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Abstract

In this paper we propose a novel probabilistic broadcast protocol
that reduces the average end-to-end latency by dynamically adapt-
ing to network topology and traffic conditions. It does so by using an
unique strategy that consists in adjusting the fanout and preferred tar-
gets for different gossip rounds as a function of the properties of each
node. Node classification is light-weight and integrated in the proto-
col membership management. Furthermore, each node is not required
to have full knowledge of the group membership or of the network
topology. The paper shows how the protocol can be configured and
evaluates its performance with a detailed simulation model.

1 Introduction

Probabilistic broadcast protocols, also called gossip-based or epidemic pro-
tocols, have been shown to scale to very large number of participants while
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at the same time ensuring probabilistic reliability guarantees despite process
failures and network omissions. By relying also on gossip based member-
ship management, the scalability of such protocol can be realized in practice.
Probabilistic protocols have been applied to a variety of different uses, from
monitoring, management and data mining [15] to the support of large number
of spectators in multi-user games [14].

Probabilistic broadcast protocols disseminate messages by gossiping: Upon
reception, a message is relayed to a small random subset of participants.
Therefore, to most recipients, delivery happens only after a message has
been relayed a number of times by participant nodes. In consequence, al-
though gossiping is highly resilient, it makes end-to-end latency be several
times larger than the latency between any pair of nodes.

In heterogeneous environments, such as wide area settings, the high la-
tency of probabilistic broadcast in exacerbated by the fact that most existing
approaches are strictly symmetric, i.e., the traffic is approximately the same
in every node. Therefore they do not exploit the fact that some nodes can
sustain higher bandwidth than others. The gossip path between the sender
and a given recipient may include bottleneck hops which add-up queuing
delays.

The work reported in this paper is based on the hypothesis that the
latency of probabilistic protocols may be improved if nodes with higher ca-
pacity (namely in terms of available bandwidth) offer a greater contribution
to the message dissemination than those nodes with smaller capacity. The
proposed protocol uses a novel strategy that consists in adjusting both the
fanout and the preferred targets for each gossip round according to the prop-
erties of each node, thus reducing end-to-end latency both by reducing the
number of rounds to delivery and the average hop latency. The resulting
protocol, called Low Latency probabilistic broadcast (“LoLa pbcast”, for
short), is fully dynamic: it automatically adapts to network topology and
traffic conditions.

Notice that blindly increasing the fanout or biasing the gossip procedure
may lead to undesirable effects: The excessive traffic in preferred links, nodes
or even in all the network may lead to congestion and additional queuing
delays. It can also negatively impact the reliability of the protocol and harm
other traffic sharing the network. LoLa does not suffer from these problems,
as it includes feedback and adaptive mechanisms that prevent resources from
being overloaded. The scalability of the protocol is also ensured by relying
only on locally available information, exchanged using the gossip protocol



Application

| !

broadcast  deliver

LoLa PBCast

enqueue dequeue

Buffering 1 lossl]

send  receive

v i
ifbl] [ ]
Transport ofb pwl]
unreachable

| A
\

Network

Figure 1: Architecture of the LoLa pbcast.

itself.

The paper shows how the protocol can be configured and evaluates its
performance with a detailed simulation model. We show that the protocol
effectively avoids the undesirable effect of having a good path to become over-
loaded because it is chosen so often, resulting in queuing delays or messages
dropped. We also show that the biasing of gossip towards low latency does
not negatively impact reliability guarantees, which rest on the assumption of
uniformly distributed faults.

The remaining of the paper is structured as follows: Section 2 presents
the protocol. Section 3 evaluates the proposed protocol with a detailed sim-
ulation model. Section 4 discusses related work and Section 5 concludes the

paper.

2 Low Latency Probabilistic Broadcast

A probabilistic broadcast protocol [7, 1, 3] disseminates messages by gos-
siping. In each round, a message is relayed to a random subset of known
participants. Each message is relayed a bounded number of times. It has
been shown that such protocol results in probabilistic reliability: Each mes-
sage is delivered with a high probability to almost all or almost none of the
participants. By evenly spreading the load, such protocols are also scalable to
large numbers of participants. The inherent redundancy makes the protocol
tolerate network omissions and process failures.



LoLa differs from other gossiping protocols by dynamically tuning the
contribution of each peer to gossiping according to its specific character-
istics, in terms of available bandwidth and position in the network. This
is achieved by combining several complementary mechanisms: (i) Use of
TCP/IP connections among peers to promote a good usage of network re-
sources, leveraging the architecture of NeEM [14]. (ii) Dynamic evaluation of
each node’s capacity to gossip a message with low latency. As a result of this
procedure, some nodes are marked as preferred nodes. (i) Weighted selec-
tion of membership, ensuring that each node keeps a subset of preferred nodes
in its local membership (i.e., as potential targets for gossip). (iv) Weighted
early gossip rounds, ensuring that a message is relayed to the preferred nodes
in the first rounds of dissemination. (v) Adaptive fanout, allowing a node
to augment its fanout value in early rounds, but dynamically adapting to
network conditions to avoid congestion.

As it will be seen, the combination of these mechanisms makes LoLa op-
erate as a self-organizing hierarchical epidemic broadcast protocol, in which
high capacity nodes automatically form a network backbone responsible for
message dissemination. This hierarchical structure emerges automatically
from an unstructured peer-to-peer network: Messages in the early rounds
are directed preferably towards preferred nodes and in later rounds are then
disseminated outwards to leaf nodes.

In the following subsections, we start by describing the layered architec-
ture of the protocol and the gossip procedure. Then we describe each of the
previous mechanisms in isolation with more detail and we will later conclude
the section by highlighting the interactions among them.

2.1 Protocol Overview

LoLa pbcast leverages the architecture of the NeEM protocol [14]. NeEM is a
network friendly epidemic protocol that combines a standard gossip protocol
with a specialized buffering layer and a transport layer that makes use of
TCP/IP connections among peers to promote a good usage of network re-
sources. NeEM makes no effort to reduce the average latency of the broadcast
and instead improves throughput by taking advantage of message semantics.

In this paper we take the approach one step ahead and replace the stan-
dard gossip protocol used in NeEM with the Lol.a pbcast, which uses feed-
back provided by the flow control mechanisms of TCP/IP, combined with
other metrics such as round-trip delays, to assess the capacity of peers. This



information is later used to bias the gossip procedure. LolLa pbcast also em-
bodies the idea of maintaining only a partial membership of the system at
each node [3]. However, the contents of the membership kept at each nodes
is also biased according to the node’s properties.

Following these principles, the architecture of LoLa pbcast is presented in
Figure 1. At the bottom layers, TCP/IP is used to exchange messages with
peers. Since each node only maintains a small fraction of the global system
membership, the number of connections that need to be maintained open is
small. LoLa also relies on additional information provided by the transport
layer about the available network resources, as discussed in the next section.

On top of the TCP/IP layer, a buffering layer is used to accumulate mes-
sages when the network or the remote peer is congested. For each outgoing
connection, a buffer queue is used. Upon overflow, messages are discarded
according to their age [11] or, when all messages have the same age, at ran-
dom. LoLa uses information about the amount of messages being discarded
to feed the adaptive mechanisms.

Finally, on top of the queuing layer, a probabilistic protocol that imple-
ments a biased gossip is implemented. The gossiping protocol uses informa-
tion provided by the buffering and transport layers about the status of the
network resources and is presented in Figure 2. As usual in epidemic proto-
cols, a message being broadcast (line 3) or locally received (line 10) for the
first time is gossiped to a subset of known nodes (line 19). Each message is
gossiped a finite number of times, by incrementing the age field and verifying
it (lines 20 and 15). Duplicates are detected, and thus ignored, by keeping
a set of ids of recently seen messages in variable ids. The gossip procedure
uses the following configuration parameters:

e The default fanout value f,,;, and the maximum age age,,,., should be

configured as in any other gossip protocol [1, 9].
e The maximum number of stored message identifiers |ids|,,q, and garbage
collection period 77 should be set to avoid duplicate deliveries [3, 10].

Whenever node selection is required, either a uniformly random selection
function, uniform, or a weighted random selection function, weighted, is used.
Both functions receive the number of nodes to choose, and the set to choose
from. The weighted function receieves in addition the weights to influence
its choice. Note that the ENQUFEUE and DEQUEUEFE functionality is that
offered by the underlying buffering layer.
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if |ids| > |ids|mae
ids « ids \ oldest(ids)

every T5:
{ Update weights }
for all peer € peers do
weight [peer] « ifb[peer]? /rtt[peer|?
{ Update feedback value }
O — 3"y bW[peer]
every T3:
{ Update membership }
peers «— peers\unreachable
if seen ¢ peers A seen # self then
if |peers| = |peers|, q. then
save «— weighted(|peers|min, peers, weight)
peers < peers \ uniform(1, peers\save)
peers < peers U{seen}
if £> |peers| then
f « |peers]

every Ty:
{ Update effective fanout }
if loss = 0 then
f— f+1;
else if loss;o < loss < lossyign then
f e f-1;
else if loss > lossp;qn then

Figure 2: Low latency probabilistic broadcast.



2.2 Node Evaluation and Preference

Central to the proposal is that nodes with different capacities should offer a
different contribution to the gossip procedure. Low latency can be achieved
by: (i) using short hops, thereby reducing the contribution to final end-to-
end latency; (7i) using hops to nodes with large outgoing bandwidth, able
to simultaneously communicate with a larger set of nodes, thus reducing the
total required number of hops to delivery. Therefore, we need to dynamically
assess the capacity of each target to reduce latency according to both criteria.

The latency of the immediate hop can be estimated by the round-trip
time. Notice that the average round trip time can be obtained with no
overhead whatsoever at the transport layer, as it is computed implicitly by
TCP/IP and can be retrieved with the getsockopt () system call. This value
is exported as rttfi/ by the transport layer.

The outgoing bandwidth of the target node cannot be directly estimated.
Instead, a target node ¢ estimates its own outgoing bandwidth for each con-
nection bwfj/ at the transport layer, thus for each node in its membership.
The total outgoing bandwidth of node 7 is the sum of the bandwidth of all
outgoing connections at i and is stored in variable ofb (line 37). This value
is propagated back to all nodes with incoming connections, i.e. all nodes
which which contain 7 in its local membership. Such nodes store the value
in variable ifb at the transport layer.

During startup, when there is no available feedback from the transport
layer, a very small bandwidth value is assumed (e.g. 1byte/s). Also, if a node
observes message losses in any of its transport connections, it immediately
reduces its advertised bandwidth to the same value. This prevents a node
from advertising more capacity than it is actually able to sustain. To prevent
the control traffic from consuming excessive system resources, an update of
the ofb value is not sent unless it has changed by more than some predefined
threshold (in this paper, we have used 10% as the threshold value). Also,
a node that is still observing message losses at the buffer level does not
advertise any measured increment in bandwidth.

Using the feedback data discussed above, a preference value, simply named
weight[j], can be locally assigned to each target node. This weight is a func-
tion of the advertised bandwidth of j but also of the estimated round-trip
time 7rtt[j] between i and j, more precisely, every interval T5, the weight is
computed (line 32) as weight[j] = fg%? where p and ¢ are configuration
parameters. The preference weight captures the fact that a “very close” peer




(in terms of round-trip-time) may be a preferable target for gossip than a
very “distant” peer, even if its capacity is not as high as the capacity of the
distant peer. The intuition for this criteria is that very short hops introduce
little or no negative effect in the overall end-to-end latency.

Larger values for both p and ¢ make weights be farther apart, thus re-
inforcing bias. One may also select different values for p and ¢ to balance
between short hops to slow nodes and long hops to fast nodes. Since an
excessive bias may compromise the natural resilience properties of epidemic
broadcast, one typically should target to maximize performance with mini-
mum bias, thus using small values for p and ¢. In Section 3.5 we will show,
supported by experimental data, how p and ¢ can be configured. In the rest
of the paper we use p =3 and ¢ = 3.

2.3 Weighted Membership

As noted before, LoLa pbcast embodies the idea of maintaining only a partial
membership of the system at each node. In[7, 14], the membership of each
node is updated as follows. When a process gossips, it piggybacks in the
gossip message information about a known node, uniformly selected among
the nodes from its own membership and itself (line 21). When a process
receives a gossip message, it merges these nodes into its membership list
and then applies a function to reduce the membership size, in order to keep
membership under a manageable size.

LoLa pbcast augments this procedure by introducing a bias in the mem-
bership management by selecting nodes to remove from the membership, as
follows. When deciding which nodes to remove from the local membership,
the node first marks a small sub-set of nodes as not eligible for removal
(line 43). This sub-set of marked nodes is also selected using a weighed
probability based on the preference weights. Nodes to be removed are then
selected uniformly from the non-marked nodes. This means that preferred
nodes are less likely to be removed.

Finally, LoLa requires that nodes with enough resources adjust its max-
imum membership size to a value larger than that strictly required for epi-
demic reliability. The limit can be set arbitrarily high, as flooding will adjust
to a safe value. The choice is therefore mostly a policy decision of how much
the node wants to contribute to the overall performance of the group, i.e.,
nodes with higher capacity should maintain a larger number of peers in their
membership list than nodes with small capacity. There is one additional



constraint. Nodes with very limited bandwidth should set the value low, to
avoid the implicit buffering in connections and thus the resulting increased
queuing latency. In our experiments the maximum membership size varies
from a lower value of 15 to a maximum value of 40.

In summary, LolLa’s weighted membership management can be tuned

using:

e The maximum number of connected peers |peers|q.. In the current
prototype, this value is set manually according to the policy described
above. This procedure can in fact be replaced by a dynamic member-
ship management protocol [5].

e The minimum number of preferred peers |peers|yi,. The configuration
of this parameter is discussed in Section 3.5 and a value of 5 used
throughput this paper.

e The membership adjustment period T, should be large enough such
that nodes can be evaluated. A value of 120s is used throughout the

paper.

2.4 Weighted Early Gossip

In order to decrease the latency of the gossip procedure, LoLa pbcast bias
the first k& rounds of the protocol towards preferred nodes. In other words,
instead of selecting the gossip target uniformly across the membership, LoLa
weights the probabilistic selection of targets using the weight[] values. By
limiting the bias to the early rounds of the gossip procedure we effectively
prevent this mechanism from affecting the overall reliability of the gossip
procedure. In fact, the bias is only applied when there are still few processes
infected and, therefore, most targets (preferred or not) are valid targets. By
eliminating the bias in subsequent rounds one ensures that all nodes have
a uniform probability of being infected in later rounds. Additionally, the
same strategy also prevents preferred nodes from receiving many duplicates
of the same message. The reader should also notice that, when the network
is homogeneous, this mechanism has no impact on the gossip procedure.
The choice of a low value for parameter k reduces bias and thus reduces
the latency improvement. On the other hand, a large £ might result in an
uneven spread of messages and thus impact bimodal delivery guarantees. We
discuss the configuration of k in Section 3.5 and use k = 3 throughout the

paper.



2.5 Adaptive Fanout

An unique feature of LoLa is that the fanout used by each node during the
first k£ + 1 rounds of a gossip is not static but, instead, adjusted dynamically
accordingly to the capacity of that node. The rationale for this is that nodes
that have received a message up to round k£ have been perceived by other
nodes as preferred and thus should make an effort to spread the message as
much as possible.

Let f.n be the minimum fanout to ensure the reliability properties of
the epidemic broadcast (finn is a logarithmic function of the total system
size N; for a discussion on how to compute f,,;, see, for instance[1, 9]). Let
also |peers| be the size of the membership list at process ¢ (we recall that, in
LoLa, each node is configured with a different size of |peers|,q., according
to its intrinsic characteristics). The fanout f used by a node during the first
k~+1 rounds of the gossip is a dynamically computed value within the interval
Jmin < [ < |peers|.

The value of f is periodically adjusted as follows: 7) initially, f is set to
fmin; ) if no message loss is detected during the last period, f is incremented;
iii) if there is a small loss (below 2% of message loss) f is unchanged; iv)
if there is a moderate loss during the last period (above 2% of message loss
but below 5% ), f is decremented; v) if there is a significant loss (above 5%
of message loss) during the last period, f is reset to fin.

This mechanism ensures that high capacity nodes effectively contribute
more to the gossip procedure than low capacity nodes (by using a higher
fanout). Notice that increasing the fanout value is useful only during the
very first rounds, when only a few nodes have been infected and thus the
increased number of messages results in useful deliveries. Using the same
increased fanout in later rounds would only contribute to network congestion
with little advantage, as most of the nodes are now infected.

In summary, the adaptive fanout mechanism can be tuned using the fol-
lowing parameters:

e The low watermark threshold [0ss;,, should be set very low in order

avoid almost all losses. In this paper, a value of 2% is used.

e The high watermark threshold lossp;g, should be large enough such
that complete loss in a single connection, as resulting from a failed
peer, does not preclude a large fanout. In this paper a value of 5% was
used.

e The period T3 should be large enough to avoid reacting on small fluc-
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Figure 3: Experimental network topology.
tuations. In this paper, a value of 120s was used.

2.6 Summary of Interactions

We now briefly summarize the interactions among the LoLa mechanisms
previously described. Due to the adaptive fanout mechanisms, high capacity
nodes contribute with a higher fanout to the gossip procedure. However,
this contribution is adjusted to their effective capacity (which is evaluated
dynamically). By making the best use of their available bandwidth, high
capacity nodes automatically increase their advertised bandwidth value ofb.
This, in turn, will make high capacity nodes preferred and more likely to be
used during the first rounds of the gossip.

By using TCP/IP to support the communication between peers, we en-
sure that the network capacity is not exceeded and the message loss in the
network is eliminated. This allows nodes to accurately detect message loss in
their gossip buffers and to automatically adjust both their fanout and their
advertised bandwidth. Therefore, LoLa not only is able to adapt the gossip
to an heterogeneous environment but also to dynamic changes in the network
conditions.

It is worth noting that there is a substantial difference between the LoLa
approach and a naive approach based on blindingly increasing the fanout
at all nodes without any sort of feedback. In fact, it is obvious that the
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simple choice of augmenting the fanout may reduce the end-to-end latency
of the broadcast. However, such approach is only effective if the network
does not suffer congestion. In a real setting, with heterogeneous nodes, if
no adaptive mechanisms are embodied in the protocol, this may result in an
over-utilization of system resources and may result in high message losses
experienced by low capacity nodes. With our work we show that a careful
combination of complementary adaptation mechanisms effectively promotes
the best use of the heterogeneity that characterizes large-scale system. In
the next section, we evaluate LoLa under different network scenarios.

3 Evaluation

We have evaluated the LoLa protocol through simulations, using the SSFNet|[2]
network simulation infrastructure. We first show the advantages of our pro-
tocol in heterogeneous scenarios by giving latency results for several network
configurations. Later we offer a detailed analysis of relevant scenarios that il-
lustrate specific features of our protocol. Finally, we also measure the impact
of LoLa mechanisms in the atomicity of message delivery.

3.1 Network Topology

We run both homogeneous and heterogeneous scenarios using the same un-
derlying network topology. The topology, illustrated in Figure 3 consists of
a star-shaped network. At the core of the network there is a central router.
This is connected to a number of ISP routers supporting both local area net-
works and wide area residential connections where gossip peers are hosted in
the edges of the network.

Note that this topology captures and abstracts the hierarchical nature of
today’s networks. This underlying topology is not explicitly visible to the
participants in the epidemic broadcast: When establishing a peer relation-
ship, an outer node may peer with any other outer node. Any structure in
the resulting peer-relationships will only emerge indirectly, due to the LoLa
feedback mechanisms.

We assume that the links between central and ISP routers have a band-
width of 10Mb/s. Different types of heterogeneity are obtained by varying
the available bandwidth in the links connecting ISP routers to nodes. We
have considered three types of relevant scenarios, all with 10 networks of 10



nodes, namely:

e Heterogeneous scenario. In this scenario, 10% of the outer nodes are
connected trough a LAN within the ISP Ethernet links, 20% through ADSL
links and 70% through standard V.90 Modem links.

e Homogeneous scenario. In this scenario, all nodes are connected trough
standard V.90 Modem links.

e Quasi-homogeneous scenario. In this scenario, 5% of the outer nodes
are connected through Ethernet links, and the remaining 95% are connected
through standard V.90 Modem links.

The most realistic scenario is the first, in which link capacities are highly
heterogeneous. This scenario provides several combinations of nodes with
large bandwidth and varying delay (e.g. local and remote nodes collocated
at ISPs), as well as, nodes with the same base delay and varying bandwidth
(e.g. nodes attached by ADSL and V.90 Modems). The quasi-homogeneous
is used to confirm that a small number of strategically placed fast nodes
can be used to improve the performance of the broadcast protocol. The
homogeneous scenario is used only as a baseline for comparison.

For all scenarios we have also experimented the performance of LoLa
under two different load conditions. The load on the system was imposed
by a fixed number of senders (5 nodes, in all scenarios) sending 100 byte
messages at two different rates:

o Light load scenario: Messages sent every ten seconds by each sender;

e Heavy load scenario: Messages sent every second by each sender.

Note that the load caused by the heavy load scenario is enough to con-
gest all V.90 Modem links although still providing reliable delivery (this is
illustrated by Figure 7 which is presented later in the text).

When a comparative measure is useful, we use results obtained by running
the NeEM protocol [14] in the same conditions as LoLa. We recall that NeEM
also avoids network congestion, by a correct use of TCP but, in opposition
to LolLa, makes no attempt to benefit from the network heterogeneity.

3.2 Achieving Low Latency

To illustrate the effectiveness of the protocol, we depict latency results for
different system configurations in Figure 4. The x axis indicates end-to-end
delivery latency (in ms) and the y axis the empirical cumulative distribution
function (ECDF) of latency. Latency is measured by an external observer as
the interval between application level broadcast and delivery.
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For each configuration, we compare the latency of LolLa with that of
NeEM. We also show the results achieved with a version of NeEM where the
fanout is increased blindingly to a fixed high value. In result, this version
of NeEM floods the network and is therefore denoted “NeEM w/ flood”:
it illustrates why a naive solution, without feedback mechanisms, does not
provides satisfactory results.

Figure 4 clearly shows the advantages of LoLa. For instance, it can be
observed that in the heterogeneous scenario with heavy load, LoLa delivers
approximately 90% of messages in less that 500ms while with NeEM, this
value drops to less than 20%. It takes up to 3s to deliver the same share
of messages. Notice also that the impact of “NeEM w/ flood” in congested
networks is catastrophic, resulting in huge queuing delays. Even when there

are plenty of resources, the reduction of average latency is less that with
LoLa.

3.3 Detailed Analysis

We now provide a detailed analysis of the LoLa behavior in the most favorable
of the considered scenarios, the heterogeneous network in which 30% of the
nodes have enough resources. With this exercise we intend to provide the
reader with a deeper insight of how the LoLa mechanisms contribute to the
observed latency gains.

We start by showing, in Figure 5(a), the number of hops required to
deliver the messages with LoLa and NeEM. It confirms that, with LoLa,
messages require less hops to reach the destinations, namely, almost all mes-
sages have been delivered after 4 hops, down from 6 hops with the original
protocol. This is due to high capacity nodes using their available bandwidth
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to increase the fanout, as shown by the large increments in number of deliv-
eries in the third hop. In addition, Figure 5(b) confirms that hops are also
shorter, by selecting nodes that are closer and less congested or by originating
from nodes with larger bandwidth and thus less queuing delays.

More interesting is the analysis of which type of links are used in each
round of the gossip procedure. This is computed by recording all routes that
lead to deliveries and then counting in each round the number of hops to
each kind of node. This distribution is depicted in Figure 6 for the first six
rounds (the results for later rounds is of no statistic relevance due to the small
number of messages exchanged). The percentage of messages exchanged via
high speed links is depicted in black, the messages exchanged via ADSL links
in gray, and the messages exchanged via the modem connections in light
gray. As it can be seen, with LoLa, high bandwidth links are mostly used
in the first round, contributing to fast dissemination of the message. Notice
that the bias for fast nodes in early hops still exists in the NeEM protocol,
although it is much lower magnitude. This happens despite this protocol
choosing destinations uniformly and is explained as follows: Messages that
are relayed by faster nodes are more likely to hit nodes that have not been
infected previously while messages that are relayed by slow nodes are still in
transit. This means that in the end, as we consider only routes that lead to
deliveries, such fast nodes are more likely to show up.

Finally, to highlight the importance of the adaptive mechanisms embod-
ied in LoLa we compare the performance of the following three protocols:
the NeEM protocol configured with an adequate fanout, the NeEM protocol
configured with a fixed high fanout, and the LoLa protocol (with its adaptive
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Heavy Light Heavy Light
97.17 9825 98.38 99.45
94.39 9734 97.66 98.82

’ NeEM LoLa

Before failures
After failures

Table 1: Impact on atomicity.

fanout). We analyze three relevant performance parameters: effective incom-
ing and outgoing network bandwidth usage and measured message loss. Note
that messages are discarded only within the buffering layer and not in the
network.

The results are depicted in Figure 7. As expected, with the standard
gossiping protocol in NeEM, the incoming and outgoing used bandwidth is
approximately equal for all nodes, despite the large difference in available
resources. Respectively, 2Kbits and 20kbits of payload with light and heavy
loads. This happens because gossiping protocols are strictly symmetric. No-
tice also that considering the overhead of TCP/IP and gossiping headers of
approximately 40%, modem uplinks with a raw 33kbits are saturated with
the heavy load. In contrast, with LoLa up to 30% of nodes exhibit a much
larger bandwidth usage, up to 10kbits with light load and 100kbits with the
heavy load. This happens due to weighted gossip, as other nodes select fast
nodes during the first rounds, and due to adaptive fanout at fast nodes.

If the fanout is statically increased, there is a much higher usage when
available, 7.e. with a light load or in fast nodes even with the heavy load. The
drawback is however a large increase in dropped messages in the buffering
layer, which compromises reliability. The large number of messages being
dropped indicate also full buffers that result in additional queuing delays
and increased latency.

3.4 Atomicity and Reliability

This section illustrates that the bias introduced by the adaptive mechanisms
of LoLa does not decrease the reliability of the epidemic broadcast. Our
quality metric in this respect is atomicity, defined as the average number
of nodes that receive each message (in percentage). When comparing the
atomicity of LoLa against NeEM, we can see that LoLa slightly outperforms
the NeEM behavior. This is mainly due to the fact that, on average, LolLa
uses a higher fanout than NeEM. The results are depicted in Table 1 using



q=0 g=1 ¢g=2 q=3 gq=4 q=5
p=0| 408 374 316 315 303 293
p=11 301 317 294 286 283 287
p=2| 287 284 288 288 290 284
p=3| 314 288 285 280 290 286
p=4| 290 338 293 363 352 293
p=>5| 368 374 370 363 359 359

(a) Heavy load

gq=0 gq=1 gq=2 ¢gq=3 gq=4 q=5
p=0| 383 319 322 293 291 286
p=11| 346 308 287 296 279 281
p=21| 354 316 292 285 217 274
p=31| 306 288 285 277 278 280
p=4| 301 296 280 291 281 279
p=>5| 288 288 287 290 276 284

(b) Light load

Figure 8: Latency with varying p and ¢ (ms).

the quasi-homogeneous model.

We have also measured the comparative behavior of both protocols in face
of node crashes. Specifically, 2 out of the 5 fast nodes and 2 of the regular
nodes are simultaneously crashed in the simulation run. Both protocols use
the status of the underlying TCP connections to monitor the activity of the
peers. If a node crashes, it is excluded from the local view and replaced by
other (correct) node as a result of the membership management embodied
in the normal gossip procedure. Therefore, both protocols preserve the well
known resilience of epidemic broadcast [1], as can be seen by the results
depicted in Table 1.

3.5 Configuration Parameters

Finally, we discuss the rationale for setting the values of the most important
LoLa configuration parameters. As it will be seen, an interesting feature of
LoLa is that it is possible to select a set of values that provides good results
for a wide range of operational conditions.

We start by discussing the importance of the bias parameters p and ¢
in the computation of the preference weight. We recall that smaller values
will result in less bias. In fact, setting both p and ¢ to zero disables biasing
altogether. It is therefore interesting to consider the minimum values that
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Figure 9: Configuration of parameter k.

result in good performance. Notice however that even without biasing, the
adaptive fanout alone is still useful. The average latency using the NeEM
protocol in the same network configuration is 1358ms and 697ms with heavy
and light loads, respectively.

It can be observed that with a heavy load, the configuration with p = 3
and ¢ = 3 results in good performance. It is also noteworthy that both
criteria are useful. The same configuration is also adequate with a light load,
although good results can be obtained with each criterion alone.

It is also interesting to consider the optimum value for parameter k, the
number of biased hops, which determines also the number of hops with adap-
tive fanout. Figure 9 presents atomicity and latency results with heteroge-
neous (H/*) and quasi-homogeneous (Q/*) models, with both heavy (*/H)
and light (*/L) loads. When using a light load, an arbitrarily large value for
k is acceptable, although k& = 3 is enough for low latency. With heavy loads,
a value of k > 3 severely impacts atomicity as the fanout is reduced due to
congestion and thus biasing makes it likely that slower nodes do not receive
all messages. Note that the reduction of average latency observed with £ > 3
with a heavy load in the quasi-homogeneous model (Q/H) is obtained at the
cost of missing deliveries to slow nodes.

Finally, we have also experimented with different values for parameter
|peers|min in the various network and load scenarios. Figure 10 presents
atomicity and latency results. As expected, when there is a number of fast
nodes such that there is a high probability of each local membership contain-
ing at least one of them, the value of |peers|,,;, is irrelevant. This is the case
of the heterogeneous scenario (H/*). In fact, a large value of the parameter
has a slight impact in atomicity with a heavy load. When there is a very small
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number of fast nodes, as happens in the quasi-homogeneous scenario, and es-
pecially when there is a heavy load on the network, the |peers|,;, parameter
becomes relevant and a value of 5 is enough to ensure good performance.

4 Related Work

There have been several different proposals to take advantage to network
topology to improve the performance of gossip based protocols. HiScamp [4]
is a decentralized and scalable membership management protocol which pro-
vides hierarchical gossiping. This approach has however a severe impact in
protocol latency in order to reduce the bandwidth used in backbone links. In
addition, although several possible criteria are proposed for structuring the
group, the evaluation is done with a static configuration.

The Directional Gossip [12] is also targeted at minimizing the network
traffic in network links. It depends however on explicitly discovering network
topology and is not targeted at improving latency.

In[6], a set of solutions to avoid the lack of adaptivity and the high
network overhead of gossip are discussed. These solutions are based on a hi-
erarchy defined on the process group called Leaf Box Hierarchy. Another hi-
erarchical approach is described in [8], where nodes are grouped into clusters
according to geographical or network proximity. [13] presents an algorithm
to refine the overlay network to reflect geographic locality. These protocols
imposes lower network overhead than flat gossiping but suffer from a small
decrease in reliability and also small increase in latency.

The same direction has been taken in order to improve certain valuable



services by using gossip. The goal of [16] is to develop a failure detector
based on gossiping in order to improve scalability. The protocol also shows
how members can avoid the amount of redundant information in routers
and bridges by automatically detecting the bounds of Internet domains and
subnets and reducing gossips that cross these bounds. The protocol also
allows for accelerated detection times within subnets and is more resilient
against network partitions. On the down side, it has a negative impact in
the total latency of the entire system.

5 Conclusions

The LoLa protocol can be seen as an adaptive self-organizing hierarchical
epidemic broadcast protocol, in which high capacity nodes are the backbone
of the network. When a message is first sent, the protocol tries to route
it first to faster nodes, which will then use all their available bandwidth to
quickly and reliably disseminate the message to the remaining nodes. With
LoLa’s adaptive mechanisms, a structure emerges probabilistically from an
unstructured network. The usage of TCP/IP to indirectly assess network
conditions and the resulting feedback mechanisms ensure that, in the worst
case scenario, the protocol defaults to a conventional flat epidemic protocol,
thus preserving reliability. We have evaluated our protocol under several
network conditions. Experimental results have shown that our approach
effectively reduces the latency of the gossip protocol, not only in heteroge-
neous environments, but also when the system is subject to a high load.
This is achieved without negatively affecting the gossiping performance in
the scenarios where the adaptive mechanisms are not required (namely, in
homogeneous and lightly loaded networks). As future work we plan to devise
strategies to automate the adjustment of the configuration parameters used
by LoLa.
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