in

some serial order. This has led to the definition of data consistency models such as linearizability (for

isolated operations) and serializability (for transactions). These models offer what is often called strong

consistency. We will describe these models in detail later in the text.

Finally, to allow concurrent access by different threads, a system must provide some mechanism to

coordinate them. These coordination mechanisms can be of two types: pessimistic or optimistic.

2.1.2.1 Pessimistic Concurrency Control

The most common way to implement pessimistic concurrency control is through the use of locking.

In this approach all operations made over an object require the acquisition of a lock to the object. This

grants to the thread exclusive access to a certain object, blocking the other threads that are trying to

access that object. Unfortunately, the process of acquiring a lock can lead to a situation of deadlock in

which all processes are blocked. This problem is aggravated when in distributed settings where nodes can

fail, leaving objects locked. The latter issue is usually due to the complexity associated with the use of

locks in programs. In order to avoid deadlocks, a programmer has to verify all possible scenarios for the

execution, ensuring that two or more threads are not waiting for each other to release a certain object

(i.e., all threads are ensured to progress in the execution).

2.1.2.2 Optimistic Concurrency Control

Optimistic concurrency control offers a better utilization of the computational resources by allowing

the execution of concurrent operations over the same objects without requiring the usage of locking

mechanisms. This concurrency control model is usually applied in transactional systems and in order to

achieve the consistency guarantees of serializability, the threads must check at commit time if there are

no conflicts between the issued transactions. As described before, a conflict occurs in the two following

situations: i) if two concurrent transactions write the same object (write-write conflict); ii) one transaction

reads an object that was written by a concurrent transaction (read-write conflict). If there is a conflict,

then one of the transactions must rollback its operations (i.e., it is aborted). Still, the transaction that

was aborted is repeated later. Unfortunately, if conflicts happen frequently, the repetition of aborted

transactions hinders the performance of the system (i.e., computational resources are wasted in executing

operations that will be discarded). Therefore, in optimistic concurrency control, it is assumed that

different threads will perform operations that do not affect each other.
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2.1.3 Replication Management

Replication serves multiple purposes in a large-scale system. On one hand, it allows to distribute the

load of read-only operations among multiple replicas, at the cost of requiring inter-replica coordination

when updates occur. Since many workloads are read dominated, replication often pays off from the

performance point of view. On the other hand, replication may increase the reliability and availability

of data. If a given machine fails, data may survive if it is also stored on a different node. If data is

replicated on different datacenters, it may even provide tolerance to catastrophic events that may destroy

an entire datacenter (such as an earthquake, fire, etc). Additionally, by keeping multiple copies of the

data in different locations, one also increases the probability that at least one of these copies is reachable

in face of failures in networking components that may, for instance, partition the network.

The main challenge when using replication is how to maintain the replicas consistent. Again, as

with concurrency, ideally it would be possible to hide replication from the programmers. In that case,

the access to a replicated data item would be similar to the access to a non-replicated item, something

known as one-copy equivalence (Bernstein, Hadzilacos, & Goodman 1987). Naturally, this requires that

copies coordinate during write (and possibly read) operations. A fundamental coordination abstraction

is distributed consensus (Lamport 1998), that allows to implement state-machine replication (Schneider

1990), a well-established strategy to keep replicas consistent.

As noted before, an essential characteristic of Geo-replicated systems is that network connections

among datacenters are characterized by high latencies. This makes coordination across datacenters very

expensive. Therefore, to operate with acceptable latencies, a system has to provide weaker guarantees

than one-copy equivalence. Furthermore, wide area networks are subject to network partitions. In a

partitioned network, replicas in different partitions cannot coordinate, and may diverge if updates are

allowed. The observation of this fact has motivated the CAP theorem (Brewer 2000), that states that

it is sometimes impossible to offer both consistency, availability, and partition tolerance. The problems

underlying the CAP problem are thus another reason to offer weaker consistency guarantees in Geo-

replicated systems.

2.1.4 Geo Replicated Applications

Due to the expansion of distributed applications and to the appearance of Cloud Computing, clients

of a certain application or service are no longer located in a single geographic location. Applications like

Facebook, Google, and Amazon Services are used by a large number of clients that may access data from

different locations, thus replication allows to place data copies closer to the users, and allows them to

access data with smaller latencies. It is therefore no surprise that replication is an important component

of cloud computing. For example, if Google only had a datacenter on one continent the clients of distant
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continents would experience high latency when accessing Google services.

The use of replication and the support for concurrency brings several benefits to this type of appli-

cations. This strongly suggests that a Geo-replicated system must provide both features. On the other

hand, the high-latencies observed in Wide Area Networks (WANs) that connect different datacenters

and the occurrence of network partitions, make it difficult to support strong consistency and one-copy

equivalence, as it requires tight coordination among datacenters. Therefore, one has often to impose on

the programmers (and users) more relaxed consistency models that can be implemented at a smaller cost.

Unfortunately, the use of weaker consistency models makes programming harder, as the allowed set of

outcomes is larger, forcing the programmer to take into account a wider set of legal executions.

Moreover, the systems that are built to operate on a Geo-replicated scenario usually need to support

a large number of users. These users, combined, issue thousands of requests per second that must be

answered with a reasonable short delay in order to provide a good user experience. This stresses the

infrastructure to operate at a very large scale while providing low latency operations. These applications

require an infrastructure that allows them to manipulate the data with such low latencies. In order to

satisfy these requirements, the infrastructure must employ very efficient algorithms, often resorting to

the weakening of consistency guarantees.

Additionally, applications are willing to trade consistency for performance because any increase in

the latency of operations could mean the loss of a percentage of their users. Therefore, a key aspect in

the development of cloud-computing infrastructures is to find data storage protocols that offer a good

trade-off between efficiency and consistency. This is a very active area of research, to which this work

aims at contributing.

2.2 Data Consistency Models

The following sections describe various consistency models that are related with the work developed.

We start by discussing models that do not consider transactions,i.e., where no isolation guarantees are

provided to sequences of operations. Instead, the first models only define which outcomes of individual

operations are legal in face of a given interleaving of individual operations executed by different threads.

Consistency models for transactional systems are surveyed in the subsequent section. Models are described

by showing the outcomes of the operations that are legal under each model. Unless otherwise explicitly

stated we assume that the shared data items are simple registers, that only export read and write

operations. In a register, any update operation (i.e., a write) always overwrites the effect of the previous

update. However, in some cases, the system also supports higher level objects with complex semantics.

For instance, consider a set object, where items can be added using a add operation. In this case, the

add operation updates the state of the object without overwriting the previous update.
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As will be discussed in the following sections, some consistency models allow concurrent update

operations to be executed in parallel at different replicas. As a result, replicas will have an inconsistent

state if operations are executed in an uncoordinated manner. The procedure to reconcile the state of

different replicas is often called conflict resolution. Conflict resolution may be automatically handled

by the system or it may require the intervention of some external component. In the latter case the

system may only detect the conflict and handle the different states to the external component that will

be in charge of generating the new reconciled state of the object (ultimately, this may require manual

intervention from the end-user).

Automatic conflict resolution is, in the general case, impossible. The most common way of performing

automatic conflict resolution is to use the last-writer-wins rule (Thomas 1979). This rule states that two

concurrent writes are ordered, giving the impression that one happened before the other (the last write

overwrites the value written by the first). This policy is reasonable for a register object but may yield

unsatisfactory results for more complex objects. For instance, consider again the set object. Consider a

set that is initially empty and two concurrent updates add different items (say ’a’ and ’b’) to the set. If

the set is seen as black box, the last-writer-wins rule would result in a set with only one item (albeit the

same in all the replicas). However, if some operation semantics aware scheme exists, it could recognize

that some operations are commutative, and merge the operations in a way that results in the same final

state. In our example, the add operation would be recognized as commutative.

2.2.1 Non-Transactional Data Consistency Models

2.2.1.1 Linearizability

The Linearizability or Atomic Consistency model (Herlihy & Wing 1990) provides the strongest

guarantees to applications. As a matter of fact, this consistency model is the one that is closer to the

idealized abstraction of memory where each operation occurs instantaneously and atomically. Moreover,

the model assumes that operations may take some time to execute: their duration corresponds to the

interval of time between its invocation and completion. However, the system behaves as if the operation

took effect instantaneously, in an atomic moment within this interval.

This means that the results of a write operation are necessarily visible to all other read operations,

at most when the write completes. Also, if a write operation is concurrent with a read operation, the

outcome of the write may or may not be visible to read. However, if it becomes visible, then it will be

visible to all other read operations that are linearized after read. This is illustrated in Figure 2.1(a).

Furthermore, linearizability has a property known as composability (or locality). The latter states

that a system is linearizable if it is linearizable with respect to each object. This means that a complex

system built by composing several linearizable objects is also linearizable.
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Unfortunately, to build a replicated fault-tolerant system that is linearizable is very expensive. One

way to enforce linearizability is to resort to locking to perform writes, preventing concurrent reads while

a write is in progress. This may avoid non-linearizable runs but may lead to poor performance and create

unavailability problems in the presence of faults. Non-blocking algorithms exist to implement linearizable

registers, but most of these algorithms require the reader to write-back the value read, effectively making

every read as expensive as a write.

2.2.1.2 Sequential Consistency

Sequential consistency (Lamport 1979) states that the execution of multiple threads should be equiv-

alent to the execution of a single thread which combines all the operations of the multiple threads in

some serial interleaving, as long as this interleaving respects the partial order defined by each individual

thread (i.e, the serial order must respect the order of the operations as they were defined in the program).

Unlike linearizability, sequential consistency is not composable. A system where operations, made

over an individual object, respect the local serial consistency is not necessarily globally sequentially

consistent.

Sequential consistency is weaker than linearizability, as it does not require the outcome of a write

operation to become immediately visible to other read operations (i.e., read operations may be serialized

“in the past”), as can be seen on Figure 2.1(b). Still, it requires operations to be totally ordered, which

is also very expensive in a Geo-replicated system.

2.2.1.3 Per-record Timeline Consistency

Per-record timeline consistency (Cooper, Ramakrishnan, Srivastava, Silberstein, Bohannon, Jacob-

sen, Puz, Weaver, & Yerneni 2008) is a relaxation of sequential consistency that implicitly makes the

existence of replication visible to the programmer/user. In the first place, it only ensures sequential

consistency on a per object basis. In this model, the updates made to an object have a single ordering,

according to a certain timeline, that is shared by all its replicas (similar to sequential consistency). This

ordering is imposed by a single replica that works as a serialization point for the updates.

This model also guarantees that the versions of the object present in a certain replica always move

forward in this timeline. This way, read operations, made under this model, will return a consistent

version from the ordering described above. However, and unlike sequential consistency, a read from the

same thread may move back in the timeline with respect to previous reads. This may happen if the

thread needs to access a different replica.
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Figure 2.1: Sequences of operations that are correct (assuming that the initial value of the register is 0)
under: a) Linearizability; b) Sequential Consistency (not linearizable); c) Eventual Consistency (Neither
linearizable nor sequentially consistent).

The rationale for this model is that most applications access a single object and often remain con-

nected to the same datacenter. Therefore, in most cases users will not observe the “anomalies” allowed

by the model. On the other hand, the weakening of the consistency model and the absence of conflicts

(i.e., updates are serialized at a single node) allows for updates to be propagated in a lazy fashion among

replicas.

2.2.1.4 Causal Consistency

The causal consistency model (Ahamad, Neiger, Burns, Kohli, & Hutto 1995) ensures that the

observed outcomes of operations are always consistent with the “happened-before” partial order as defined

by Lamport (Lamport 1978). For completeness, we reproduce here the definition of the happened before

order:

• Considering that A and B are two operations that are executed by the same process, if A was

executed before B then they are causally related. There is a causal order between A and B , where

A happens before B.

• If A is a write operation and B is a read operation that returns the value written by A, where A
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and B can be executed at different processes, then A happens before B in the causal order.

• Causal relations are transitive. Considering that A, B and C are operations, if A happens before

B and B happens before C, then A happens before C.

Note that, as with sequential consistency, threads are not required to read the last value written,

as read operations can be ordered in the past, as shown in Figure 2.2. Furthermore, and contrary to

sequential consistency, concurrent writes (i.e., two writes that are not causally related) may be observed

by different threads in different orders

2.2.1.5 Eventual Consistency

Eventual consistency (Vogels 2009; Gustavsson & Andler 2002) is a term used to designate any

consistency model that allows different threads to observe the results of update operations in different

orders during some (possibly long) period. Although all threads are guaranteed to eventually read the

same values, if write operations stop being executed. The time interval between the last write and the

point when all replicas see that write is called inconsistency window. The length of this window depends

on various factors like communication delays, failures, load of the system, network partitions, and churn.

The latter refers to the phenomenon that happens when there are nodes joining and leaving the network

at a very high rate. An example of a sequence of operations that is acceptable under eventual consistency

can be observed in Figures 2.1(c) and 2.2.

















 





Figure 2.2: Sequence of operations that are correct (assuming that the initial value is 0) under Causal
Consistency (and Eventual Consistency), although they are neither linearizable nor sequentially consis-
tent.

2.2.1.6 Causal+ Consistency

Causal consistency guarantees that the values returned by read operations are correct according to

the causal order between all operations. However, it offers no guarantees on the ordering of concurrent
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operations. This leads to scenario where replicas may diverge forever (Ahamad, Neiger, Burns, Kohli,

& Hutto 1995). This happens in face of conflicting writes, which can be applied in different orders at

different nodes.

Causal+ consistency appears as a model that aims at overcoming the drawback described above

by adding the property of convergent conflict handling. This model has been suggested in a number of

different papers (Belarami, Dahlin, Gao, Nayate, Venkataramani, Yalagandula, & Zheng 2006; Petersen,

Spreitzer, Terry, Theimer, & Demers 1997) and later detailed in (Lloyd, Freedman, Kaminsky, & Andersen

2011).

In this consistency model, the enforcing of the convergence property can be made by using the last-

writer-wins rule, as described before. Additionally, it allows semantic aware re-conciliation of inconsistent

replicas, in which operations would be recognized as commutative.

2.2.2 Transactional Data Consistency Models

The consistency models listed previously consider operations in isolation. Transactional data con-

sistency models consider sequences of operations that must be treated as a unit. These sequences of

operations are named transactions, and are typically delimited by special operations, namely, begin-

Transaction and endTransaction. Transactions often serve a dual purpose: they are a unit of

concurrency control and they are a unit of fault-tolerance.

For concurrency control purposes, a transactional system makes an attempt to isolate transactions

from each other. As noted earlier in the text, the stronger consistency models ensure that the concurrent

execution of transactions is the same as if they were executed one after the other (i.e., in a serial

execution).

For fault-tolerance, transactions are a unit of atomicity, i.e., either all operations that constitute the

transaction take effect or none does. In the former case, one says that the transaction has committed. In

the latter case, one say that the transaction has aborted. A consistency model for a transactional system

defines which are the valid outcomes of committed transactions.

2.2.2.1 Serializability

Serializability (Bernstein & Goodman 1981) states that the outcome of a concurrent execution of a

set of transactions must be the same as the outcome of some serial execution of the same transactions.

Moreover, the transactions issued by a process, which are included in this ordering, must respect the order

defined in the program. A concurrent execution of transactions in a replicated system is serializable if

the outcome is equivalent to that of some serial execution of the same transactions in a single replica.
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Similarly to sequential consistency, serializability also requires concurrent transactions to be totally

ordered, and therefore, consensus in a replicated system. Given the arguments captured by the CAP

theorem (Brewer 2000), it is impossible to implement a geo-replicated system that combines consistency,

availability, and partition tolerance under this model.

2.2.2.2 Snapshot Isolation

Snapshot Isolation (SI) (Berenson, Bernstein, Gray, Melton, O’Neil, & O’Neil 1995) is a weaker model

of consistency that has been widely adopted by most database vendors (e.g. Oracle and SQLServer).

According to this model, the state of the system at a given point in time includes all the updates

of all transactions that have committed, as if these updates have been applied in some serial order.

Furthermore, the outcome of each individual transaction is computed based on a valid system state, at

some previous point in time (i.e., the outcome of a transaction never depends on partial results from on-

going transactions or from updates from transactions that later abort). Furthermore, if two transactions

update a common variable, one transaction needs to be executed based on a system state that already

includes the outcome of the other. However, unlike with serializability, the state observed by a transaction

does not necessarily reflect the updates of all transactions that have been totally ordered in the past.

The difference between snapshot isolation and serializability may be subtle and is better illustrated

with an example. Consider the following execution: two transactions concurrently read an overlapping

set of values from the same system state and make disjoint updates to different subsets of these values.

Accordingly to snapshot isolation, these transactions are allowed to commit (and their updates are applied

using some serial order). However, they will commit without seeing each other’s updates. This “anomaly”

(with regard to the idealized system) is characteristic of snapshot isolation and it is called write skew.

This particular example shows that SI is weaker than Serializability, as this write skew could never happen

in a serializable execution.

2.2.2.3 Parallel Snapshot Isolation

Although weaker than serializability, snapshot isolation still requires that write-write conflicts are

detected. Therefore, in a replicated system, a transaction cannot be committed without previous coor-

dination among replicas. Recent work introduced a variation of this model, named Parallel Snapshot

Isolation (Sovran, Power, Aguilera, & Li 2011). This model consists of a relaxation of snapshot isolation

aimed at Geo-replicated systems that allows transactions to be applied in different orders at different

nodes.

In PSI, each transaction is executed and committed at one site but different transactions may be

executed in different sites. Therefore, under this model we can have concurrent transactions executing
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at the same site and concurrent transactions executing at different sites. Concurrency control operates

differently in each of these cases.

In the case where concurrent transactions execute at the same site and there is a write-write conflict

between them, then one of the transactions is required to abort. The decision on the transaction to be

aborted depends on when the conflict is detected.

• If the conflict is detected when one of the transactions has already committed, the other must abort.

• If the conflict is detected and none of the transactions has committed yet, then one or both trans-

actions may be required to abort, given that the decision policy is not deterministic.

On the other hand, if the conflicting transactions execute at different sites there are scenarios where

both can commit. More precisely:

• If the conflict is detected when one of the transactions has already committed and the other has

not, then the latter must be aborted.

• If the conflict is detected and both transactions have committed (in different sites), then the

transactions must be ordered according to some criteria.

• If no conflict is detected, then both are committed and their updates applied in the same order at

all sites.

Unfortunately, when conflicting transactions execute at different nodes their outcome is unpredictable

as it depends on runtime conditions and implementation decisions related on how and when the system

decides to propagate information about on-going and committed transactions among the different replicas.

2.3 Replication Techniques

The benefits of replication, as described previously, led to the appearance of a large number of replica-

tion approaches that offer different combinations of consistency guarantees and performance guarantees.

The following sections introduce the replication mechanisms that we consider relevant for the work de-

veloped: active replication, quorum replication, passive replication (and its variants), chain replication,

and lazy replication.
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2.3.1 Active Replication

In active replication, requests made to the system are processed by all replicas. This requires that

processes execute operations in a deterministic and synchronized way, receiving the same sequence of

operations. In order to respect the previous constraint, the system must make use of an atomic broadcast

protocol that guarantees that all replicas receive the messages in the same order and if one process

receives the message then all the others receive it. The use of atomic broadcast hinders the scalability of

the system since it must use a distributed consensus mechanism (Lamport 1998), which requires heavy

communication.

2.3.2 Quorum Replication

Quorum replication is based on Quorum consensus (Agrawal & El Abbadi 1991; Malkhi & Reiter

1997) where requests are processed by a quorum of replicas before returning to the client. A simple

quorum (Q) is defined as any majority of nodes such that Q > N/2, where N is the total number of

replicas. In the ideal case all operations would be processed in a majority before returning to the client in

order to guarantee that each client always access the most recent version in the system. However, some

systems allow the configuration of the size of read (R) and write (W ) quorums in order to achieve better

performance. To ensure the same properties as when a majority is used, the quorums must intercept in

some node such that W + R > N . Otherwise, the quorums may not overlap and stale versions can be

observed.

2.3.3 Passive replication

Unlike the latter, the passive replication mechanism assumes that operations are made over a sin-

gle replica. The primary-backup replication, and multi-master replication are two examples of passive

replication mechanisms that we consider relevant for our work. These two solutions are based on the

read-one-write-all-available (ROWAA) approach (Charron-Bost, Pedone, & Schiper 2010), in which op-

erations are assigned to a local site where they are executed and later propagated to remote sites. This

way, these two mechanisms can be classified using the following parameters: transaction location and

synchronization strategy.

Primary-backup replication: According to the parameters defined above, in the primary-backup

approach updates are made on a single replica (master) and then propagated to the remaining

replicas, while read operations can be directed to any node. This propagation can be either made

in an eager or lazy way. In the eager approach, the client issues an update and the master only

replies after the update has been propagated to all the replicas, often providing strong consistency.
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On the other hand, the lazy approach assumes that the master replies to the client after the update

has been applied locally. This way, if the client issues a read operation to one of the other replicas,

before the propagation of the update, she can see stale data. Additionally, in the primary-backup

approach it is simple to control the concurrency of updates (serialized at the master), although a

single master can be seen as a bottleneck in the system.

Multi-master replication: In multi-master replication the write and read operations can be made at

any replica. Like in primary-backup, the propagation of updates is made in a similar way, either in

the lazy or eager approach. However, in the eager approach the replicas must synchronize in order

to decide on a single ordering of concurrent updates, which can lead to heavy communication. In

the lazy approach, there are some situations where conflicts can occur, which can be hard to solve

as was described before. Considering the previous description, we can state that the multi-master

approach is more flexible than primary-backup and allows a better distribution of write operations

among the replicas. Unfortunately, the existence of multiple masters imposes a higher level of

synchronization.

2.3.4 Chain Replication

Chain Replication (van Renesse & Schneider 2004) is a specialization of the primary-backup approach

that allows to build a datastore that provides linearizability, high throughput, and availability. This

approach assumes that replicas are organized in a chain topology. A chain consists of a set of nodes where

each node has a successor and a predecessor except for the first (head) and last (tail) nodes of the chain.

The write operations are directed to the head of the chain and are propagated until they reach

the tail. At this point the tail sends a reply to the client and the write finishes. The way updates are

propagated along the chain ensures the following property, named Update Propagation Invariant : the

set of received updates by given node is contained on the set of updates of its predecessor in the chain.

Contrary to write operations, read operations are always routed to the tail which returns the value of

the object. Since all the values stored in the tail are guaranteed to have been propagated to all replicas,

reads are always consistent.

The failure of a node can break the chain and render the system unavailable. To avoid this problem,

chain replication provides a fault-tolerance mechanism that recovers from node failures in three different

situations. This mechanism assumes the fail-stop model (Schneider 1984) and operates as follows:

• If the head (H) of the chain fails, then the head is replaced by its successor (H+). All the pending

updates, that were in H, and were not propagated to H+ are assumed to have failed.
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• The failure of the tail is handled by replacing it by its predecessor. By the property of update

propagation invariant is guaranteed that the new tail has all the needed information to continue

on normal operation.

• Unlike the failures described above, the failure of a node in the middle of the chain (S) is not

simple to handle. To remove S from the chain, its successor (S+) and its predecessor (S−) must be

informed. Also, it must be guaranteed that the updates propagated to S are propagated to S+, so

that the property of update propagation invariant is not violated.

Failed nodes are removed from the chain, which shortens its size. Obviously, a chain with a small

number of nodes tolerates fewer failures. To overcome this problem, chain replication also offers a

mechanism to add nodes to a chain. The simplest way of doing this procedure is to add a node after the

tail (T). In order to add a node T+, the current tail needs to propagate all the seen updates to T+, and

is later notified that is no longer the tail.

Chain replication is considered as a Read One, Write All Available (ROWAA) approach, which im-

plements linearizability in a very simple way. However, chain replication is not applicable to partitioned

operation and has some disadvantages, as follows; The overloading of the tail with write and read op-

erations, which hinders throughput and constitutes a bottleneck in the system; The failure of just one

server makes the throughput of read and write operations, drop to zero until the chain is repaired.

2.3.5 Lazy Replication

Lazy replication, introduced in (Ladin, Liskov, Shrira, & Ghemawat 1992), is considered as an

example of a multi-master approach that allows to build causal consistent distributed systems. This

technique allows for write operations to be processed at a single replca before returning to the client.

The rest of the replicas are updated in the background using lazy gossip messages. Therefore, it aims at

providing better performance and scalability at the cost of providing weaker consistency guarantees.

The causal consistency model is implemented by using multipart timestamps, which are assigned to

each object. These timestamps consist on a vector that contains the version number of the object at each

replica. This vector must be included (in the form of dependencies) in all update and query requests so

that operations respect the causal ordering: an operation can only be processed at a given node if all the

operations on which it depends have already been applied at that node. Furthermore, the nodes must be

aware of the versions present in other replicas. This information is maintained in a table that is updated

by exchanging gossip messages between replicas. When a node is aware that a version as already reached

all replicas then it issues an acknowledgment message so that the gossip dissemination protocol can be

stopped.
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The causal consistency guarantees provided by this approach allow its adaptation to a Geo-replicated

scenario while maintaining scalability. Moreover, this technique is able to handle network partitions since

the replicas can synchronize the updates when network recovers from the partition, without affecting the

operation of the system. However, this approach has a major drawback: large vector timestamps. These

timestamps must be stored in the client and can be very large in a system that comprises hundreds of

nodes.

2.4 Existing Systems

This section will introduce some systems that are relevant for the work that is going to be developed.

We pretend to illustrate the implementation of some consistency models and replication techniques de-

scribed before. First we present some key value store systems that are configured to operate on a single

datacenter (i.e., the systems are built assuming that the nodes are connected by low latency links) but

that do not support the operation on multiple datacenters. Next, we present the systems that can be

deployed in both a single and a multi-datacenter scenario.

2.4.1 Single Datacenter Systems

2.4.1.1 Fast Array of Wimpy Nodes (FAWN-KV)

FAWN-KV (Andersen, Franklin, Kaminsky, Phanishayee, Tan, & Vasudevan 2011) is a distributed

key-value storage based on the FAWN architecture which allows to build systems for low-power data-

intensive computing. This datastore also offers strong consistency, high availability, and high performance.

The FAWN architecture is composed by two types of server nodes: front-ends and back-ends. The

front-ends are the entry point of the system, forwarding all client requests to the back-end FAWN-KV

node responsible for a certain key. The back-end FAWN-KV storage nodes are organized in a one-hop

DHT ring using consistent hashing (Karger, Lehman, Leighton, Panigrahy, Levine, & Lewin 1997), where

the keys are mapped to the successor of the key in the ring. The storage of data is managed by a

FAWN-DS (FAWN datastore) module that is optimized for flash memory.

To offer high availability guarantees, FAWN-KV uses Chain Replication in order to maintain mul-

tiple replicas of the data consistent. In this system, a chain is defined by the FAWN-KV storage node

responsible for the key (head) and its R - 1 successors, where R is the configured replication factor. Since

the chain are defined in the DHT ring, a node can be part of different chains.

The use of flash memory and of the Chain Replication technique allow FAWN-KV to achieve high

throughput in operations while maintaining a low power consumption. However, this solution is not
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adaptable for a Geo-replication scenario with hundreds of nodes spread among different datacenters. The

latter is due to the fact that chains can have internal links that cross the WAN usually with high latencies.

2.4.1.2 Chain Replication with Apportioned Queries (CRAQ)

Chain Replication with Apportioned Queries (CRAQ) (Terrace & Freedman 2009) is a distributed

key value storage system that offers strong consistency, high availability, and high performance.

This system employs a replication technique that is an improvement of Chain Replication, allowing

for a better throughput of read operations by distributing the load among the existing replicas. Like

in chain replication, nodes are organized in a chain and all write operations are routed to the head of

the chain and then propagated until the tail. Moreover, when the version written reaches the tail, the

version is said to be committed and an acknowledgment message is sent upwards in the chain. However,

unlike chain replication, all nodes can serve read operations in the following way: If the last version of

the object stored in the node is committed, then the node can return that version; Otherwise, if the last

version of the object is not committed, then the node contacts the tail asking the latest version that

has been committed. Upon receiving the response, the node returns the version specified in the tail’s

response. This way, all operations are serialized with respect to the tail offering linearizable guarantees.

Furthermore, CRAQ can be configured to offer eventual consistency guarantees where the nodes can

return the latest version that is stored there, even if it is not committed (without contacting the tail).

This optimization of the Chain Replication protocol allows CRAQ to achieve better throughput,

in read-heavy workloads, than the original protocol by distributing the read load among the multiple

replicas. However, the major drawback of this solution is that a small percentage of write operations

forces all nodes to contact the tail in read operations, reducing the throughput to values that are very

close to the original protocol.

2.4.2 Multiple Datacenter Systems

2.4.2.1 Cassandra

Cassandra (Lakshman & Malik 2010) is a distributed data storage system developed by Facebook

to overcome the storage needs of the Inbox Search problem. Due to the large (and growing) number of

users in Facebook, this key value store has to operate at a high scale. This way, Cassandra was meant

to be run on hundreds of nodes providing high availability and high scalability.

Like most key value stores, Cassandra does not support a relational data model. However, its data

model is more complex than simple key-value pairs. In Cassandra the data is stored in tables that consists

on distributed multi dimensional maps that are indexed by a key. The value is a highly structured object
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which consists on a row of the table. This row has multiple Columns that can be grouped together in

Column Families. The latter can also be divided in two kinds: Simple and Super Column Families. Super

Column Families can be seen as a column family inside another column family. Cassandra also allows

applications to specify the order of columns inside the column family.

To be able to scale incrementally, the data is partitioned among the nodes using consistent hashing

(Karger, Lehman, Leighton, Panigrahy, Levine, & Lewin 1997). In consistent hashing the output values

of the hash function form a ring space. Nodes are positioned in this ring by assigning a random hash

value in this space. Data items are assigned to nodes by hashing its key (which results in a position in

the ring) and finding the first node with a position larger than the item position.

In order to achieve the high availability, Cassandra replicates its data items among N replicas,

where N is the configured replication factor. In the common case a data item is replicated in the N-1

successors of the node responsible for the key. Cassandra uses a quorum technique to maintain replicas

up to date, however Cassandra only provides weak consistency guarantees, namely eventual consistency.

Moreover, it offers replication mechanisms that are datacenter aware allowing for a better adaptation to

a Geo-replication scenario. Examples of these mechanisms are datacenter-aware replication, strategies,

configurable quorums at each datacenter, among other features.

2.4.2.2 Clusters of Order-Preserving Servers (COPS)

COPS (Lloyd, Freedman, Kaminsky, & Andersen 2011) is a datastore designed to provide causal+

consistency guarantees while providing high scalability over the wide-area. It provides the aforementioned

guarantees through the use of operation dependencies. The dependencies of an operation are the previous

operations that must take place before the former, in order to maintain the causal order of operations.

These dependencies are included in the read/write requests issued by a client. Operations can only take

place if the version of an object, present in a datacenter, fulfills the dependencies. Otherwise, operations

are delayed until the needed version is written in the datacenter.

The authors argue that COPS is the first system to achieve causal+ consistency in a scalable way.

Previous work on this topic (Petersen, Spreitzer, Terry, Theimer, & Demers 1997; Belarami, Dahlin,

Gao, Nayate, Venkataramani, Yalagandula, & Zheng 2006) described the implementation of systems

that provide causal+ consistency. However, these systems do not scale and are not suitable for a Geo-

replication scenario. COPS also introduces a new type of operations named as get-transactions. These

operations allow a client to read a set of keys ensuring that the dependencies of all keys have been met

before the values are returned. The usefulness of these operations can be better assessed with resort to

an example: imagine that we issue two writes to objects A and B in a sequential order, however it could

happen that the write on B is propagated faster among the replicas. Considering this, if we issue two
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consecutive reads to A and B it could happen that we see the old value of A and the new value of B,

which is correct according to the causal ordering of operations but is not desirable in some applications.

To overcome this situation we could use the get-transaction construct, which imposes that if we read the

new version of B we must also read the new version of A (because the write on A happens-before the

write on B). Additionally, in the case that we read the old version of B, then either the old or the new

version of A can be observed.

2.4.2.3 Walter

Recent work on Geo-replication introduced a new key-value store that supports transactions, known

as Walter (Sovran, Power, Aguilera, & Li 2011). This datastore implements parallel snapshot isolation

(described previously) allowing the transactions to be asynchronously propagated after being committed

at one site, by a central server. Transactions are ordered with resort to vector timestamps, assigned at

their beginning, which contains an entry for each site. Each vector timestamp represents a snapshot of

the data in the system.

Walter also introduces two novel mechanisms that are also used to implement PSI: preferred sites and

counting sets. Each object has a preferred site that corresponds to the datacenter closer to the owner of

that object. This enables transactions that are local to the preferred site to be committed more efficiently

using a Fast Commit protocol. This protocol allows for a transaction to commit at the preferred site

without contacting other sites. To commit a transaction in this way, Walter must perform two checks:

check if all objects in the write-set have not been modified since the transaction started; check if object

in the write-set are unlocked. If the two conditions are verified then the transaction can be committed.

However, if the transaction is not local it must execute a Slow Commit protocol. This protocol consists

in a two-phase commit protocol between the preferred sites of the objects being written.

The counting sets are a new data type, similar to commutative replicated data types (Shapiro &

Preguiça 2007), that allows to avoid write-write conflicts. Operations where counting sets are acceptable

can be quickly committed using the Fast Commit protocol, improving the throughput in those cases.

Walter was designed to provide PSI in a scalable way considering a Geo-replicated scenario. However,

there are some factors that can hinder its scalability. The fact that transactions are executed and

committed by a central server at each site corresponds to a bottleneck in performance. Moreover, if

transactions are not local, then they must be committed by the Slow Commit protocol, which can limit

the throughput and scalability.
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2.4.2.4 Amazon’s Dynamo

Amazon has many services that must be highly available and scalable in order to provide a good

user experience. One of the components that helps satisfying these requirements is the Dynamo key-value

store (Hastorun, Jampani, Kakulapati, Pilchin, Sivasubramanian, Vosshall, & Vogels 2007). This store

is based on a Distributed Hash Table that implements eventual consistency.

In Dynamo read and write operations are made over a number of replicas that represent a majority

(quorum technique), which only offers eventual consistency. The quorum size can be configured by

applications, however the number of read and write replicas must be higher than the existing replicas

(i.e., read and write quorums must overlap). Each write creates a new version that corresponds to a

vector clock, which is used in read operations to obtain the most recent version in a read quorum.

Unlike most datastores, Dynamo was designed to provide high write availability. Therefore, it allows

multiple writes at multiple replicas resulting in write-write conflicts. These conflicts can be handled either

automatically or by notifying the application, that then solves the conflict by other means.

2.4.2.5 Google’s Spanner

Google has recently introduced Spanner (Corbett, Deana, Epstein, Fikes, Frost, Furman, Ghemawat,

Gubarev, Heiser, Hochschild, Hsieh, Kanthak, Kogan, Li, Lloyd, Melnik, Mwaura, Nagle, Quinlan, Rao,

Rolig, Saito, Szymaniak, Taylor, Wang, & Woodfordh 2012), a scalable, multi-version and globally dis-

tributed datastore. This system has evolved from Bigtable (Chang, Dean, Ghemawat, Hsieh, Wallach,

Burrows, Chandra, Fikes, & Gruber 2008) and has the purpose of covering the flaws of Google Mega-

store (Baker, Bond, Corbett, Furman, Khorlin, Larson, Leon, Li, Lloyd, & Yushprakh 2011), which

provides low write performance over the wide-area.

Spanner shards data across many replicas all over the world in order to provide global availability

and geographic locality to clients. The data shards are maintained in many Paxos (Lamport 1998) state

machines that are responsible for guaranteeing the consistency of the data. This system also provides

linearizable transactions by using globally-meaningful commit timestamps that guarantee the total order

of operations. These timestamps are based on uncertainty bounds and are assigned by a service called

TrueTime, which makes use of GPS and atomic clocks as reference.

The system offers three types of operations to clients: read-write transactions, read-only transactions,

and non-blocking reads. Read-write transactions are serialized at a leader replica (Paxos leader) and

require pessimistic concurrency control. Read-only transactions have similar performance to transactions

in systems that offer snapshot isolation and can be executed using lock-free mechanisms. This type of
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transactions are similar to the ones provided by COPS (although the consistency guarantees offered are

different). Finally, the non-blocking reads allow for a client to obtain a snapshot of the database in the

past. The acceptable staleness of the read is defined by the client through a timestamp or by an upper

bound of staleness.

2.4.3 Discussion and Comparison

The previous section introduced a range of existing solutions that offer distributed storage services.

These systems were listed as Single Datacenter systems and Multiple Datacenter systems according to

their capability of being used in a Geo-replicated scenario or not. Moreover, systems that are considered

Multiple Datacenter systems can also be deployed in a single datacenter. Additionally, these systems

implement different consistency models, concurrency control mechanisms, and replication techniques, as

can be seen in Table 2.1.

As shown in the table, most of these solutions tend to use optimistic concurrency control in order

to exploit the maximum usage of the existing resources. The studied systems that use pessimistic con-

currency control (FAWN and CRAQ) require that all writes are serialized at a single replica (avoiding

the existence of concurrent updates). According to the latter, the original Chain Replication technique

is not suitable for a Geo-replicated scenario due to the low scalability of the approach.

Apache Cassandra and Amazon’s Dynamo use the Quorum replication technique which can be con-

figured to offer different guarantees in read and write operations, however they only offer eventual con-

sistency guarantees to exploit maximum performance and scalability. The CRAQ system, which employs

an optimization to Chain Replication, can be configured to offer eventual or linearizable consistency

guarantees. On the other hand, FAWN can only offer Linearizability guarantees resulting in reduced

scalability and inadaptability to a Geo-replication scenario. Google’s Spanner is the first system to offer

linearizable guarantees on transactions over the wide-area with an acceptable performance.

According to the latter one can observe that the majority of the presented systems offer lineariz-

ability or eventual consistency guarantees (some offer both configurations). Most existing systems are

also categorized in one of these extremes: systems that offer linearizability (with reduced scalability)

and systems that offer weaker guarantees (usually eventual consistency) but exhibit high performance

and scalability. Therefore, there is a lack of solutions that try to fit somewhere between these two ex-

tremes. Only recently COPS and Walter, which try to overcome this problem, were introduced. Both

systems provide useful guarantees to the programmer (causal consistency and PSI) while maintaining the

scalability required by large scale applications.
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Systems
Suitable Consistency Concurrency Control Replication

for Geo-replication Model Optimistic Pessimistic Technique
Amazon’s � Eventual � Quorum
Dynamo
Apache � Eventual � Quorum
Cassandra

COPS � Causal+ � Chain/Lazy

CRAQ
Eventual/ � Chain

Linearizability

FAWN Linearizability � Chain

Walter � PSI � Lazy

Google’s � Linearizability Operation Dependent Active
Spanner

Table 2.1: Comparison between the presented systems.

Summary

In this chapter we introduced the related work that we consider important for our work. We started

by introducing some basic concepts that are required to understand the rest of the document: the concept

of a key-value storage (or datastore), the concepts of concurrency control and replication management, and

more important, the challenges behind building applications that are Geo-replicated. Then we introduced

some consistency models that were divided in non-transactional and transactional consistency models.

The main focus was on the non-transactional models since they are intimately related to our work. We

also described some existing replication techniques with a special focus on Chain Replication since our

solutions is based on this technique. Finally, we presented and compared some key-value storage systems

and divided them in systems that are able to support Geo-replication and systems that are not. We are

particularly interested in systems that can support multiple datacenters as our contribution is in this

area.

The next chapter will introduce the architecture and operation details of our solution in both single

and multiple datacenter scenarios, named ChainReaction.
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In this chapter we present the work developed in the scope of this thesis. As a result of our work, we

designed a new key-value storage system called ChainReaction. Our system employs a new replication

technique which is based in a variation of chain replication, offering causal+ consistency and an improved

performance. We start by describing the system model focusing on the chosen consistency model. Next

we will present an overview of our system’s architecture, which is based on the FAWN architecture, and

explain in detail each component. Then we will provide a detailed explanation of our system operation

on a single and multi datacenter scenario. Finally, we present the extension of our solution to provide a

transactional primitive that allows for a client to obtain a consistent snapshot of a set of objects.

3.1 System Model

ChainReaction is a distributed key-value store built to provide causal+ consistency, high availability

and high scalability. Our solution can be deployed in a single datacenter scenario, only with local data

replicas, and in a multiple datacenter scenario, where data is replicated both locally and among different

geographic locations (Geo-replication). We intend to provide a data storage service to clients spread

among different locations. In our system, a client can be an end-user application (for instance a browser)

or an application server that uses our system as a data storage layer of a bigger application. Next we

describe the consistency model being offered by our system and also the operations offered to the clients.

3.1.1 Consistency Model

As described on the previous chapter, linearizability, serializability, sequential consistency, and snap-

shot isolation provide a set of guarantees that are most programmer-friendly, since they allow the program-

mer to build applications without having to worry about concurrency and replication issues. However,

these models offer low scalability when implemented over the wide area, because they require the use of

a expensive construct (Distributed Consensus) to maintain replicas consistent. Other consistency models

like causal, causal+, and PSI provide weaker guarantees than the models above. Although, they pro-

vide some guarantees to the programmer while maintaining scalability and performance, making them

attractive for Geo-replicated scenarios.
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Hereupon, we have opted to offer the causal+ consistency model (Petersen, Spreitzer, Terry, Theimer,

& Demers 1997; Belarami, Dahlin, Gao, Nayate, Venkataramani, Yalagandula, & Zheng 2006; Lloyd,

Freedman, Kaminsky, & Andersen 2011). This model is supported both at the level of a single data-

center and across multiple datacenters. We have selected causal+ because it provides a good tradeoff

among consistency and performance. Contrary to linearizability, causal+ allows for a reasonable amount

of parallelism in the processing of concurrent requests. Still, causal+ ensures that concurrent write op-

erations are totally ordered and that the most recent value is eventually applied to all replicas, thus

avoiding the existence of divergent replicas (a common problem of causal consistency). On the other

hand, and in opposition to eventual consistency, it provides precise guarantees about the state observed

by applications.

The causal+ consistency guarantees and scalability offered by COPS are a result of the maintenance

of metadada in the clients, a strategy that we also follow. However, contrary to COPS, we do not require

each individual datacenter to offer linearizability (in (Lloyd, Freedman, Kaminsky, & Andersen 2011)

the authors rely on a classical chain-replication solution to provide this) as this requirement imposes a

significant overhead.

3.1.2 Client API - Client Application Programming Interface

The basic API offered by ChainReaction is similar to that of most existing distributed key-value

storage systems. The operations available for clients are described as follows:

• put (key, val): A put operation allows to assign (write) the value val to an object identified by

key. According to the specification described in the following section, write operations are always

made over the newest version of the object.

• val ← get (key): The get operation returns (reads) the value of the object identified by the key,

reflecting the outcome of previous put operations.

• {val1, ..., valN} ← get-transaction (key1, ..., keyN): This type of operation is similar to get-

transactions provided by COPS (Lloyd, Freedman, Kaminsky, & Andersen 2011), which allows

an application to obtain a consistent snapshot of a set of keys.

3.2 System Architecture

Our architecture is similar to that of the FAWN-KV system (Andersen, Franklin, Kaminsky, Phan-

ishayee, Tan, & Vasudevan 2011). We consider that each datacenter is composed of multiple data servers

(back-ends) and multiple client proxies (front-ends). Data servers are responsible for serving read and
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write requests for one or more data items. Client proxies receive the requests from end-users (for instance

a browser) and redirect the requests to the appropriate data server. In order to allow end-users to access

our system (using the API described above), the architecture includes a Client Library that is deployed

on the client side. This library will be explained in greater detail in the following sections. An overview

of ChainReaction can be observed in Figure 3.1.
































Figure 3.1: Overview of ChainReaction architecture.

Data servers self-organize in a DHT ring such that consistent hashing can be used to assign data items

to data servers. Each data item is placed in R consecutive data servers in the DHT ring. Servers that

store a given data item execute the chain-replication protocol to keep the copies of the data consistent:

the first node in the ring serving the data item acts as head of the chain and the last node acts as tail of

the chain. Note that, since consistent hashing is used, a data server may serve multiple data items and,

thus, being a member of multiple chains. Also, its role in the chain may be different for each item: it

can serve as the head of the chain for an item, and a middle node for some other item, and a tail for yet

another item.

We further assume that, in each datacenter, the number of servers, although large, can be maintained

in a one-hop DHT (Lesniewski-Laas 2008). Therefore, each node in the system, including the client

proxies, can always locally map keys to servers without resorting to an external directory service. Contrary

to data servers, the client proxies are not maintained in a structure since a proxy does not need to contact

or know about the existence of other proxies (i.e., the number of client proxies depends on the desired

level of load distribution).

Considering the architecture above, we now describe the lifecycle of a typical request in the FAWN-

KV system which employs a classical chain-replication solution. ChainReaction uses a variant of this

workflow that will be explained in the next subsections. The client request is received by a client proxy.

The proxy uses consistent hashing to select the first server to process the request: if it is a write request
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it is forwarded to the head data server of the corresponding chain; if it is a read request, it is forwarded

directly to the tail data server. In the write case, the request is processed by the head and then forwarded

to the next node in the chain, and then forwarded “down” in the chain until it reaches the tail. For both

read and write operations the tail sends the reply to the proxy which, in turn, forwards an answer back

to the source of the request.

3.2.1 A Chain Replication Variant

The operation of the original chain replication protocol, briefly sketched in the previous chapter, is

able to offer linearizable executions. In fact, all operations (i.e., both read and write operations) need to

be processed by (and are serialized by) a single node, the tail of the chain. The drawback of this approach

is that the availability of multiple replicas is not leveraged to promote load balancing among concurrent

read operations.

In ChainReaction we decided to provide causal+ consistency as this allows us to make a much better

utilization of the resources required to ensure fault-tolerance and also to add additional replicas, that can

be used for load balancing, at little additional cost.

Our approach departs from the following observation: if a node x, in the chain, is causally consistent

with respect to some client operations, then all nodes that are predecessors of x in the chain are also

causally consistent. This property trivially derives from the update invariant of the original chain repli-

cation protocol. Therefore, assume that a node observes a value returned by node x for a given object

O, as a result of a read or a write operation op. Future read operations over O that causally depend on

op, in order to obtain a consistent state (according to the causal+ criteria) are constrained to read from

any replica between the head of the chain and server x. However, as soon as the operation op becomes

stable (i.e., when it reaches the tail), new operations over O that causally depend on op are no longer

constrained, and can get a consistent state by reading any server in the chain. This behavior can be

observed in Figure 3.2, in this case version 2 of object O has reached the first three nodes while version

1 already reached all nodes. So, if the client has seen version 2 he can read from any node between the

TAIL and node 2, otherwise version 1 can be read in any node of the chain.

   
















Figure 3.2: Example of version propagation in a chain for object O. The first three nodes contain version
1 and 2 of object O while the two last nodes only know version 1 (not yet propagated to these nodes).

ChainReaction uses this insight to distribute the load of concurrent read requests among all replicas.
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Furthermore, it permits to extend the chain (in order to have additional replicas for load balancing)

without increasing the latency of write operations, by allowing the later operations to return as soon as

they are processed by the first k replicas (where k defines the fault-tolerance of the chain, k is usually

lower than the total number of replicas). The propagation of operations from node k until the tail of the

chain can be performed lazily, and its only purpose is to augment the number of legal targets for read

operations.

To ensure the correctness of read operations according to the causal+ consistency model across

multiple objects, clients are required to know the position in the chain of the node that processed its last

read request for each object they have read. This information is stored in the form of metadata entries

which in turn are stored by a client library, which is responsible for managing all metadata from the

client side. Additionally, we ensure that the results of write operations only become visible when all their

causal dependencies have become stable in a datacenter. This allows the version staleness to be only one

level deep, which avoids violation of the causal order when accessing multiple objects. Figure 3.2 shows

that version 2 can only be propagated after version 1 has reached the tail and future writes must wait for

version 2 to reach the tail, also there are only nodes with one level of staleness with respect to object O

versions. In the following subsections we discuss the ChainReaction client library and provide a detailed

description of the ChainReaction Key-Value Store interface.

3.2.2 Client Library and Interface

Each client of our system must make use of a client library that is responsible for managing client

metadata, which is then automatically added to requests and extracted from replies. When considering

a system deployed over a single datacenter, the metadata stored by the client library consists on a Index

table and an Accessed Objects list. The table includes one entry for each accessed object. Each entry

comprises a tuple on the form (key, version, chainIndex ). The chainIndex consists of an identifier that

captures the position in the chain of the node that processed and replied to the last request issued by

the client for the object to which the metadata refers. The list includes a reference to all versions that

were accessed between two write operations (including the last write). Notice that the list only contains

a single version per object, meaning that if the client accesses a newer version of a certain object it will

replace the previous version in the list (i.e., if a newer version was observed it means that the previous

version is already stable). Also, the list does not contain any version of an object that is known to be

already stable. Figures 3.3(a) and 3.3(b) show an overview of the metadata structures maintained in the

client library.

When a client makes a read operation on a data item identified by key, it must present the chainIndex

that corresponds to the key. However, if there is no entry on the table for the object being read, then no

metadata is sent (i.e., the client has not seen any version of the object so it is allowed to read on any data
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Figure 3.3: Ilustration of the structures used in the Client Library to maintain metadata: a) Accessed
Objects List with a zoomed list member; b) Index Table with a zoomed table entry.

server). On write operations, the client library includes the access list in the request and upon receiving

the response resets the list. The library then includes the version written in the access list. Furthermore,

ChainReaction can update the table and the access list as a result of executing read or write operations.

In order to forward the requests to the ChainReaction Key-Value Store, the client library must use

the following interface provided by the client proxies (front-ends):

• {version, metadata} ← put (key, val, metadata)

• {val, version, metadata} ← get (key, metadata)

• {val1, ..., valN, ver1, ..., verN, meta1, ..., metaN} ← get-transaction(key1, ..., keyN)

This interface is a specialization of the Client API which includes the versions and metadata related

to a certain object. The information enclosed in the metadata field depends of the deployment of the

solution being used (single or multiple datacenter) as it will be explained in the following sections.

3.3 Operation in a Single Site

In this section we describe how ChainReaction operates in a single datacenter scenario. In this

scenario we assume that all data servers (back-ends) and client proxies (front-ends) are enclosed in the

same datacenter. This way, the latency between servers is very low and the network bandwidth is very

large. The nodes inside the datacenter are organized as described before, i.e., data servers self-organize

in a local DHT and chains are defined using consistent hashing for maintaining local copies of the data

items. In this scenario the object versions are identified by a single integer and the metadata returned

only reflects the state of the local (and only) datacenter.
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3.3.1 Put Operation Processing

We now provide a detailed description on how put operations are executed in ChainReaction. When

a client issues a put operation using the Client API, the client library makes a request to a client proxy

including the key and the value val. The client library also tags this request with the metadata relative to

the last put performed by that client as well as the metadata that relate to the get operations performed

over objects since that put. Metadata is only maintained for objects whose version is not stable yet; stable

versions do not put constraints on the execution of put or get operations (we discuss get operation

further ahead). Because we aim at boosting the performance of read operations while ensuring causal+

consistency guarantees, we have opted to delay (slightly) the execution of put operations on chains, as

to ensure that the version of any object from which the current put casually depends has become stable

in its respective chain (i.e., the version has been applied to the respective tail). This ensures that no

client is able to read versions of two distinct objects that may violate causal dependencies.

Before forwarding the put operation to the appropriate dataserver, the proxy performs a dependency

stabilization procedure. This procedure aims at ensuring that all objects from which the put operation

causally depends (i.e., all previous object versions accessed by the client since the last put operation) are

already stable before the new operation is applied. As noted before, the purpose of this phase is to limit

the amount of metadata that needs to be maintained and exchanged in the system, as also to make reads

more efficient at the cost of slighter slower writes. Dependency stabilization is implemented by reading

all the versions in the causal past from the tails of the corresponding chains (this may involve to wait

until such versions are propagated in the corresponding chains).

   



 
 

Figure 3.4: Example of the eager phase in the propagation of a put operation.

As soon as the dependencies have stabilized, the proxy uses consistent hashing to discover which

data server is the head node of the corresponding chain, and forwards the request to that node. The

head then processes the put operation, assigning a new version to the object, and forwarding the request

down the chain, as in the original chain replication protocol, until the k element of the chain is reached

(we call this phase of the propagation, the eager phase). An example of this propagation phase can be

observed in Figure 3.4. At this point, a result is returned to the proxy, which includes the most recent

version of the object and a chainIndex representing the k node. The proxy, in turn, forwards the reply
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to the client library. Finally, the library extracts the metadata and updates the corresponding entry in

the table (replacing the version of the object by the new version, and chainIndex by the value k).

   



Figure 3.5: Example of the lazy phase in the propagation of a put operation.

In parallel with the processing of the reply, the update continues to be propagated in a lazy manner

until it reaches the tail of the chain (shown in Figure 3.5). As we have noted, a data server may

belong to multiple chains and, therefore, may be required to process and forward write requests for

different data items. Updates being propagated in lazy mode have lower priority than operations that

are being propagated in eager mode. Although the processing of each lazy/eager request is otherwise

indistinguishable, the priority given to eager updates ensures that the latency of write operations of a

given data item is not negatively affected by the additional replication degree of another item. When

the put reaches the tail, the version written is said to be stable and an acknowledgment message is sent

upwards in the chain to inform the remaining nodes. This message includes the key and version of the

object so that a node can set a certain version of the object to the stable state. This acknowledgment

message is propagated until it reaches the head of the chain.

3.3.2 Get Operation Processing

We now provide a detailed description on how get operations are executed in ChainReaction. Upon

receiving the get request, the client library consults the metadata entry for the requested key and

forwards the request along with the version and the chainIndex to the client proxy. The client proxy uses

the chainIndex included in the metadata to decide to which data server the get operation is forwarded to.

If chainIndex is equal to R, the size of the chain (i.e., the version is stable), the request can be sent to any

node in the chain at random. Otherwise, it selects a target data server t at random with an index from

0 (the head of the chain) to chainIndex (shown in Figure 3.6). This strategy allows distributing the load

of the read requests among the multiple available servers. The target data server t processes the request

and returns to the proxy the value of the data item, and the version read. Then the client proxy returns

the value and the metadata to the client library which, in turn, as with the put operation, extracts the

metadata and updates its local metadata. Let tindex be the index in the chain of the node t that has

processed the get operation. Let also pversion be the previous version of the object as stored in the

metadata, and newversion, the version read by the get operation. The metadata is updated as follows:

i) If the newversion is already stable (i.e., known to have reached the tail of the chain), chainIndex is
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set to R (i.e., the length of the chain); ii) If newversion is the same as pversion, chainIndex is set to

max (chainIndex ,tindex ); iii) If newversion is greater than pversion, chainIndex is set to tindex.

   

  

Figure 3.6: Valid targets for processing a get operation with an chainIndex equal to k.

3.3.3 Fault-Tolerance

The mechanisms employed by ChainReaction to recover from a failure of a node in the head, middle,

or the tail of the chain are the same as in chain replication. However, unlike the original chain replication,

ChainReaction can continue to serve clients even if the tail fails. In our system a chain with R nodes can

sustain R − k node failures, as it cannot process any put operation with less than k nodes. If a node

fails, two particular actions are taken: i) Minimal chain repair for resuming normal operations (with a

reduced number of nodes). ii) Chain recovery by adding to the tail of the chain a node that already is

in the system (i.e., recover the original chain size); Moreover, a node can later join the system (and the

DHT) for load balance and distribution purposes.

Considering that all chains are devised dynamically by the node responsible for a certain key (head)

and its R− 1 successors we can have the following 3 types of failures and corresponding minimal repairs:

Head Failure and Repair: When the head node fails (H), its successor (H+,) takes over as the new

head, as H+ contains most of the previous state of H. All updates that were in H but were not

propagated to H+ are retransmitted by the client proxy when the failure is detected.

Tail Failure and Repair: The failure of a tail node (T ), its easily recovered by replacing the tail with

T predecessor, say T−. Due to the properties of the chain, T− is guaranteed to have newer or equal

state to the failing tail T.

Failure and Repair of a middle node: When a middle node fails (x) between nodes A and B, the

failure is recovered by connecting A to B without any state transfer, however node A may have to

retransmit some pending puts that were sent to x but did not arrive to B. Since our solution only

allows for version divergence to be one level deep, node A has to retransmit at most a single version

per object. The failure of k node or its predecessor is treated in the same way and is completely

transparent to the client, it will only notice a small delay in receiving the response to the write

operation (due to the fault-detection period and recovery).
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After performing the minimum repairs, the chain must be extended in order to maintain the initially

configured replication factor (if there are nodes available). The size of the chain is repaired by adding a

node in the tail (see node join details in the following paragraphs) as it is the easiest way to add a node

in a chain.

The failure and repair of nodes are one important part of the membership dynamics of the system,

although they are not the only events that can change the membership. Nodes can also join and leave

the system in a orderly manner. When a node leaves the system one can assume that it failed and the

procedures used to process a node leaving can be the same as the ones described above for fault-tolerance.

However, node joins must be handled differently as the new nodes must be aware of the chain’s current

update history.

When a node joins the system it is attributed an ID that will correspond to a certain position in the

DHT. After figuring out its position in the DHT it can find the place of the chain when it will be added

(Figure 3.7(a)). If a node x joins the system between nodes A and B then we must guarantee that x has a

state that is newer or equal to B state. The state of node A must be transfered to node x (Figure 3.7(b)).

During the state transfer x is in a zombie state and all updates are propagated from A to B and also

from A to x, guaranteeing the normal execution of the system while the state is being transfered . The

new updates received by x are saved locally for future execution. When the state transfer ends, node x

is finally added to the chain and applies any pending updates sent by A (Figure 3.7(c)). When the join

procedure finishes the chain resumes normal operation like shown in Figure 3.7(d).

If the node joins at the tail or at the head of the chain the process is similar, however in the head the

state is transfered from the previous head H to the new head Hnew. Moreover, when the state transfer

ends Hnew coordinates with H and with the proxies to be inserted in the chain and take over as the new

head.

Since our algorithm only allows for the existence of one level of version divergence, the state transfer

between nodes contains only one version per object for that chain. This results in a state transfer

mechanism that allows add nodes in a very efficient way. Moreover, the failure of nodes is repaired by

adding a node at the tail of the chain which can be done with this fast state transfer mechanism reducing

the time for failure recovery.

Additionally, the reconfiguration of a chain, after a node leaving/crash or when a node joins, may

invalidate part of the metadata stored by the client library, namely the semantics of the chainIndex .

However, since the last version read is also stored in the metadata, this scenario can be safely detected.

If the node serving get request does not have a version equal or newer than the last seen by the client,

the request will be routed upwards in the chain until it finds a node that contains the required version.
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(a) Send join request to predecessor.





 
 

(b) State transfer from predecessor to the new node
(new node is in zombie state).








 
 

(c) End of state transfer and chain reconfiguration
procedure.

  


(d) Final chain state (the new node takes over as the
new k node).

Figure 3.7: Example of a node join in the middle of the chain between nodes 31 and 102.

3.4 Supporting Geo-replication

We now describe how ChainReaction addresses a scenario where data is replicated in multiple dat-

acenters. We support Geo-replication by introducing a minimal set of modifications with regard to the

operation in a single site. Therefore, each datacenter continues to be organized as described in the

previous section. However, metadata needs to be enriched to account for that fact that multiple repli-

cas are maintained at different datacenters and that concurrent write operations may now be executed

across multiple datacenter concurrently. We start by describing the changes to the metadata and then

we describe the modifications to the operation of the algorithms.

First, the version of a data item is no longer identified by a single version number but by a version

vector (similarly to what happens in classical systems such as Lazy Replication (Ladin, Liskov, Shrira,

& Ghemawat 1992) or CODA(Braam 1998)). Similarly, instead of keeping a single chainIndex , a chain-

IndexVector is maintained, that keeps an estimate of how far the current version has been propagated

across chains in each datacenter. Also, since the causal+ consistency model enforces convergence of con-

flicting versions (i.e., versions produced by concurrent writes to the same object in different datacenters),

some deterministic rule must be used to order concurrent updates. For this purpose, each update is also

timestamped with the physical clock value of the proxy that receives the request. Note that timestamps

are only used as a tie-break if operations are concurrent. Operations that causally depend on each order
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are always ordered according to the order specified in their vector clocks. Therefore, physical clocks do

not need to be synchronized although, for fairness, it is desirable that clocks are loosely synchronized

(for instance, using NTP). Finally, if two concurrent operations happen to have the same timestamp, the

identifier of the datacenter is used as the last tie-breaker.

With these changes in mind, we can now describe how the protocol for put and get operations

needs to be changed to address Geo-replication. For simplicity of exposition, we assume that datacenters

are numbered from 0 to D − 1, where D is the number of datacenters, and that each datacenter number

corresponds to the position of its entry in the version vector and chainIndexVector (i.e., the first entry

of the vector is reserved for datacenter 0 and so on).

3.4.1 Put Operation Processing

   

 
 

   

 

 

Figure 3.8: Example of the initial phase of propagation in a put operation with multiple datacenters.
Notice that the put is propagated down the chain and to the other datacenter in parallel, however the
propagation inside each datacenter is not synchronized. Also the chainIndex included in the response
now includes two values, k for the local datacenter and 0 for the remote datacenter (i.e., the state of
propagation in the other datacenter is unknown)

The initial steps of the put operation are similar to the steps used in the single datacenter scenario.

Let’s assume that the operation takes place in datacenter number i. The operation is received by a client

proxy, the dependency stabilization procedure executed, and then the request is forwarded to the head

of the corresponding chain. The operation is processed and the object is assigned with a new version,

by incrementing the ith entry of the version vector. The updated is pushed down in the chain until it

reaches node k of the local datacenter (shown in Figure 3.8). At this point a reply is returned to the

proxy, that initializes the corresponding chainIndexVector as follows: all entries of the vector are set to

0 (i.e., the conservative assumption that only the heads of the sibling chains in remote datacenters will

become aware of the update) except for the ith entry that is set to k. This metadata is then returned
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to the client library. In parallel, the update continues to be propagated lazily down in the chain. When

the update finally reaches the tail, an acknowledgment is sent upward (to stabilize the update) and as

well as to the tails of the sibling chains in remote datacenters as shown in Figure 3.9 (since all siblings

execute this procedure, the global stability of the update is eventually detected in all datacenters).

Also, as soon as the update is processed by the head of the local chain, the update is scheduled to

be transferred in background to the remote datacenters as shown in Figure 3.8. When a remote update

arrives at a data center, it is sent to the head of the corresponding chain. If the update is more recent

than the update locally known, it is propagated down the chain. Otherwise, it is silently discarded as it

has already been superseded by a more recent update.

   

   

 

 



Figure 3.9: Propagation of acknowledgment messages between datacenters and inside each local datacen-
ter. When a tail receives an acknowledgment from each datacenter the version is guaranteed to be stable
in all datacenters.

It is worth noting that, using the scheme above, each datacenter may configure a different value of

k for the local chain, as the configuration of this parameter may depend on the characteristics of the

hardware and software being used in each datacenter.

3.4.2 Get Operation Processing

The processing of a get operation in a Geo-replicated scenario is mostly identical to the processing

in a single datacenter scenario. The only difference is that, when datacenter i receives a query, the set

of potential targets to serve the query is defined using the ith position of the chainIndexVector . Finally,

it may happen that the head of the local chain does not have yet the required version (because updates

are propagated among different datacenters asynchronously). In this case, the get operation can be

redirected to another datacenter or block until a fresh enough update is applied locally. Additionally, an

hybrid solution can be employed, the local datacenter would receive the request and send a request to

a remote datacenter (or several in parallel). Meanwhile if a fresh update reaches the local datacenter,
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the request can be processed locally and a response sent to the client, otherwise one must wait for the

reponse of the remote datacenter.

3.4.3 Conflict Resolution

Since the metadata carries dependency information, operations that are causally related with each

other are always processed in the right order. In particular, a read that depends (even if transitively)

from a given write, will be blocked until it can observe that, or a subsequent write, even if it is submitted

to a different datacenter.

On the other hand, concurrent updates can be processed in parallel in different datacenters. However,

similarly to many other systems that ensure convergence of conflicting object versions, ChainReaction’s

conflict resolution method is based on the last writer wins rule (Thomas 1979) (however, any other conflict

resolution mechanism could be used). This conflict resolution mechanism is needed to ensure the causal+

consistency of concurrent write operations. Therefore, if put operation arrives “too late” to a datacenter,

it is silently discarded. On the other hand, if the update is the most recent operation, it overwrites other

concurrent updates that have been serialized in the past.

3.4.4 Wide-Area Fault-Tolerance

In ChainReaction, we have opted to return from a put operation as soon as it has been propagated to

k nodes in a single datacenter. Propagation of the values to other datacenters is processed asynchronously.

Therefore, in the rare case a datacenter becomes unavailable before the updates are propagated, causally

dependent requests may be blocked until the datacenter recovers. If the datacenter is unable to recover,

those updates may then been lost.

There is nothing fundamental in our approach that prevents the enforcement of stronger guarantees.

For instance, the reply could be postponed until an acknowledgment is received from d datacenters,

instead of waiting just for the acknowledgment of the local kth replica (the algorithm would need to be

slightly modified, to trigger the propagation of an acknowledgment when the update reaches the kth node

in the chain, both for local and remote updates). This would ensure survivability of the update in case

of disaster. Note that the client can always re-submit the request to another datacenter if no reply is

received after some pre-configured period of time.

Although such extensions would be trivial to implement, they would impose an excessive latency on

put operation, so we have not implement them. In a production environment, it could make sense to

have this as an optional feature, for critical put operations.
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3.5 Providing Get-transactions

The work presented in (Lloyd, Freedman, Kaminsky, & Andersen 2011) introduced a transactional

construct which enables a client to read multiple objects in a single operation in a causal+ consis-

tent manner, however these transactions do not offer ACID guarantees. This construct is named get-

transaction, an operation which can significantly simplify the work of application developers, as it

offers a stronger form of consistency on read operations over multiple objects.

Consider a scenario where client c1 updates two objects. More precisely, c1 updates twice objects X

and Y, exactly in this order, creating the following sequence of causally related updates x1 → y1 → x2 →

y2. Lets now assume that another client c2 concurrently reads objects X and Y, also in this sequence.

If c2 reads values x1 and y2 this does not violate causality. However, each of these values belongs to

a different snapshot of the database, and this may violate the purposes of client c1. To illustrate the

problem, we borrow the example provided in (Lloyd, Freedman, Kaminsky, & Andersen 2011): consider a

social network that allows users to share a photo album (object Y). The album is protected by an access

control list (ACL, object X). The initial value of the ACL is x1 and the initial value of the album is y1.

Alice is a user c1 of this application and she removes Bob (client c2) from the list of users that can see

her photos (update x2). Then Alice adds a new photo that Bob should not be able to see (update y2).

In this case, if two read operations were used to fetch both the ACL and the album, it could happen that

Bob reads an older version of the ACL (x1) and the new version of the album (y2). This way, Bob would

see the new photo and would violate the semantics of the ACL. The usage of get-transactions aims

at avoiding this scenario as the semantic of this operation enforces the most recent version of the ACL

to be returned if the newer version of the album was returned. Otherwise, if the returned version of the

album was an old one, then the version of the ACL returned can be either the newer or the older.

To support get-transaction operations the system must ensure that the values returned where

not written by a put operation that was issued after the get-transaction. For this purpose, our imple-

mentation supports an atomic multi-enqueue operation. Conceptually, each head of a chain has a queue,

where all put operations are enqueued. To support snapshot consistent reads, we also enqueue reads

that are part of the same get-transaction in the processing queue of the heads of the corresponding

chains. Furthermore, the atomic multi-enqueue operation allows to enqueue all the reads from the same

get-transaction, in the different queues of the corresponding chain heads in an atomic manner. An

interesting feature of this scheme is that, in opposition to (Lloyd, Freedman, Kaminsky, & Andersen

2011), we do not require the existence of 2 rounds to process a get-transaction.

With this in mind, a get-transaction is processed as follows. When the operation is received

by a proxy, it invokes the atomic multi-enqueue operation to enqueue all the reads in a single atomic

step. Then, when the individual reads reach the head of the corresponding chains the value is returned
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to the proxy. The proxy waits for all values, along with the corresponding metadata, assembles a reply,

and sends it back to the client library. Similar to what happens with put and get operations, upon

receiving the reply from the client proxy, the client library extracts the metadata enclosed in the reply,

and updates its local metadata. Notice that the metadata enclosed in the reply is equivalent to the

metadata of multiple get operations.

get-transactions in a Geo-replicated scenario have the following additional complexity. Assume

that a get-transaction is being processed by datacenter i but it includes dependencies from values

read in a different datacenter. Such updates may have not yet been propagated to datacenter i when

the get-transaction is processed. In this case, the read is aborted and retried in a (slower) two-phase

procedure. First, the proxy reads all dependencies that have failed from the corresponding heads, using

a specialized blocking read operation (the same as used in the dependency stabilization procedure. Then,

the get-transaction is reissued as described above (and it is guaranteed to succeed).

Summary

This chapter described in detail the mechanisms behind the working of ChainReaction. In the first

place, we discussed the reasons behind implementing the causal+ consistency model which was followed

by the description of the Client API that allows client applications to access ChainReaction. Next we

described the architecture of ChainReaction focusing on each of its components (data nodes, client proxies

and client library) and introduced the modifications made to the Chain Replication protocol. Then the

solution for a single and multiple datacenters was introduced. We focused in describing the inner workings

of each type of operation (put and get) and also on fault-tolerance mechanisms. Finally, we described

our extension for implementing get-transactions allowing for a client to obtain a consistent view for

a set of keys.

The next chapter will describe the implementation details of our solution, we focus on the inner

workings of the original FAWN-KV, on the optimizations made to FAWN-KV and on the implementation

of the algorithms described in this chapter.



4
This chapter describes the implementation of the ChainReaction prototype. Our prototype was built

on top of the FAWN-KV system so we start by describing some details of its implementation. We used

FAWN-KV as a starting point because it implements Chain Replication so it saves some of the work of

implementing the protocol from scratch. On the other hand, the code of FAWN-KV is simple and easy to

understand. The description includes presenting the three main components of the FAWN-KV system:

Back-end, Front-end, and Manager. Next we describe the optimizations and improvements made to the

FAWN-KV system before starting our implementation, the resulting optimized version was used in the

experimental evaluation. Finally, we describe some implementation details of ChainReaction.

4.1 Implementation of FAWN-KV

According to the FAWN architecture (Andersen, Franklin, Kaminsky, Phanishayee, Tan, & Vasude-

van 2011), the FAWN-KV is composed by two main components: front-end (client proxy) and back-end

(data server). In the original implementation, FAWN-KV only supports one front-end and multiple back-

ends. The clients connect to the front-end through a client library that exports the FAWN-KV API.

All the communication between client and server and also between server applications is made using

the Apache Thrift 0.5.0 framework, which exports an RPC interface that allows to build scalable cross-

language services supporting both synchronous and asynchronous communication. To coordinate and

maintain the DHT structure of the back-ends, FAWK-KV also employs a manager application (which

can be deployed in an independent node) that is responsible for adding and removing nodes from the DHT

ring. This manager also informs the front-ends of changes to the the ring structure, namely when a node

joins or leaves. In the following subsections we will describe the three main components of FAWN-KV:

Back-end, Front-end and Manager.

4.1.1 Back-end Implementation

The Back-end application is the central component of the FAWN-KV key-value storage, implementing

the main semantics of the datastore. It is composed of two distinct modules that are described below:
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• FAWN-KV Backend Handler: This component is responsible for implementing the operation se-

mantics (i.e., put and get operations) ensuring their correction;

• FAWN Data Store: Module responsible for storing the client data.

The first component (backend handler) offers a distributed service that is used by front-end (service

client) to redirect client requests. Each backend component can be responsible for various key-ranges due

to the existence of replicas. Therefore, each component maintains a different structure and a different

FAWN Data Store, associated to that structure, for each key range. Such structure can be accessed

concurrently by different operations: to implement concurrency control, each structure is protected by

a write-read lock that is obtained before executing any operation. This lock allows for multiple get

operations to occur concurrently in the same key range, however put operations are serialized with respect

to other put and get operations. Operations that are related to different key-ranges can be processed

concurrently without any concurrency control mechanisms. Now we describe how each operation is

processed by the backend handler:

Put Operation: All put operations are received from the front-end and each request spawns a new

execution thread that processes it. First, the execution thread finds the key-range structure re-

sponsible for the key and then tries to obtain a write lock on that structure. Next, the backend

handler forwards the request to the FAWN Data Store associated with the key-range structure so

that the value gets written. After returning from the FAWN Data Store module, if the node is the

last node in the chain (i.e., the tail) then a response is sent to the front-end,the object is acknowl-

edged locally, and an acknowledge message is sent upwards in the chain. Otherwise, the backend

handler propagates the put operation to its successor, which in turn repeats this process.

Get Operation: As opposed to put operations, get do not spawn multiple threads to be executed.

When a get request is received it is placed in a queue to be processed by a number of consumer

threads (which can be configured). A consumer thread removes a request from the queue, finds

the key-range structure associated to the key, and waits to obtain a read lock for that structure.

After obtaining the lock, a read request is sent to the FAWN Data Store which returns the value

of the object. Finally, the value is included in a reply message that is sent to front-end and then

forwarded to the client.

The FAWN Data Store (FAWN-DS) is a log-structured datastore that contains the values associated

with a certain key-range (i.e., each instance of the FAWN Data Store is responsible only for a single range

of keys). FAWN-DS is optimized for flash storage and to operate with low RAM resources. This way, all

writes to the datastore are sequential, and reads only require a single random access. For this purpose

it maintains an in-memory hash table (Hash Index) that map keys to an offset in the append-only Data
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Log on flash. This datastore offers persistent storage to clients by supporting the following operations:

Store, Lookup and Delete.

Store: This operation appends a new entry to the log and updates the associated entry on the hash

table to point to this offset. If the key already exists then the old value is set to orphaned for later

garbage collection;

Lookup: Allows to retrieve the hash entry (containing the offset) for a certain key, and returns the

corresponding data;

Delete: Invalidates the hash entry associated with the key by writing a delete entry to be garbage

collected.

As nodes can join and leave the DHT ring, it is expected that key-ranges can be split in two (when a

node joins) and merged in one (when a node leaves). Also the datastore must be periodically compacted

to remove orphaned or deleted entries created by other operations. For this purpose, the datastore also

supports Split, Merge, and Compact operations.

4.1.2 Front-end Implementation

As described before, the Front-end (or client proxy) is responsible for forwarding client requests to

the correct nodes. This application deploys a distributed service using the Apache Thrift framework,

therefore FAWN-KV presents a 3-tiered architecture where the FAWN Client acts as the Front-end client

and the Front-end acts as the Back-end client.

To forward the client requests the Front-end must know about the existence of the Back-end nodes

and their structure. That information is provided by the Manager that informs the Front-end whenever

a change in the state of the ring happens (nodes leave or join). Using this information the Front-end can

forward put and get requests in the following way:

Put Request: The Front-end uses the key 1 sent by the client to find the owner (head of the chain) of

the node. If the node is up, the request is forwarded to it. Otherwise, if the node has failed, the

front-end will check the successors until it finds an active node.

Get Request: In get operations the Front-end also uses the key to find the owner, but contrary to the

latter it checks if the R-1 successor (tail) of the owner is valid. If it is valid, then the request is

redirected to it, otherwise the Front-end will check the R-2 successor and so on until it reaches the

owner.

1The original implementation of FAWN-KV assumes that the keys sent by the client are already hashed.
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The Front-end is also responsible for informing the Back-ends about the replication factor being used

and how many replicas are available. So, in each put operation the Front-end sends to the back-end a

value indicating how many hops the put request has to make (i.e., if all replicas are available the number

of hops is equal to R, otherwise the number of hops is R-number of failed nodes).

Finally, as all communication between FAWN-KV components is made asynchronously, the Front-

end must make sure that the responses are sent to the right client. To this end it assigns a number to

the requests (sent to the Back-ends) and maintains them in a structure that associates a request number

with the client addresses. Upon receiving a put or get response the Front-end searches for the entry

associated with the request. Then it retrieves the correct address of the client and sends it the reply.

4.1.3 Manager Implementation

The Manager is an auxiliary component responsible for managing the DHT ring and also to detect

and repair Back-end nodes failures. This component also exports a Thrift service that is used by both

Front-ends and Back-ends. It maintains a ring structure that contains all available Back-end nodes.

A Back-end node joins the ring by sending a join message to the manager. The join operation can

be a static join (at system initialization) or a dynamic join (during system operation). Static joins do not

trigger any Split or Merge operations since no operations have been executed. However, if a node joins

dynamically it can happen that some nodes must Split their FAWN Data Store to share the key space

with the newly joined node 2.

To detect the failure of a Back-end node the Manager uses an heartbeat mechanism. Back-ends

periodically send an heartbeat message to the manager: if the manager fails to receive two heartbeats

in a row it assumes that the Back-end has failed and triggers a chain repair procedure. The repair

procedure is based on the Chain Replication technique which has 3 different mechanisms to repair the

chain depending on the node that has failed (head, tail or mid node).

4.2 Optimizations and Changes

Before describing the implementation of our solution we will present some optimizations and im-

provements made to FAWN-KV as it was used as the base of our system implementation. By inspecting

the code of FAWN-KV we found that there were many places where the implementation could be im-

proved. This way, we made a number of changes that we did find crucial for implementing our solution,

which are described in the following paragraphs.

2In our implementation dynamic join was never used since it is not supported in the original code



4.2. OPTIMIZATIONS AND CHANGES 49

First we decided to optimize the Front-end component of the FAWN-KV. In early experimental

runs of FAWN-KV we found that the Front-end was the bottleneck of the whole system, which is not

desirable. To circumvent this problem, FAWN-KV was extended to support multiple Front-ends moving

the bottleneck to the Back-end nodes (data nodes). This way, when the Front-end is overloaded one

only needs to add more Front-end nodes. This change was easy to achieve as the Front-ends have no

distributed state.

We also found that the data structure that maintains client information (described in the previous

section) was not optimized. Every client request was generating a new entry with repeated information

(for each client) leading to information duplication (furthermore, this information was not garbage col-

lected) which led to an memory consumption problem. We changed this implementation to re-utilize

entries that belong to the same client and also we add a periodic garbage collection to remove unused

entries. We also removed some logic that was not needed for our system and improved some locking

mechanisms. Locks were being used in a coarse-grained fashion and we have implemented a fine-grained

version improving the Front-end performance.

A problem with FAWN-KV is that it assumes that keys are sent to the Front-end already hashed;

The only thing that the Front-end had to do is to transform the key received in a 160 byte hexadecimal (if

the key was smaller it would pad it with zeros). This was a problem in our setting because the benchmark

tool did not send the keys hashed, which led to a bad distribution of the keys in the ring. We changed the

Front-end to hash keys upon receiving any request, by using an implementation of the SHA-1 algorithm.

Moreover, we changed the internal key structure to support any size of the key (in this case a size of 20

bytes was used).

Finally, we decided to make some changes to the Back-end node, since it is the core of the key-

value store. We optimized the processing of put and get operations by removing some logic that we

would not need. Next we changed the FAWN-KV system by making it support multi-versioned data.

FAWN-KV only supports a single version for each object but that architecture is not compatible with

our solution. We changed the Back-end to support multi-version by adding a map inside each key-range

structure (described previously), which we call version map. This map is responsible for maintaining the

information about each version of each object (i.e., it maintains an entry for each object which in turn

contains an entry for each version). Anytime an operation is processed it must access the version map in

the following way:

Put Operation: When a put is received, the Back-end must check if there is an entry in the map for

the requested key. If there is one, then a new version entry is added and the new version number

is obtained by incrementing the previous version number (or vector entry). Otherwise, an entry is

created for the object and the version with number 0 is added.
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Get Operation: On a get operation, the Back-end checks if there is an entry for the requested object.

If there is then it searches for the latest version for that object and returns it. Otherwise, the object

does not exist and an error is returned.

Since the FANW-DS module also does not support multi-version we decide not to change it. There-

fore, we created a new key object that represents the key concatenated with the version number. When

writing this key on the FAWN-DS each version appears as a different object and it will be preserved.

This avoids changing the FAWN-DS module which could be complex and troublesome.

4.3 Chain Reaction Implementation

We have implemented ChainReaction using the optimized and improved version of FAWN-KV, de-

scribed in the previous section, as a base. The final prototype has approximately 26.000 lines of C, C++,

and Java code comparing with the 18.000 lines of code in the original FAWN-KV system. Our imple-

mentation follows the descriptions provided in Chapter 3. Note however, that we did not implement the

mechanisms for wide area fault tolerance and recovery, as this was not the main focus of our contribution.

In our implementation we kept the FAWN architecture composed by the three main components: Back-

end (data node), Front-end (client proxy), and Manager. In the following subsections we will describe in

detail the implementation of the three main components and also some details about the management of

the metadata.

4.3.1 Back-end Implementation

The Back-end in ChainReaction is also the central component of the system implementing all oper-

ation semantics and is composed by the FAWN-DS and the Backend Handler. The FAWN-DS module

used in our solution is the same as the one used in the FAWN-KV system, however we changed the limit

of data storage from 4GB to 16GB (the FAWN-DS was optimized for working on 4GB flash memory

modules). On the other hand, the Backend Handler was completely modified to cope with our system

specifications.

The main structure of the Backend Handler is similar to the one included in the FAWN-KV system

as it maintains the key-range structures to support multiple key-ranges which are also protected by

locking mechanisms. However, the Thrift service interface of the FAWN Backend Handler was extended

to support get-transaction operations and also to include an operation that we named stable check.

The stable check operation has the purpose of checking if a certain version of an object as already reached

the tail, which is needed to implement our solution described in Chapter 3. In the following paragraphs

we will describe how put, get and get-transaction operations are implemented in our system:
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Put Operation: Contrary to the original FAWN-KV system, each put request does not trigger a new

thread, instead it is placed in a queue by sequence number order (check Section 4.3.3 and 4.3.2

for details on sequence number attribution). This order in queue insertion is needed to ensure the

correctness of get-transactions, as it was described in the previous chapter. The put requests

are then processed by a consumer thread that removes the requests in order from the queue. In

our system a put request can have two sources, the local client or a remote datacenter. Each

require a different processing: If the put is local then the request is processed in a way similar to

the one described for the FAWN-KV system, with the exception that the head node is responsible

for sending the put request (including a timestamp and dependencies) to the local manager to be

propagated to the remote datacenters; Otherwise, in a remote put request, the consumer thread

first checks if the remote version conflicts with the local version, if it conflicts then it needs to

run the conflict resolution mechanism based on the received and local timestamps. If there are no

conflicts then if the version is strictly higher then the local version, the local version is overwritten,

otherwise the version is lower or equal and it is ignored. The rest of the request is processed as

described before with exception to the reply sent to the client. In this case the reply to the client

is sent after reaching the K node in the chain as described in Chapter 3. For both local and remote

put operations, an acknowledgment message is sent to the remote datacenters when the request

reaches the tail. A version is only said to be stable when all acknowledgment messages have been

received from the other datacenters. At this moment the local acknowledgment message is sent

upwards in the chain, stabilizing the version.

Get Operation: As the main focus of the work is to optimize the performance of get operations we

do not added much logic to this operation. The get requests are processed in a similar way to

the ones in FAWN-KV system. The only change is that the consumer thread has to check if the

local version is higher or equal to the version included in the request. If it is not, then the request

is forwarded to the predecessor node which repeats this process until an equal or higher version is

available.

Get-transaction Operation: The get-transaction operation was implemented from scratch as its

semantics are completely new to the system. According to the algorithm described in the previous

chapter, a get-transaction request also contains a sequence number and can only be processed

after all requests with lower sequence numbers have been processed. This way, there is also a queue

where get-transaction requests are placed before being processed. These requests are processed

by a specific consumer thread that checks if all sequence numbers prior to the one in front of the

queue have already been processed. If it is the case then the get-transaction request can be

removed from the queue and processed as follows: As all keys in a get-transaction request

belong to a single key-range (i.e., the node processing the request is the head of that objects chain),

the consumer thread searches for the structure related to that key-range and waits to acquire a
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single read-lock; Then it reads a version of each key on the corresponding head; On each read a

response is sent to the Front-end including the key, version, value, and metadata related with that

key; Finally, after all values have been read the read-lock is released and the operation ends.

To ensure the correctness of get-transaction operations the version map entries were extended

to include the sequence number of the put operation that wrote that version. This way, the map can be

used to check if there is a version prior to the get-transaction sequence number.

4.3.2 Front-end Implementation

The main structure of our system Front-end (client proxy) is similar to the one described for FAWN-

KV system. We included all the optimizations made to the FAWN-KV and we also changed the Thrift

service interface to include get-transactions and also all the service calls related with the propagation

of put operations to remote datacenters (put propagation and acknowledgment propagation). The main

changes in the Front-end are related with the forwarding of put, get and get-transaction requests.

These requests are processed and forward by the Front-end as follows:

Put Operation: When the Front-end receives a put request it first checks the object versions included

in the metadata field. Then it issues a stable check request for each object version (in parallel)

to the corresponding tail node. When the Front-end collects all replies from all tails then it is

guaranteed that all dependencies are stable and the operation can proceed. Next, the Front-end

issues a request to a sequencer process (in this case the sequencer was implemented in the manager

as it will be described further ahead) which replies with a sequence number to be added in the

request. This sequence number is used to implement the atomic multi-enqueue operation described

in the previous chapter. The Front-end then finds the head node for the requested key and forwards

the request including the value of K (so that Back-ends know when to reply to the client).

Get Operation: In the original FAWN-KV implementation all get operations are forward to the tail to

the chain as it implements the original Chain Replication protocol. In our solution the routing of

get varies according to the chainIndex included by the client in the request. If the chainIndex is

empty it means that the last seen version was stable so the request can be forwarded to any node

between the head and the tail. Otherwise, the request can only be forwarded to a node between the

head and the node identified by chainIndex . The choice of the node is made by using the random

function with an max of the tail or chainIndex respectively. The request is then sent to the chosen

node including the corresponding chainIndex , which is returned by the Back-end without being

modified and included in the client response if the returned version is not stable (i.e., this prevents

the Back-end from using resources in finding its chainIndex when the Front-end already found it).
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Get-transaction Operation: A get-transaction can be seen as a set of get operations, however

get-transactions can only be directed to the heads of the chains. But before sending the request

to the corresponding heads, the Front-end groups the keys that belong to the same key-range (i.e.,

they belong to the same chain). For each group of keys the Front-end will request a sequence number

to the sequencer process, as each group belongs to a different chain. Next a request containing each

key group is sent in parallel to the corresponding chain heads. Finally, the Front-end waits for all

responses from the heads, collects the values and sends an response to the client.

4.3.3 Manager Implementation

In our system the Manager was assigned with three different roles: it is the coordinator of the DHT

ring, acts as sequencer for implementing the atomic multi-enqueue operation, and acts as a proxy for the

remote datacenters. As the DHT ring coordinator its functionality is similar to the one described for the

FAWN-KV system as we do not improved any fault recovery or fault detection mechanisms. However the

other two functionalities are completely new and are described in the following paragraphs.

The implementation of the atomic multi-enqueue operation is a combination of the functionality

of the Front-end, Back-end and Manager. The first two components have already been described and

we now focus on the Manager functionality. To avoid the intensive use of low level concurrency control

mechanisms, all put operations and get-transactions are first routed through a specialized sequencer

process, similar to the one used in (Malkhi, Balakrishnan, Davis, Prabhakaran, & Wobber 2012), that is

implemented by the manager. The sequencer process keeps a counter for each chain, which represents

a position in the queue that is maintained by the head of the chain. All put operations and reads that

are part of a certain get-transaction are attributed a sequence number (associated with each chain)

and are enqueued in each chain head queue taking into consideration their sequence number order. This

sequencer could be implemented in a separate component but we have chosen to implement it in the

manager from a practical point of view.

This sequencer could bring some problems if the system was used in a large-scale setting (hundreds

of servers), however the implementation of a efficient distributed sequencer is not the focus of this work

as we postpone this issue to the future work. Moreover, our experimental evaluation has shown that the

overhead incurred by the use of the sequencer process in the Manager is negligible in the performance of

the entire system.

As our solution supports multiple datacenters each one has a corresponding Manager that is re-

sponsible for coordinating the local datacenter and also to send and receive requests to/from remote

datacenters. To this end each Manager exports a Thrift service with an interface that allows to prop-

agate put operations and to propagate acknowledgment messages. The messages are directly sent by
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the Back-end nodes to the local Manager that is responsible for propagating the messages to all remote

managers. On the other hand, all received messages are forwarded to a Front-end node (client proxy),

chosen at random, which in turn redirects the message to the correct Back-end node.

Finally, the Manager also implements a failure detector, based on heartbeats, that allows to detect

the failure of a remote datacenter, although we have not implemented any recovery mechanisms related

with this kind of failure.

4.4 Metadata Management

In our system all existing metadata is stored in the client as the correctness of operations depends

on the sequence operations issued by the clients. In this way, we implemented a new Client Library that

stores metadata in a map that contains an entry for each object. Each entry contains the key, version,

and chainIndex for a certain object version. This map is updated upon receiving the reply for each put,

get or get-transaction operation.

To efficiently encode and transmit dependency information between datacenters, we resort to an

implementation of Adaptable Bloom Filters (Couceiro, Romano, Carvalho, & Rodrigues 2009). To this

end, whenever a client issues a get or put operation, ChainReaction returns to that client, as part of the

metadata, a bloom filter which encodes the identifier of the accessed object version. This bloom filter

is stored by the Client Library in a list named AccessedObjects. When the client issues a put operation,

it tags its request with a bloom filter, named dependency filter, which is locally computed by the client

library by performing a binary OR over all bloom filters locally stored in the AccessedObjects set. Upon

receiving the reply, the Client Library removes all bloom filters from the local AccessedObjsects set, and

stores the bloom filter encoded in the returned metadata.

The dependency filter tagged by the Client Library on the put request, and the bloom filter that is

returned to the issuer of the put (we will refer to this bloom filter as reply filter in the following text),

are used by the datacenter that receives the put operation as follows:

When a put request is propagated across datacenters it is tagged with both the dependency filter and

the reply filter that are associated with the local corresponding put request. On the remote datacenter

the client proxy receives the put request and places it in a waiting queue for being processed in the near

future.

The two bloom filters associated with put requests encode causal dependencies among these requests.

If a wide-area-put request op1 has a dependency filter that contains all bits of a reply filter associated

with another wide-area-put request op2, we say that op2 is potentially causally dependent of op1. We say

potentially because bloom filters can provide false positives, as the relevant bits of the dependency filter
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of op1 can be set to one due to the inclusion of other identifiers in the bloom filter. The use of adaptable

bloom filters allows us to trade the expected false positive rate with the size of the bloom filters. In our

experiments, which we present further ahead in the text, we have configured the false positive rate of

bloom filters to 10%, which resulted in bloom filters with 163 bits.

Summary

This chapter introduced the inner details of the implementation of both FAWN-KV system and also

ChainReaction prototype. We started by describing the three main components of the FAWN-KV system:

back-end (data server), front-end (client proxy) and manager. Next we introduced the main drawbacks of

FAWN-KV when used in our scenario and how we changed and improved the system to overcome those

flaws. Finally, we introduced the details and challenges behind implementing the algorithms described in

Chapter 3.

The resulting prototype implements all functionality that was devised in previous chapters and in

the next chapter we present the experimental evaluation made using this prototype.
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5
In this chapter we present experimental results obtained through the execution of our prototype of in

our own cluster. We extracted comparative performance measures for three other systems: FAWN-KV,

Cassandra and COPS (emulation). Moreover, we conducted experiments in five distinct scenarios, as

follows: i) we have first assessed the throughput and latency of operations on ChainReaction in a single

datacenter, and compare its results with those of FAWN-KV and Cassandra; ii) then we have assessed the

performance of the system in a Geo-replicated scenario (using 2 virtual datacenters), again comparing the

performance with FAWN-KV and Cassandra; iii) next we measured the performance of ChainReaction

using a custom workload able to exercise get-transactions; iv) after we tested the fault-tolerance of

our system in a single datacenter scenario by measuring its performance during an occurrence of a node

failure; v) finally, we measured the overhead in terms of size that the metadata imposes in our system, and

compared the results to the size of metadata stored by COPS. All results for the throughput presented

were obtained from five independent runs of each test. The results for the latency tests reflects the values

provided by YCSB in a single random run. Finally, the results from the metadata overhead experiments

were obtained from ten different clients. Confidence intervals are plotted in all figures.

5.1 Single Datacenter Experiments

We first compare the performance of ChainReaction against FAWN-KV (Andersen, Franklin, Kamin-

sky, Phanishayee, Tan, & Vasudevan 2011) and Apache Cassandra 0.8.10 in a single datacenter scenario.

It should be noted that ChainReaction was built on top of an optimized version of FAWN-KV, therefore,

for sake of fairness, in the comparisons we have used the version of FAWN-KV with the same optimiza-

tions. Our experimental setup uses 9 data nodes plus one additional independent node to generate the

workload. Each node runs Ubuntu 10.04.3 LTS and has 2x4 core Intel Xeon E5506 CPUs, 16GB RAM,

and 1TB Hard Drive. All nodes are connected by a 1Gbit Ethernet network. In our tests we used 5

different system configurations, as described below:

Cassandra-E: Deployment of Apache Cassandra configured to provide eventual consistency with a repli-

cation factor of 6 nodes. Write operations are applied on 3 nodes before returning while read operations

need only to be processed at one node.
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Cassandra-L: Deployment of Cassandra that provides eventual consistency, however operations are ap-

plied to a majority of nodes (4 nodes) before returning. A replication factor of 6 is also used.

FAWN-KV 3: Deployment of the optimized version of FAWN-KV configured with a replication factor of

3 nodes which provides linearizability (chain replication).

FAWN-KV 6: Deployment of the optimized version of FAWN-KV configured with a replication factor of

6. Also provides linearizability.

ChainReaction: Single Site deployment of ChainReaction, configured with R = 6 and k = 3. Provides

causal+ consistency.
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(b) Custom Workloads (single object).

Figure 5.1: Throughput in thousand operations per second for each type of workloads considering a single
datacenter deployment.

All configurations have been subject to the Yahoo! Cloud Serving Benchmark (YCSB) version 0.1.3

(Cooper, Silberstein, Tam, Ramakrishnan, & Sears 2010). We choose to run standard YCSB workloads

with a total of 1,000,000 objects. In all our experiments each object had a size of 1 Kbyte. We have

also created a micro benchmark by using custom workloads with a single object varying the write/read

ratio from 50/50 to 0/100. The latter allows assessing the behavior of our solution when a single chain is

active. All the workloads were executed by a single node simulating 200 clients that, together, submit a

total of 2,000,000 operations. The next paragraphs will describe in detail each one of the used workloads.

To run our experiments we used the following standard YCSB workloads: A, B, C, D and F. Workload

E was not used because FAWN-KV and our system (by consequence of using FAWN-KV as a building

block) do not support scan operations. In the first place, we want to make the following remark: all

workloads executed by the YCSB are constructed in way that guarantees that all objects were accessed

at least once during the workload execution. Workloads A, B, and C are similar as they all use a Zipfian

distribution of the keys included in requests during the execution of the workload. They only differ in



5.1. SINGLE DATACENTER EXPERIMENTS 59

0

25

50

75

100

1 2 4 8 16 32 64

CD
F  
(%

)  

Latency  (ms)  

Cassandra-‐E

Cassandra-‐L

FAWN-‐KV  3

FAWN-‐KV  6

(a) Read (Workload A).

0

25

50

75

100

1 2 4 8 16 32 64

CD
F  
(%

)  

Latency  (ms)  

Cassandra-‐E
Cassandra-‐L
FAWN-‐KV  3
FAWN-‐KV  6
ChainReaction

(b) Write (Workload A).

0

25

50

75

100

1 2 4 8 16 32 64

CD
F  
(%

)  

Latency  (ms)  

Cassandra-‐E
Cassandra-‐L
FAWN-‐KV  3
FAWN-‐KV  6
ChainReaction

(c) Read (Workload F).
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(d) Write (Workload F).

Figure 5.2: Latency CDF for Write-Heavy Standard Workloads A and F on a single datacenter deploy-
ment.

the ratio of write/read operations which is, respectively, 50/50, 5/95 and 0/100. The Zipfian distribution

allows to simulate a scenario where there are objects there are more popular then the others, leading to

a scenario where a set of keys are much more accessed than the rest. This scenario can be observed in

a social distributed application, for example Facebook or Twitter, where there are profiles or pages that

are more popular (celebrities, events, brands, among others), and thus more accessed than others.

The workload D operates in a different manner than the previous workloads. It uses a Latest Distri-

bution to distribute the access to certain keys during the workload execution and write/read operations

are distributed in a 5/95 ratio. This distribution is similar to the Zipfian Distribution but the popularity

of the keys is related with the time at which the object was inserted. This way, recently introduced ob-

jects are more accessed than objects inserted in the past. This mimics the behavior of some applications,

for example Twitter, where users update their status and people want to follow their latest status.

Finally, the last standard workload, workload F, is similar to workloads A, B, and C as it also uses

a zipfian distribution on key access. However, this workloads introduces a new type of operations: read-

modify-write. This operation type considers that a read operation, a modification of the value in the

client and a write of that need value is a single operation. This workload has a distribution of operations

that is composed by 50% reads and 50% read-modify-write operations.

To conduct the micro benchmark we used custom made workloads to exercise our system and the
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(a) Read (Workload B).
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(b) Write (Workload B).
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(c) Read (Workload D).
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Figure 5.3: Latency CDF for Multiple Objects Workloads B and D (single site).

remaining with a single object. These workloads use a special distribution called Hotspot that allows to

focus operations in a certain range of keys with a certain intensity. For example, we could say that 80%

of the operations are made over 10% of the keys. We configured this distribution to make 100% of the

operation over a single key. To create new set of workloads we changed the write/read ratio of operations

distribution and created the following workloads: 50/50, 25/75, 15/85, 10/90, 5/95 and 0/100

The throughput results are presented in Figure 5.1. Latency Cumulative Distribution Function

(CDF) results 1 are presented in Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7. Figure 5.1(a) shows that ChainRe-

action in a single datacenter outperforms both FAWN-KV and Cassandra in all standard YCSB workloads.

In workloads A and F (which are write-intensive) the performance of ChainReaction approaches that of

Cassandra-E and FAWN-KV 3. This is expected, since our chain-replication variant does not optimize

write operations. In fact, for write-intensive workloads, it is expected that our solution under-performs

when compared to FAWN-KV, given that ChainReaction needs to write on 6 nodes instead of 3 and also

has to make sure, at each write operation, that all dependencies are stable before executing the next

write operation. Fortunately, this effect is compensated by the gains in the read operations. This can be

observed in the latency results for workload A and F in Figures 5.2(a), 5.2(b), 5.2(c), and 5.2(d). These

figures also show that Cassandra exhibits a better write latency. Notice however, that Cassandra has

1Note that in all Latency CDF charts the CDF is in percentage and the latency is in a logarithmic scale.
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much slower read operations than ChainReaction and FAWN-KV since it is optimized for write-heavy

environments.
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Figure 5.4: Latency CDF for Read-Only Standard Workload C on a single datacenter deployment.

On the other hand, for workloads B and D, which are read-heavy, one expects ChainReaction to

outperform all other solutions. Indeed, the throughput of ChainReaction in workload B is 178% better

than that of Cassandra-E and 45% better than that of FAWN-KV 3. Performance results for workload

D (Figure 5.1(a)) are similar to those of workload B. Notice that the latency of read operations for

our solution is much lower when compared with the remaining solutions (Figures 5.3(a),5.3(b), 5.3(c),

5.3(d)). Additionally, in workload C (read-only) ChainReaction exhibits a boost in performance of 177%

in relation to Cassandra-E and of 72% in relation to FAWN-KV 3.

The micro benchmark that relies on the custom single object workloads has the purpose of showing

that our solution makes a better use of the available resources in a chain to improve the performance

of read operations, when compared with the remaining tested solutions. In the write-heavy workload

(50/50) one can observe that Cassandra-E outperforms our solution by 70%. This can be explained by

the fact that Cassandra is highly optimized for write operations specially on a single object. However,

when we rise the number of read operations our solution starts to outperform Cassandra by 13%, 20%,

34%, and 39% in workloads 25/75, 15/85, 10/90, and 5/95, respectively. In terms of latency one can see

that ChainReaction always exhibits a better read latency than Cassandra-E having more operations to

complete at lower latencies. We can also observe that as the number of reads increases the write latency

of ChainReaction is also better than Cassandra-E write latency.

Additionally, ChainReaction outperforms FAWN-KV 3 and FAWN-KV 6 in all single object cus-

tom workloads. The performance increases as the percentage of read operations grows. Moreover, the

throughput of the latter systems is always the same which can be explained by the fact that the per-

formance is bounded by a bottleneck on the tail node. If a linear speedup was achievable, our solution

operating with 6 replicas would exhibit a throughput 6 times higher than FAWN-KV on a read-only

workload (0/100 workload) with a single object. Although the speedup is sub-linear.
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(a) Read (Workload 50/50).
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(b) Write (Workload 50/50).
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(c) Read (Workload 15/85).
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(d) Write (Workload 15/85).

Figure 5.5: Latency CDF for Custom Workloads 50/50 and 15/85 on a single datacenter deployment.

0

25

50

75

100

1 2 4 8 16 32 64

CD
F  
(%

)  

Latency  (ms)  

Cassandra-‐E
Cassandra-‐L
FAWN-‐KV  3
FAWN-‐KV  6
ChainReaction

(a) Read (Workload 10/90).
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(b) Write (Workload 10/90).
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(c) Read (Workload 5/95).
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Figure 5.6: Latency CDF for Custom Workloads 10/90 and 5/95 on a single datacenter deployment.
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Figure 5.7: Latency CDF for Custom Workload 0/100 on a single datacenter deployment.

As depicted in Figure 5.1(b), still achieves a throughput that is 4.3 times higher than the throughput

of FAWN-KV 3. The sub-linear growth is due to processing delays in proxies and network latency

variations. Figures 5.5, 5.6, and 5.7 depicts the cumulative latency distribution for some of these workloads

which shows that the latency results for ChainReaction always surpass the latency results of FAWN-KV

3 and FAWN-KV 6.

5.2 Multi Datacenter Experiments

To evaluate the performance of our solution in a Geo-replicated scenario, we ran the same systems,

by configuring nodes in our test setup to be divided in two groups with high latency between them to

emulate 2 distant datacenters. In this test setup, each datacenter was attributed 4 machines, and we

used two machines to run the Yahoo! Cloud Serving Benchmark (each YCSB client issues requests to one

datacenter). The additional latency between nodes associated to different datacenters, was achieved by

introducing a delay of 120 ms (in RTT) with a jitter of 10 ms. We selected these values as we measured

them with the ping command to www.facebook.com (Oregon) from INESC-ID (Lisbon). Each system

was executed on 8 nodes (4 at each datacenter) and considered the following configurations:

Cassandra-E: Eventual-consistency with 4 replicas at each datacenter. Write operations are applied on

2 nodes. Read operations are processed at a single node.

Cassandra-L: Eventual-consistency with 4 replicas at each datacenter. Writes and reads are made to a

majority of nodes in each datacenter (6 nodes across both datacenters).

FAWN-KV 3: Deployment of FAWN-KV configured with a replication factor of 4. In this case the chain

has a size of 4 nodes and it crosses the two datacenters (i.e., some nodes of the chain can are in one

datacenter and the rest on the other datacenter).
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FAWN-KV 6: Deployment of FAWN-KV configured with a replication factor of 8. In this specific case

all chains include a similar number of nodes in each datacenter.

ChainReaction: Deployment of our solution with a replication factor of 4 for each datacenter and a k

equal to 2.

ChainReaction-L: We introduced a new system deployment that consists in our system although it offers

stronger guarantees (linearizability) on the local datacenter with a replication factor of 4 nodes. This

deployment allows to compare the performance with systems that offer stronger guarantees locally and

weaker guarantees over the wide-area (in particular, COPS).
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Figure 5.8: Throughput in thousand operations per second for each type of workloads considering a
multiple datacenter deployment.

We employed the same workloads as in the previous experiment. However, in this case we run two

YCSB clients (one for each datacenter) with 100 threads. We also divided the workload among the two

sites, meaning that each workload generator performs 1,000,000 operations on top of 1,000,000 objects.

We aggregated the results of the two clients and present them in the following plots.

The throughput results are presented in Figure 5.8. Latency Cumulative Distribution Function

(CDF) results are presented in Figures 5.9, 5.10, and 5.11. Considering the standard YCSB workloads, we

can see that ChainReaction outperforms the remaining solutions in all workloads except the write-heavy

workloads (A and F) where Cassandra-E and ChainReaction-L are better. These results indicate that

ChainReaction, Cassandra-E, and ChainReaction-L are the most adequate solutions for a Geo-replicated

deployment. The difference in performance between our solution and Cassandra-E is due to the fact that

Cassandra offers weaker guarantees than our system and is also optimized for write operations resulting

in an increase in performance. When comparing with ChainReaction-L our system needs to guarantee

that a version is committed before proceeding with a write operation while ChainReaction-L does not,

leading to some delay in write operations. In terms of latency in write-heavy workloads our system is
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(b) Write (Workload A).
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(c) Read (Workload F).
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Figure 5.9: Latency CDF for Write-Heavy Standard Workloads A and F on a multiple datacenter de-
ployment.

slightly outperformed by to Cassandra-E and ChainReaction-L. However, our system exhibits a good

behavior in workload F read operation latency (Figure 5.9(c)).

On read-heavy workloads (B and D), our solution surpasses both Cassandra-E and ChainReaction-L

achieving 56%/22% better throughput in workload B and 38%/26% better performance in workload D.

The latency results depicted in Figure 5.10 show that our solution provides better write and read latency

than the other solutions. Finally, on workload C our solution exhibits an increase in performance of 62%

and 53% in comparison with Cassandra-E and ChainReaction-L, respectively.

The low throughput of Cassandra-L and both FAWN-KV deployments is due to the fact that write

operations always have to cross the wide-area network, inducing a great latency in operations. Moreover,

in FAWN-KV (original chain replication) when the objects’ chain tail is on a remote datacenter, read

operations on that objects must cross the wide-area. Additionally, ChainReaction has a significantly

higher throughput than FAWN-KV 3 ranging from 1,028% (workload F) to 3,012% (workload C) better.

The comparison of the results for the remaining systems is similar.

The results for the micro benchmark (Figures 5.8(b), 5.12, 5.13, and 5.14) in the Geo-replicated

scenario are interesting because they show that the original Chain Replication protocol is not adaptable

to a Geo-replicated scenario. The large error bars for both FAWN-KV deployments are a result of

the difference in throughput in each datacenter. The client that has the tail of the object in the local
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(a) Read (Workload B).
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(c) Read (Workload D).
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Figure 5.10: Latency CDF for Read-Heavy Standard Workloads B and D on a multiple datacenter
deployment.
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Figure 5.11: Latency CDF for Read-Only Standard Workload C on a multiple datacenter deployment.
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datacenter has a better read throughput than the client on the remote datacenter, resulting in a great

difference in each datacenter performance. Our solution outperforms FAWN-KV 3 in all workloads with

a difference that ranges from 188% (Workload 5/95) to 1,249% (Workload 50/50). In terms of latency

its possible to observe that 50% of write operations in FAWN-KV 3 take more than 100 ms to complete

corresponding to the latency introduced between datacenters. The results for Cassandra-L and FAWN-

KV 6 are similar.
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(a) Read (Workload 50/50).
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(b) Write (Workload 50/50).
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(c) Read (Workload 15/85).
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Figure 5.12: Latency CDF for Custom Workloads 50/50 and 15/85 on a multiple datacenter deployment.

Also, the results shows that Cassandra-E outperforms our solution in all single object workloads

with exception to the read-only workload (where our solution is 15% better). This happens because

Cassandra behaves better with a single object and is optimized for write operations (achieving better

performance in write-heavy workloads like in the single datacenter scenario). Moreover, performs better

than ChainReaction-L in all workloads achieving an improvement of 17%, 11%, 22%, 17%, 40%, and 68%

in workloads 50/50, 25/75, 15/85, 10/90, 5/95 and 0/100, respectively. In terms of latency our solution

exhibits lower latency than Cassandra-E and ChainReaction-L in write operations in all workloads with

exception to workload 50/50 where Cassandra-E performs better. Additionally, our solution always

exhibits lower latency than ChainReaction-L in all workloads, although Cassandra-E has better latency

on read operations.
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(a) Read (Workload 10/90).
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(b) Write (Workload 10/90).

0

25

50

75

100

1 4 16 64 256

CD
F  
(%

)  

Latency  (ms)  

Cassandra-‐E
Cassandra-‐L
FAWN-‐KV  3
FAWN-‐KV  6
ChainReaction
ChainReaction-‐L

(c) Read (Workload 5/95).
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Figure 5.13: Latency CDF for Custom Workloads 10/90 and 5/95 on a multiple datacenter deployment.

5.3 Get-Transactions Experiments

In this experiment we evaluate the performance of get-transaction operations in the Geo-

replicated scenario. In this case we only executed ChainReaction (the other solutions do not support this

operation) deployed in the 8 machines (4 in each simulated datacenter) like in the previous scenario. We

have attempted to perform similar tests with COPS, unfortunately, we were unable to successfully deploy

this system across multiple nodes. We have created three custom workloads and changed the YCSB source

in order to issue get-transaction operations. The created workloads comprise the following distribu-

tion of write, read and get-transaction operations: 10% writes, 85% reads, 5% get-transactions

on workload 10/85/5, 5% writes, 90% reads, 5% get-transactions on workload 5/90/5, and 95% reads,

5% get-transactions on workload 0/95/5. A total of 500,000 operations were executed over 10,000

objects, where a get-transaction includes 2 to 5 keys (chosen randomly). This workload was executed

by 2 YCSB clients (one at each datacenter) with 100 threads each.

Results depicted on Figure 5.15 show that we achieve an aggregate throughput that approximates of

12,000 operations per second in all workloads showing that the percentage of write and read operations

do not affect the performance of get-transactions and vice-versa.

In terms of operation latency we can see on Figure 5.16 that the introduction of get-transactions

does not affects the latency of write and read operations in those 3 workloads. On the other hand, since
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Figure 5.14: Read latency CDF for Custom Workload 0/100 on a multiple datacenter deployment.
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Figure 5.15: Throughput with Custom Multi-Read Workloads (multiple sites).

we give priority to the other two operations, the average latency for get-transactions is in the order

of approximately 400 ms (which we consider acceptable from a practical point of view).

5.4 Fault-Tolerance Experiments

To assess the behavior of our solution when failures occur we deployed ChainReaction in a single

data center with 9 data nodes and a single chain, with a replication factor of 6 and a k equal to 3. A

single chain was used so that the failures could be targeted to the different zones of the chain. We used

the custom-made workloads 50/50 and 5/95 to measure the average throughput of our solution during a

period of 140 seconds of execution time. During the workload we failed a single node at 60 seconds of

execution. We tested two scenarios of failure: a) a random node between the head and node k (including

k); b) a random node between k and the tail (excluding k). The workloads were executed with 100 client

threads that issue 3,000,000 operations over a single object.

The results for the average throughput during execution time can be observed in Figure 5.17. In the

first scenario, depicted by Figure 5.17(a), one can observe that the failure of a node between the head of
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Figure 5.16: Latency CDF for Custom Multi-Read Workloads 10/85/5, 5/90/5 and 0/95/5 on a multiple
datacenter deployment.

the chain and node k results in a drop in throughput. This drop reaches approximately 2000 operations

per second in both workloads and is due to the fact that write operations are stalled until the failure

is detected and the chain is repaired. This drop in throughput is somewhat pronounced, however all

operations are being executed by a single chain. In a real scenario, with multiple chains, operations in

chains that were not affected by the failure could continue normal operation reducing the impact on the

global throughput. Also, 20 seconds after the failure of the node the throughput starts increasing reaching

its initial peak 30 seconds after the failure. The results for the second scenario, depicted in Figure 5.17(b),

show that the failure of a node after node k has a reduced impact in the performance of the system, as

the write operations can terminate with no problems. Also, the variations of the throughput during the

repair of the chain are due to the fact that read operations are processed by only 5 nodes while the chain

is repaired. This variation is most noted in Workload 5/95 which is read-heavy.

These results allow to show that our replication technique is more resilient to failures than the original

chain replication protocol (in the original chain replication protocol write/read throughput reaches 0 for

a certain time interval (van Renesse & Schneider 2004)). All active nodes can continue to process read

operations when a failure of a node occurs, although write operations may have to be delayed (until the

chain connectivity is repaired) if the failing node belongs to the first k nodes of the chain.



5.5. METADATA EXPERIMENTS 71

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Th
ro
u
gh
p
u
t  
(t
h
o
u
sa
n
d
  o
p
s/
s)
  

Elapsed  Time  (s)  

Workload  50/50

Workload  5/95

(a) Node between the head of the chain and node k.
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Figure 5.17: Average throughput during the first 140 seconds of execution in workloads 50/50 and 5/95.
In both scenarios a single node has failed at 60 seconds of execution time. The node that has failed is:
a) a random node between the head and node k (including k); b) a random node between k (excluding
k) and the tail.

5.5 Metadata Experiments

In the last experiment we focus on measure the overhead, in terms of space, imposed by the metadata

stored and traded in our system. To evaluate this overhead we compared our solution and COPS by

deploying both systems in a single machine. This machine uses Ubuntu 11.04 and has a 2 core Intel

Core2Duo P8600 CPU, 4GB RAM, and 360 GB Hard Drive. We simulated two datacenters in a single

machine and deployed a data node for each datacenter. The two systems were also tested using the Yahoo!

Cloud Serving Benchmark standard workloads. Each workload was executed by 10 YCSB client threads

that submitted a total of 1,000,000 operations over 1KByte objects. In each execution we measured,

during the first 100 seconds of execution, the size of metadata stored in the client, the size of metadata

sent across datacenters and the metadata included in requests/replies of write and read operations. The

presented measurements are result from an average of the 10 clients, the error bars are also displayed.
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Figure 5.18: Size of the metadata stored in client in standard workloads A and B.
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Figure 5.19: Normalization of the size of the metadata stored in client in standard workloads A and B.

To test the amount of metadata stored in the client we ran the standard workloads A (write-heavy)

and B (read-heavy) with 10,000 objects. The results can be observed in Figure 5.18, showing that in both

workloads our solution stores more metadata than COPS in both workloads, peaking at 554,000 Bytes

(541 KBytes) in workload A and at 645,000 Bytes (630 KBytes) in workload B. This results are due to the

fact that our solution stores a metadata entry for each object accessed. As the YCSB accesses all objects

until the end of the workload we can observe the size of metadata increasing during the 100 seconds of

the execution. However, the size of metadata stored in COPS clients does not depend on the objects

that are accessed. In COPS, the metadata entries are garbage collected if the object version has already

been committed to all datacenters. So the size of metadata stored depends on the time that operations

take to complete (and propagate to remote datacenters) and the number of concurrent operations being

executed.

Additionally, the throughput on both systems is different. Our system exhibits a throughput of 2480

operations per second on workload A and 3967 ops/s on workload B. On the other hand, COPS only

exhibits 583 ops/s on workload A and 1992 ops/s on workload B. To incorporate these differences in the

results, in Figure 5.19 we show the size of metadata stored normalized by the throughput achieved in the

workloads. In this case one can observe that the metadata size stored in our solution clients approximates

the size of metadata stored in COPS.

To assess our hypothesis about the size of our metadata increasing with the number of accessed

objects, we choose to run the same workloads but with only 1000 objects. The results in Figures 5.20

and 5.21 show that the size of the metadata stored in our clients peaks at approximately 70,000 Bytes

(68 KBytes) in both workloads. One can also observe that our solution approximates the results of

COPS and is also more stable than COPS. In the normalized results our solution surpasses COPS is both

workloads storing less metadata by client. Although, we could improve our metadata garbage collection
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Figure 5.20: Size of the metadata stored in client in standard workloads A and B (with 1000 objects).
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Figure 5.21: Normalization of the size of the metadata stored in client in standard workloads A and B
(with 1000 objects).

since we are currently focused in garbage collecting the Accessed Objects list. To this end, we could use

a best effort mechanism in which client proxies would also store some metadata for each object. Every

time the proxy receives a response message from the data nodes would update the metadata and would

inform the relevant clients if the version of the object is already stable. To gather this information, each

client would piggyback in each message a fixed number of object versions that she wants to know about

(decided randomly). The proxy would then piggyback information about these versions in the response

sent to the client, which would remove the metadata entry if the version is stable. This would allow for

clients to garbage collect metadata entries without accessing the relevant objects. However, we do not

implement this mechanism and is treated as future work.

In Figure 5.22 are depicted the results for the measurements of the size of the propagation messages

(and corresponding metadata) sent across datacenters. We can observe that COPS sends much more data
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Figure 5.22: Average message and metadata size in propagation messages between datacenters on work-
loads A and B.

across datacenters, increasing during the execution of the workload, peaking at an average of approxi-

mately 16,300 Bytes (16 KBytes) in workload A and 7,700 Bytes (7 KBytes) in workload B. However, in

our the solution the average size of one message remains stable during the workload execution and is the

same for both workloads peaking at 450 Bytes. One can also observe that on COPS most of the message

payload is metadata in the form of dependencies reaching 92% of the message payload in workload A and

76% in workload B. In our solution the metadata size is approximately 280 Bytes corresponding to the

key, value and the two bloom filters sent in the message.

The measurements for the size of write requests are presented in Figure 5.23. Similar to the results

for the propagation messages we can observe that COPS also sends larger write requests than our solution.

Also the size of messages, in COPS, increases during the execution of both workloads peaking at 20,000

Bytes (19 KBytes) in workload A and 7,500 Bytes (7 KBytes) in workload B. The behavior exposed by

our system is similar to the latter scenario as the size of messages remains stable at 380 Bytes in workload

A and 1200 Bytes in workload B. The difference in the size between workloads is due to the fact that

workload B is read-heavy and since our solution sends that last accessed keys between write operations,

the number of read operations between write operations is higher in workload B. Moreover, in both

systems the majority of the message payload is metadata. In terms of write replies both systems present

the same message size during both workload execution. Our system exhibits a write reply message size of

180 Bytes while COPS reply message has a size of 24 Bytes. In our solution the reply message includes

the bloom filter identifying the written object version which explains the larger message size.

In terms of read messages, in both systems the read request messages have a constant size that is

stable during the workload execution. Our read request message has a payload of 38 Bytes (including 4

Bytes for the chainIndex ) while COPS has a message size of 16 Bytes. The results for the size of received

read replies are shown in Figure 5.24. The results for read reply message resemble the results of the two
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Figure 5.23: Average message and metadata size sent by the client in write operations on workloads A
and B.
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Figure 5.24: Average message and metadata size received by the client in read operations on workloads
A and B.

previous scenarios where COPS exhibits much larger read reply messages than our system. Moreover,

COPS read replies peak at a size of 5,700 Bytes in workload A and 1,600 Bytes at workload B, while in

our system the messages maintain a constant size of 140 Bytes (includes the bloom filter representing the

read version and the chainIndex ) in both workloads. Also most of the payload of the messages in both

systems is metadata.

The results presented in this section allow to conclude that our system although storing more meta-

data in the clients provides lower message size increasing the efficiency of communication. The size of

COPS messages can be problematic has larger messages can lead to more packet loss and network delays

specially when crossing the wide area network. This way, our system provides better efficiency in meta-

data transactions at the cost of storing more metadata in the clients, although the increase in storage

peaks at around 600 KBytes in a scenario where a client accesses all objects in the system. This amount

of memory is negligible in most existing hardware even in mobile devices.
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Summary

In this chapter we introduced the experimental evaluation made to ChainReaction and its results.

In each section a different experiment was described starting by the used experimental setting, followed

by the introduction of the system deployments that were subject of the experiment and finally we present

the results for each experiment. In the first experiment we tested the performance of ChainReaction

in a single datacenter against other solutions, showing that it achieves better performance than the

competitors. Next we introduced the results for the experiments made with multiple datacenters showing

that the benefits obtained in a single datacenter are reflected in this scenario. To assess the behavior

of ChainReaction when failures occur, we introduced results for fault detection and recovery showing

that our system continues operation and exhibits fast recovery when a failure occurs. Finally, we tested

our system against COPS in order to compare the overhead in terms of metadata of the two solutions.

The experimental results show that our solution improves network utilization due to the reduced size of

messages when comparing to COPS.

The next chapter finishes this thesis by presenting the conclusions regarding the work developed and

also introduced some directions in terms of future work.



6
This thesis focused on studying mechanisms to build systems that provide storage for distributed

applications which is a very active area of research. These systems are usually needed in applications

that support a large user base operating at a large scale. Therefore, storage systems need to offer both

consistency, high availability and partition tolerance. However, the CAP Theorem shows that is not

possible to achieve the three properties in a distributed system. Therefore, these systems must choose to

offer two of those properties in scalable way to overcome the large number of users of cloud computing

applications.

Chapter 3 introduced ChainReaction, a new distributed key-value store that offers high-performance,

scalability, and high-availability. This datastore can be deployed in a single datacenter scenario or across

multiple datacenters, in a Geo-replication scenario, which is compatible with applications built using

the Cloud Computing paradigm. ChainReaction achieves better performance than competing solutions

in both scenarios by employing a novel replication protocol that is based on chain replication. Our

solution offers the recently introduced causal+ consistency guarantees, which are useful for programmers,

in a Geo-replicated scenario. We also employ a metadata compression method, based on Adaptable

Bloom Filters, with the purpose of avoiding the exchange of large messages over the wide area network.

Similarly to COPS, we also provide a transactional construct called get-transaction, that allows to

get a consistent view over a set of objects. We also have implemented a prototype of ChainReaction

using a optimized version of the FAWN-KV Key-value store as base.

To assess the performance of our prototype, we used the Yahoo! Cloud Serving Benchmark to

test our solution against existing datastores. Experimental results using YCSB standard and custom

workloads show that ChainReaction outperforms Cassandra, FAWN-KV, and a simulation of COPS in

most workloads in single and multiple datacenter scenarios. We also evaluated our solution in a scenario

with failures showing that our system continues to operate during the failure of a node, contrary to the

original Chain Replication protocol. Also the recovery of a failure is made in a very efficient way by

adding a node in the tail of the chain, which do not affect the normal operation of the system. Moreover,

we measured our system metadata overhead in terms of space and compared the results with COPS,

showing that our system provides better communication efficiency.

The work developed and described in this thesis is far from finished and can be further developed in
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many ways. First of all, for the system to be deployed in a real production setting, the fault-tolerance

mechanisms for the local datacenter (specially regarding get-transaction operations) should be refined

so that they could be more robust and resilient to real failures. Also, we need to consider the possibility

of failures in wide-area operation (replication over datacenters), namely entire datacenter unavailability.

This way, a mechanism for full datacenter recover and synchronization is need in a real production

scenario. These new mechanisms should be tested and experimentally evaluated to assess their robustness

and efficiency.

As mentioned previously, even if our solution sends less metadata than COPS over the network we

could improve the amount of metadata stored in the client library. To this end, the client library com-

bined with the proxies should implement a best-effort mechanism so that clients could remove metadata

entries that refer to objects that are already stable. This mechanism would allow for clients to garbage

collect some metadata without accessing all the objects (i.e., garbage collection information should be

piggybacked on all messages).

To provide get-transactions we make use of a centralized sequencer to implement the atomic

multi-enqueue operation. In our prototype this solution is reasonable as the overhead of the sequencer is

completely negligible. However, in a real scenario with hundreds of servers this sequencer can become a

bottleneck of the system. To this end, in future work the solution to provide sequence numbers should

get improved by implementing a distributed sequencer to balance the load. Moreover, this sequencer

should also be resilient to failures and sequence number loss (due to the failure of client proxies).

Finally, we propose the development of a new type of operation similar to get-transactions that

would allow a client to write multiple objects that depend on each other. For example, considering an

social application where users can have a friend relationship, if Bob adds Alice to friends then both

profiles would need to be changed to cope with this new relation. If one of the profiles is changed and

the other is not then it makes no sense that Alice is a friend of Bob but Bob is not a friend of Alice, as

friendship is a binary relationship.
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