Weak Transaction Support on the Edge

Taras Lykhenko
taras.lykhenko@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Luis Rodrigues)

Abstract. This report addresses the problem of offering different con-
sistency guarantees to clients of services provided by the edge nodes. We
survey the most important weak consistency models and the main tech-
niques that have been proposed to support weak forms of transactions in
a distributed environment. We evaluate these techniques from different
perspectives, namely performance, visibility latency, and fault tolerance.
Using these criteria, we discuss the potential limitations and advantages
of each of these techniques in the edge computing setting. Based on this
analysis, we propose a new architecture to support weak transactions in
the edge.

Table of Contents

Introduction. 3
Goals. .o 4
Data ConsiStencyo 5
3.1 Linearizability and Session Guarantees 5
3.2 Transactional Properties i 8
3.3 Isolation Levels that Support High Availability................ 8
Related Work 11
4.1 COomPAriSONttt 22
4.2 Shortcomings of Current Approaches for Edge Computing 23
Architecture. 24
5.1 Consistency Model and Base Techniques 24
5.2 Client Migration 25
5.3 Supported Operations.ouuiiniinininninn.. 26
Evaluation 26
6.1 Performanceot 26
6.2 Visibility Latency oo 27
6.3 Fault Tolerancet 27
Scheduling of Future Work i i 27

ConClUSIONS . ..ttt 27

1 Introduction

Cloud computing is now a widely adopted model that allows offering services
in a cost-effective manner to a large number of clients. Many of the most widely
used applications, from email to social networking, are based on this model. In
this model, storage and processing services are provided by servers located in
large centralized datacenters. The economies of scale provided by these shared
infrastructures offer cost reductions and make it easier to allocate dynamically
resources to match the client demand.

Despite these advantages, the current model of cloud computing also has
some limitations. As the number and power of the devices that are connected to
the cloud grow, new requirements emerge. Many client devices, such as modern
smartphones, have now the capacity to support sophisticated applications such
as augmented reality; these applications have tight latency requirements. Also,
there are more and more IoT devices with the capacity of collecting data, from a
myriad of sensors. This data needs to be processed but shipping all the collected
information in a raw form to a central datacenter may be unfeasible. These new
requirements have motivated the need to support edge computing[l], a model
where the service provided by the cloud datacenter is complemented by a set of
smaller servers located closer to the edge of the network (sometimes also called
fog servers[2]). Edge servers have the ability to pre-process and summarize data
before the results are shipped to the cloud and to offer computational services
with low latency to clients in the physical vicinity.

In this report, we focus on the task of providing storage services in the
edge. Such storage service should support partial replication. Data needs to be
replicated for fault-tolerance and also to keep copies close to the client. However,
given that the edge nodes have limited capacity, it will be in general unfeasible
to keep replicas of all data items at all edge devices.

Of special concern to our work is to understand the tradeoffs involved in
providing different consistency levels when clients access to data in the context
of edge computing. In fact, it is well known today that it is impossible to offer
simultaneously strong consistency, availability, and partition tolerance, a fact
captured by the CAP theorem[3]. It is therefore relevant to search for weak
consistency models that can preserve availability and still be useful for edge
applications.

On one extreme one can provide a storage service where clients are allowed
to interact with a replica without requiring any coordination with other repli-
cas. In this case, reads and writes may be performed by contacting only the
nearest available replica and be served immediately. Updates are subsequently
propagated to other replicas in background and replicas may be observed in an
inconsistent state. For instance, when reading from a replica, a client may even
fail to observe the results of its own previous updates, if those updates have
been performed at a different replica. Conflicting updates may also be accepted
concurrently by different replicas, requiring the execution of complex conflict
resolution algorithms to ensure eventual consistency of replicas.

On the other extreme, one can attempt to provide full transactional support,
as typically provided by traditional databases. Transactional databases support
the atomic execution of a sequence of operation with different isolation and
consistency guarantees, often known as the ACID properties[4]. Unfortunately,
many of the stronger consistency criteria provided by databases cannot be pro-
vided in a non-blocking way in a distributed and replicated setting and, even
if when no faults occur, it can be expensive to implement in an edge scenario,
particularly in the face of a large number of replicas and partial replication.

Given the limitations of the two extreme models mentioned above, an exten-
sive amount of research has been performed in the quest for consistency models
that are weaker than the serializability[4] or snapshot-isolation[4] criteria often
found in centralized databases, but that still support meaningful semantics, that
can simplify the development of applications. Many of these research efforts have
been started in the context of geo-replicated storage services for the cloud, us-
ing models that have become generically known as NoSQL[5] but have roots
in earlier works that used weaker consistency models as ways to improve the
performance of database systems.

In this report, we survey the most important weak consistency models and the
main techniques that have been proposed to support weak forms of transactions
in a distributed environment. We will evaluate these techniques from different
perspectives, namely performance, visibility latency, and fault tolerance. Using
these criteria, we discuss the potential limitations and advantages of each of these
techniques in the edge computing setting. Based on the analysis, we propose a
new architecture to support weak transactions in the edge.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 4 we present all the
background related with our work. Section 5 describes the proposed architecture
to be implemented and Section 6 describes how we plan to evaluate our results.
Finally, Section 7 presents the schedule of future work and Section 8 concludes
the report.

2 Goals

This work addresses the problem of data consistency in edge computing.
More precisely:

Goals: We aim at identifying a small set of consistency models that
can be effectively offered to clients that access services provided by edge
nodes. Furthermore, we will design, implement, and evaluate a storage
service supporting the selected consistency models.

The literature is very rich in systems that support a wide range of consis-
tency models in different replicated settings, including geo-replicated cloud stor-
age systems. However, not all of these systems can easily be deployed on edge
computing scenarios, some because they maintain an amount of metadata that
does not scale for a large number of server nodes, others because they require an

amount of coordination among edge servers that can impair service latency. We

aim at carefully addressing related work taking these constraints into account,

to select solutions that can be implemented efficiently in the edge scenario.
The project will produce the following expected results.

Ezpected results: The work will produce i) an identification of relevant
consistency criteria for the edge; ii) a specification of a set of protocols
that can support these consistency models, iii) an implementation of
these protocols; iv) an extensive experimental evaluation of their perfor-
mance in practice.

3 Data Consistency

In this section, we discuss the guarantees that can be provided to clients
accessing data that can be replicated. We distinguish two classes of consistency
guarantees: those that apply individual read and write operations and those
that apply a sequence of operations that are treated as a block (and that we
generically denote as transactions).

3.1 Linearizability and Session Guarantees

We start by discussing linearizability[6], which is probably the most intuitive
model of consistency. Then we describe relevant relaxations of linearizability.

In the following discussion we assume that write and read operations may
take some arbitrary amount of time. In a distributed message passing system,
this time is the time required for the nodes to coordinate. Each operation has a
starting time (when it is invoked) and a termination time (when the operation
returns). If an operation starts before another operation terminates, the two
operations are said to be concurrent.

Linearizabilty [6] Under linearizability, read and write operations appear to
execute instantaneously, at an arbitrary time instant between the moment the
operation is invoked and the operation completes. Thus, after a write completes,
all reads must observe that write (or a subsequent write). If a read is executed
concurrently with a write, the read can observe the value before or after the
write. However, if the read observe the new value, all subsequent reads must also
observe the new value, even if they are also concurrent with the write operation.

A linearizable memory register, that supports read and writes operations
is denoted to be an atomic register[7]. Fault-tolerant atomic registers can be
implemented in message passing systems, by letting different nodes to maintain a
copy of the register value and by using the appropriate coordination mechanisms
to execute read and write operations. The implementation is based on quorums.
A write operation only returns when receives an acknowledgment from half plus
one of the servers. A read operation is more complex. First, the read must obtain
values from a majority of nodes and select the most recent version from the

quorum. Then, before returning, the read operation must write back the value
read. This will ensure that subsequent reads will also return that value. Only
after the write back phase is concluded (i.e., a majority of acknowledgements is
collected for the write phase) the read operation is terminated.

As we have just seen, implementing linearizability in a non-blocking way
is expensive and requires clients to always contact a majority of replicas. It
is interesting to discuss what guarantees can be provided while offering better
availability (namely by allowing progress even if the client can contact only a
single replica). In the next paragraphs, we discuss a number of properties that
are known as “session guarantees” because they require the client to keep some
state regarding its past interactions with the system. A session is assumed to be
started when the client first contacts the system and get the initial session state
and terminates when the client discards the session state.

In the context of our work, we say that a system is highly available if a
user that can contact at least one server is guaranteed to get a response, even
if a network partition prevents that server from coordinating with other servers
in the system. Thus, in order to ensure high availability we need to resort to
consistency levels that require little or none coordination among servers or, if
such coordination exists, that it can be performed asynchronously in background.
This definition of high availability allows the use of protocols that offer low
latency, something that is important in a wide-area setting, were the latency
among different nodes is high and network partitioning is likely to occur, making
coordination among replicas a bottleneck.

Writes Follow Reads (WFR) under WFR, if a session observes an effect of
an operation O; and subsequently executes another operation O, then another
session can only observe effects of O, if it can also observe O;’s effects (or later
values that supersede O;’s). Thus, the sequence of a write after a read must
satisfy to Lamport’s “happens-before” relation|8].

Monotonic Reads (MR) under MR, within a session, subsequent reads to a
given object “never return any previous values”. Reads from each item progress
according to a total order.

Monotonic Writes (MW) requires that each session’s writes become visible
in the order they were submitted.

It is worth noting that, using these properties, the availability of a system can
be increased by delaying the visibility of update operation. For instance, assume
that a client makes a write operation ws that depends on some previous write ws.
Assume that we becomes visible to other clients before w; has been applied at all
datacenters. Another client that reads ws can later be blocked when attempting
to read wy from another replica (this can happen if clients are allowed to contact
different replicas). If that client is served with an older snapshot of the database,
with versions that have been applied at all datacenters, that client will miss the

Causal+

T

Causal
PRAM
WFR MR MW RYW

Fig. 1. Relation among the session guarantees; the session guarantees in grey are only
possible in sticky availability

new update but it will also avoid being subsequently blocked when reading other
objects.

Some systems are more restrictive and force clients to remain connected to a
single node. The latter type of systems offers what is called sticky availability[9].
Sticky availability usually requires full replication, given that the server to which
the client is attached must be able to serve all requests from that client. In
systems that use partial replication, a server may not be able to serve requests
for data that is not replicated locally without coordinating with other servers.
In fact, in that case, it may be simpler to allow clients to migrate in order to
access data that is only stored in other servers. With this availability model, we
can ensure the following session guarantees that were previously intangible as
proven by Bailis et al.[10].

Read your writes requires that whenever a client reads a given data item after
updating it, the read returns the updated value (or a value that overwrote the
previously written value).

PRAM (Pipelined Random Access Memory) lets clients observe a serialization
of the operations (both reads and writes) within each session. Different clients
can observe different serializations. It can be seen as a combination of monotonic
reads, monotonic writes, and read your writes.

Causal consistency [11] is the combination of all of the session guarantees
[12]. Note that two concurrent updates can be applied in different nodes in a
different order and still respect causal consistency. In the lack of further updates,
nodes would remain inconsistent indefinitely.

Causal+ consistency [13] is an extension to causal consistency that ensure
that, in face of concurrent updates, one of the updates is applied last at all
replicas.

Figure 1 summarizes the relation between the session guarantees mentioned
above.

3.2 Transactional Properties

Transactions are sequences of operations that are grouped together and
executed as one single indivisible operation. Transactions are widely used in
database systems. The concurrent execution of transactions is coordinated by
the database to ensure a set of proprieties, usually referred to as the ACID
proprieties (ACID stands for atomicty, consistency, integrity, and durability).
One of the strongest consistency criteria supported by databases is known as
serializability. In short, serializability ensures that the concurrent execution of
transactions yields the same results as a some serial executions of the same trans-
actions. Ensuring serializability requires the database to execute some form of
concurrency control. The most common approach to concurrency control con-
sists in using locks to prevent concurrent transactions to observe inconsistent
values.

Even in centralized databases some DBMS opt for a lower isolation level with
weaker consistency to improve the performance of concurrent transactions. One
of these weaker forms of consistency is snapshot isolation (SI). SI guarantees that
all reads made in a transaction will see a consistent snapshot of the database, and
that the transaction itself will successfully commit only if none of the updates it
has made conflicts with updates performed concurrently by other transactions
(i.e., transactions that have executed concurrently based on the same snapshot).

Serializability and snapshot isolation levels are often explained in terms of
the anomalies they prevent (where an anomaly is an observed state that would
never occur if transactions where executed instantaneously, one after the other).
Two anomalies that are relevant in this context are the write skew and the lost
update. A write skew occurs when a transaction 77 reads an object written by
concurrent transaction T, and T5 also reads an object written by T;. A lost
update occurs when one transaction 77 reads a given data item, subsequently
a second concurrent transaction T, updates the same data item, then T; also
modifies that data item without taking into account the value written by 15
(and thus, the system behaves as if the update by 7% has never occurred). Seri-
alizability prevents both the write skew and the lost update anomalies. SI only
prevents the lost update anomaly.

Unfortunately, in a distributed setting, these two isolation models can only
be enforced if at least a majority of nodes are able to coordinate, given that
both require transactions to be totally ordered. Therefore, these models cannot
be enforced without compromising the availability of the system.

3.3 Isolation Levels that Support High Availability

In order to ensure that transactions are highly available, we need to define
isolation levels that can be implemented with little coordination among replicas.
We use the study by Bailis et al.[10] on highly available transactions to enumerate
a number of isolation levels that can be enforced with minimal coordination.

As with serializability and snapshot isolation, several of these weak isolation
models are defined in terms of the anomalies they prevent. In this context, we
identify the following additional anomalies.

Dirty Writes A Dirty Write anomaly occurs when two concurrent transactions
update two or more objects and these updates are applied in different orders at
different objects[14]. This is illustrated in Figure 2, where T} updates = before
T» and T, updates y before T7.

T1 T2
W(SUl)

W (z2)
W(y2)

W(yl)

Fig. 2. Dirty Write anomaly

Dirty Reads A Dirty Read anomaly occurs when one transaction reads a value
that has been written by another transaction that is still running and has not
committed yet. Consider the example depicted in Figure 3. In this example Dirty
Read anomaly occurs if T3 read = 1 or x = 3 in the case that T aborted.

TI [T2 |13
We(1)|Wa (3) | Ra ()
Wa(2)

Fig. 3. Dirty Read anomaly

Read Skew A Read Skew anomaly occurs when in a same transaction same
read yields to a different result. Consider the example depicted in Figure 4. In
this example Read Skew anomaly occurs if the reads over the item x in the
transaction 75 return two different results.

T1 T2
Rx()
Wx(1)
Rx()

Fig. 4. Read skew anomaly

With the help of the anomalies identified above, we can now list a number
of relevant weak isolation models.

Read Uncommitted (RU) Read Uncommitted is an isolation level that only
prevents the “Dirty Writes” anomaly. It does not prevent other anomalies as
it makes no attempt to prevent transactions from reading uncommitted values

before a transaction has finished. Dirty writes can be avoided by defining a total
order among transactions and ensuring that updates are applied to all objects
according to that order.

Read Committed (RC) Read Committed is an isolation level that ensures
that transactions never access uncommitted or intermediate versions of data
items. RC prevents both “Dirty Writes” and “Dirty Reads” anomalies. Dirty
Reads can be prevented by not allowing the client to write in the database
uncommitted data. Therefore, other transactions will never read uncommitted
data. This can be achieved by requiring the client to buffer his writes until
commit time or by having the servers to buffer multiple uncommitted values the
same data and to only apply those writes when the corresponding commit is
received.

Cut Isolation (CI) under Cut isolation, if a transaction reads the same data
more than once, it sees the same value each time. This isolation level prevents
“Read Skew” anomaly, if this property holds on data items, it is called Item Cut
Isolation (I-CI), and if it holds when a transaction does a predicate-based read
(e.g., SELECT... WHERE P) it is called Predicate Cut-Isolation (P-CI).
However this isolation level allows “Dirty Writes” and “Dirty Reads” anomalies.

CI could be achieved by the transaction caching reads locally at the client
and then reading from the cache so that the values do not change in the same
transaction unless the transaction itself overwrites them. Alternatively the reads
could be stored in multiple versions at the server, and the transaction would only
read from this versions, this could be achieved by assigning the transaction to
a group of servers (transaction group) that would store this version and the
following reads would only read from this group of server until the end of the
transaction. The cache and multiple versions of objects are garbage collected at
the end of the transaction.

Monotonic Atomic View (MAV) under MAV, once some of the effects of a
transaction T; are observed by another transaction Tj, after that, all effects of
T; are observed by T}. That is, if a transaction T; reads a version of an object
that transaction T; wrote, then a later read by T cannot return a value whose
later version is installed by 7;. MAV also prevents “Dirty Writes” and “Dirty
Reads” while guaranteeing all or nothing visibility of transactions.

MAV could be achieved using lightweight locks and/or concurrency control
over data items [15]. This approach of achieving MAV does not satisfy high
availability, because the system could stall in the presence of extended network
partitions and has a significant impact on the system’s throughput. There are
enumerate alternatives to mitigate this problem and do an implementation of
MAYV without the use of locks [16,10,17] this systems store every data object
that was ever written and replicas then gossip information about versions they
have observed and construct a lower bound on the versions that can be found on
every replica. At the start of every transaction the client chooses a timestamp
that is lower or equal to the lower global bound, and during the transaction,

10

MAV

RC P-ClI
RU I-Cl

Fig. 5. Relation between the guarantees of isolation levels

the replicas return data items that have a timestamp lower than the chosen
timestamp. These algorithms will be discussed in greater detail in Section 4.

There are other isolation models with higher guarantees that were proven that
are not achievable with high availability [10], and for brevity are not mentioned
in this report. Figure 5 summarizes all the guarantees and the relation among
the different isolation levels mentioned above.

4 Related Work

In this section, we will present the surveyed solutions. For each of them, we
start by explaining how the transactions are implemented, the isolation level and
session guarantees that they grant. Finally, we will analyze the chosen strategy
for propagating the transaction’s updates.

COPS-GT COPS-GTI[13] is a distributed key-value storage system that has
been designed to run across a small number of datacenters. It implements a
lock-free read-only transaction algorithm that provides clients with a causal+
consistent view of multiple keys in a distributed key-value store in at most two
rounds of local operations.

COPS-GT assumes that each datacenter is fully replicated and linearizable.
Moreover, clients only communicate with their local datacenter which makes
COPS-GT sticky available.

In COPS-GT each client is responsible for maintaining its causal history. This
history maintains all the client’s direct and indirect (i.e., transitive) dependencies
to the reads and writes operations it has performed. At the server side, each
item is stored together with its list of dependencies, where each entry in the list
contains the key and the version of the corresponding dependence.

Every time a client reads an item, the client appends the item’s key to its
history with that item’s list of dependencies. When a client wants to write an
item, first it computes the nearest dependency list and then sends it with the
update. If the update was successful a new version is created and, it returns the

11

new version number that the client then adds to its history with that item’s
list of dependencies. After the write finishes the datastore start to replicate it
asynchronously to the other datacenters. When a server receives a remote write
it delays it until all the writes dependencies are visible.

To retrieve multiple values in a causal+ consistent manner, a client issues
read-only transaction with the desired set of item keys. The COPS-GT as pre-
viously mentioned implements the read-only transactions algorithm in at most
two rounds. In the first round, it issues n concurrent read operations to the local
cluster, one for each key listed in the read-only transaction operation. Because
COPS-GT clients commit writes locally and the local data store is linearized, the
local data store guarantees that each of these explicitly listed keys’ dependencies
are already satisfied, therefore the reads on them will immediately return. The
first round of reads returns the corresponding items and the items’ versions and
the list of these items dependencies. The causal dependencies for each item are
satisfied if either the client did not request the dependent key, or if it did, the ver-
sion it retrieved was greater or equal than that item’s version in the dependency
list.

For all the items that not satisfy this condition, the client issues a second
round of concurrent read operations for the greatest version in any dependency
list from the first round. This only happens when there are write operations
racing the reads of the first round. These versions satisfy all the causal depen-
dencies because they are greater or equal to the needed versions. Furthermore,
the second round of reads does not introduce new dependencies because depen-
dencies are transitive and all the new retrieved items depend on the items from
the first round which enables the read-only transaction to finish in at most two
rounds of reads.

Although how the client migration between datacenters are not specified in
COPS-GT, it is still possible for a client to migrate from one datacenter to
another. Since clients hold their entire causal history, once they arrive at the
new datacenter, they can wait until all the required writes are made visible in
the new datacenter before issuing new operations.

RAMP RAMP[18] is an algorithm that enforces a lock-free read-only trans-
action that guarantees the MAV isolation model among transactions within a
datacenter. The authors presented tree variations of the algorithm, that differ
between each other by the size of the metadata and the number of rounds needed
to return a read-only transaction. For brevity, we will focus on the version that
optimizes the number of rounds needed to finish the read-only transaction be-
cause, in our algorithms, we will also favor solutions with smaller number of
communication rounds (instead of algorithms that use smaller metadata size
but more rounds of communication). In this version, the read-only transactions
are guaranteed to finish in at most two round of communication even in the
presence of racing write and read operations.

RAMP assume that each datacenter contains all the data (i.e., they consider
full replication) but the the set of items is spread over multiple servers.

12

RAMP implements write-only transactions that use a two-phase commit pro-
tocol that ensures that if a write of a write-only transaction is visible in one
partition, all the other writes of that transaction are present in the correspond-
ing partitions. This helps to ensure that clients do not stall due to reading an
item written by a transaction that the effects are not yet present in all the corre-
sponding partitions. After receiving a write, the server creates a new version and
responds to the client with a prepared message. The new version is only made
visible if the server receives a commit message from the client. After one server
receives the commit message, the transaction is guaranteed to be committed in
the rest of the servers and cannot be aborted.

In RAMP the client is responsible for guaranteeing that the read-only trans-
action returns a MAV. In the first round, the client issues n concurrent read
operations over the requested item set. The read operation of the first round
returns the item, the transaction number of the write transaction and a list of
the keys of the other items that the write transaction modified. After all the
reads have returned, if the client has read a version of an item that is included
in a write transaction with a higher transaction number, the client begins the
second round of reads for the specific missing version number. This scenario only
occurs if the reads are concurrent with the writes or if the commit message from
the client has not yet arrived at the corresponding server (but has arrived to at
least another server).

A possible optimization is the following: if read request is receive for a version
that is not yet visible, it is safe to make that version immediately visible. This is
safe because a client only requests that version if the corresponding transaction
has already committed (and, therefore, it is safe to make the version visible).

Cure Cure[19] was the first system to successfully support read and write oper-
ations within the same transaction while ensuring causal consistency and MAV
isolation. Furthermore, Cure ensures that reads and writes can be executed us-
ing a single round of communication. In previous systems, such as COPS-GT
and RAMP, read operations need at most two rounds of communication while
guaranteeing only causally consistency or MAV isolation respectively.

Cure has been designed for a geo-replicated key-value store. Cure assumes
that the full set of items is replicated across different datacenters. Moreover, each
datacenter is partitioned, where each partition stores a non-overlapping subset
of the key-space. The client executes all the operations of a transaction in its
local datacenter (i.e., Cure implements sticky availability).

Each partition holds two vector clocks of size equal to the number of datacen-
ters in the system. One vector clock (PVC) is responsible for tracking the remote
updates received from the replicated partitions in remote datacenters. The other
is responsible for maintaining the latest globally stable snapshot (GSS) known
to that partition. The GSS is maintained by the partitions within the same dat-
acenter exchanging their PVCs. The PVC contains the physical clock values of
the commit timestamps, and it is updated in the corresponding entry when a
local or a remote commit is received. Also if no local commits are received within
a threshold, the replica sends a heartbeat to the other replicas.

13

Transactions use a two-phase commit protocol where one of the participating
partitions of the transaction is assigned as the transaction coordinator which is
responsible for committing the client transaction. Before starting a transaction,
the client gets a transaction timestamp from the coordinator. This timestamp is
the max between the entry of that datacenter in the last GSS seen by the client
and the current coordinator physical clock. To ensure that the client’s causal
remote dependencies are satisfied, the coordinator stalls the operations until the
client’s last seen GSS is lower or equal to the coordinator’s GSS. All the client
future reads during the transaction must return version lower than the transac-
tion timestamp and the client buffers all of its writes locally until the commit
phase. During the commit phase, the client sends the buffered write set to the
coordinator that will then propagate to the corresponding replicas. The replicas
will prepare the new version and respond to the coordinator with their current
physical time. The coordinator after receiving all the clock values chooses the
maximum as the commit timestamp and sends it to the corresponding replicas.
As the client’s dependencies are all locally satisfied the effect of the transaction
will be immediately visible to the client.

After locally committed the values are asynchronously propagated to the
other replicas. The remote transaction effects become visible when the GSS ad-
vances past their commit timestamp. This ensures that all causally related trans-
actions are already visible locally because they have a smaller commit timestamp.

In the presence of network partition between datacenters, the observed trans-
action from remote datacenters will be delayed until the network recovers, while
local updates will continue to be made visible.

The client migration is not defined in Cure, however its possible to assume
that the client could migrate to any datacenter. When the client tries to start a
transaction, the coordinator will stall the client until all the causal dependencies
are satisfied.

Eiger Eiger[20] is a distributed key-value storage system that extends the ideas
behind COPS-GT. In addition to lock-free read-only transactions, Eiger intro-
duces write-only transactions which ensure MAV isolation among transactions
(together with a causal consistent view across multiple keys). Like COPS and
Cure, clients transactions are performed in a single datacenter (to which the
client is attached) and the key-value store is fully replicated across datacenters.

Eiger’s read-only transaction algorithm has the same properties as COPS-
GT’s, however, the implementation is different, namely Eiger uses logical time
instead of explicit dependencies to enforce causal consistency. Each partition
in a datacenter keeps an earliest valid time (EVT) and its current logical time
(LVT). EVT is the partition’s logical time when it committed the last visible
operation. As in COPS-GT, each client is responsible for maintaining its causal
history.

The read-only transaction return in at most two rounds. The first round
consists of reading from the partitions that contain the target data objects op-
timistically. The partitions return the current visible value, the earliest valid
time (EVT) and its current logical time (LVT). Once all the first round reads

14

return, this metadata is used to check the consistency. All values are consistent
if the maximum EVT < the minimum LVT. If not, the transaction issues
a second round of reads to the partitions that returned inconsistent values. In
the second round, the client issues a read to a specific timestamp that satisfies
minimum LVT > the maximum EVT, this ensures that all the reads return
and are consistent with the previously read values. The second round should be
rare as it only occurs if a concurrent write operation is committed in the target
partitions during the first round of reads.

Eiger’s write-only transactions allow the client to write atomically across
multiple data objects across multiple partitions without the use of locks. The
write-only transactions are separated between local write-only transactions and
replicated write-only transactions. The local version is used between the client
and the local datacenter and the replicated version is used between datacenters
to replicate the local write-only transactions. Both use a 2PC protocol and as-
sign one of the target partitions of the transaction as the coordinator. In the
local write-only transactions, the coordinator first prepares the writes by send-
ing a prepare message to all the target partitions. These partitions create a new
version of the data items and mark it as pending and respond with a yes vote to
the coordinator. When the coordinator receives all the votes, it sends a commit
message and make the new value visible and respond with an ACK to the coor-
dinator. When the coordinator receives all the ACK, the coordinator ends the
transaction and asynchronously propagates the transaction write by running a
replicated write-only transactions. Upon receiving a replicated write-only trans-
action, the transaction coordinator must first check if all the dependencies are
locally visible. When the dependency check returns, the coordinator proceeds
with a local write-only transaction.

The client migration could be supported in the same way as the COPS-GT
because the client keeps its entire causal history and its operations could be
stalled until all the dependencies are satisfied.

It is important to note that in more than 10% write workloads Eiger has
a very poor performance [19]. This is probably due to the overhead of the de-
pendency checks of the remote updates and the read transaction probably need
always two round of communication.

Clock-SI Clock-SI[21] is an algorithm that enforces Snapshot isolation (SI)
using loosely synchronized clocks in a partitioned Data Stores. Most of the pre-
vious solutions that implemented SI in a distributed system relied on a central-
ized timestamp authority that managed the assignment of commit timestamps.
However, this centralized authority introduced a single point of failure and could
be a bottleneck in heavy workloads. Clock-SI overcame this problem by remov-
ing the timestamp authority, using instead loosely synchronized clocks to order
transactions commits.

Clock-Si’s read transactions return a consistent view of multiple keys across
multiple partitions from a consistent snapshot. Moreover, as the Cure’s read
transactions, also return in only one round of communication.

15

However, using clocks to achieve a consistent snapshot manifests as a chal-
lenge for two major reasons. First, clock skew can cause snapshot unavailability,
this occurs when a partition P; issues a read transaction 77 with the snapshot
timestamp of ¢ to a partition P, that is in snapshot ¢t — 6, where 6 is the amount
the Ps clock is behind P;’s. Therefore the Snapshot ¢ is not yet available in Ps,
and if a local write transaction in P, commits between ¢ — 6 and ¢ this change
must be included in T3’s snapshot. Second, a pending commit of a write trans-
action can cause a snapshot to be unavailable. If a write transaction T} with a
snapshot timestamp ¢ that updated the value of x, and started a commit opera-
tion at ¢’ and finished the commit at ¢, where t < t’ < ", if a read transaction
T, starts with snapshot timestamp between ¢ and #” and tries to read =z, it
should not return the value written by 77 because it is not certain if the commit
will succeed, however we also cannot return the earlier value, because, if T3’s
commit succeeds, this older value will not be part of a consistent snapshot at ¢”.

Both examples are instances of a situation where the snapshot specified by the
snapshot timestamp of a transaction is not yet available. Clock-SI deals with this
problem by delaying the read operation until the snapshot becomes visible. In
both cases, delaying a read operation does not introduce deadlocks, an operation
waits only for a finite time until a commit operation completes, or a clock catches
up. A possible optimization to reduce the probability and the duration of the read
operation being delayed is by assigning a slightly older snapshot timestamp to
the read transactions, having a cost that the read transaction return more stale
data. This could the achieved by assigning to the read transaction a snapshot
timestamp lower than the most recent timestamp snapshot by A. If we want the
most recent data, the A needs to be set to 0. On the other hand, if we want to
reduce the probability of the read operation being delayed, we could set the A
to the maximum between the time required to commit a transaction to stable
storage synchronously plus one round-trip network latency, and the maximum
clock skew minus one-way network latency between two partitions.

The write transactions in Clock-SI are very similar to the Cure’s [19], and
the only difference is that the Clock-SI concurrent write transaction over the
same items abort this is to ensure a much stronger isolation model (SI) than
the Cure’s causal consistency with MAV isolation.

SwiftCloud SwiftCloud[17] is a distributed data storage systems. A significant
contribution of SwiftCloud is the ability to cache some items at the periphery
network. Client nodes cache a subset of the items which reduces the latency and
supports operations locally even in the presence of network partitions and failed
datacenters.

SwiftCloud provides transactions with causal+ consistency and Monotonic
Atomic View (MAV) as defined in section 3 supporting the merge of updates
from concurrent transactions, instead of the more common last write wins policy.
To achieve causal+ consistency clients maintain a session with the datacenter
to ensure causality. In SwiftCloud the data objects are fully replicated across
datacenters. However, the client maintains a cache that could be considered
partial replication.

16

The client reads and writes over items in the client’s local cache. Writes
are then propagated to the client’s local datacenter, that finally propagates the
updates to the other clients and datacenters.

The client maintains a vector clock with an entry containing the most re-
cent version number of the cached data items for each datacenter and, an entry
containing the causal history of the client.

The transactions implemented in SwiftCloud are interactive, as in Cure [19]
read and write sets are not predetermined and in the transaction could contain
read and write operations. The read operation gets the locally available value
and adds it to the client’s history. A sequencer module at the datacenter in
responsible for assigning the transaction identifiers. Making this centralized au-
thority a performance bottleneck as well as a central point of failure. The update
operation logs its updates when the transaction commits it writes the operation
logs to stable storage locally and updates the client’s vector clock with the com-
mit timestamp of the transaction. Asynchronously these updates are propagated
to the datacenter by their chronological order, after receiving it, the datacenter
reassigns the timestamp with its logical clock and makes the update visible for
the rest of the clients.

The datacenter has the client’s current vector clock and only sends the up-
dates that the client has not seen yet. When the client wants to add an object
to its cache, it must first notify his local datacenter so that from that point on
it could receive the updates for that object.

Orbe Orbe[22] is a distributed key-value store that provides read-only trans-
actions using loosely synchronized clocks with causal consistency. Orbe requires
one round of messages to execute a read-only transaction in the failure-free mode
while COPS-GT requires maximum two rounds. Also, Orbe only tracks the near-
est dependencies at the client side, compared to COPS-GT that the client has
to track all the dependencies explicitly.

The key-value store is fully replicated across datacenters. Each datacenter
is divided into N partitions, one per server and there are M different replicas.
Clients performs the operations in a local datacenter.

The client keeps track of its causal history by maintaining a dependency
matrix (DM,.) with N rows and M columns and a physical dependency time
(PDT.). PDT, is the most recent update timestamp that the client depends on
its session.

Each partition maintains a version vector (VV'), which consists of M non-
negative integer elements, that correspond to a logical clock of updates received
from the replicas and the local updates. Also, every partition maintains a physical
vector clock (PVV) with one entry for each replica containing the correspond-
ing last seen physical clock value, to maintain this clock every partition sends
periodically a heartbeat containing its current physical clock value.

When the client issues an update to an object, the client sends with the
request its PDT, and DM to the local server responsible for the partition. The
partition upon receiving the request waits until its clock is greater than the
PDT,, this ensures that all the causal dependencies of the client are satisfied

17

before the update occurs. Then the partition creates a new version of the data
object timestamped with the current physical clock value and the logical clock
value. Attached to the new version is the DM,, that afterward will be used on
replication. The timestamp is then returned to the client that updates its PDT,
to the maximum between the received physical timestamp and its current PDT,.

After the update to an object occurs, the server propagates the new version
with the corresponding metadata. The receiving server uses the DM and the
V'V to verify the dependencies. It looks at the corresponding row of the same
replicas and compares it to the VV. If all the values in V'V are greater than
or equal to the corresponding entries in the DM the server can go to the next
step. If not, it means that the operation depends on other operations that the
current datacenter may not store. So, the server contacts the corresponding
servers, making an explicit dependency check. If they fulfill the dependencies,
the remote update can be made visible and the corresponding vectors (V'V and
PVV) entries updated.

When the client issues a read-only transaction, it sends a read set to one
partition. The partition upon receiving the request associates to the transaction
a snapshot timestamp, similarly to [21] the snapshot timestamp (ST) is the
current physical clock value minus A, where A is some positive number usually
the time of one network round-trip. This reduces the probability of the read
operation being delayed and the duration of the delay. If the partition does
not contain an item from the transaction read set, the partition reads from
another local partition that contains the item. However, before that partition
could read the item it must first delay the read until two conditions hold: first
the transaction ST must be lower than the partition current clock value, second
the transaction ST must be lower than the partition’s PVV. When the two
conditions hold, the partition responds with the highest version of the item that
is lower than ST. After all the reads finish, the client receives a set of values
from the requested items and updates the PDT, to the maximum of all retrieved
items timestamp and the current PDT,.

However, this creates a problem in the face of failing servers or network par-
tition between datacenter, as the transaction read is delayed until ST < PVV,
this means if a partition fails and stops sending heartbeats the transaction needs
to be stalled until the partition recovers, because the replica is uncertain that
all the dependencies are satisfied. To mitigate this problem when a transaction
is delayed past some threshold, the transaction ST is changed to a lower value.
This will return a more stale data in favor of reducing the delay of the read op-
eration. However, if the downtime is very high, no useful progress will be made
until the partition recovers, so to mitigate this problem Orbe changes to a failure
mode. This mode uses a two-round read similar to Eiger [20] ensuring that more
recent data is returned and the system progresses.

GentleRain GentleRain[23] is a causally consistent key-value store that imple-
ments causal consistent read-only transactions. The contribution of this system
is that it uses a physical timestamp to track dependencies which reduce the com-

18

munication and storage overhead and eliminates dependency check messages for
updates improving throughput compared to COPS-GT and Orbe.

The clients only have to store two timestamps, a physical dependency time
(PDT,) as in Orbe and the last seen global stable time (GST¢).

The server only maintains a physical vector clock (PVV') with one entry for
each replica containing the corresponding last seen physical clock value and a
GST. The lowest entry in the PV'V is designated as local stable time LST, that
is a lower bound of all the updates visible in all the replicas.

GST is the lower bound on the minimum LST of all partitions in the same
datacenter. This value could be calculated by the partitions at the same data-
center periodically exchanging between each other their LST. However, merely
exchanging the LST between could be a bottleneck and limits the scalability
in the presence of a high number of partitions. To efficiently derive the GST
GentleRain uses a tree. Child nodes send their LST to the parent node, upon
receiving all the LST from the children it sends the lowest one to its parent
node and this process repeats until the root node receives all the LST'. The root
node then calculates the GST and pushes it down the tree, saving the number
of messages needed to calculate the GST.

GentleRain’s update operation the client only sends its PDT.. The server
stalls the update until its clock is greater than the PDT, received. Afterward,
creates a new version assigned with the update timestamp and updates the
PVV. The server returns the update timestamp to the client and propagates
the update to the replicas.

The server upon receiving a remote update, the server creates a new ver-
sion. However, this version is not visible to local clients until the partition GST
becomes more significant than its update timestamp.

When the client issues a read-only transaction to any server in the client’s
local datacenter, this server will act as the transaction coordinator. The request
contains the item set, the client’s GST, and PDT,. If the coordinator’s GST is
lower than the GST,, it updates the GST and starts requesting the item with a
timestamp lower than the GST to the corresponding partitions. The coordinator
returns the collected item values with the maximum update timestamp and the
maximum GST. Upon receiving the reply, the client updates its dependency
time and the GST..

However using the read operation it is possible that a client could read an
item that is not yet in the GST, and so the read-only transactions will violate
the causal consistency. If the PDT,. and GST, are only apart by some defined
threshold, the coordinator delays the read until the PDT, < GST,, in the case
that the difference is greater than the threshold then the coordinator will use
the protocol used in Eiger [20] for causally consistent read-only snapshots.

Yesquel Yesquel[24] is a key-value store that in the other end of the spectrum
from the system mentioned above because in opposite to all the systems that
offer very high availability sacrificing all the interesting features that relational
databases provided such as ACID transactions, joins, between clauses, and oth-
ers. The Yesquel provides all the features of a SQL relational database, however

19

scales as well as NoSQL in the same type of workload. To support this type of
operations efficiently in a distributed fashion, Yesquel implements a distributed
balanced tree (DBT) heavily inspired in a B+Tree. DBT consists of a tree where
the nodes are spread across servers, the leaf nodes of the tree contain the values
and the keys, and the interior nodes stores keys and pointers to other nodes.

Clients cache the inner nodes of the tree locally. This works because B+tree
have a large fan-out and relatively few inner-nodes. Caching the tree allows the
clients to search in the tree locally and only need to contact the leaf node, and
so reducing the number of messages needed. However, the cache of the client
becomes outdated as the tree is dynamic and changes over time as the nodes are
split or merged due to insertion, deletion or replication. To solve this problem
each node holds a fence interval, that is the lowest and the highest value key
that the node contains, before fetching from the leaf node the client request a
fence interval test, if the key is in the fence interval the client can proceed with
the operation. If not the client goes up the tree to test the parent nodes until it
finds a node that contains the wanted key, at the same time the client updates
its tree locally in the cache, due to the nature of this type of trees the upper
nodes rarely change and in the majority of time it can rebuild only a part of the
cache without needing to fetch the whole tree again. When the client finds the
node that satisfies the fence interval, it starts going down the tree and updating
its local cache until reaching the leaf node.

Unlike a normal B+tree that split due to a tree node being overfull or empty,
the Yesquel also slips overloaded nodes. This operation is called load splits.
Yesquel estimates the workload of the node by keeping track of the number of
accesses to partitions. If a node is overloaded, the node is split according to the
estimated workload as each node receives approximately half of the workload.
However is possible that one key is extremely popular, and no optimal split
could be done, so the key is replicated and the node is split according to that
key, to the lower bits of the key are attached random numbers and the client
when searching for key also attaches some random generated number allowing
to split the load between replicated keys.

Each client has a query processor making processing capacity increase linearly
with the number of clients, which allows the system to scale well even with a
high number of clients.

Yesquel’s read-only transaction do not block or abort. To improve latency,
the client acts as the transaction coordinator. As the state of the coordinator
is irrelevant for the transaction outcome, the system can recover from fails by
running periodically a function that checks the pending transaction and aborts
them in cases of detecting falling servers or coordinator. Yesquel uses physical
clocks to order operations similarly to the clock-Si, however, uses a much stronger
2PC with locking for write operations. Making Yesquel perform very poorly in
write-heavy workloads.

ChainReaction ChainReaction[25] is a geo-distributed key-value data store

that offers causal+ consistency, as the name suggests it was developed on top
of chain replication[26]. ChainReaction supports causal read-only transactions.

20

However in contrast to other systems such as COPS-GT that assume lineariz-
ability inside the datacenter. That is all the reads are performed in the tail of
the chain. In contrast, ChainReaction allows the read operation in the middle
of the chain without breaking causal consistency and so improving the overall
throughput.

The client tracks its causal history by maintaining a table with one entry
for each item viewed during the client session. This entry contains the item’s
version and the chain index vector. The chain index vector contains an identifier
that captures the position on the chain from where this item was last read, one
entry per datacenter. All the read operation that the client does must have this
metadata attached to the request.

The client update request must contain the key of the object, the new value,
and a compression of all the read objects by the client since the last update. This
update is forwarded to the chain head node that assigns a new version number
to the update and then propagates to the following nodes. When the update is
replicated in at k£ nodes then the update is denominated as a k-stable update.
Only then, that the update result is returned to the client with the new version
number and index of the last node that turned the update k-stable. When the
update reaches the tail of the chain, it is denominated DC-Write-Stable.

After the chain head assigns a new version number to the update, this up-
date is scheduled for replication and then propagated in batches to the other
datacenters. To ensure that the update respects the causal history of the client,
it is only visible after all the versions of the objects that this update depends
are DC-Write-Stable in that datacenter.

When the client issues a read operation to the local datacenter and the chain
length of the datacenter is equal to the chain index entry, every node in that chain
can answer the request without needing to wait for a remote update. Otherwise,
the request could be answered by all the nodes until the one that is specified in
the chain index. However, as the updates are propagated asynchronously, it is
possible that the item version that the client wants to read is not yet present in
the head of the chain. So the head of the corresponding object in that datacenter
needs to wait for the remote update or redirect the client to a datacenter that
has that version number of the object.

The implementation of read-only transaction uses a sequencer process per
datacenter. This sequencer is used to order all the put operation and reads that
are part of a read-only transaction. The sequence number process maintains a
different sequence number for each chain. To ensure that the client read objects
respecting causal+ consistency even when updates are applied concurrently and
without blocking update operations, ChainReaction keeps multiple versions of
the same object. When the client issues a read transaction, it first must request
the sequence number for each chain that contains the targeted objects. This
sequence number is assigned by the sequencer and issues an individual read for
the heads of the chain that contain the objects. The object returned has the last
update sequence number, lower than the number assigned to the transaction.

21

Due to the asynchrony of the system is possible that the sequencer will order
a put operation before the transaction and the value is not yet available in the
head of the chain. This could be mitigated by stalling the read transaction until
the write becomes visible or a timeout occurs leading to a transaction abort. It
is also possible that the client has a dependency on an object read in a different
datacenter that is not yet visible. In this case, the transaction is aborted and
retried in a two-phase procedure. First, all the dependencies that have failed are
verified by using a blocking read operation that blocks until the tail of the chain
contains the object makes visible the version from which the client is dependent.
Afterward, it reissues the transaction, and it is guaranteed to succeed, it is
important to note that this case is very slow compared to the normal version.

4.1 Comparison

In this section, we will focus on comparing the advantages and the compro-
mises of each strategy. We will subdivide this section by the type of isolation
and consistency. However this comparison is not trivial due to different systems
having different types of consistency and transaction isolation guarantees, so to
do a reasonable comparison between the systems this section will be subdivided
in comparing different techniques. Table 1 summarizes this information.

Techniques From the systems in the related work, we can point four different
techniques. The techniques used are explicit checks (COPS-GT, Orbe, RAMP,
Eiger), stabilization (Cure, Clock-SI, GentleRain), sequencer (ChainReaction,
SwiftCloud) and explicit locks (Yesquel).

Explicit checks have the disadvantage of large size metadata and the over-
head of verifying the dependencies explicitly that lower the overall throughput.
System’s that achieve MAV isolation (RAMP, Eiger), need at most two rounds
of communication for the read-only transaction to return.

Stabilization uses loosely synchronized clocks to derive a GSS. The servers
somehow need to exchange their clock values to derive a GSS. The two archi-
tectures used by the systems to exchange the clock values are a star architec-
ture (Cure, Clock-SI) where all the servers in a datacenters exchange messages
periodically between each other to derive the GSS, the other is to use a tree ar-
chitecture (GentleRain) where the child nodes only exchange clock values with
the parent in the tree. Using a tree reduces the number of messages needed
to be exchange compared to a star architecture, on the other hand, the tree
needs to be rearranged in case of falling nodes to ensure that the system can
progress. This snapshot could contain some stall data. However, it improves over-
all performance and throughput because the transaction always returns in only
one round of communication. Using loosely synchronized clocks also reduces the
overall metadata, and it does not require explicit checks.

Sequencer uses a central authority through which all the updates must pass
in order to give a global order. Having the advantage of reducing metadata size.
However, increases the latency of all update operations by one round-trip, this
centralized authority acts as a bottleneck and limits the overall throughput.

22

Isolation Communication rounds

Systems Technique Transaction Causality Metadata
model of Read-Only Transaction
Explicit
COPS-GT F Read-Only v’ - O(K) at most 2
Check
Explicit Read-Onl,
RAMP bt ead-Only/ MAV O(K) at most 2
Check ‘Write-Only
MAV,
Cure Stabilization Interactive v’ Gt o(M) 1
Explicit Read-Onl,
Eiger xphct ea nly/ v’ MAV O(K) at most 2
Check ‘Write-Only
Clock-ST Stabilization Interactive v’ SI 0O(1) 1
MAV,
SwiftCloud Sequencer Interactive v’ Lol o(M) 1
Explicit
Orbe XA Read-Only v - ONxM) 1
Check
GentleRain Stabilization Read-Only v’ - O(1) 1
Yesquel Explicit Locks Interactive v’ SI O(K) 1
ChainReaction Sequencer =~ Read Only Vv’ - o(M) 1

Table 1. Comparison of the different solutions. K is the number of all objects in the
system, N is the number of partitions and M is the number of replicas.

Explicit locks do not require metadata to be exchanged. However, it signifi-
cantly limits the throughput of write operations due to the need for transactions
to be aborted if in the presence of a deadlock or concurrent accesses to the same
data items.

All the systems mentioned above used multi-version concurrency control
(MVCC) to improve concurrency of read and write operations. Also, it pre-
vents a read transaction from aborting due to a concurrent write that overrides
the required version. However, requiring more storage and having a computation
overhead to garbage collect the old versions. Also, all the systems that provided
causal consistency required a session between a server and a client. The only
system that did not require a session was RAMP because it does not provide
causal consistent reads.

4.2 Shortcomings of Current Approaches for Edge Computing

First of all, it is important to note that all the systems mentioned were
designed to solve specific problems and in a specific context.

The majority of systems above assume that the data is fully replicated. We
cannot provide full replication in the edge due to the nodes having much less
storage compared to datacenters. The solution needs at least to implement par-
tial replication support, and this creates many challenges due to the large size
of the metadata needed to provide any consistency or isolation level between
transactions.

23

Taking this into account, adopting explicit checks has many limitations, es-
pecially the metadata size is much greater due to the higher number of nodes,
and the data being partially replicated. Even the more straightforward approach
of RAMP that doesn’t guarantee causality would not be feasible in the context
of the edge due to the large size of metadata.

Stabilization, on the other hand, has much less metadata however requires
a high amount of communication between the nodes to derive the GSS. This is
more problematic in the context of the edge due to poorer network infrastruc-
ture and a higher number of nodes compared to the communication inside the
datacenters. The propagation of clock values by using a start architecture would
probably overload the network in contrast the tree architecture could be viable
due to a much fewer number of messages needed to calculate the GSS.

Using a sequencer to order the updates has similar limitations to the other
strategies. As described above the sequencer strategy has a bottleneck in the
form of an ordering authority, this bottleneck is emphasized due to a higher
number of nodes.

In the edge with partial replication is more likely that a client will update
the same item concurrently with another client connected to another edge node
making some isolation levels too strong for our context, such as SI (Clock-SI and
Yesquel) for not tolerating concurrent updates on the same data items, forcing
the transaction to abort.

So we need to define what the isolation level and consistency we want to
support. MAV seems to be the more viable option to be implemented in the
edge, however using the two rounds of communication will not work due to the
geographical distance and poor network infrastructure that will increase latency.
So reading from a snapshot could be a more viable option due to requiring only
one round of communication. However, it will not work as is due to the higher
cost to derive the GSS.

5 Architecture

5.1 Consistency Model and Base Techniques

In this section, we will discuss the modifications that need to be made to
support partial replication in a geo-distributed setting. The chosen architecture
for our solution is a tree, where the root of the tree is the datacenter and the
partitions of the datacenter are partially replicated across the rest of the tree
nodes (Figure 6). The parent node always contains all the partitions from its child
nodes. This strategy facilitates the propagation of updates and the migration of
the clients that we will discuss later.

Our solution will implement transactions that guarantee Monotonic Atomic
View (MAV) and respect causal consistency. We opted to guarantee MAV as it
does not require to compute a GSS. The GSS is too expensive to compute in
the context of edge computing, the visibility latency would be too significant
and the transaction read would return to stale data. Our solution will use vector

24

Fig. 6. Connections between all the system components.

clocks with every entry containing the physical clock value of the commit and the
nearest causal dependency. We will have this vector for each of the partitions,
and the size of the vector will be the number of replicas of that partition. We
opted to use a vector clock instead of only a physical clock like in GentleRain,
due to our need for supporting partial replication. Using only one scalar would
introduce too many false dependencies and having a significant impact on the
visibility latency. So we will trade-off memory space at the server and client side
to give a significantly lower visibility latency. To ensure this locality the client
would be attached to an edge node by a session, and when needed it will be
migrated to another node. We will discuss more in-depth the client migration
and the operations exported to the user next.

5.2 Client Migration

In this section, we will describe how and when the client will be migrated
to another edge node and what is the criteria to choose the new node. This
architecture was designed having in mind the geographic locality of the data.
This means that the users from the same region usually access the same data
and migrations to other nodes is not that frequent. However, in the case that a
node receives an operation to update or read an item that it does not contain,
the node redirects the client to another node that contains all the necessary
items by going up the tree. Before the client could execute an operation, the
node needs to guarantee that all client’s causal dependencies are satisfied and
visible. This is achieved by delaying the operation until the remote updates that
the client depends on are made visible. From that point forward, the client will
use this node as its local node. This approach has a few problems, namely if
a set of keys turns very popular the majority of the clients would migrate to
a few specific nodes that contain all the items, overloading them and leaving
other nodes down the tree in an idle state or under-loaded. One approach that
could be implemented is to run a distributed transaction across a set of edge

25

nodes that globally contain the set of items needed, and this has an added cost
of coordination and more than one round communication. However it is possible
that the nodes are too far apart, and the latency is too high to do this type
of coordination, in this case, a more viable strategy would be if a set of keys
continue to be very popular they can be replicated in the lower nodes of the
tree, this avoids doing the very costly distributed transaction.

5.3 Supported Operations

In this section we introduce a set of operations that are vital to solve the
proposed problem.

Read-Only Transaction The client requests a set of items from the local edge
node. This node checks if it has all the needed objects and if so replies with the
requested item values that have a version timestamp lower than the current clock
values minus some 4, upon receiving the response the client updates its causal
history. If not, it starts a client migration to a different node that contains all
the items requested by the client.

Write-Only Transaction The client sends a set of items and the new values
to the local edge node, this node checks if it has all the needed objects and if so
creates a new version of the items and timestamps it with the current physical
clock value, and returns to the client the timestamp and asynchronously starts
to propagate the updates to the other replicas. If not, it starts a client migration
to a different node that contains all the items affected by the transaction.

Remote update When a node receives a remote update, it delays the operation
until the node receives all the causal dependencies of the update. When all
the dependencies are satisfied, the update creates new version of objects. If we
assign the original update timestamp of the update it is possible that due to
network latency or clock skew, that a read transaction would read partially the
transaction and violate MAV isolation. Therefore, our solution is to assign the
current clock timestamp value rather than the original update timestamp. This
approach provides MAYV isolation without having to do the expensive two rounds
read.

6 Evaluation

The evaluation process will focus on three topics: i) performance on the
delivery of updates; ii) visibility latency; iii) fault tolerance.

6.1 Performance

We will measure the performance of the system by measuring the throughput
of the system. More specifically the number of remote updates that become
visible over a period of time. Also, we will measure the time that it takes to
migrate a client from one node to other until it can resume a normal operation.

26

6.2 Visibility Latency

It is important to measure how our solution will affect the visibility latency of
remote updates. More specifically, the time that it takes from receiving a remote
update until it becomes visible.

6.3 Fault Tolerance

To measure the performance of our system in the presence of network parti-
tion and failing nodes. Most importantly we need to guarantee that our solution
does not stops the system in this conditions. Therefore, we will compare the
difference between the time it takes for remote update to become visible in dif-
ferent availability scenarios (i.e., normal execution, network partition, and failing
nodes).

7 Scheduling of Future Work

Future work is scheduled as follows:

— January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

— March 30 - May 3: Perform the complete experimental evaluation of the
results.

— May 4 - May 23: Write a paper describing the project.

— May 24 - June 15: Finish the writing of the dissertation.

— June 15 Deliver the MSc dissertation.

8 Conclusions

As the number and power of the devices that are connected to the cloud grows
and produce an enormous amount of raw data, and shipping all these data to a
central datacenter may be unfeasible. These new requirements have motivated
the need to support edge computing[1], a model where the service provided by
cloud datacenter is complemented by a set of smaller servers located closed to
the edge of the network.

In this report, we surveyed the most important weak consistency models and
the main techniques that have been proposed to support weak forms of transac-
tions in a distributed environment, we elaborated a solution that supports weak
transaction in the edge with little impact on performance compared to normal
causal consistency without transaction, however with much greater consistency
guarantees. Finally, we presented our evaluation methods and the schedule of
future work.

27

Acknowledgments We are grateful to Manuel Bravo for the fruitful discussions
and comments during the preparation of this report. This work was partially
supported by Fundagao para a Ciéncia e Tecnologia (FCT) and Feder through
the projects with references PTDC/EEI-COM/29271/2017 (Cosmos) and UID/
CEC/ 50021/ 2019.

References

10.

11.

12.

13.

14.

15.

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges.
IEEE Internet of Things Journal 3(5) (October 2016) 637-646

Okay, F.Y., Ozdemir, S.: A fog computing based smart grid model. In: Proceedings
of the International Symposium on Networks, Computers and Communications,
Yasmine Hammamet, Tunisia (May 2016)

Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings
of the 19th Annual ACM Symposium on Principles of Distributed Computing,
Portland, OR, USA (July 2000)

Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc. (1987)
Abramova, V., Bernardino, J.: Nosql databases: Mongodb vs cassandra. In: Pro-
ceedings of the 5th International C* Conference on Computer Science and Software
Engineering, Porto, Portugal (July 2013)

Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3) (July
1990) 463-492

Lamport, L.: On interprocess communication. Distributed Computing 1(2) (June
1986) 86-101

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (July 1978) 558-565

Vogels, W.: Eventually consistent. Communications of the ACM 52(1) (January
2009) 4044

Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions: Virtues and limitations. In: Proceedings of the 39th Inter-
national Conference on Very Large Data Bases, Trento, Italy (August 2013)
Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distributed Computing 9(1) (March
1995) 37-49

Brzezinski, J., Sobaniec, C., Wawrzyniak, D.: From session causality to causal con-
sistency. In: Proceedings of the 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, Coruia, Spain (February 2004)

Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: Scalable causal consistency for wide-area storage with cops. In: Proceedings
of the 23rd ACM Symposium on Operating Systems Principles, Cascais, Portugal
(October 2011)

Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., O’Neil, P.: A critique
of ansi sql isolation levels. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Jose, CA, USA (May 1995)

Das, S., Agrawal, D., El Abbadi, A.: G-store: A scalable data store for transactional
multi key access in the cloud. In: Proceedings of the 1st ACM Symposium on Cloud
Computing, Indianapolis, IN, USA (June 2010)

28

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Chan, A., Gray, R.: Implementing distributed read-only transactions. IEEE Trans-
actions on Software Engineering 11(2) (February 1985) 205-212

Preguica, N., Zawirski, M., Bieniusa, A., Duarte, S., Balegas, V., Baquero, C.,
Shapiro, M.: Swiftcloud: Fault-tolerant geo-replication integrated all the way to
the client machine. In: Proceedings of the 33rd IEEE International Symposium on
Reliable Distributed Systems Workshops, Nara, Japan (October 2014)

Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Transactions on Database Systems 41(3)
(August 2016) 1-45

Akkoorath, D.D., Tomsic, A.Z., Bravo, M., Li, Z., Crain, T., Bieniusa, A., Preguiga,
N., Shapiro, M.: Cure: Strong semantics meets high availability and low latency. In:
Proceedings of the 36th IEEE International Conference on Distributed Computing
Systems, Nara, Japan (June 2016)

Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Stronger semantics
for low-latency geo-replicated storage. In: Proceedings of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation, Lombard, IL, USA
(April 2013)

Du, J., Elnikety, S., Zwaenepoel, W.: Clock-SI: Snapshot isolation for partitioned
data stores using loosely synchronized clocks. In: Proceedings of the 32nd IEEE
International Symposium on Reliable Distributed Systems, Braga, Portugal (Oc-
tober 2013)

Du, J., Elnikety, S., Roy, A., Zwaenepoel, W.: Orbe: Scalable causal consistency
using dependency matrices and physical clocks. In: Proceedings of the 4th ACM
Annual Symposium on Cloud Computing, San Jose, CA, USA (October 2013)
Du, J., Torgulescu, C., Roy, A., Zwaenepoel, W.: Gentlerain: Cheap and scalable
causal consistency with physical clocks. In: Proceedings of the 5th ACM Annual
Symposium on Cloud Computing, Seattle, WA, USA (November 2014)

Aguilera, M.K., Leners, J.B., Walfish, M.: Yesquel: Scalable sql storage for web
applications. In: Proceedings of the 25th Symposium on Operating Systems Prin-
ciples, Monterey, CA, USA (October 2015)

Almeida, S., Leitao, J.a., Rodrigues, L.: Chainreaction: A causal+ consistent data-
store based on chain replication. In: Proceedings of the 8th ACM European Con-
ference on Computer Systems, Prague, Czech Republic (April 2013)

Van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput
and availability. In: Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation, San Francisco, CA, USA (December 2004)

29

