
Using Tailored Failure Suspectors
to Support Distributed Cooperative Applications�y

François J.N. Cosquer Luı́s Rodrigues Paulo Verı́ssimo
fjnc@inesc.pt ler@inesc.pt paulov@inesc.pt

INESCz- ISTx

Abstract

This paper presents an approach to effectively support cooperative applications using
tailored failure suspectors. Using a group communication subsystem, it is shown how failure
suspectors can be configured to model the requirements/semantics of cooperative applications
thus avoiding ad-hoc system decisions. This approach is highly relevant in the context of
large scale distributed systems like the Internet, where communication high variance and
unpredictable delays increase the probability of incorrect failure detection. Applications are
presented illustrating how failure suspectors are configured and possibly combined with new
feedback techniques in order to implement more powerful cooperative environments.

Keywords: Fault-tolerance, Interconnected networks, Cooperative applications, Failure
Suspicion, Large Scale.

1 Introduction

The rapid growth of interconnected networks has led to the emergence of a computing
infrastructure with enormous potential for hosting a wide range of distributed applica-
tions. Amongst the most promising are those oriented toward multi-user collaboration,
usually referred to as Computer Supported Cooperative Work (CSCW) or groupware.
These applications rely heavily on fast and reliable dissemination of information to all
users and thus, put strong requirements on the supporting platform, especially on the
communication subsystem. Unfortunately, asynchronous message-passing computing
environments suffer from the FLP impossibility results [11] i.e. it is impossible to differ-
entiate a slow node or communication link from a crashed node.

A solution, known as failure detection, has been developed to encompass the FLP
problem. We can see failure detection being composed of two distinct functional blocks:

�This work was partially supported by the CEC, through Esprit Project BR 6360 (Broadcast).
ySelected portions of this report were published in the Proceedings of the 7th International Conference

on Parallel and Distributed Computing and Systems, Washington D.C., Oct 18-21, 1995
zInstituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal,

Tel.+351-1-310000.
xInstituto Superior Técnico - Technical University of Lisbon

a failure suspector (FS), which maintains information about which processes may have
crashed; and an agreement protocol (often referred to as membership protocol) which
forces the system to agree with the failure suspector. This agreed view of the system
state allows safe progress in the event of process crashes. Implementations of these
mechanisms/services have proven to give satisfactory results in LAN environments
leading to the emergence of what one might refer to as group-based systems [3, 1, 14, 15].

However, in the context of Large Scale Distributed Computing Systems (LSDCS),
current solutions are ill-suited because the high variance and the unpredictability of
communication delays drastically increase the probability of incorrect failure detection.
That is, whereas LSDCS exhibit physical partition failures, inaccurate detection may also
lead to virtual partitions. In other words, there is a tradeoff between the application
liveness and the accuracy of FS, thus in LSDCS environment, enforcing agreement in
bounded-time is more likely to lead to erroneous suspicion [17]1.

Cooperative applications represent a high demand for large scale systems because
they lessen the need for a collection of people to commute to a single location. These
applications have different liveness and accuracy requirements than more traditional
distributed applications. When a cooperative session is taking place, it is not accept-
able to remove processes prematurely. This is because cooperative applications exhibit
attributes such as involvement of end-users, complex event scheduling and possibly
tedious start-up procedure.

Surprisingly, having surveyed a number of groupware applications and platforms
[8], we found little or no concern for scaling and fault-tolerance issues. This is clearly
not acceptable if cooperative applications are to become widely used. We also have
highlighted the relationship between the requirements of groupware applications and
the functionality provided by group-based systems. These high-level considerations
have led us to believe that this class of applications would highly benefit from the
underlying support if it could:

� Model application connectivity requirements.

� Minimize erroneous process exclusion.

� Provide connectivity clues to users.

The paper describes a pragmatic approach to reach the objectives listed above. It
focuses on the practical issues linked with the configuration and usage of the Failure
Suspectors (FS). Section 2 briefly presents the motivation for failure suspectors and their
role in group-based systems. Section 3 describes how current systems allow FS to be
tailored for cooperative application needs. Section 4 illustrates the applications and our
current experience. Section 5 includes the concluding remarks.

1The strategy adopted after we reach multiple partitions is beyond the scope of this paper. The overall
framework is described in [9].

2

2 Failure Detection and Group-Based Systems

Failure detectors are one of the key components of group-based systems. Group-based
systems can be seen as providing two main services. First, the membership service which
maintains a consistent view of the nodes involved in a distributed computation. The
membership protocol forces the system to conform with connectivity information pro-
vided by the failure detector. Second, the multicast service provides various semantics
of multicast communication, such as for example causal and total ordering, for infor-
mation dissemination within a group [19]. A possible combination of the two services
implements what is usually known as Virtual Synchrony (VS) [4].

ISIS is one early example of a system providing VS, which failure detection has been
tuned to make few mistakes in LAN environments. Processes suspected to have crashed
are removed from the system by the membership protocol. This leads to irrevocable
exclusion of a process (i.e. a user in the case of cooperative applications) and thus,
should be accurate. In large scale distributed systems, where the unpredictability and
the variance of communication are high, it becomes much harder to tune the system in a
generic way. A pessimistic approach risks forcing too many live processes out while an
optimistic approach has the inconvenience of reporting process crashes with a latency
which may compromise safe progress of the application. Properties of FS are known as
completeness and accuracy [6]. Completeness captures the fact that crashed processes
will be suspected by every or some processes while accuracy states that all or some
correct processes are never suspected.

We are developing a group infrastructure for large-scale networks, NAVTECH [20],
which constitutes the support framework for the work presented in this paper. NAVTECH
is a modern group-based communication subsystem which is intended to support the
development of reliable applications over large scale networks. It offers a range of
communication and activity-support services such as reliable group communication,
flexible failure suspector, and group membership. The NAVTECH Failure Suspector (FS)
module supports two kinds of liveness/connectivity tests:

� Standard tests - plain I’m alive test, whose semantics is, informally: “I have heard
about this site, directly or indirectly, in the last x seconds”; x is a baseline system
parameter, whose setting may be adaptive;

� Performability tests - ad hoc test, superimposed on the standard one, requested
for a set of sites, normally a site-group; the objective of the test is to assess whether
members of a given site-group are capable of meeting a given performability goal.

Performability, is a combined measure of performance and reliability of systems.

3

Unique Interface to Higher Layers

Group Membership
Protocol

Failure Detector

Application

Monolithic

Standard Group-Based
 System

Interface

Group Membership
Protocol

Failure Suspector

Std.
Test

Interface

Configuration

Modular and Configurable

Modern Group-Based
 System - e.g. NavTech

Std.
Test

Application

Trig. Cond.
Perf.
test

Figure 1: The Evolution of Group-Based Systems

The performability test semantics is defined by external requests, through variable
types exported by the FS service, their values being set in a user-dependent fashion. The
on-line performability test is, to our belief, an innovative feature. Its main utility is to
map different failure semantics to different site-groups. Figure 1 depicts the functional
architecture of the NAVTECH FS emphasizing the difference in approach from earlier
generations of group-based systems. 2

We now discuss how we can tailor the FS module in order to model application
requirements.

3 Configurable Failure Suspectors

In NAVTECH, the Failure Suspector is designed to evaluate a number of relevant oper-
ational parameters. Currently supported parameters are: roundtrip delay, throughput
and error rate. The application can configure the failure suspector, indicating which
parameters must be measured and their acceptable values.

3.1 Specifying Connectivity

Each parameter is characterized by a set of variables, as illustrated in Table 1, namely:

SR (Sample Rate): the maximum interval at which the parameter needs to be evaluated.

TH (Threshold): the parameter maximum acceptable value.

W (Weight): a measure of the parameter relative importance. A weight of 0 indicates
that the parameter is not taken into account.

2Configuration and modularity are also a prime concern in other systems [16, 13].

4

TE (Threshold Exceeded): the number of samples at which the parameter value has
exceeded its threshold.

Value (V): the parameter current value.

Operational Parameters Set-Up node1 node2 ... nodei ... noden

Parameter SR TH W TE V 1

i TE V 2

i ... TE V i
i ... TE V n

i

roundtrip (s) 1m 10 2 1 12 2 25 ... - - ... 0 0.3
throughput (Mbits/s) 5m 1 1 0 2 1 0.5 ... - - ... 0 4
... . . 0 - -
Disturbance Index (DI) 1m 3 - (1*2)+(0*1)=2 (2*2)+(1*1)=5 ... - ... (0*2)+(0*1)=0

#
LCVnodei ! 1 0 ... - ... 1

Table 1: Variables associated with operational parameters at nodei

At every node, a complete set of variables for a given parameter is kept for every other
reachable node in the group. We denote the variable V associated with parameter P

kept at local node l about some remote node r by V r
l (P). For instance, Valuerl (roundtrip)

denotes the roundtrip delay between nodes l and r as measured at l. All the variables
may be set and/or read by the application, through a management interface.

The overall connectivity to a remote node is measured by a index, named Disturbance
Index (DI), which is a sum of products of TE variables with their corresponding weight.
That is:

DIrl =
X

j

Weightr
l
(j) � TEr

l (j)

The DI is computed periodically, as specified by its sample rate. It indicates how often
operational parameters have exceeded the defined thresholds. After the computation of
the DI, TE variables are reset, and incremented from zero until the next computation of
DI. A very low DI value means that the connectivity is satisfactory. A high value means
very poor connectivity.

The DI value is used to build a Local Connectivity Vector (LCVl), an array of booleans
that indicates whether the Disturbance Index has exceeded its threshold. Whenever the
DIrl threshold for a given node r is exceeded, that node is suspected, and LCVl[r] is set
to false.

3.2 Triggering Agreement Conditions

Usually once a node r is suspected by a node l, an agreement protocol is initiated by l
resulting in a new view delivery. This may lead to a virtual partition if the suspicion
was incorrect. We have shown above how to tailor the FS module to perform tests in
accordance to application semantics. In order to further reduce the probability of incor-
rect failure detection, Failure Suspectors exchange periodically their Local Connectivity

5

Vectors to build a Global Connectivity Matrix, or GCM. Note that LCV is a vector of bits
thus, can be piggybacked in normal traffic with negligible overhead.

The GCM indicates how each node perceives the connectivity to every other node.
If node i has good connectivity to j then GCM[i; j] is true, and false otherwise. The
activation of the membership module depends on a condition which is a function of
GCM values. This condition is evaluated on each LCV receive and is configurable
using a quorum based approach. An integer value, called the Suspicion Weight (SWi) is
associated with every node i. Suspicion weights reflect the relative importance of each
user also known as “social role” in the context of cooperative applications. Weights are
also defined and used for partition processing strategies purposes [10]. Another integer,
called the Global Suspicion Quorum (GSQ), indicates when a node is said to be globally
suspected. In this case only, the membership protocol is activated. More precisely, the
membership is activated for a node j if the following condition is true:

X
(ijGCM[i; j] = false)SWi � GSQ

The values of Suspicion Weights and of the Global Suspicion Quorum can be set
by the application to define different membership triggering conditions. For instance,
membership for a given node can be triggered only when this node is suspected by a
majority of nodes, or by a selected node. More sophisticated triggering conditions are
being studied and are reported in [12].

3.3 Runtime Connectivity Feedback

On top of the specification of FS and of the triggering conditions, NAVTECH allows the
programmer to read current values of the relevant operational parameters. This is used
for cooperative applications to provide feedback to the users, a function usually referred
to as collaboration awareness. As described below, NAVTECH allows to implement such
module with little extra cost.

4 Application and Experience

4.1 Cooperative Personalities Library

Cooperative applications often use social roles or roles as a way to model the relative
importance of each user. These roles are application level entities used to enforce access
control over the shared workspace. We extend this concept by using NAVTECH FS to
create a library of cooperative personalities as a way to model different users connectivity
requirements. The advantages are:

� It simplifies the interface to the FS.

� It allows FS to be tuned for a whole range of applications.

Typical default threshold values, weights and sample rates are defined using known
specifications of responsiveness and estimated bandwidth for the target applications
[18]. For example, in [5] it is recommended that notification and response times should

6

be comparable. We consider high responsiveness typically below 2 seconds while low
requirement means accommodating delay values above 10 seconds. Note that local
computing overhead is not taken into account since the response time of the system
is mainly due to the communication over the network. Excluding continuous media
transmission which lies outside the scope of this work, throughput requirements can be
expected to reach 1 Mbit/s when many workspace entities (files, graphics) are exchanged
amongst participants. When a participant is mostly receiving we can consider that half
the minimum requirement is sufficient.

In a first phase we have tried to model cooperative personalities based on their re-
sponsiveness and talkativeness requirements. We defined four cooperative personalities
using roundtrip delay and throughput NAVTECH FS parameters. The classification is
presented presented in Table 2.

Characteristics Responsiveness Talkativeness
(roundtrip) (throughput)

Extravert High High
Demanding High Low

Verbose Low High
Laconic Low Low

Table 2: The Cooperative Personalities Library

Choosing a personality connectivity requirement is made through a selectable pro-
gramming parameter which greatly simplifies the task of the programmer. For example,
in a presentation-like tool, the “speaker” should select personality extravert while eager
attendees would select personality library demanding. However, attendees with remote
interest would select personality laconic etc. The requirements of each parameter are
quantified using High and Low as to reflect their importance in value and weight. The
actual values were pre-set using the recommendations presented above. The library can
be further extended using other FS parameters.

4.2 Enhanced Feedback

Another application of Failure Suspectors is collaboration awareness enhancement. This
is achieved by intercepting the output of the FS and providing connectivity clues to the
users using new feedback techniques.

We are experimenting in incorporating feedback in various building blocks such as
audience monitoring, telepointer facility and concurrency control modules. Those first
experiments of Tailored Failure Suspectors gave satisfactory results. An example is given
in Figure 2 where sampled values V 1::n

i (roundtrip) are filtered and used to represent some
“distance” between users. Values are then displayed for audience monitoring purposes.
The User Interface (UI) analogy for the audience monitoring mechanism is inspired by
a hill, where people go up and down. Participants are aligned by increasing magnitude
from left to right as they get more distant from the viewer.

A percentage value is also displayed on the top left corner of the UI. This number rep-
resents a global distance measurement using a single value and, therefore, is a function

7

Figure 2: Adaptable Audience Monitoring

of the feedback delays of all participants in the current view. It is implemented using
the GCM, the Global Connectivity Matrix, local to each node, described earlier. The un-
reachable participants are excluded from the measurement since they are automatically
excluded from synchronous interactions by the membership protocol.

The support presented in this paper has been partially incorporated in the NGTool
application [2]. NGTool is a group decision support system (GDSS) which runs on Unix
workstations over the Internet and uses X Windows and the Motif toolkit. Further details
of our experiments are given in [7].

5 Concluding Remarks

This paper has shown that tailored failure suspectors could be used to better support
cooperative applications. The approach is based on NAVTECH, a modern configurable
group-based system. The configuration of the failure suspector and the specification
of the agreement triggering conditions were described. A cooperative personalities
library was created in order to simplify the configuration process. The library offers
various connectivity requirements using pre-set values. Furthermore, initial experiments
showed that low level connectivity information can enhance collaboration awareness by
combining tailored FS outputs with new feedback techniques. Further use of the NGTool
will demonstrate whether erroneous membership decisions can significantly be reduced
using the triggering conditions. The proposed approach is at an early stage and further
experiments are underway to confirm our initial results.

Acknowledgements

We are grateful to Carlos Almeida for commenting on an early version of this document.
The NAVTECH failure suspector is being implemented by Jorge Frazão. NGTool is being
developed by Pedro Antunes.

References
[1] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A Communication

Sub-System for High-Availabiliy. In Digest of Papers, The 22nd International Symposium on
Fault-Tolerant Computing Systems, pages 76–84. IEEE, 1992.

8

[2] Pedro Antunes and Nuno Guimarães. Structuring Elements for Group Interation. In Second
Conference on Concurrent Engineering, Research and Applications (CE95), August 1995.

[3] Ken Birman and Robert Cooper. The ISIS Project: Real Experience with a Fault Tolerant
Programming System. Technical Report TR90-1138, Cornell University, Ithaca, NY 14853,
USA, July 1990.

[4] Kenneth P. Birman and Thomas A. Joseph. Exploiting Virtual Synchrony in Distributed
Systems. In 11th Symposium on Operating Systems Principles, pages 123–138, November 1987.

[5] S.J. Gibbs C.A. Ellis and G.L. Rein. Groupware, Some Issues and Experiences. CACM,
34(1):38–58, January 1991.

[6] T.D. Chandra and S. Toueg. Unreliable Failure Detectors for Asynchronous Systems. Techni-
cal Report TR 91-1225, Cornell University, Department of Computer Science, Ithaca, August
1991.

[7] François J.N. Cosquer, Pedro Antunes, Nuno Guimar̃aes, and Paulo Verı́ssimo. Adaptive
Synchronous Cooperation over Large Scale Networks. Technical Report RT/95, INESC, Rua
Alves Redol 9, March 1995.

[8] François J.N. Cosquer and Paulo Verı́ssimo. Survey of Selected Groupware Applications
and Supporting Platforms. Technical Report RT-21-94, INESC, Rua Alves Redol 9-6o, 1000
Lisboa, Portugal, September 1994. (Also available as BROADCAST Technical Report [2nd
year - Vol 1]).

[9] François J.N. Cosquer and Paulo Verı́ssimo. Large Scale Distribution Support for Coopera-
tive Applications. In Proceedings of the European Research Seminar on Advances in Distributed
Systems - ERSADS ’95, April 1995. (Also available as INESC Report AR 2/95).

[10] François J.N. Cosquer and Paulo Verı́ssimo. The Impact of Group Communication
Paradigms in Groupware Support. In Proceedings of the 5th Workshop on Future Trends of
Distributed Computing Systems, August 1995. (To appear).

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. Journal of the Association for Computing Machinery, 32(2):374–382, April
1985.

[12] Jorge Frazão, Paulo Verı́ssimo, and Luis Rodrigues. Enhancing Large-scale Communication
with Failure Suspectors and Dynamic Routing. Technical Report RT-95, INESC, Rua Alves
Redol 9-6o, 1000 Lisboa, Portugal, April 1995.

[13] Matti A. Hiltunen and Richard D. Schlichting. A Configurable Membership Service. Tech-
nical Report TR 94-37, University of Arizona, Tucson, AZ 85721, December 1994.

[14] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An Architecture for Imple-
menting Network Protocols. IEEE Transactions on Software Engineering, 17(1):64–76, January
1991.

[15] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Computing.
ESPRIT Research Reports. Springer Verlag, November 1991.

[16] R. van Renesse, Ken Birman, Robert Cooper, Brad Glade, and Patrick Stephenson. The
Horus System. Technical report, Cornell University, July 1993.

9

[17] Aleta Ricciardi, Andre Schiper, and Kenneth Birman. Understanding Partitions and the
No Partition Assumption. In Proceedings of the 4th Workshop on Future Trends of Distributed
Computing Systems, pages 354–360, September 1993.

[18] T. Rodden, Mariani J.A., and Blair G. Supporting Cooperative Applications. Computer
Supported Cooperative Work, 1(1-2):41–67, 1992.

[19] Luı́s Rodrigues and Paulo Verı́ssimo. Causal Separators for Large-Scale Multicast Commu-
nication. In Proceedings of the 15th International Conference on Distributed Computing Systems,
June 1995.

[20] Paulo Verı́ssimo and Luı́s Rodrigues. The NavTech Large-Scale Distributed Computing
Platform. Technical Report RT-95, Broadcast Project, INESC, Rua Alves Redol 9-6o, 1000
Lisboa, Portugal, 1995. (in preparation).

10

