Using a Fairness Monitoring Service to Improve
Load-Balancing in DSR*

Hugo Miranda Luis Rodrigues
U. de Lisboa U.de Lisboa
hmiranda@di.fc.ul.pt ler@di.fc.ul.pt
Abstract

Many routing protocols for MANETSs do not promote a balanced use
of resources among the participating nodes, since they are designed to
optimize other criteria, such as the number of hops in the message path.
This behavior is undesired in open MANETSs, where all users cooperate to
maintain connectivity and expect the system to promote a fair distribu-
tion of load. This paper presents a fairness monitoring service that rates
the effort of each individual node with regard to the other nodes in its
neighborhood, measured as the relative number of messages the node is
required to forward. We show that this information can be captured by a
service that monitors the packets exchanged in the network. We illustrate
the benefits of this service by showing how this information can be used
to bias DSR, such that the load distribution is improved.

1 Introduction

A technology such as Mobile Ad Hoc Networks (MANETS) promotes the emer-
gence of open ad hoc communities of users. These communities may support
distributed games, chatting, file sharing, or Internet access in regions with in-
complete infra-structured networked coverage. They are likely to emerge in lo-
cations that gather large numbers of civilians such as airports, shopping malls,
convention centers, and university campus.

In this paper we are interested in the problem of balancing the load among
the nodes of the network. It should be noticed that the importance of this
problem heavily depends on the application of the MANET. In closed MANETS,
where all participants are coordinated by a single authority and share a common

*Selected sections of this report were published in the Proceedings of the First Inter-
national Workshop on Services and Infrastructures for the Ubiquitous and Mobile Internet
(SIUMTI’05), in conjuction with the 25th International Conference on Distributed Computing
Systems (ICDCS-25), Columbus, Ohio, USA, June 2005. This work was partially funded by
LaSIGE and by FCT project MICAS - MIddleware para sistemas adaptdveis ao contexto,
POSI/EIA/60692/2004 through POSI and FEDER.

goal, load balancing may not be the most relevant goal. In fact, it is even likely
that some participants may be willing to sacrifice all their local resources to the
benefit of some global goal. On the contrary, in Open MANETS, where each
node is locally and independently administered by a different user, an unfair
distribution of load may encourage the owners of overloaded nodes to avoid
cooperation or simply disconnect from the network. Ultimately, this behavior
may cause the disruption of the entire network operation.

Different proposals have been presented to promote or enforce the cooper-
ation of nodes in MANETSs [3, 4, 5]. Most of them reward the participation
and/or penalize the lack of cooperation of nodes. In this paper we follow a
complementary path that consists in building mechanisms to support the devel-
opment of network protocols that offer a fairer usage of resources. The rationale
of our approach is the following: if the network protocols are fairer, users will
be more likely to adopt a cooperative behavior.

It is easy to find algorithms for MANETSs that do not offer a fair distribution
of load among the participants. Typically, to save the bandwidth and energy
consumption required for dynamic reconfiguration, nodes elected to perform a
given role in the system, are forced to perform that role until they fail or discon-
nect. Concrete examples of specific roles are replica caches, servers[1], Mobile
IP routers [10], or cluster heads [6]. From these examples, one can observe that
load balancing is a vertical concern, that must be addressed at all levels of
system software.

In this paper, we are concerned with the fair use of resources promoted by the
routing protocols. In particular, we are concerned with the number of messages
that each node is required to forward on behalf of other nodes. To address this
issue, we propose the use of adaptive routing protocols that dynamically adjust
the load imposed on each node. To drive the adaptation policies, this paper
describes preliminary results concerning a fairness monitoring service that rates
the effort of each device on message forwarding. To illustrate the benefits of
this service, we propose an optional extension to the Dynamic Source Routing
(DSR) protocol [8]. We would like to point that the our fairness monitoring
service may also be useful to promote load balancing in other system layers:
distributed protocols may use the output of the service to rank candidates to
perform specific roles or to trigger a new role allocation when some unfairness
threshold is reached.

The paper is organized as follows. Section 2 motivates our work by presenting
the causes that may lead to an unfair load distribution in DSR. Related work is
discussed in Section 3. The Fairness Monitoring Service is described in Section 4.
The extension to DSR and the evaluation are presented in Section 5. Finally,
Section 6 concludes the paper.

2 Motivation

Routing protocol for MANETS typically attempt to discover minimum cost
paths between the source and the destination, mainly using hop count as the

cost metric, while at the same time attempt to minimize the signaling overhead
of the protocol. Most of these protocols do not attempt to ensure a fair use
of resources for two main reasons: i) load balancing conflicts with the shortest
path goal (as it may require the use of non optimal paths) and, %) to achieve this
goal one may be required to augment the signaling cost of the routing algorithm
(i.e., to use additional control messages or larger control messages).

Therefore, in this paper we are interested in: a) finding cost effective mech-
anisms to extract information about the relative resource usage in the network;
b) use this information to bias the routing protocol such that a fairer use of re-
sources is achieved. Before we introduce our approach, and for self-containment,
we provide here a brief overview of the Dynamic Source Routing (DSR) protocol.
The full description of the protocol can be found in [9].

2.1 DSR Overview

DSR, as the name implies, uses source routing, i.e., the header of data mes-
sages includes the route to be followed. Each intermediary hop is required to
inspect the packet header to determine the address of the next hop. Sources
of packets learn new routes by flooding a ROUTEREQUEST packet in the net-
work and waiting for the correspondent ROUTEREPLY. When a node receives a
ROUTEREQUEST packet it may: i) send back a ROUTEREPLY packet if it is the
final destination of the request; ii) send back a ROUTEREPLY packet if it knows
a route to the destination; iii) otherwise, rebroadcast the ROUTEREQUEST
packet, after appending its own address to the DSR header (but only if the
ROUTEREQUEST is not a duplicate). A source may also learn a new route by
inspecting the routes carried in the header of packets snooped from the network.

2.2 Unfairness Example in DSR

Scenarios where nodes exhibit a negligible relative movement to each other (for
instance, when users are in a library or a train) are good examples to illustrate
both the advantages and disadvantages of the optimizations included in DSR.
On one hand, route stability makes possible to reuse previously learnt routes,
and allows DSR to reduce the signaling cost associated with the discovery of
new routes. On the other hand, the reuse of routes may heavily unbalance the
load distribution in the network.

This behavior is illustrated by the example in Figurel. Assume that node
A initially broadcasts a route request for node D. The route reply containing
A— FEF — G — H — D will be snooped by node F. If later node B also
broadcasts a route request for node D, F will use the cache to reply with the
F — G — H — D route. Finally, by snooping the packets sent by B, C can
also learn the route B — FF — G — H — D to reach D. Although several
alternative routes with the same length exist from node C to node D, C will use
the same route for any of the nodes B, F, G, H or D.

This example shows that one of the sources of unfairness in DSR is the
promiscuous share of routes, which does not take in consideration the load

Figure 1: The unfairness problem

imposed at each intermediary hop. In these scenarios, nodes using DSR tend
to converge to the same few routes, without exploiting other possible routes. In
some cases, the selected routes may not be the optimal routes, even from the
path length point of view.

3 Related Work

Several routing protocols for MANETSs have addressed the fairness issue. Power-
aware routing protocols rely on the energy information provided by each node
to select message routes. Typical examples of fairness metrics used by power
aware routing protocols are the “time to network partition” or “node’s lifetime”.
It should be noted that the optimization of these metrics is far more easier in a
closed system (where all nodes are forced to cooperate) than in an open system,
where each user makes its own decisions. In particular, we emphasize that
the fairness described in this paper is different from the maximization of the
lifetime of each node (as described in [13]) because the fairness is independent of
the characteristics or behavior of each device and user. Fairness will not attempt
to extend the lifetime of nodes whose battery started with a lower energy reserve
or that consume more power.

Congestion and fairness are related: a congested node is probably being un-
fairly overused. In load-aware routing protocols like ABR [14] and DLAR [11],
intermediate hops append load information to the route discovery messages. To
be useful, these protocols require the cooperation of all nodes. In the Hotspot
Mitigation Protocol (HMP) [12] and in the extension to DSR proposed by Hu
and Johnson [7] congested nodes temporarily suspend their normal route discov-

ery behavior by ignoring incoming route requests destined to other nodes. This
all-or-nothing approach may disrupt the communication between two endpoints
if no alternative route exists. To circumvent this problem, the two previous pro-
tocols include a special flag in its messages. In[7], the flag should be activated
in the ROUTEREQUEST packet header if no reply to a previous ROUTEREQUEST
was received. An undesirable side-effect of this approach is the duplication of
the Route Requests, even in the cases where no valid (congested or not) route
exists.

Congestion is evaluated by load metrics such as the number of bytes per
unit of time. Unfairness may not be detected by congestion indicators if a
device is more solicited than others in the long term. Metrics that capture more
adequately these scenarios are those that relate the traffic at each participant.
The work described in the following section weights both congestion and fairness
indicators and provides numeric indications allowing a reaction that can be
proportional to the severity of the situation. Its overhead is restricted to a small
increase in computational power and memory, which is expected to present an
acceptable trade-off for the more efficient utilization of the network interface [13,
9] and for increasing the probability of user cooperation.

4 The Fairness Monitoring Service

We now describe our fairness monitoring service. The service provides two
metrics that capture different network conditions. The metrics are derived from
information extracted from packets snooped from the network; therefore, their
evaluation does not require the exchange of any additional dedicated control
messages. We start by describing the state maintained by our monitoring service
and then proceed to present and discuss the metrics it offers.

4.1 State

Each node ¢ keeps a packet list pl; containing the following information for each
packet snooped from the network: i) a time-stamp of the moment at which
the packet was snooped, i) the address of the node that forwarded the packet
and, 1) the packet size. Note that more than one entry may exist for the same
packet, if it is successively forwarded by several neighbors of i. We define the
neighborhood of node ¢ as the set of nodes whose transmission can be listened
by node i. The algorithm keeps a few other variables, that are derived from the
content of pl;.

pkts; is the number of packets forwarded by i;
pkts; is the number of packets forwarded by other nodes;

nnodes; is the total number of nodes that have sent at least one of the packets
tracked in pl;;

tsize; is the sum (in bytes) of all packets tracked in pl;;

The record of a message is kept in pl; for a predefined period of time, denoted
historyperiod. Entries older than historyperiod are discarded from pl;, to make
room for new entries.

4.2 Metrics

The service provides two metrics, denoted « and x, derived from the informa-
tion extracted from the packet list pl;. These metrics evaluate, respectively,
the fairness of the workload distribution between 7 and its neighbors, and the
congestion at i’s neighborhood.

Relative Regional Load The metric «; evaluates the fairness of the work
distribution between i and its neighbors. To achieve fairness, nodes try to
keep their number of forwarded messages close to the average of forwarded
messages by the remaining nodes in their region. The ratio between i’s number
of forwarded messages and the average number of messages forwarded by nodes
in the neighborhood of 7 is presented in Eq. 1.

nnodes;

R(a;) = pkts; - —————,
(o) = phts pkts; + pkts;

(pkts; + pkts;) > 0 (1)

The ratio above is significant if based on a large number of messages ex-
changed, and insignificant if based on just a couple of samples. To account for
this fact, we define the following weight factor, depicted in Eq. 2.

1

D=l
Wiai) pkts; + pkts;

(2)

Our Relative Regional Load metric, «, is simply defined by the ratio defined
in Eq. 1 weighted by the factor of Eq. 2. Note that when either the total number
of samples or the ratio R(«;) are below some given thresholds, we simply default
a; to 0. The definition of « is given in Eq. 3.

pkts; + pkts; > min_list_size
W(Oél) . R(Oti), AN
R(ov;) > min_avg

(3)

o =

0, otherwise

Regional Congestion The metric x; evaluates the congestion at i’s region.
Congestion is usually evaluated by the number of messages waiting at the node’s
transmission queue [7]. Although this may be adequate for evaluating congestion
from a node’s perspective, it may fail to provide accurate information for the
neighborhood, in particular, if the node is not being actively solicited for packet
forwarding. MAC layer utilization is an alternative criteria that more suitably
addresses the problem. It is defined, for each node, as the fraction of time during
which the node either has one or more packets waiting in its transmission queue
or if a node had attempted to transmit, the MAC rules would prevented it

from doing it [7]. In this paper, we propose a simpler congestion metric whose
evaluation relies exclusively on the packet records kept locally at the packet list.

The x; metric estimates congestion in the neighborhood of node i by eval-
uating the bandwidth usage in the region. It is defined as a ratio between the
bandwidth spent during the last historyperiod (given by tsize;) and the avail-
able bandwidth during the same period (given by historyperiod - NABPS, where
NABPS is the available bandwidth in bytes per second on the target network).
Precisely:

{ 0, pkts; + pkts; < min_list_size
Xi =

' i (4)
tsize; .
(historyperiod NABPS) ; otherwise

The ratio is squared to make the function more steep, thus promoting more
congested regions in detriment of less congested ones. If the number of mes-
sages that have been sent recently is below a given threshold (and therefore not
significant), the metric x; simply defaults to 0.

Note that the network available bandwidth in bytes per second, NABPS; is a
constant for each target network, that depends on the maximum link bandwidth
and on the MAC protocol. For instance, for IEEE 802.11 like networks we may
have:

B-10° 3
125-10%- B
NABPS = ; _ 12 30

where B denotes the network advertised bandwidth in millions of bits per
second (Mb/s). In this case, the total bandwidth is first divided by eight to
convert the bandwidth to bytes per second and then by three to reflect an IEEE
802.11 like network, where the useful bandwidth is typically one third of the
total.

~ 41000 - B (5)

4.3 Discussion

Impact of packet snooping Network snooping consumes device resources, in
particular, computational power and energy. However, research results indicate
that wireless network interfaces spend comparable amounts of energy receiving
packets and listening to the network [13]. Therefore, for networks running MAC
protocols that do not allow network cards to enter the sleep mode (like IEEE
802.11), it is expected that the overhead imposed by the monitoring service be
limited to the small computational power required to keep a list of records, each
taking only a few bytes.

Relevance of congestion information The a; metric adequately relates
the effort of ¢ with that of its neighbors. However, if a cluster of nodes is being
unfairly used, the metric will return progressively lower values as the nodes get
more close to the center of the cluster. This effect happens because the average
for nodes at the borders will take into account nodes outside the cluster whose

contribution is below average. This creates the adverse effect of favoring traffic
to enter the center of the cluster.

The x; metric, on the other hand, does not take into account the number
or individual contributions of the nodes. Contrary to «;, it is expected to grow
from the center to the borders of the cluster.

Applications of metrics Fairness information can be obtained by combin-
ing both metrics. The selection of an adequate function to combine both «;
and yx; is application dependent: the exact thresholds or the weights used to
balance each of the metrics must be tuned depending on the behavior required
by the middleware service or protocol. The next section illustrates a concrete
meaningful combination of the two metrics provided by our monitoring service
that allows to improve fairness in DSR.

5 Application: Biased DSR

To illustrate the usefulness of our fairness monitoring service, we now describe
an extension to the Dynamic Source Routing protocol that makes use of the
metrics it provides. The goal of this extension, called simply Biased DSR, is to
mitigate route concentration by leveraging packet routing across different nodes.
This extension does not require the exchange of additional messages and is fully
compatible with nodes running implementations following the DSR Draft [9].

The metrics provided by the service grow proportionally with the node ef-
fort and congestion in the region. Each of them may return any positive value
and have unrelated scales. To harmonize these functions, we define two coeffi-
cients, respectively k, and k,. These factors are also used to rate the relevance
attributed to fairness and congestion. The resulting combined metric, called
effort index and denoted ® is presented in Eq. 6. Its application on the DSR
algorithm is presented in the following subsection.

D; = ka - i +ky o X (6)

5.1 Delay of route requests

The key idea of the Biased DSR is to apply a different delay to the propagation
of route requests according to the value of ®;. The effort index ®; is used to
increase the probability of routes using less congested nodes being advertised
and selected. When receiving a route request, node ¢, running Biased DSR, will
evaluate ®; and multiply it by a constant ref-delay to determine the delay to be
applied to the route request. The route request will be handled following DSR.
standard procedures if the outcome determines a negligible delay! and will be
discarded if the delay exceeds some constant maz_delay. For intermediate values,
the route request will be processed according to the DSR standard after the

n the current implementation, all values below 0.001s are considered negligible.

0.08
0.06
0.04
0.02
0
500
400
0 300
200
| 13 100 Kbytes/s

Figure 2: Delay applied to route requests

computed delay has expired. Figure 2 shows the adaptiveness of the algorithm
using the constants presented in Table 1. Its sharp increase when «; reaches 1.2
is explained by the threshold imposed by min_avg.

The delay of route requests is a flexible mechanism that favors the discovery
of alternative routes circumventing congested regions because i) increases the
probability that other nodes have already received and forwarded a different
copy of the route request, thus removing the congested link from the path; i)
increases the probability of the source node to receive other cached routes with
the same hop count but which were available further away from the source;
ii1) does not eliminate the possibility of having the route used. This effect is
amplified because in a congested sequence of hops, the route request will be
successively delayed, thus increasing the probability of not having the route
selected.

5.2 Evaluation

We compare our route request delaying algorithm with the baseline DSR to
confirm that it improves DSR fairness and to assert that it does not signifi-
cantly degrade DSR performance. A network composed of 70 nodes running
IEEE 802.11 network cards at 11Mb/s in a region of 2000x250m was simulated
using the network simulator ns-2, v. 2.27. DSR was evaluated using the im-

min_avg 1.2 || maz_delay | 0.08
min_list_size 10 || ko 0.8
historyperiod 3s || ky 1.0
ref-delay 0.08 | B 11

Table 1: Values used in the simulations

plementation provided with the simulator, without flows. Our extension was
implemented by changing the DSR base code and its procedures start with the
beginning of the simulation. All simulations run for 300s and use Constant Bit
Rate (CBR) traffic generators with 8 packets of 512 bytes per second. No error
model was applied. The wireless network cards range is of 300m.

Ten independent movement files were defined for each of three movement
speeds: stopped, slow (1-2m/s, 50s pause time) and fast (2-5m/s, 40s pause
time). Nodes move according to the random waypoint model [2] at a speed ran-
domly selected in the interval specified. To simulate different traffic conditions,
3 traffic scenarios were defined respectively with 10, 15 and 20 CBR connections
active at each moment. Each CBR connection lasts for a randomly selected in-
terval between 40 and 80 seconds, after which it is replaced by another between
other randomly selected endpoints. The algorithm was executed with the values
presented in Table 1, which provide an acceptable trade-off between reliability
and unfairness mitigation. Unless noted, the results average the combination of
each traffic file with the 10 independent movement files for the same speed.

Unfairness mitigation Fairness was evaluated measuring the standard devi-
ation of the number of link layer frames sent by each node. Figure 3 shows that
the average standard deviation of the number of link layer frames sent by all
nodes is 9% to 30% lower which represent a significant gain in load distribution.
As expected, DSR is less fair in scenarios with higher route stability and with
more traffic.

To emphasize the advantages of an unfairness mechanism, we compare one
particular run with 20 CBR connections and nodes moving at fast speed. Using
the baseline DSR, the more active node forwarded 2.93% (5293) of the link
layer frames while the less active was responsible for forwarding 0.28% (524).
The difference decreases when using Biased DSR. The node more requested
forwarded 2.04% (4159) of the frames while the one less active contributed with
0.74% (1508). The standard deviation in this particular run where respectively
of 1008.08 and 593.86, which represents a reduction of 41%.

Reliability The comparison of the packet delivery ratio highlights the trade-
offs required by unfairness mitigation. Figure 4 shows that Biased DSR does not
follow the packet delivery ratio degradation of DSR. This results from refusals of
nodes more unfairly charged to be included in the paths of new route requests,
which in turn increases the number of route discoveries and the overall traffic in

1800

1600 r _
< 1400 t]
=t
£ 1200 |]
o
A 1000 r | - e .
g s8o0f]
2 I
c L i
g 600 oo Biased DSR stop
P 400t DSR slow -~

Biased DSR slow -
200 t DSR fast = 1
0 . Biased DSR fast -~ --
10 15 20

CBR connections

Figure 3: Standard deviation

the network. However, we believe that in some situations, a loss of 3% to 4% in
reliability might be a reasonable price to pay to get the fairness gains presented
above.

Efficiency The efficiency is evaluated by measuring the number of link layer
frames required per data packet generated during the simulation. To better
profile each protocol, the number of link layer frames is further separated in
data frames and total, thus it also takes into account the number of DSR routing
protocol frames forwarded by the nodes. The results are presented in Table 2.
It should be noted that none of these indicators reliably estimates the route
length given that the total of link layer frames includes retransmissions.

Results show that unfairness mitigation can keep the pace with DSR and
even provide some marginal gains for low traffic situations, but begins to degrade
as the traffic increases. The results from the column Data frames/Packet Deliv-
ered in Table 2 show a small increase that possibly indicates that some routes
may have a few additional hops. The increase in the Total frames/Packet Sent
column is interpreted as resulting from a larger number of route request mes-
sages that result from the fact that unfairly overloaded nodes may omit to reply
to route requests.

Resource consumption Efficiency results show that Biased DSR has an
overall energy consumption slightly higher. However, the standard deviation
results indicate that the energy spent by each node will be closer to the average,
which implicates that the burden will be placed on less used nodes. The memory
consumption of the protocol is dependent of the historyperiod parameter. The

100% s

98% i
il
= 96% | 1
[hd S
> 94% 1
=
3 92% f e]
B o | DSR stop —+— e
_é 90% Biased DSR stop -
a DSR slow —— e

88% r Bjased DSR slow = |

DSR fast —=—-
86% | Biased DSR fast ---¢--]
10 15 20

CBR connections

Figure 4: Packet delivery ratio

current implementation of Biased DSR in C++ requires 20 bytes per packet
recorded in pl;. During the simulations it was observed that pl; never exceeded
600 records. These values suggest a memory consumption of approximately
12Kb per node for an historyperiod of 3s, which can be easily accepted for the
majority of wireless enabled devices like laptops and PDAs.

6 Conclusions and Future Work

In Open MANETS, protocols need to consider the fair division of the tasks to
balance energy consumption among the participants. Unfairness is a problem
distinct from congestion in the sense that users may notice that their devices
are being excessively used when compared with other participants even when
no congestion exists. It should be noted that this is not an issue exclusive of
routing: decisions on the location of services, for example, should take into
account the node’s past and current history.

This paper has presented early results from the use of a service that monitors
the network to provide information concerning the fair division of activities
among the nodes on the network. The service is completely local: it does not
require the exchange of control messages with other nodes; instead it requires a
small additional computational power at the devices where it is executed.

To illustrate the usefulness of this service, an extension to the Dynamic
Source Routing protocol that enhances the fair distribution of load between the
participating nodes was developed. This algorithm relies on the information
provided by the fairness monitoring service to delay or drop route requests at

Link Layer Frames
#Con | Protocol Data Total
Deliv. | Sent | Deliv. | Sent
DSR stop 3.26 | 3.25 | 3.32 | 3.32
Biased stop | 3.25 | 3.25 | 3.32 | 3.32
10 DSR . slow 2.86 | 2.86 | 3.01 | 3.00
Biased slow | 2.87 | 2.85 3.03 3.01
DSR fast 2.68 | 2.67 | 2.97 | 2.95
Biased fast 2.69 2.67 | 2.98 2.96
DSR stop 3.27 | 3.26 | 3.34 | 3.34
Biased stop | 3.32 | 3.31 | 3.47 | 3.45
15 DSR slow 2.94 | 292 | 3.10 | 3.09
Biased slow | 2.98 | 2.94 | 3.27 | 3.22
DSR fast 2.71 | 2.69 | 3.00 | 2.99
Biased fast 2.73 | 270 | 3.09 | 3.06
DSR stop 3.66 | 3.46 | 3.94 | 3.72
Biased stop | 3.90 | 3.52 | 4.64 | 4.18
20 DSR . slow 3.08 | 294 | 3.37 | 3.22
Biased slow | 3.24 2.96 | 3.90 3.56
DSR fast 2.97 2.81 3.41 3.22
Biased fast 3.16 | 2.87 | 3.92 | 3.55

Table 2: Link Layer frames/packet ratio

overused or congested nodes. Its use is optional on networks using the DSR
protocol. Evaluation results show that the algorithm enhances fairness at the
expenses of a slight increase in control traffic.

This position paper intends to open for discussion early work in a path that
we find promising and that can be further improved. For instance, the protocol
does not adequately address situations where routes are kept stable and active
for long periods. To address this problem we will require the use of corrective
measures after the route discovery procedure, for which no adequate metric has
been presented here. Replies from route caches can also be improved if multiple
routes exist and some information about the tentative next hops is kept locally.
Future work will proceed by developing metrics to address these limitations.

References

[1] M. Avvenuti, D. Pedroni, and A. Vecchio. Core services in a middleware for
mobile ad-hoc networks. In Proc. of the 9th IEEE Work. on Future Trends
of Distributed Computing Systems (FTDCS’03), pages 152-158, 2003.

[2] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A perfor-
mance comparison of multi-hop wireless ad hoc network routing protocols.

In Proc. of the 4th Annual ACM/IEEE Int’l. Conf. on Mobile Computing
and Networking, pages 85-97, 1998.

S. Buchegger and J.-Y. Le Boudec. Performance analysis of the CONFI-
DANT protocol: Cooperation Of Nodes - Fairness In Distributed Ad-hoc
NeTworks. Technical Report IC/2002/01, Swiss Federal Institute of Tech-
nology, Lausanne, 2002.

L. Buttyan and J. P. Hubaux. Enforcing service availability in mobile
ad-hoc wans. In Proc. of the 1st IEEE/ACM Work. on Mobile Ad Hoc
Networking and Computing (MobiHOC), 2000.

Stephan Eidenbenz, V. S. Anil Kumar, and Sibylle Zust. Equilibria in
topology control games for ad hoc networks. In Proc. of the 2003 Joint
Work. on Foundations of Mobile Computing, pages 2—11, 2003.

M. Gerla, T. J. Kwon, and G. Pei. On-demand routing in large ad hoc
wireless networks with passive clustering. In Proc. of the Wireless Com-
munication and Networking Conference, volume 1, pages 23-28, 2000.

Yih-Chun Hu and David B. Johnson. Exploiting congestion information
in network and higher layer protocols in multihop wireless ad hoc net-
works. In Proc. of the 24th Int’l Conf. on Distributed Computing Systems
(ICDCS’04), pages 301-310, 2004.

D. Johnson, D. Maltz, and J. Broch. Ad Hoc Networking, chapter DSR:
The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc
Networks, pages 139-172. Addison-Wesley, 2001.

David B. Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic source
routing protocol for mobile ad hoc networks (DSR). Internet draft, IETF
MANET Working Group, July 19 2004.

Boris A. Kock and J. R. Schmidt. Dynamic mobile IP routers in ad hoc
networks. In Proc. of the 2004 Int’l Work. on Wireless Ad-hoc Networks
(IWWAN’04), 2004.

S.-J. Lee and M. Gerla. Dynamic load-aware routing in ad hoc networks. In
Proc. of the IEEE Int’l Conf. on Communications (ICC 2001), volume 10,
pages 3206-3210, 2001.

Seoung-Bum Lee, Jiyoung Cho, and Andrew T. Campbell. A hotspot mit-
igation protocol for ad hoc networks. Ad Hoc Networks, 1(1):87-106, 2003.

Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in
mobile ad hoc networks. In Proc. of the 4th Annual ACM/IEEE Int’l Conf.
on Mobile Computing and Networking, pages 181-190, 1998.

Chai-Keong Toh. Associativity-based routing for ad hoc mobile networks.
Wireless Personal Communications, 4(2):103-139, 1997.

