
Technical Report RT/28/2010

Thicket: A Protocol for Building and
Maintaining Multiple Trees in a P2P Overlay

Mário Ferreira
INESC-ID/IST

mvvf@gsd.inesc-id.pt

João Leitão
INESC-ID/IST

jleitao@gsd.inesc-id.pt

Lu´is Rodrigues
INESC-ID/IST
ler@ist.utl.pt

May 2010

Abstract

One way to efficiently disseminate information in a P2P overlay is to rely on a spanning tree. However, in
a tree, interior nodes support a much higher load than leaf nodes. Also, the failure of a single node can
break the tree, impairing the reliability of the dissemination protocol. These problems can be addressed by
using multiple trees, such that each node is interior in just a few trees and a leaf node in the remaining; the
multiple trees allow to achieve load distribution and also to send redundant information for fault-tolerance.
This paper proposes Thicket, a decentralized algorithm to efficiently build and maintain such multiple trees
over a single unstructured overlay network. The algorithm has been implemented and is extensively evaluated
using simulation in a P2P overlay with 10.000 nodes.

.

Thicket: A Protocol for Building and Maintaining Multiple Trees in a
P2P Overlay

Mário Ferreira
INESC-ID/IST

mvvf@gsd.inesc-id.pt

João Leitão
INESC-ID/IST

jleitao@gsd.inesc-id.pt

Lúıs Rodrigues
INESC-ID/IST
ler@ist.utl.pt

Abstract

One way to efficiently disseminate information in a P2P overlay is to rely on a spanning tree. However,
in a tree, interior nodes support a much higher load than leaf nodes. Also, the failure of a single node can
break the tree, impairing the reliability of the dissemination protocol. These problems can be addressed by
using multiple trees, such that each node is interior in just a few trees and a leaf node in the remaining;
the multiple trees allow to achieve load distribution and also to send redundant information for fault-
tolerance. This paper proposes Thicket, a decentralized algorithm to efficiently build and maintain such
multiple trees over a single unstructured overlay network. The algorithm has been implemented and is
extensively evaluated using simulation in a P2P overlay with 10.000 nodes.

1 Introduction

Mechanisms to support the dissemination of information in a reliable and efficient manner, to a very
large number of participants, are extremely relevant for a wide range of applications, ranging from
large scale monitoring and control infrastructures [15] to live video streaming and IP Television (IPTV)
services [9].

This paper addresses the described problem by proposing a peer-to-peer dissemination mechanism that
relies on the cooperation among all participants (as opposed to solutions that assume the availability
of an underlying IP-multicast service). The peer-to-peer approach has already proved successfully in
circumventing the difficulties faced when attempting to deploy global IP-multicast support [5, 6].

More precisely, we aim at mechanisms that allow to build multiple trees on top of an unstructured
overlay, connecting a data source and a large number of recipients. Tree-based solutions are appealing
because they promote an efficient usage of available resources, namely by avoiding the redundancy of
approaches such as flooding or gossip. However, in a tree, interior nodes support a much higher load
than leaf nodes. Also, the failure of a single interior node is able to break the tree compromising the
reliability of the dissemination protocol. These problems can be addressed by using multiple trees, such
that each node is interior in just one, or few, trees and a leaf node in the remaining; multiple trees allow
to achieve load distribution and also to send (controlled amounts of redundant) information on different
trees for fault-tolerance.

This paper motivates, describes, and evaluates Thicket, a novel decentralized algorithm to efficiently
build and maintain such multiple trees over a single overlay network. As it will become clearer in
the following section, Thicket addresses a relatively unexplored region of the design space, by building

1

multiple trees in a decentralized manner, on top of an unstructured overlay. Unstructured peer-to-peer
overlays are more robust to system dynamics than structured solutions, such as Distributed Hash Tables
(DHTs), as they pose much less constraints of the overlay topology. Thicket has been implemented and
has been extensively evaluated using simulation in a P2P overlay with 10.000 nodes.

The remaining of this paper is organized as follows. Section 2 motivates our work by making a survey
on competing approaches and by discussing their advantages and limitations. Then, to illustrate the
challenges in our design, in Section 3, we demonstrate the limitations of some naive “nuts and bolt’s”
approaches to the problem. Thicket is presented and described in detail in Section 4, while Section 5
provides experimental results. Finally, Section 6 concludes the paper.

2 Related Work

There are mainly three basic approaches for achieving large-scale information dissemination in peer-
to-peer systems: the gossip approach, the tree approach, and the embedded tree approach:

- The gossip approach consists in letting the source select f peers at random from the system (this
is a configuration parameter called fanout) and sending the message to them. Upon the reception of
a message for the first time, each node simply repeats this procedure. This approach (illustrated by
protocols such as [2, 7]) is simple, highly scalable, and robust. Unfortunately, gossip protocols are not
resource efficient, as their robustness derives from a significant amount of redundancy.

- The tree approach consists in having participants to coordinate in order to build an overlay with
the topology of a fault-tolerant tree. An example of this approach is [8]. The main advantage of a
tree is resource efficiency, as the topology avoids unnecessary redundancy in the dissemination process.
Unfortunately, a tree is hard to maintain in face of high dynamics, therefore this solution is not efficient
for very large systems subject to churn.

- The embedded tree approach consists of using efficient mechanisms to build an embedded tree over
an existing overlay [13, 18]. The overlay maintenance is delegated to some existing protocol.

In this paper we are interested in the embedded tree approach, as these solutions typically are able to
combine the best features from the pure gossip and the pure tree approaches (as detailed in [13]).

Note that the embedded tree approach can be applied both to structured and unstructured overlays.
An example of the former is Scribe [18], that builds trees on top of the Pastry DHT [17]; examples of the
later are [13, 1]. Solutions based on unstructured overlays are more appealing as they have the potential
to be more robust in face of system dynamics: since unstructured overlays pose less constraints on the
topology, they can be repaired faster than structured overlays.

Tree based solutions can be classified in single-tree or multiple-tree solutions. Single tree solutions
are naturally simpler but have two main problems: they promote an unbalanced resource usage among
peers (nodes that are interior to the tree consume resources to forward data while leaf nodes only receive
data); they also suffer from temporary disruptions when one interior node fails and the tree needs to
be repaired. Multiple-tree solutions, as the name implies, build several trees connecting the same set
of participants. Trees are built in such a way that a node is only interior in one or a few trees and
a leaf node in all the remaining trees. This approach provides load-balancing, as all nodes contribute
to the data forwarding. Furthermore, by sending redundant information in some tree (for instance by
using network coding techniques[4]), it is possible to achieve higher fault-tolerance: since the failure of a
node only disrupts the tree where it is an interior node, receivers are still able to operate using the data
received from the remaining trees.

Therefore, in this paper we are interested in approaches that build multiple-trees. These approaches can
be further classified according to the type of algorithm that is used to build the set of trees. Centralized
algorithms rely on some specialized nodes, that have a global knowledge of the topology, to build the

2

Centralized Decentralized
structured overlay unstructured overlay

Single tree Bayeux [20] Scribe [18] Mon [15], Plumtree [13]
Multiple tree CoopNet [16] Splitstream [3] Chunkyspread [19], THICKET

Table 1. Thicket in the design space

trees. Note that, even a centralized solution is not trivial, as the problem of optimal tree construction is
NP-hard [11]. Centralized approaches have little practical interest for very-large scale systems, as they
are not scalable and it is hard to make them fault-tolerant.

Therefore, we are interested in decentralized approaches. The most relevant examples of the decentral-
ized approach are SplitStream [3] and Chunkyspread [19].

SlipStream leverages on a variant of Scribe to build multiple disjoint spanning trees over the Pastry [17]
DHT. Similar to our work, the authors strive to build trees in which a node is interior in a single tree.
Additionally the authors propose a scheme that allow nodes to control their degree in the tree where
they are interior (i.e., controlling the forwarding load of each node) according to their capacities. Unlike
our work, the authors rely on a DHT; nodes are interior in a single tree by design, as each tree is rooted
in nodes with identifiers having distinct prefixes. Notice that the overhead of maintaining a DHT are
far superior than maintaining an unstructured overlay network. Additionally, the unstructured overlay
can potentially recover from failures faster than Pastry: in Pastry a crashed node cannot be replaced
by any node, only nodes with the “right” identifier (accordingly to the DHT organization logic) can be
employed for this task. Moreover, the scheme employed by the authors to enforce maximum degree on
interior nodes may result in several peers becoming disconnected from the tree with a negative impact
on the reliability of the data dissemination protocol. SplitStream also requires additional links between
peers in addition to the ones provided by Pastry, which results in additional overhead.

Chunkyspread [19] is a protocol that builds and maintains several spanning trees on top of an unstruc-
tured overlay network, while trying to limit the load and degree of nodes accordingly to their capacities.
However, Chunkyspread mechanism does not attempt to control the number of trees where a node is
interior. This results in trees that are not independent among themselves i.e., where nodes can act as an
interior node in several trees. This is clearly an undesirable property from the reliability point of view. In
fact, we demonstrate in Section 5 that independent trees is extremely relevant in scenarios where nodes
can fail.

In summary, we aim at designing a solution that combines the following features: i) It embeds trees
in a peer-to-peer overlay, as this offers a good trade-off between efficiency and robustness; ii) is fully
decentralized; iii) is able to build multiple-tree that have few interior nodes in common; and iv) can
operate on top of unstructured overlays.

Table 1 illustrates several relevant combinations in the design space for the problem we are addressing,
providing some notable examples of solutions for each region. Thicket is the first protocol that not only
exploits a relatively unexplored fraction of the design space, that owns several advantages as described
above, but also does so while promoting the construction of spanning trees where nodes act as interior
mostly in a single tree, contributing to improve the reliability of broadcast schemes.

3 Some Naive Approaches

As noted in the previous section, our goal is to design a decentralized algorithm for building t trees
on top of an unstructured overlay. At first sight this goal may seem easy to achieve. In particular, it is

3

tempting to consider an algorithm that is a trivial extension to previous work, namely, the following two
alternative solutions appear as natural candidates:

- Since previous work has shown how to build multiple trees on top of a structured overlay, one may
consider to use a similar approach on the unstructured overlay. In particular, one could select t proxies
of the root at random (for instance, by doing a random walk from the source node), and then build a
different tree rooted at each of these proxies. This approach can also be seen as a simplified version of the
Chunkyspread protocol. We have named this approach the Naive Unstructured spliTStream, or simply,
NUTS.

- Since previous work has shown how to build a single tree, in a decentralized manner, on top of an
unstructured network, one may also consider the simple solution that consists in running such algorithm t
times, i.e., embedding t different unstructured overlays and creating a different tree in each of the overlays.
The intuition is that the inherent randomization in the construction of the unstructured overlays (and
of the embedded trees) would be enough to create trees with enough diversity. We have named this
approach Basic multiple OverLay-TreeS, or simply, BOLTS.

We have implemented these two basic “nuts and bolts” strategies to assess how good they perform in
practice. We analyze their resulting performance to extract some guidelines for the design of Thicket.

For these experiments we have used HyParView [14] to build the overlay network. HyParView is a
protocol for building unstructured overlays that has the feature of balancing both the in- and out-degrees
of nodes in the overlay. Therefore, the topology created by HyParView approximates a random regular
graph. This is beneficial to our goals, because it makes load balancing easier. For building the trees we
have used the Plumtree protocol [13] . Plumtree embeds a tree in topologies such as the ones created by
HyParView.

In order to experiment the NUTS approach, we have constructed a single HyParView overlay and used
Plumtree to created t trees rooted at random nodes in the overlay. To experiment the BOLTS strategy
we have created t independent instances of the HyParView overlay (by letting nodes join each instance
by different random orders) and then created a single tree in each of these instances.

We evaluated both strategies by simulating a system composed of 10.000 nodes, and the target of
building 5 independent spanning trees (we will describe the experimental setup employed in detail in
Section 5). For NUTS we employed a single HyParView instance with a node degree of 25. For BOLTS
we configured each of the HyParView instances to have a node degree of 5. These configurations ensure
that we have an identical number of links in the overlay for both approaches. Figure 1 plots the percentage
of nodes that are interior in 0, 1, 2, 3, 4, and 5 trees.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

nu
m

be
r o

f i
nt

er
io

r n
od

es
 (%

)

number of trees

NUTS
BOLTS

Figure 1. K-interior node distribution.

4

Algorithm 1: Data Structures & Inititalization
1 data structure Tree
2 field activePeers : Set

3 data structure Load : int[]

4 upon event Init do
5 foreach t ∈ trees do
6 t.activePeers ←− ∅
7 backupPeers ←− getPeers()
8 announcements ←− ∅
9 receivedMsgs ←− ∅
10 loadEstimatep(t) ←− ∅

The figure shows that in both strategies only a small fraction of nodes (between 7% and 17%) are
interior in a single tree. The majority of nodes in the system are interior in either 2, 3, or 4 trees (with a
small fraction being interior in all trees for both strategies). This clearly shows that these strategies create
(even in steady state) suboptimal configurations, where many nodes are required to forward messages
in more than one tree. Additionally, this also indicates that the single failure of a node can disrupt the
operation of a significant number, or even all, spanning trees, which clearly compromises the reliability
of the data dissemination system.

These results can be explained by the random and uncoordinated nature of tree construction, in which
each tree is built in an independent way. In fact, although a large measure of randomness is implicit in
the unstructured overlay networks in the BOLTS solution, and the selection of peers is independent in
NUTS, there is a significative probability that nodes can be selected to be interior in several trees.

4 Thicket

4.1 Architecture

Thicket relies on an unstructured overlay network that implements a reactive peer sampling service and
exports a symmetric partial view of the system1. The peer sampling service is responsible for notifying
the Thicket layer whenever there is a change on the partial view of the node using the NeighborUp(p)
and NeighborDown(p) calls.

Thicket operates by employing a gossip-based technique to build T divergent spanning trees (T is a
protocol parameter, we discuss the selection of values for T later in the section), where most nodes are
interior in a single tree and leaf in all other trees. Furthermore, Thicket uses the remaining overlay links
for the following purposes: i) ensure complete coverage of all existing trees i.e., that all nodes in the
system are connected to all trees, notice that to ensure this, some nodes may be required to be interior in
more than a single tree; ii) detect and recover from tree partitions when nodes fail; iii) ensure that tree
heights are kept small, despite the existing dynamics of the system; and finally, iv) that the forwarding
load of each participant (for all trees where it operates as an interior node) is limited by a protocol
parameter named maxLoad.

Algorithm 1 depicts the data structures maintained by Thicket, as well as its initialization procedure.
Each node n in Thicket keeps a set of backupPeersn; with the identifiers of the neighbors that are not
being used to receive (or forward) messages in any of the T trees. Initially, all neighbors of n are in this

1By reactive, we mean that the contents of partial views maintained by nodes are only updated in reaction to external
events such as a peer joining or leaving the system.

5

Algorithm 2: Tree Construction
1 upon event Broadcast(m) do
2 tree ←− nextTree()
3 muid ←− (nextSqnb(), tree)
4 if tree.activePeers = ∅ then
5 call SourceTreeBranching(tree)
6 call Forward (m, muid, tree, myself)
7 trigger Deliver(m)
8 receivedMsgs ←− receivedMsgs ∪ {muid}

9 upon event Receive (DATA, m, muid, load, tree, sender) do
10 if muid /∈ receivedMsgs then
11 trigger Deliver(m)
12 receivedMsgs ←− receivedMsgs ∪ {muid}
13 if ∀ (id) ∈ missingFromTree(announcements, tree) : id = muid then
14 cancel Timer(mID)
15 announcements ←− removeMuid(muid, announcements)
16 if tree.activePeers = ∅ then
17 if sender ∈ backupPeers then
18 tree.activePeers ←− tree.activePeers ∪ {sender}
19 backupPeers ←− backupPeers \ {sender}
20 call treeBranching(tree)
21 call Forward (m, mID, round+1, tree, myself)
22 call Balance (mID, mask, tree, sender)
23 else
24 tree.activePeers ←− tree.activePeers \ {sender}
25 backupPeers ←− backupPeers ∪ {sender}
26 trigger Send(Prune, sender, tree, myself)

27 procedure SourceTreeBranching (tree) do
28 peers ←− getRandomPeers(backupPeers, f)
29 foreach p ∈ peers do
30 tree.activePeers ←− tree.activePeers ∪ {p}
31 backupPeers ←− backupPeers \ {p}

32 procedure TreeBranching (tree) do
33 if ! t ∈ trees : |t.activePeers| > 1 then
34 peers ←− getRandomPeers(backupPeers, f − 1)
35 foreach p ∈ peers do
36 tree.activePeers ←− tree.activePeers ∪ {p}
37 backupPeers ←− backupPeers \ {p}

38 every T seconds do
39 if

P
t Load < maxLoad then

40 Summary ←− GetNewSummnary (receivedMessages)
41 foreach p ∈ backupPeers do
42 trigger send(Summary, Load)

43 procedure Forward (m, muid, tree, sender) do
44 foreach p ∈ tree.activePeers: p '= sender do
45 trigger Send(DATA, p, m, muid, Load, tree, myself)

46 upon event Receive (Prune, load, tree, sender) do
47 tree.ActivePeers ←− tree.ActivePeers \ {sender}
48 BackupPeers ←− BackupPeers ∪ {sender}

set. Additionally, for each tree t maintained by Thicket, each node n maintains a set t.activePeersn with
the identifiers of the neighbors from which it receives (or forwards to) data messages in t.

Each node n also maintains an announcementsn set, in which it stores control information received
from peers that belong to the backupPeersn set. This information is used to detect and recover from tree
partitions due to node failures or departures. We will later explain in detail how the recovery procedure

6

operates. In order to avoid routing loops, each node also maintains a receivedMsgsn set, with identifiers
of messages previously delivered/forwarded by a node.

Finally, in order to balance the load of the nodes, i.e., to ensure that most nodes are only interior in a
single tree and to limit the message forwarding load imposed to each participant, each node n keeps an
estimate of the forwarding load of its neighbors. For this purpose, every time a node s sends a message to
another node, it includes a list of values denoting the number of nodes to which s has to forward messages
in each tree2. Since this information can be encoded efficiently, it is piggybacked to all data and control
messages exchanged between neighbors. This allows every node to keep fresh information about the load
of its peers without explicitly exchanging messages just for this purpose. Each node n maintains the
most recent information received from its neighbor p for each tree t in the variable loadEstimate(p, t)n.

4.2 Tree Construction

Algorithm 2 depicts a simplified version of the pseudo-code for the tree construction procedure. We
have omitted some obvious aspects from the pseudo-code (for instance the update of the loadEstimate)
to improve its readability.

The creation of each tree t is initiated by the source node. To that end, and for each tree t, the source
node n selects f nodes at random from the backupPeersn set and moves them to t.activePeersn set. After
this, the source initiates the dissemination of data messages in each tree t, by sending messages to the
nodes in t.activePeersn.

All messages are tagged with a unique identifier, muid, composed of the pair (sqnb, t), where sqnb is a
sequence number and t the tree identifier. The muids of previously delivered (and forwarded messages)
are stored in the receivedMsgsn set3. Periodically, each node n sends a Summary of this set to all nodes
in its backupPeersn set.

When a node n receives a data message from s in t, it first checks if the tree as been already created
locally. The first message that is received in a given tree t triggers the local tree branching procedure for
t. The construction step for an interior node is different from the one executed by the source node. First,
n removes s from backupPeersn and adds s to t.activePeersn. Furthermore, if ! ∃t′ : |t′.activePeersn| > 1
(i.e., the node is not interior in some other tree t′), then n moves at most f − 1 peers from backupPeersn

to t.activePeersn. On the other hand, if n is already an interior node in some other tree, it stops the
branching process, becoming a leaf node in t.

Then the data message is processed. If the message is not found to be a duplicate (by inspecting
the receivedMsgsn set), it is forwarded to the nodes in t.activePeersn\{s}. On the other hand, if the
received message is a duplicate, the node moves s from t.activePeersn to backupPeersn and sends a
Prune message back to s. Upon receiving the Prune message, s will move n from t.activePeerss to
backupPeerss. This procedure results in the elimination of a redundant link from t.

By executing this algorithm, nodes become interior in at most one spanning tree. The algorithm also
promotes load balance (as long as the number of data messages sent through each tree is similar). On the
other hand, since our mechanism selects random peers for establishing each tree, there is a non negligible
probability that some nodes do not become connected to every tree. Such occurrences are addressed by
the a tree repair mechanism described in the following section.

7

Algorithm 3: Tree Repair
1 upon event Receive (Summary, load, sender) do
2 foreach (muid, p) ∈ Summary do
3 if ! Timer(t) : t = muid.t then
4 setup Timer(muid.t, timeout)
5 announcements ←− announcements ∪ {(muid, sender)}

6 upon event Timer(tree) do
7 (muid, p) ←− removeBest(announcements, tree)
8 tree.activePeers ←− tree.activePeers ∪ {p}
9 backupPeers ←− backupPeers \ {p}
10 trigger Send(Graft, p, null, loadEstimatep, tree, myself)

11 upon event Receive (Graft, muid, load, tree, sender) do
12 if

P
t Load < maxLoad ∧ sender ∈ tree.backupPeers ∧

13 (|tree.activePeers| > 1 ∨ load = Load) then
14 tree.activePeers ←− tree.activePeers ∪ {sender}
15 backupPeers ←− backupPeers \ {sender}
16 else
17 trigger Send(Prune, sender, Load, tree, myself)

18 procedure Balance (muid, load, tree, sender) do
19 if ∃ (id, p) ∈ announcements : id.t = tree then
20 newLoad ←− IncTreeLoad(loadEstimatep, tree)
21 if nInterior(newLoad) < nInterior(load) then
22 trigger Send(Graft, n, null, loadEstimatep, t, myself)
23 trigger Send(Prune, sender, Load, tree, myself)

4.3 Tree Repair

The goals of the tree repair mechanism are twofold: i) it is responsible for ensuring that all nodes
eventually become connected to all existing spanning trees and, ii) it detects and recovers from tree
partitions that might happen due to failure of nodes. This component relies on the Summary messages
disseminated periodically by each node. We recall that Summary messages contain the identifiers of
data messages recently added to the receivedMsgs set.

When a node n receives a Summary message from another node s, it verifies if all message identifiers
are recorded in its receivedMsgsn set. If no messages have been missed, the Summary is simply discarded.
Otherwise, a tuple (muid, p) is stored in the announcementsn set for each data message that has not
been received yet. Furthermore, for each tree t where a message has been detected to be missing, a repair
timer is triggered: if the missing messages have not been received by the time this timer expires, the
node assumes that t has become disconnected and takes measures to repair it, as follows.

Consider that node n has received from a set of nodes S a Summary message with the muid of a data
message detected to be lost in tree t. Node n is going to select a single target node st ∈ S to repair the
tree t. The selection procedure uses the information that nodes keep about the load of their peers (see
variable loadEstimate(p, t)n in Section 4.1). Namely, st is selected at random among all peers in S for
which the forwarding load is below a threshold (maxLoad) and that are estimated to be interior nodes
in a smaller number of trees, or is already interior in t and has not reached a load of maxLoad.

After selecting st, node n performs the following two steps: st is removed from backupPeersn and added
to t.activePeersn and a Graft message is sent to st. The Graft message includes the current view of

2We assume that tree identifiers are sequential numbers starting at zero. This list has a size of T . The number in position
t represents the forwarding load of that node in tree t (which is the size of t.activePeersn minus 1).

3For techniques on how to garbage collect obsolete information from this set see for instance [12].

8

Algorithm 4: Overlay Network Dynamics
1 upon event NeighborDown(node) do
2 foreach tree ∈ trees do
3 tree.ActivePeers ←− tree.ActivePeers \ {node}
4 BackupPeers ←− BackupPeers \ {node}
5 foreach (muid,s) ∈ announcements : s = node do
6 announcements ←− announcements \ {(muid,s)}

7 upon event NeighborUp(node) do
8 BackupPeers ←− BackupPeers ∪ {node}

n concerning the load of st (note that n’s information about st may be outdated, as this information is
only propagated when it can be piggybacked to data or control messages).

When st receives a Graft message from n for tree t, it first checks if n based its decision on up-to-date
values for the load of st (i.e., if the current forwarding load of st matches the information owned by n)
or if, despite eventual inaccuracies in the estimate, st can nevertheless satisfy the request of n without
increasing the number of trees where it is interior nor increasing its current forwarding load to values
above maxLoad. If this is the case, st adds n to t.activePeersst. Otherwise, st rejects the Graft message
by sending back a Prune message to n (since load information is piggybacked to all messages, this will
also update n’ s information on st’ s load).

Finally, if n receives a Prune message back from st, n will move back st from t.activePeersn to the
backupPeersn and attempt to repair t by picking new targets from the announcementsn set.

Algorithm 3 depicts a simplified version of this procedure in pseudo-code.

4.4 Tree Reconfiguration

The tree construction and repair mechanisms described above are able to create spanning trees with
complete coverage, where a large portion of nodes is interior in a single spanning tree (this happens due
to the repair mechanism, as confirmed by experimental results presented in Section 5). This is true in a
stable environment (i.e., when there are no joins or leaves in the system). However, multiple executions
of the repair mechanism above may lead to configurations where several nodes are interior in more than
one tree, which is clearly undesirable.

To circumvent this problem, we developed a reconfiguration procedure that operates as follows: When
node n receives a non-redundant data message m from a node s in a tree t for which it had previously
received an announcement from a peer a, it compares the estimated load of s and a.

If
∑

tloadEstimate(s, t)n >
∑

tloadEstimate(a, t)n and n can replace the position of s in tree t without
becoming interior in more trees, node n attempts to replace the link between s and n by a link between
a and n. For this purpose, n sends a Prune message to s and a Graft message to a.

Note that the reconfiguration is only performed if the announcement from a is received before the
data message itself from s. This ensures that a reconfiguration contributes to reducing the latency in the
tree while avoiding the construction of cycles. Note that, because nodes which forwarding load reaches
the maxLoad threshold are unable to help their peers repairing spanning trees, they cancel the periodic
transmission of Summary messages in this scenario.

4.5 Network Dynamics

As stated previously, the peer sampling service is responsible for detecting changes in the partial view
maintained locally and for notifying Thicket when these changes occur, using the NeighborDown(p) and

9

NeighborUp(p) notifications (see Algorithm 4).
When a node n receives a NeighborDown(p) notification it removes p from all t.activePeersn sets and

also from the backupPeersn set. Additionally, all records of announcements sent by p are also deleted
from the announcementsn set. This might result in the node becoming disconnected from some trees
(most of the times from a single tree). The tree repair mechanism however is able to detect and recover
from this scenario.

On the other hand, when a node n receives a NeighborUp(p) notification, it simply adds p to the
backupPeersn set. As a result, p will start exchanging Summary messages with n. As explained above,
these messages will allow not only joining nodes to become connected to all spanning trees, but also
to leverage on new overlay neighbors to balance the load imposed over participants (using the tree
reconfiguration mechanism).

4.6 On the Selection of Parameter T

The maximum value for parameter T is intimately related with the parameter f . In fact, take the
case where f is equal to 2. In this scenario each of our trees is a binary tree where half the nodes are
interior. Therefore, in such a scenario only 2 trees can be built using the same overlay without having
a node acting as interior in more than a single tree. Therefore, the maximum number of trees (T) is
limited by the fanout (f) used in branching the trees4.

The degree of the unstructured overlay network should at least be equal to f (for the tree where
each node acts as interior) plus a link for each additional tree (T − 1, these links are used to receive the
messages disseminated through the remaining tree) however this would render a decentralized mechanism
to build such trees infeasible. Therefore, we rely on overlay degrees in the order of f ∗ T , which provides
each node with access to enough links to find suitable configurations for its role in all trees.

5 Evaluation

In this Section we report experimental results obtained using the PeerSim simulator [10]. To this end
we have implemented Thicket for this simulator. In order to extract comparative figures we also tested
the performance of the single-tree Plumtree protocol [13] (that serves as baseline to our solution) as well
as the “NUTS and BOLTS” alternatives discussed in Section 3. For fairness, all protocols were executed
on top of the same unstructured overlay, maintained by the HyParView protocol [14]. HyParView is
able to recover from failures as large as 80% of concurrent node failures. Since HyParView uses TCP to
maintain connections between overlay neighbors, we do not model message losses in our system (TCP is
also used to detect failures).

We have tested all protocols firstly in a stable scenario, where no node failures were induced, and
later in faulty scenarios. For faulty scenarios, we have evaluated the reliability of the broadcast process
under sequential failures of nodes and the reconfiguration capacity of Thicket in a catastrophic scenario,
where 40% fail simultaneously. In the following we describe in more detail the experimental setup and
the relevant parameters employed in our experiments.

5.1 Experimental Setup and Configuration

Our simulations progress in cycles (using the cycle-based engine of the simulator). Each simulation
cycle corresponds to 20s. In each cycle the source broadcasts T messages simultaneously, one message
using each of the existing trees (in the case of Plumtree, which only builds one shared tree, all T messages

4We have determined the value of f used in our evaluation experimentally.

10

are routed through the existing tree). As stated before we assume perfect links, however messages are
not delivered to nodes instantly, instead we consider the following delays when routing messages between
nodes (these delays are implemented by using the event based engine of the simulator5):

Sender delay. We assume that each node has a bounded uplink bandwidth. This allows to simulate
uplink congestion when nodes are required to send several messages consecutively. In particular we
assume that each node can transmit 200K bytes/s. Furthermore we assume that the payload of data
messages had 1250 bytes, while Summary messages have 100 bytes.

Network delay. We assume that the core of the network introduces additional delays. In detail, in the
simulations a message that is transmitted suffers an additional random delay selected uniformly between
100 and 300 ms. These values were selected by taking into consideration round trip time measurements
that were performed using the PlanetLab infrastructure6.

We have conducted all the experiments using a network of 10.000 nodes and all presented results are
an average of 10 independent executions of each experiment. All tested protocols, with the exception of
Plumtree, were configured to generate T = 5 trees. Additionally, Thicket establishes trees using a gossip
fanout of f = 5 and NUTS initiates the eager push set of each spanning tree with 5 random selected
overlay neighbors. Thicket, Plumtree, and NUTS operate on top of an unstructured overlay network
with a degree of 25, while each of the 5 overlays used by BOLTS has a degree of 5. Furthermore, we
have configured Thicket to have a maximum forwarding load per node (parameter maxLoad) of 7. The
timeout employed by protocols when receiving an announcement was set to 2s.

All experiments start with a stabilization period of 10 simulation cycles, which are not taken into
account when extracting results. During these cycles, all nodes join the overlay network and the overlay
topology stabilizes. After this stabilization period, we start the broadcasting process; this triggers the
construction of trees.

5.2 Stable Environment

First, we analyze the relevant performance metrics for Thicket in a stable environment where no node
failures are induced. We start by evaluating the distribution of nodes accordingly to the number of
spanning trees in which they are interior. The results are depicted in Figure 2(a). Plumtree is plotted
in the figure to serve as a baseline for a scenario with a single tree. Note that, with a single tree, only
21% of the nodes are interior nodes, and 79% are leaf nodes.

When using both the NUTS and BOLTS strategies, only a small fraction (below 20%) of nodes are
interior in a single tree (we repeat here the plot from Section 3 for the convenience of the reader). Also,
for both approaches, there is a small number of nodes that are interior in all 5 trees. As noted before,
this motivates the need for some sort of coordination during the tree construction.

In sharp contrast, Thicket has almost all nodes in the system acting as interior nodes in a single tree.
A very small fraction (around 1%) serve as interior in 2 trees. This is a side effect of our localized tree
repair mechanism, that ensures full coverage of all spanning trees. Still, no node (with the exception of
the source node) acts as interior for more than 2 trees. This validates the design of Thicket. Notice also
that almost no node is a leaf node in all trees; this contributes to the reliability of the broadcast process
(see results below) and ensures a uniform load distribution among participants. Furthermore, it allows
us to use a much larger fraction of the available resources in the system.

Figure 2(b) depicts the distribution of forwarding load in our system i.e., the distribution of nodes
accordingly to the number of messages they must forward across all trees. Because Thicket leverages on

5The minimum time unit in our system is 1ms.
6The measurements can be found in http://pdos.csail.mit.edu/~strib/pl_app/

11

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

nu
m

be
r o

f i
nt

er
io

r n
od

es
 (%

)

number of trees

NUTS
BOLTS
Thicket

PlumTree

(a) K-interior node distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

nu
m

be
r o

f n
od

es
 (%

)

forwarding load

NUTS
BOLTS
Thicket

Plumtree

(b) Forwarding load distribution

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200

m
ax

im
um

 n
um

be
r o

f h
op

s

simulation cycle

NUTS
BOLTS
Thicket

PlumTree

(c) Number of maximum hops

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200

la
te

nc
y

(s
)

simulation cycle

NUTS
BOLTS
Thicket

PlumTree

(d) Latency

Figure 2. Experimental results in a stable environment.

its integrated tree construction and maintenance strategy to limit the maximum load imposed to each
node, no participant is required to forward more than 7 messages across all trees where it is interior
(usually 1 as we explained earlier). Additionally, more than 40% of nodes are forwarding the maximum
amount of messages, with more than 55% of nodes forwarding a smaller amount of messages. The other
solutions however have much more variable loads, with several nodes forwarding more than 10 messages
and some with loads above 15 messages. Notice that Thicket is the only protocol where almost no
participant has a forwarding load of 0. This is a clear demonstration of the better resource usage and
load distribution that characterizes Thicket.

We also conducted experiments to evaluate the effect of Thicket in the dissemination of payload
messages. In particular we have evaluated the maximum number of hops required to deliver a message to
all participants, and the maximum latency between the source node and a receiver. Figure 2(c) depicts
the number of messages hops required to deliver a data broadcast message to all participants. Plumtree
exhibits the highest value. This happens because Plumtree has some difficulties in dealing with variable
network latency. This leads to situations where Plumtree triggers message recoveries too early, which
increases the number of hops required to deliver a single message to all participants. Plumtree keeps on
adjusting the topology during the entire simulation, with the effect of slightly reducing the number of
hops, stabilizing at 13 hops.

Thicket presents the best values (11 hops), as the trees created by the protocol are adapted, using the
reconfiguration mechanism, to promote trees with lower height, resulting in lower values of last delivery
hop (notice that these metrics are related to each other). The BOLTS approach presents a similar result.
This happens because the use of several independent overlay networks forces the produced spanning trees

12

(generated with flooding) to use the shortest paths between the source node and all receivers. NUTS has
a higher value due to the use of a gossip-based tree construction scheme, that does not guarantee the
use of all shortest paths.

Figure 2(d) presents the maximum latency for all protocols. These values are consistent with the last
delivery hop values observed. One interesting aspect is that, contrary to all remaining protocols, Thicket
presents higher initial values of latency, but these drop quickly in just 5 simulation cycles. This is due
to the operation of the tree reconfiguration mechanism.

5.3 Fault-Tolerance

In this section we evaluate the performance of thicket in two distinct failure scenarios. In particular
we study the impact of sequential node failures in the broadcast reliability when using Thicket, NUTS,
and BOLTS. Later, we present results that illustrate the recovery and reconfiguration capacity of Thicket
in a catastrophic scenario that is characterized by a large number of simultaneous node failures. In our
experiments the source node and the nodes that serve as root for trees in NUTS never fail.

5.3.1 Sequential Node Failures

We now depict the reliability of the broadcast process in face of sequential node failures. Here we consider
the reliability assuming that the broadcast process leverages in the co-existing spanning trees to introduce
redundancy in the disseminated data (for instance by using network coding techniques). Furthermore
we assume that for each segment of data 5 messages are disseminated, one for each spanning tree, such
that if a node is able to receive at least 4 of these messages it is able to reconstruct the data segment,
otherwise we consider that the mode misses the reception of this segment. We define reliability here as
the percentage of correct nodes that are able to reconstruct disseminated data segments.

After an additional stabilization period (5 cycles) we configure the source node to disseminate a data
segment per cycle. In each cycle we also force a single node to fail. We measure the reliability of the
broadcast process at the end of each simulation cycle. Furthermore, we select the node that fails in each
cycle using two distinct policies: i) we select the node that fails at random; ii) we select the node that
fails at random among the nodes that are interior in more trees. We do not allow nodes to take corrective
measures during the period of these simulations, to better capture the resilience of the generated spanning
trees.

 85

 90

 95

 100

 105

 0 50 100 150 200

re
lia

bi
lit

y
(%

)

simulation cycle

NUTS
BOLTS
Thicket

(a) Random node failures.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 50 100 150 200

re
lia

bi
lit

y
(%

)

simulation cycle

NUTS
BOLTS
Thicket

(b) Targeted node failures.

Figure 3. Experimental results for a catastrophic scenario.

Figure 3 depicts the results for both scenarios. When we select random nodes to fail (Figure 3(a)) the

13

reliability of Thicket drops slowly. This happens because most nodes are interior in a single tree. So each
failure, affects only nodes bellow the failed one in a single tree, because nodes can reconstruct the data
segment even if they miss messages conveyed by one of the trees, most of them are still able to rebuild
data segments as they remain connected to (at least) 4 trees. The reliability drops in a more visible way
for both NUTS and BOLTS. This happens because a large majority of nodes are interior in more than
a single tree, which results in a single node failure affecting the flow of data in more than a tree.

Note that failing nodes at random may not provide the best metric for reliability. For instance, failing
random nodes in a star network only has a noticeable effect in the reliability when the central node fails
(this is a single but also the only point of failure). The second experiment is more interesting, as it
assesses what happens when “key” nodes crash.

Interestingly, Thicket is extremely robust in face of such a targeted adversary (Figure 3(b)), and its
reliability remains constant at 100%. This happens due to the following phenomena: because we limit
the forwarding load imposed to each Thicket node, nodes that act as interior in more than a tree are
responsible for forwarding messages to a smaller amount of nodes for each tree. Therefore, the effective
number of nodes that are affected in each tree is small. Furthermore, because links are never used for
more than a tree, these groups of nodes are disjoint, and therefore can still receive messages sent through
4 trees. On the other hand, NUTS and BOLTS are severely affected by this scenario due to the fact that
some nodes are interior in all trees, which failure disrupts the flow of data in all trees.

5.3.2 Catastrophic Scenario

We now present results in face of a large number of simultaneous node failures (namely 40%). Note
that, with this number of failures, all trees are affected. Therefore, there are no significant advantages
of ensuring that nodes are only interior in a single tree. Thus, we do not expect advantages from a
reliability point of view in this scenario. However, it is worth evaluating if Thicket is able to recover from
this amount of failures and if, after recovery, the trees preserve their original properties, namely in terms
of nodes that are interior in a single tree and in terms of load distribution. Failures are induced after
100 cycles of message dissemination, to ensure that the spanning trees were already stabilized. Figure 4
summarizes our results.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

nu
m

be
r o

f n
od

es
 in

te
rio

r o
n

a
si

ng
le

 tr
ee

 (%
)

simulation cycle

NUTS
BOLTS
Thicket

(a) Percentage of Nodes Interior in a single tree.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

nu
m

be
r o

f n
od

es
 (%

)

forwarding load

NUTS
BOLTS
Thicket

Plumtree

(b) Forwarding load distribution.

Figure 4. Experimental results for a catastrophic scenario.

Figure 4(a) depicts the variation, for each protocol based on multiple trees, of the percentage of nodes
that are interior in a single tree. Before the node failures, all protocols exhibit results consistent with
the ones presented earlier, for a stable scenario. After the induction of failures the percentage of interior

14

nodes in a single tree drops in BOLTS as result of its recovery procedure, that increases the percentage of
nodes acting as interior nodes in multiple trees. NUTS remains unaffected, as the percentage of nodes in
this condition is only 10% in steady state. Thicket drops to values in the order of 40% after the failures.
However the protocol is able to reconfigure itself in only a few simulation cycles.

Figure 4(b) depicts the forwarding load distribution for each protocol. The relevant aspect of this graph
is that Thicket is able to regain a similar configuration to the one exhibited in a stable environment. The
other protocols configuration remains similar, with nodes exhibiting a wide range of forwarding loads.
This is a clear indication that Thicket can regain its properties despite a large number of concurrent
failures.

6 Conclusions

In this paper we have proposed Thicket, the first decentralized algorithm to efficiently build and
maintain multiple and independent spanning trees over a single unstructured overlay network. In Thicket
most of nodes in the system (almost 100%) act as an interior node in a single spanning tree, and no node
is interior in more that 2 trees. This allows us to significantly improve the load balancing of participants
in tree-based multicast systems, as long as each tree is used to transmit a similar amount of data.

Additionally, Thicket employs a tree reconfiguration procedure that allows it to build trees with limited
height. This allows Thicket to present lower, and more stable latency values when compared with other
solutions. Additionally, because Thicket operates on top of an unstructured overlay network that is
extremely resilient to failures, it can tolerate catastrophic failure scenarios where a large fraction of the
nodes in the system fail simultaneously. We do this by exploiting the overlay links that are not used as
tree branches.

Acknowledgment

This work was partially supported by project “Redico” under the FCT grant (PTDC/EIA/71752/2006).

References

[1] M. Allani, J. Leitão, B. Garbinato, and L. Rodrigues. Rasm: A reliable algorithm for scalable multicast. In
Proceedings of Euromicro PDP’2010, 2010.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast. ACM Transactions
on Computer Systems, 17(2), May 1999.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream: high-bandwidth
multicast in cooperative environments. In Proceedings of SOSP’03, pages 298–313, New York, NY, USA, 2003.
ACM.

[4] P. A. Chou and Y. Wu. Network coding for the internet and wireless networks. IEEE Signal Processinsg
Magazine, page 7785, 2007.

[5] S. E. Deering and D. R. Cheriton. Multicast routing in datagram internetworks and extended lans. ACM
Trans. Comput. Syst., 8(2):85–110, 1990.

[6] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues for the IP multicast service
and architecture. IEEE Network, 14(1):78–88, 2000.

[7] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec. Lightweight proba-
bilistic broadcast. ACM Trans. Comput. Syst., 21(4):341–374, 2003.

[8] D. Frey and A. L. Murphy. Failure-tolerant overlay trees for large-scale dynamic networks. In Proceedings of
P2P’08, pages 351–361, Washington, DC, USA, 2008. IEEE Computer Society.

[9] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang. Challenges, design and analysis of a large-scale
p2p-vod system. SIGCOMM Comput. Commun. Rev., 38(4):375–388, 2008.

[10] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris. The Peersim simulator. http://peersim.sf.net.

15

[11] D. Johnson, J. Lenstra, and H. Rinnooy. The complexity of the network design problem. Networks, 8(4):279–
285, 1978.

[12] B. Koldehofe. Buffer management in probabilistic peer-to-peer communication protocols. In Proc. of SRDS’03,
pages 76–87, Florence,Italy, Oct. 2003.

[13] J. Leitão, J. Pereira, and L. Rodrigues. Epidemic broadcast trees. In Proceedings of SRDS’07, pages 301 –
310, Beijing, China, Oct. 2007.

[14] J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: a membership protocol for reliable gossip-based broadcast.
In Proceedings of DSN’07, pages 419–429, Edinburgh, UK, June 2007.

[15] J. Liang, S. Y. Ko, I. Gupta, and K. Nahrstedt. MON: On-demand overlays for distributed system manage-
ment. In Proceedings of WORLDS’05, 2005.

[16] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai. Distributing streaming media content
using cooperative networking. In Proceedings of NOSSDAV ’02, pages 177–186, New York, NY, USA, 2002.
ACM.

[17] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-scale
peer-to-peer systems. In Proceedings of Middleware ’01, pages 329–350, London, UK, 2001. Springer-Verlag.

[18] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The design of a large-scale event
notification infrastructure. In J. Crowcroft and M. Hofmann, editors, Networked Group Communication,
volume 2233 of Lecture Notes in Computer Science, pages 30–43. Springer, 2001.

[19] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous unstructured tree-based peer-
to-peer multicast. In Proceedings of ICNP ’06, pages 2–11, Washington, DC, USA, 2006. IEEE Computer
Society.

[20] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: An architecture for
scalable and fault-tolerant wide-area data dissemination. In Proc. of NOSSDAV’01, June 2001.

16

