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Abstract. The problem of self-optimization and adaptation in the context of customizable sys-
tems is becoming increasingly important with the emergence of complex software systems and
unpredictable execution environments. Here, a general framework for automatically deciding on
when and how to adapt a system whenever it deviates from the desired behavior is presented. In
this framework, the adaptation targets of the system are described in terms of a high-level pol-
icy that establishes goals for a set of performance indicators. The decision process is based on
information provided independently for each service that describes the available adaptations, their
impact on performance indicators, and any limitations or requirements. The technique consists of
both offline and online phases. Offline, rules are generated specifying service adaptations that may
help to achieve the specified goals when a given change in the execution context occurs. Online,
the corresponding rule is evaluated when a change occurs to choose which adaptations to per-
form. Experimental results using a prototype framework in the context of a web-based application
demonstrate the effectiveness of this approach.

1 Introduction

Today’s complex software systems and services (e.g., Apache, Tomcat, MySQL, virtual
machines) offer different facilities for customizing their behavior, including loadable mod-
ules and numerous configuration options. Such facilities can be used to adapt the behavior
of these services even during execution in response to changes in the operational envelope.
These changes might be the result of, for instance, changes in system workload or in the
available resources. While dynamic resource allocation (e.g., [10]) can be used to respond
to such changes, adaptations that affect the service behavior itself can also be a powerful
tool.

This paper addresses the problem of how to select appropriate service adaptations
when the system behavior deviates from that which is considered optimal, for example, to
provide a certain quality of service. This problem is extremely challenging since the best
adaptation may depend not only on the particular configuration of the system—that is,
the set of services and how these services are configured—but also on information that
can be extremely dynamic and unpredictable, such as the pattern of service invocations.
In this paper, we consider software systems built from one or more adaptable services.
We assume that the behavior of such service compositions can be described using a set
of key performance indicators (KPIs) that need to be maintained or optimized, and that
the system behavior can be controlled by applying one or more adaptations.

? Parts of this work were published in the 11th International Symposium on Stabilization, Safety, and Security
of Distributed Systems, 2009
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There are several approaches to deciding on how to adapt a service composition. One
approach is to consider the composition as a black box and use control theory and/or
learning techniques [7,3,18] to derive adaptation policies. Unfortunately, this approach is
expensive and the resulting policy is only valid for the specific configuration and work-
loads used during the learning process. Thus, if the system configuration changes, the
entire process has to be repeated. The same applies for changes in the workload, where a
small change can have a large impact on the set of adaptations that need to be selected.
Another approach relies on the system architect or system administrator specifying a
low-level adaptation policy for the system’s service composition manually based on her
own knowledge on the system operation [4]. Typically, these policies consist of declara-
tive Event-Condition-Action (ECA) rules specifying how the system must adapt in the
presence of specific events and conditions. Unfortunately, as the complexity of the system
composition increases, this task becomes harder and more error-prone. Indeed, it often
becomes impractical or even impossible for the system architect to manage all the possible
interactions and side effects among the adaptations available for all services. The Cholla
system [5] also addresses a similar problem, proposing a solution based on fuzzy control
rules. While rules can often be developed independently, additional coordination rules
specific to the chosen set of rules are often required. Also, this work does not provide an
explicit mapping from KPI-based goals to adaptation rules. Note that our work is orthog-
onal to research on coordinating distributed adaptations [17,6]. In fact, such techniques
could be combined with our approach in case distributed coordination is required.

While a complex system of this type is hard to understand, the developer of each indi-
vidual component or module usually has a clear understanding of the ways the component
can be adapted and the impact of each adaptation on the performance of the component
in isolation. For instance, the designer of a graphical component G may implement two
operational modes: one that produces high quality images and one that produces low
quality images. The designer, knowing the implementation details, is fully aware of the
tradeoffs involved, specifically that the low quality mode produces an image with lower
image resolution, but consumes less memory and less processor time than the high quality
counterpart. The challenge, of course, is to mesh this information with that from other
components to devise the best solution.

The goal of this work, then, is to make services adaptive by leveraging information
from service developers about the characteristics of each individual component considered
independently of where it will be used. To realize this goal, we propose a technique
that uses this information to select the best adaptations for a service when its execution
deviates from the desired behavior. The selection process is driven by a high-level policy
that specifies the desired behavior—and, hence, the goals the adaptations should strive
to achieve—and relies on information provided for each component describing possible
adaptations, their impacts on KPIs, and any limitations or requirements. The proposed
technique consists of both offline and online phases; in the offline phase, a set of service
adaptations that can help achieve the specified goals is created, while in the online phase,
adaptations are selected from this set in response to a change in the execution context
using the current system status and workload as input. For example, in the above example,
if the graphical service G is heavily utilized (high workload), the change from high quality
to low quality mode may yield significant memory, processor, and/or bandwidth savings,
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while if G is in fact lightly utilized, the same adaptations may have negligible impact.
Thus, the adaptations selected by our technique take into account not only the impact
of each adaptation, but also the contribution of each service to the performance of the
entire composition.

The rest of the paper is organized as follows. Section 2 describes the way in which
the impact of possible adaptations on system performance is specified, and also how high
level goals can be captured in a policy. Section 3 then explains how ECA rules are derived
offline from the policy, while Section 4 describes how these rules are evaluated online. The
framework is illustrated and evaluated in Section 5 using a web based application built
from the composition of several services that handle the process of replying to a HTTP
request. Experimental results show that selected adaptations are effective for different
compositions of the same services and different workloads. Section 6 concludes the paper.

2 Adaptable Services and Adaptation Goals

The proposed approach is based on adaptation goals defined in terms of a set of KPIs and
requires information regarding adaptations, their impacts, and constraints for each service
component. As mentioned above, KPIs are metrics that capture system performance, like
CPU or memory use, among others [7].

The two key assumptions behind the approach are: (i) the value of each KPI for a
service composition C is

∑
s∈C s.KPI, where s.KPI is the “contribution” of service s to

that performance indicator, and (ii) it is possible to express the (localized) impact of each
adaptation of a service s in each of these KPIs. For instance, the CPU used by a service
composition is an example of a KPI that can be defined as the sum of the CPU used by
each service in the composition. An adaptation of a service s that, if applied, changes the
CPU used by s would have to give a function that estimates the new value of s.cpu u.

A KPI definition includes a name, the type of the expected value, and the acceptable
error margin in any evaluation of the KPI, as illustrated below.

KPI cpu u : double Error 0 . 1

This means that two values of the KPI within error margin of each other are considered
indistinguishable from the point of view of goal evaluation.

2.1 Specification of Service Adaptations

Our approach relies on local information regarding each adaptation to assess how these
adaptations can be used to change system behavior. These adaptations involve either
changing service parameters or exchanging service implementations. The impacts of each
adaptation on the system behavior is specified against a set of KPIs and a service model.

Service models describe the service components available for use in compositions and,
for each component, the configurable parameters and available implementations. We con-
sider service models as defined in our previous work [13], i.e., defined in terms of a type
hierarchy reflecting the is a relationship, taking into account the functionality provided
by the services. Service types can be concrete, designating a specific service for which
an implementation is available, or abstract, representing simply the characteristics of a
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group of other service types. Below is the model for a concrete service that provides static
webpages with a configurable parameter ImgQlt that controls image quality (resolution):

Service Stat i cContent
Parameters

ImgQlt :{ low , r e gu l a r }

The service model is needed to support the specification of adaptations, which must
include: a) the concerned service or service component, b) the adaptation action(s) to be
performed, c) constraints such as the required service state or other adaptations that have
to be performed simultaneously, and d) the impact of the adaptation on each KPI. If a
KPI is omitted from the impacts, it means that the KPI is not affected. The following
example shows the specification of an adaptation of the StaticContent service:

Adaptation ToLowStatic
Service :
Stat i cContent

Actions :
setParameter ( ImgQlt , low )

Requires :
ImgQlt = = regu l a r

Impacts :
S ta t i cContent . cpu u /= 1 .21 // dec r ea s e s
S t a t i cCon t en t . r e s o l u t i o n = 1 // changes to low

This adaptation changes the image quality from regular to low, with the impact being
to decrease the CPU used by the service and the image resolution. The effect of the
adaptation on the KPIs is described by impact functions under the label Impacts, which
provides an estimate for the new value of s.KPI if the adaptation is performed given its
current value. Impacts can also be expressed in terms of current values of the configurable
parameters, the current version of a service, or the presence or absence of a given service
component. Even when not explicitly stated, any adaptation is only applicable if the
target service or service component is present in the current service composition. We
assume that meta-information about the deployed and executing service compositions, as
well as the value of their parameters, is available at runtime. The problem of deriving
the impact functions for each adaptation is outside the scope of this paper, but existing
approaches can be applied [7].

Additional adaptation constraints can be specified by listing which adaptations of
different services cannot be applied at the same time. By default, adaptations of the same
service that have impact on the same KPI are assumed to conflict, but it is possible to
specify a single adaptation that considers several actions provided the joint impact of
these actions over the KPIs can be defined. These conflicts are simply described as pairs
of adaptations:

Conflict con f l i c t name Adaptations ( se rv iceA.adapt1 , s e rv i c eB .adapt2 )

The complete specification therefore consists of the service model, the adaptations, and
the conflicts.

2.2 Policies

Adaptation goals are specified in terms of a policy that describes the desired values for a
set of KPIs. A policy describes: a) the KPIs that are relevant to the policy, b) the goals
to be met by the system, and c) the values of configuration parameters related to the
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runtime operation of the adaptation engine. Besides identifying the relevant KPIs, the
policy can further use them to specify composite KPIs, denoted by CKPIs. CKPIs are
identified by a ckpi name and their specification consists of a function of several KPIs,
and an error margin:

CKPI ckpi name = f ( kpi1 , kpi2 , . . . ) Error e r ro r marg in

This function also makes it possible to derive the impact of each adaptation in the CKPI
from the impacts of the adaptations in kpi1, kpi2, etc. As an example, the definition of
the CKPI gdev below measures the weighted deviation from target CPU and memory
utilization values:

CKPI gdev = 0 . 5 ∗ | cpu u−0. 6 | + 0 .5 ∗ |mem u−0. 4 | Error 0 . 1

Henceforth, we use KPI to refer to either a basic KPI or a CKPI.
A policy can have one or more goals that are ranked to prioritize goals in situations

where it is not possible to fulfill all goals. The rank is implicit in the order goals are listed
in the policy, where the first goal has the highest rank. Additionally, there are two types
of goals: exact and approximation goals. Exact goals separate the values of a performance
indicator in two disjoint sets: acceptable and not acceptable. We consider the following
types of exact goals:

Goal goal name : kpi name Above threshold down MinimumGain gvalue
Goal goal name : kpi name Below thre sho ld up MinimumGain gvalue
Goal goal name : kpi name Between thr down thr up MinimumGain gvalue

An Above goal states that the value of the KPI should be kept above the stated threshold,
a Below goal that the value should be kept below the threshold, and a Between goal that
the value should be kept within lower and upper thresholds. In all three, the MinimumGain
specifies the minimum change necessary to perform the adaptation; that is, if the estimated
change in the KPI value is below gvalue, the adaptation is not worth performing. The
gvalue should be greater than the error margin specified for the target KPI.

In contrast, instead of simply classifying the values of a KPI as good or bad, approx-
imation goals specify a total order between these values, that is, for any two values, it
specifies which one is better. We consider the following types of approximation goals:

Goal goal name : kpi name Close t a r g e t MinimumGain gvalue Every i n t e r v a l
Goal goal name : Minimize kpi name MinimumGain gvalue Every i n t e r v a l
Goal goal name : Maximize kpi name MinimumGain gvalue Every i n t e r v a l

A Close goal states that the KPI value should be kept as close as possible to the target
value, a Minimize goal states that the KPI value should be as small as possible, and a
Maximize goal states that it should be as large as possible. As with exact goals, it is also
possible to specify the expected minimum gain required in order to perform an adaptation.
Furthermore, associated with each approximation goal, is a time interval that specifies
how often the system should try to find an adaptation aiming for a better value for the
KPI. Note that while adaptation towards an exact goal is only triggered when the current
KPI value is unacceptable, an approximation goal opens the possibility of continuously
attempting to improve the system behavior aiming for a better value.

Finally, a policy may also define the values of configuration parameters that control
the runtime operation. For example, mon interval, which controls how often the KPIs’
current values are read, can be configured.
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3 Rule Generation

Adaptation rules are generated offline from the policy using the specifications of the
available adaptations. Each rule consists of an event and one or more alternative sets of
adaptations Ai that may help achieve the specified goals when a change in the execution
context occurs. These rules are evaluated at runtime to determine which set of adaptations
should be executed given the current system state. The rules have the following format:

When event
Select {A1 , A2 , . . . }

The When clause defines the event that triggers the rule. This may be caused by a change
signaled by a sporadic event—when some KPI exceeds a threshold, for example—or by
the passage of time signaled by a periodic event. The Select clause lists all relevant sets
of adaptations for dealing with that particular event. For instance, if a goal states that
some KPI must be maintained above a given threshold, only those adaptations that affect
this KPI and increase it are relevant. The sets Ai represent the viable combinations of the
relevant adaptations, reflecting the fact that the combination of adaptations is subject to
constraints imposed by conflicts or application conditions. Naturally, given that rules are
generated offline, it is only possible to take into account the aspects that do not require
runtime state information.

Extracting the rule sets offline in this way has two main advantages. First, it often
simplifies the online phase and improves its performance as a result. Second, by capturing
the online behavior in a human-readable form, the system operators can better understand
the behavior of the system. This is especially valuable in cases where the observed behavior
is counter-intuitive to the (expected) impact of the high-level policy.

3.1 Event Extraction

Event extraction is the first task of rule generation. This step relies on the assump-
tion that the component that monitors the system performance, the context monitor, is
able to generate different types of events divided into sporadic and periodic events. The
kpiAbove(kpi,x) and kpiBelow(kpi,x) events signal when the value of kpi is detected to
be above or below the value x, and needs to be decreased or increased, respectively. Sim-
ilarly, kpiIncrease(kpi,θ,condition) and kpiDecrease(kpi,θ,condition) are periodic events
generated every period θ, if the condition over the current value of kpi holds, and signals
that the value of kpi needs to be increased or decreased, respectively.

As noted above, the high-level policy has two distinct types of goals. When an exact
goal is violated, system adaptation should be triggered. For approximation goals, adap-
tations are triggered periodically, thus they require the use of periodic events. Table 1
summarizes the types of events generated for each type of goal and how these events are
triggered.

The specific events that are extracted from a high-level policy depend on the different
values used in the goals and KPI declarations. Here, we explain how the values in the
event attributes are defined for each type of goal. Figure 1 provides examples of events
for some goal types. For an Above goal, an event of type kpiBelow needs to be triggered
when the value of the KPI falls below the specified threshold by a margin greater than
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Type Goal Event 1 Event 2 Trigger
Exact Above kpiBelow(kpi, x) - threshold exceeded
Exact Below kpiAbove(kpi, y) - threshold exceeded
Exact Between kpiBelow(kpi, x) kpiAbove(kpi, y) threshold exceeded
Approx Close kpiIncrease(kpi, θ, cond) kpiDecrease(kpi, θ, cond) periodic
Approx Maximize kpiIncrease(kpi, θ, cond) - periodic
Approx Minimize kpiDecrease(kpi, θ, cond) - periodic

Table 1. Events generated for each type of goal

the KPI error margin. Similarly, for a Below goal, an event of type kpiAbove needs to be
triggered when the value of the KPI exceeds the specified threshold. Since Between goals
are a combination of the Above and Below goals, both previous events are needed. For the
Minimize/Maximize goals, a periodic event of type kpiDecrease/kpiIncrease, respectively,
needs to be triggered with the period specified in the goal. Finally, for the Close goals, two
distinct events are extracted, one for when the KPI needs to be decreased and the other
for when the KPI needs to be increased, as illustrated in Figure 1. For each extracted
event or periodic event, a rule is created with the When clause stating the event as the
trigger for the rule evaluation.

Goal cpu r e s e rv e : cpu u Below 0 . 6 MinimumGain 0 . 2
Event kpiAbove ( cpu u , 0 . 7 ) // 0 . 6+0. 1

Goal t a rge t cpu : cpu u Between 0 . 4 0 . 6 MinimumGain 0 . 2
Event kpiBelow ( cpu u , 0 . 3 ) // 0 .4−0. 1
Event kpiAbove ( cpu u , 0 . 7 ) // 0 . 6+0. 1

Goal min imize dev ia t i on : Minimize gdev MinimumGain 0 . 2 Every 10
Event kpiDecrease ( gdev , 10 , t rue )

Goal t a rge t cpu : cpu u Close 0 . 5 MinimumGain 0 . 2 Every 20
Event kpiDecrease ( cpu u , 20 , ”>0 . 6 ”) // 0 . 5+0. 1
Event kp i I n c r e a s e ( cpu u , 20 , ”<0 . 4 ”) // 0 .5−0. 1

Fig. 1. Example events extracted from goals

3.2 Selecting Service Adaptations

The second task of offline rule generation is to identify the sets of adaptations that need
to be included in each rule. The purpose of a given rule is either to increase or decrease the
value of a given KPI. Thus, the impact functions declared in the adaptation descriptions
need to be analyzed to check if the adaptation increases or decreases the value of the
relevant KPI. Consider, for instance, a rule of the form When kpiBelow(cpu u,0.3) Select
... where the aim is to increase the value of the cpu u, and we have an adaptation X that
applies to service S with the impact function S.cpu u *= 1.8. To assess if adaptation X
should be used in the rule, one simply checks whether the function f(kpi) − kpi has a
positive derivative. In this example, since the derivative of 1.8 ·x−x is 0.8, the adaptation
X helps to increase the CPU utilization. Hence, this adaptation will be used in the
construction of the sets of adaptations to be evaluated when the event kpiBelow(cpu -
u,0.3) is triggered.

Once all adaptations that contribute to achieve the goal associated with the trigger
event are known, rule generation proceeds with the calculation of the set of viable combi-
nations, i.e., the sets of adaptations that can be executed at the same time. When there
are adaptations that apply to the same service or conflicts between adaptations in the
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main set, it is necessary to break the main set into several sets, where all adaptations in
the same set are compatible, and have all their requirements satisfied. To help the system
operator understand the behavior of the system, an intentional representation of the set
of viable combinations is used. As illustrated in the example below (in human readable
form), all adaptations that contribute to achieve the goal associated with the trigger event
are listed, together with the pairs of conflicting adaptations and pairs of adaptations that
need to be executed together.

When event
Adaptations : S1.A , S1.B , S2.X , S2.Y , S3.Z
Conflicts : ( S1.A , S2.X ) Dependencies : ( S2.Y , S3.Z )

4 Rule Evaluation

The rules that were generated offline are evaluated at runtime. The evaluation of a rule
When e Select {A1, ..., An} occurs whenever event e is triggered, and consists of selecting
a combination of adaptations from the subsets of Ai, for i = 1, ..., n. The selected set
includes the adaptations to be applied to the system and, hence, the aim of the selection
process is to find the combination that best satisfies the goals defined in the adaptation
policy.

The process of rule generation ensures that each Ai includes only adaptations that can
be executed at the same time. However, these sets may include adaptations that cannot
be applied in the current configuration of the system. This happens if the target service is
not part of the current composition or if the constraints expressed in the Requires section
of the adaptation do not hold. Hence, the evaluation of the rule starts by removing non-
applicable adaptations from every Ai. Then, rule evaluation proceeds by searching for
combinations that best match the goals expressed in the adaptation policy, taking into
account the current system state.

As mentioned above, the search space S is the set of all subsets of all Ai. Intuitively,
the search involves analyzing the estimated effects of the different combinations on the
KPIs addressed by the goals of the adaptation policy and deducing which ones best
fit these goals. More precisely, recall that adaptation policies define a set of ranked goals
{G1, ..., Gn}, where G1 is the goal with the highest rank. The comparison between different
combinations of adaptations relies on their evaluation against these goals, starting from
G1. The evaluation of a combination against a goal Gi depends on the type of goal (exact
or approximation), with the impact functions of the involved adaptations being used to
estimate the effect on the KPIi associated with the goal.

Let KPICi be the estimated impact of a combination of adaptations C on KPIi. (Note
that if C is the empty set, then KPICi is just the current value of KPIi.) C best matches
{G1, ..., Gi} only if the following conditions hold:

1. if i > 1, C best matches {G1, ..., Gi−1}
2. if Gi is an exact goal:

– if Gi is currently satisfied: KPICi also satisfies Gi;
– if Gi is currently violated: there is a gain w.r.t. the current value of KPIi and it

exceeds the specified minimum gain;
3. if Gi is an approximation goal:
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– |KPICi −KPIC
∗

i | < error marginkpi and, if C is not the empty set, the gain w.r.t.
the current value of KPIi exceeds the specified minimum gain;

where C∗ is, among the combinations in S that best match {G1, ..., Gi−1}, the one
that puts the KPIi closer to the target specified in Gi.

For instance, consider the exact goal cpu reserve and assume that the current cpu -
u value is 0.75 (the goal is currently violated). A combination with a single adaptation
whose estimated effect brings cpu u to 0.9 is excluded because it violates the goal. A
combination with a single adaptation whose estimated effect brings cpu u to 0.65 is also
excluded because it does not meet the specified minimum gain. Two combinations with a
single adaptation whose estimated effects bring cpu u to 0.50 and 0.55, respectively, are
both candidates for being selected. Thus, the next ranked goal would be used to tie-break
among them.

5 Evaluation

To evaluate the proposed approach, we conducted a study to analyze how successfully
the rules generated offline drive the runtime adaptation, given changes that carry the
system outside the desirable or acceptable behavior defined in the goals. To do so, we
implemented a prototype of the framework in JavaTM , and developed an experiment that
illustrates the use of the proposed approach for the autonomic management of web-based
applications.

5.1 Services, Adaptations and Policy

The case study consists of a web site that offers both secure and non-secure content;
part of this content is static, and another part is dynamically generated. The content is
produced by several services that are adaptable, which allows the quality of any provided
content to be controlled.

Three services provide content: StaticContent, DynContent, and SecureContent. The
first, StaticContent, provides the static content web pages that are not secure. The service
can operate on regular or low mode; in low mode it offers lower image quality as well
as de-animated GIFs. Thus, it is possible to have two adaptations of the StaticContent
service: from regular to low quality and vice-versa. The first adaptation reduces resource
consumption, while the second increases the quality of service. The second service, Dyn-
Content, generates user-tailored non-secure webpages. The service also features regular
and low versions similar to StaticContent, which are implemented by adding, removing, or
changing HTML tags using the approach described in [11]. Furthermore, two implemen-
tations of the DynContent service can be used: a heavyweight implementation that deter-
mines new recommendations and advertisements for a user on the fly, and a lightweight
implementation that uses cached recommendations and advertisements [15]. Finally, the
third service, SecureContent, handles webpages that deal with account login or sensitive
data, such as order payment information; it also generates regular and low versions in
terms of image quality and animated GIFs. The service specification is presented below.
Space limitations prevent us from describing the entire set of services adaptations (which
is presented in [14]), that includes the adaptation ToLowStatic introduced in Section 2.
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Abstract Service DynContent
Parameters

ImgGIFFilter :{ on , o f f }

Service LWDynContent
subtype DynContent

Service HWDynContent
subtype DynContent

Service Stat i cContent
Parameters

ImgQlt :{ low , r e gu l a r }

Service SecureContent
Parameters

Mode :{ low , r e gu l a r }

In our case study we used three KPIs. The monitored system resource is the consumed
CPU (cpu u); recent research has shown this to be the main bottleneck for this type of
application [16]. The quality of service provided to the user is captured by two synthetic
metrics, the resolution of the images returned to the user (resolution), and the accuracy
of the recommendations included in the web pages (harvest). We have also considered a
CKPI qos, defined as the composition of both the resolution and the harvest of the pages
returned to the user as follows:

KPI cpu u : double Error 0 . 1
KPI r e s o l u t i o n : i n t e g e r Error 0
KPI harves t : i n t e g e r Error 0
CKPI qos = (2∗ r e s o l u t i o n + harves t ) Error 0

Using these KPIs, we defined the simple policy presented below that aims to provide
users the best quality of service possible without exceeding a pre-defined threshold of
CPU utilization. This policy is broadly similar to policies that have been used in related
work, including policies to achieve optimal resource use for webservers [7,1], intermediary
adaptation systems [11,9,8], and web server and user experience improvement [16]. The
policy describes two goals. The first limits the value cpu u to a pre-defined threshold
of 0.6. This limitation is imposed to maintain an available CPU margin to deal with
workload peaks. The focus of the second goal is to maximize the quality of the content
provided to the user, ensuring that when resources are available, the best image quality,
animated GIFs, and up-to-date recommendations are returned. The policy additionally
specifies that the monitoring interval is 1 second.

Goal l im i t cpu : cpu u Below 0 . 6 MinimumGain 0 .15
Goal max qos : Maximize qos MinimumGain 1 Every 60
Configuration mon interva l 1

From this policy, event extraction and rule generation was performed offline. The extracted
events are presented in Table 2. The rules, in their human readable form, are as follows:

When kpiAbove ( cpu u , 0 . 7 )
Select {ToLowStatic , ActivateImgGIFFilter ,ToLW+FilterOn ,ToLW+Fi l t e rO f f ,ToLW+MaintainOn ,

ToLW+MaintainOff , ToLowModeSecure}

When kp i I n c r e a s e ( qos , 6 0 , t rue )
Select {ToRegularStat ic , DeActivateImgGIFFilter ,ToHW+FilterOn ,ToHW+Fi l t e rO f f ,ToHW+

MaintainOn ,ToHW+MaintainOff , ToRegularModeSecure}

5.2 Experimental Setup

The prototype implementation consists of the overall framework, several static webpages
(StaticContent), and the web site’s dynamic generation components (DynamicContent
and SecureContent). Each component is an adaptable CGI that offers two distinct be-
haviors that trade off the quality of service provided to the user with the resources used,
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primarily CPU usage. Apache web server [2] running on Linux is used to execute requests.
To monitor the execution context, i.e., CPU usage, a simple monitoring tool was imple-
mented in Python and integrated with the framework prototype. The monitoring tool
can be configured in terms of the interval between reads and the stabilization time after
adapting.

To analyze how the policy drives changes in the quality of service when the resource
consumption varies, we generated several workloads to force different adaptations. In
periods when the load is high, then, the system will adapt one or more components to
provide a lower quality of service, to keep CPU usage below the given threshold. After
adapting, the KPIs readings are ignored until the end of a stabilization period.

The experimental testbed consists in three machines. One machine runs the Apache
Web Server as well as the services, while the other two machines run a workload generator.
The three machines are connected by a 100 Mbps Ethernet. The server machine is a
8 x 3.22 GHz processor with 8 GB RAM running Linux (kernel v2.6.24-21). We used
Apache HTTP Server v2.2.8 configured with 150 MaxClients and a KeepAliveTimeout
of 15 seconds, with CGI and SSL modules enabled. The client machines run Pylot [12],
an open source tool for testing performance and scalability of web services based on an
XML file that describes the workload. We modified the original Pylot tool to run several
workloads in sequence, each for a period of time, thus, varying the workload.

The services in our case study are implemented as follows. First, the StaticContent
service is implemented using several HMTL pages containing text and images with dif-
ferent sizes (from 5 to 500 KB), each one with a low and a regular version. Second, the
DynContent service is implemented as a CGI that generates the HTML pages on the
fly according to parameters passed in the HTTP request. The generated pages include
images and text, again with two different implementations of the service. Finally, the
SecureContent service consists of dynamically generated pages requested over HTTPS,
with text and media.

In terms of adaptations, the change between different versions in the StaticContent
service is achieved using file system links. The HTTP request will request a HTML file. If
the low version is in use, the link will point to the low version. When the adaptation sets
ImgQlt to regular, the link is redirected to the regular version. The same approach is used
when the other remaining parameters are set, and, also, to exchange implementations of
DynContent service.

The three different workloads used are determined by the type and frequency of re-
quests, for each of the three services described above. The light workload allows all services
to be offered with maximum qos. The medium workload requires the qos to be lowered in
order to respect the cpu u threshold. Finally, the heavy workload requires the system to
operate with an even lower qos.

Type Goal Event 1 Trigger

Exact limit cpu kpiAbove(cpu u, 0.6 + 0.1) cpu u> 0.7

Approx max qos kpiIncrease(qos, 60, true) periodic

Table 2. Events generated for the case study
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As defined in the policy, the consumed CPU is monitored every second. Due to the
variability of the workload, a change is only signaled if it is observed for at least 10 out
of 15 consecutive samples.

5.3 Results

Services were initially deployed with a configuration that yields the best quality of service:
static web pages and secure content are served with regular quality, while dynamic content
is deployed using the heavyweight version and with the content filter off. Then, we subject
the system to a varying workload.

The workload consists of a collection of urls that are requested by each client. The
order of this list is randomized for each client to ensure that the sequences will differ. Each
client waits for a response before sending another request; this interval is 10 milliseconds.
Our experiment used 100 clients that run concurrently. The client rampup takes 25 sec-
onds, therefore, 4 clients are launched every second. The clients start sending requests as
soon as they start. The workload is changed between three different levels: light (LW),
medium (MW), and heavy workload (HW) characterized as follows:

LW: 60% of requests for static content, 30% for dynamic content, and 10% for secure
content. This workload is not enough to violate any of the KPI constraints. The ex-
periment starts and finishes with this workload.

MW: 35% of requests for static content, 55% for dynamic content, and 10% for secure
content. This workload violates the CPU threshold defined by the first goal, thus,
triggering an adaptation to decrease CPU use.

HW: 20% of requests for static content, 30% for dynamic content, and 50% for secure
content. With this workload it is impossible to satisfy the CPU threshold without a
substantial decrease in CPU use, forcing an adaptation with greater impact.

Figures 2 and 3 depict the described scenario under varying workloads. Each dotted
vertical line marks a change in the workload. We begin with LW, changing to MW around
time 134, then to HW at around time 405, and finally switch back to LW around time
740. The impact of the workload change on the CPU usage may be delayed, depending
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Fig. 2. Evolution of the KPIs of the system in the described scenario.
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of the request distribution. Between each workload change, there’s the current service
composition and configuration. The solid vertical lines mark when adaptations take place.
After each adaptation, the monitoring device ignores the readings during a stabilization
period to allow ongoing requests to be processed until they are completed by the original
components.

Figure 2 depicts the evolution of the KPI values during system execution. After chang-
ing the workload from LW to MW, the system detects that the CPU use is above the
CPU limit plus the error margin (0.7), thus, it selects an adaptation that decreases the
harvest KPI. Later, the workload is switched to HW, forcing an adaptation that lowers the
resolution KPI to decrease the CPU use; note that this adaptation requires longer to take
effect. Finally, the workload is changed back to LW and another adaptation takes place,
increasing both the resolution and harvest KPIs. This increases the quality of service to
a maximum, as in the beginning.

Figure 3 shows the contribution of each service to the global CPU utilization for
the same scenario, allowing us to assess the impact of each adaptation. As a result of
the first workload change, the system adapts around time 204 by changing the dynamic
content implementation. This adaptation is selected because it lowers the CPU use to
below the limit and also offers the highest qos CKPI value. This follows since it only
decreases harvest, which has a lower weight in the qos CKPI. When the second workload
change takes place, the system adapts around time 542 by changing the secure content
from regular mode to low. This adaptation is selected because the CPU usage by secure
content is clearly higher than the others, giving this adaptation a greater impact that the
total of the others with a higher qos value. Finally, when the workload goes back to LW,
the system adapts to its initial configuration with highest qos ; this occurs at around 813
seconds and is triggered by a periodic event. These results demonstrate that the system
adapts as expected given the characteristics of the workload and the performance of the
deployed components, always offering the highest possible qos.
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6 Conclusions and Future Work

This paper proposes a novel approach to managing adaptive behavior in customizable
software systems. This approach uses information provided by each service designer about
the impact of possible adaptations on the system KPIs to perform the automatic offline
generation of a set of rules corresponding to a policy that describes the intended system
behavior for those KPIs. These rules are then evaluated online to implement the adaptive
behavior. Experimental results show that this approach is feasible and has a number
of advantages. For example, each service configuration can be measured independently a
single time to quantify the impact of adaptation, and still work for different configurations
or workloads. The approach is also able to balance the trade-offs due to different goals
when choosing an adaptation. Finally, as shown by experimental results, the approach
considers not only how far the current state is from the optimal state—and, as a result,
how large the impact has to be—but also uses the load of each service to realistically
estimate the impact of an adaptation.

As future work, we plan to broaden application of the approach. Currently, for in-
stance, we do not explicitly consider dependencies among services, so that when such
dependencies exist, each adaptation must be applied separately. We plan to extend our
model to consider such constraints.

Funding

This work was funded by REDICO project (PTDC/EIA/71752/2006).

References

1. Tarek Abdelzaher and Nina Bhatti. Web content adaptation to improve server overload behavior. In WWW8
/ Computer Networks, pages 1563–1577, 1999.

2. Apache. See httpd.apache.org.
3. K.J. Astrom. Adaptive feedback control. Proceedings of the IEEE, 75(2):185–217, Feb. 1987.
4. Raphael M. Bahati, Michael A. Bauer, and Elvis M. Vieira. Policy-driven autonomic management of multi-

component systems. In CASCON ’07, pages 137–151, NY, USA, 2007. ACM.
5. P. Bridges, M. Hiltunen, and R. Schlichting. Cholla: A framework for composing and coordinating system

software adaptations. IEEE Transactions on Computers, (to appear) 2009.
6. W.-K. Chen, M. Hiltunen, and R. Schlichting. Constructing adaptive software in distributed systems. In

ICDCS’ 01, pages 635–643, Apr 2001.
7. Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing web server performance with autotune

agents. IBM Syst. J., 42(1):136–149, 2003.
8. R. Grieco, D. Malandrino, F. Mazzoni, and D. Riboni. Context-aware provision of advanced internet services.

In PerCom Workshops 2006, pages 4 pp.–603, March 2006.
9. Gennaro Iaccarino, Delfina Malandrino, and Vittorio Scarano. Personalizable edge services for web accessi-

bility. In W4A ’06, pages 23–32, NY, USA, 2006. ACM.
10. G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu. Generating adaptation policies for multi-tier

applications in consolidated server environments. In ICAC ’08, pages 23–32, June 2008.
11. Francesca Mazzoni. Efficient provisioning and adaptation of Web-based services. PhD in computer science,
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