Efficient Implementation of Causal Consistent
Transactions 1n the Cloud

(extended abstract of the MSc dissertation)

Taras Lykhenko
Departamento de Engenharia Informtica

Advisor: Professor Luis Eduardo Teixeira Rodrigues

Abstract—Distributed key-value storage systems, which offer
weak coherence models, have emerged as a strategy for increasing
the performance and scalability of systems in the cloud. However,
weak consistency makes application development difficult, and
there is a keen interest in offering other coherence models that
are useful to developers without compromising scalability. The
Transactional Causal Consistency (TCC) model is particularly
relevant in this context. In this article, we introduce FastCCS, a
new algorithm to support TCC in fewer communication rounds
than previous work. Experimental results, in which we compare
the performance of FastCCS with the performance of other
systems proposed in the literature, show that FastCCS can
support a rate of higher than the previous systems.

I. INTRODUCTION

In this work, we consider a system in which applications are
structured in read and write sequences of operations, which we
refer to as transactions, which access data held in a key-value
storage system. Concurrent execution of these transactions,
without adequate concurrency control mechanisms, may yield
different results than desired due to the chaining of multiple
distinct transaction operations [1]. Strong coherence models,
such as serializability [2], avoid this problem by ensuring that
the result of concurrent transaction execution is equivalent
to a serial execution of these transactions. Unfortunately,
mechanisms that ensure serialization are either blocking or
cause transactions to abort and rerun, severely limiting the
performance of storage systems [3].

Due to the performance issues inherent in traditional trans-
actional systems, the first key-value storage systems to support
cloud application execution gave priority to performance and
scalability [4], supporting only very weak coherence models,
such as eventual consistency [5]. However, experience has
shown that these models make application development dif-
ficult [6], so there is a keen interest in finding new coherence
models and techniques to support these models that are useful
to programmers without compromising scalability [7]. The
Transactional Causal Consistency (TCC) model is particularly
relevant in this context. This coherence model extends the

This work was supported by national funds through Fundao para
a Cilncia e a Tecnologia (FCT) as part of the projects with refer-
ences UID/CEC/50021/2019 and COSMOS (financed by the OE with ref.
PTDC/EEICOM/29271/2017 and by Programa Operacional Regional de Lis-
boa in its FEDER component with ref. Lisbon-01-0145-FEDER-029271).

Causal Coherence model, initially defined for single opera-
tions, allowing applications to read multiple objects from a
causal snapshot and to perform atomic writing of multiple
objects. The relevance of this model stems from the fact that
causal consistency is the strongest consistency model that can
be supported without compromising system availability in the
presence of network failures or partitions [6].

It is worth to underline that, even in a centralized system,
the effects of concurrent execution already make it difficult to
offer guarantees of consistency, distribution further amplifies
this complexity [8]. In particular, if different keys are stored on
different nodes, the risk of a client reading incoherent versions
is greater, as it is in practice impossible to ensure that the
multiple effects of a single transaction are visible at the same
time on all servers [8]. However, the ability to deploy, and the
opportunity to partition data, and to store different partitions
on different servers is crucial to ensuring the performance
and scalability of cloud storage systems as it enables different
requests to be processed in parallel by different servers, despite
the complexity of the distribution [9].

TCC systems use non-blocking algorithms, which use con-
trol information (metadata), which is written, read, and stored
together with the data, to verify whether the transaction has
read from a causal cut. If the transaction has not made a
mutually coherent set of readings, the transaction may be
required to read new versions of the data (and this may
occur more than once). The size of the metadata held by the
algorithm has a significant impact on system performance.
On the one hand, the larger the metadata volume, the less
efficient the system is, as it can consume a not-insignificant
fraction of system resources. On the other hand, a larger
amount of metadata allows for greater accuracy in identifying
the causal cut and can avoid redundant read rounds. Many
systems choose to reduce the size of metadata by creating
what we call false dependencies; that is, metadata indicates
that two operations can be causally related when they are not.

In this article, we introduce Fast Causal Consistent Snapshot
(FastCCS), a new algorithm to support TCC. FastCCS explores
a new combination between the degree of concurrency the
system offers, the size of the metadata, and the number of
communication steps required to execute a transaction. In
particular, while previous TCC algorithms require the storage

system to be linearizable (which limits its parallelism) or to
perform multiple communication rounds to read a consistent
snapshot. In contrast, FastCCS offers TCC on partitioned
storage systems using only two communication rounds in the
worst case. Besides, when exposed to load profiles dominated
by read transactions, FastCCS executes most transactions in
just one round of communication. This is achieved by using
metadata whose size is linear with the number of partitions in
the system, more precisely by using vector clocks that have
an entry for each partition of the key-value storage system.

II. BACKGROUND
A. System Components

Clients connect to a nearby datacenter, and applications
strive to handle requests entirely within that datacenter. Inside
the datacenter, client requests are served by a front-end web
server. Front-ends serve requests by reading and writing data
to and from storage tier nodes.

In order to scale, the storage cluster in each datacenter is
typically partitioned across 10s to 1000s of machines. As a
primitive example, Server 1 might store and serve user profiles
for people whose names start with ‘A’, Server 2 for ‘B’, and
so on. As a storage system, FastCCS’ clients are the front-end
web servers that issue read and write operations on behalf
of the human users. When we say, “a client writes a value”,
we mean that an application running on a web or application
server writes into the storage system.

B. Causal Consistency

The causal dependencies of an operation are determined
by happened-before relations (~~) [10], which are defined by
three rules:

o Thread of Execution. If ¢ and b are two operations
executed by the same thread of execution (for instance,
by the same client), then a ~~ b if a happens before b.

o Reads From. If a is an update operation and b is a read
operation that reads the value set by a, then a ~~ b.

o Transitivity. If a ~ b and b ~~ ¢, then a ~~ c.

Whether w,(k,) and wy(kp) are two write operations on
the same or two separate keys, k, and kj. Let r,(k,) and
rp(ky) be two read operations by the same client, where 7,
is executed before 7, and where r, returns the value written
by w, e rp returns the value written by w;. A storage system
is said to be causally consistent if in the case that w, ~~ wy
there is no write wj, on the k key such that wy, ~» wj ~ w,.

C. Transactional Causal Consistency

Causal consistency is defined for individual operations,
regardless of how they are related, allowing sequences of read
and write operations which results may not be as expected
by programmers. Consider for example two write transactions
T' = wl(ks),wi(ky) and T? = w?2(k,),w?(ky) where
T! ~~ T? and two read transactions 7% = 73(kp),73(k,)
and T* = rl(k,),r}(kb). Causal consistency guarantees that
in case that T reads the value of k; written by T2 then, later

it should read k, written by T2 (and not the previous value

is written by T'!). This guarantee results from the fact that
wl(ky) ~ wi(ky) ~ wi(ky) ~ wi(ky) being independent
from the way that operations are ordered in a transaction.
However, causal consistency allows that T2 reads a value
written by 7 in k; and afterward reads a value written in k, by
T?2. Also, it allows that T to read a value written by T in K,
afterward reads a value in K, written by 72. Neither of these
sequences violates causal consistency; However, introduces
unexpected behavior.

Consider social network application, where the friendship
relations are symmetric, and it needs to ensure the following
invariant. If user wu is visible in the friends’ list of us, then
us needs to be also visible in the fiends’ list of w;. Consider
that k; stores the friends’ list of u; and that the transaction 7'*
establishes a new relation of friendship between wu, and uy,
and that 72 erases that relation. In this case, both 7 and T*
would read a state that would violate the proposed invariant.

Now consider an application that manages a shared folder,
in which k, registers which users have access to the folder
and k; stores the content of the folder. Consider that 72
that excludes a user from the list and afterward writes a new
document to the folder witch that user should no longer have
access. The sequences described above of the transaction T4
would allow the transaction to read the old access-list and the
new document, the application is unable to enforce the access
restriction intended by the user.

Transactional Causal Consistency (CCT) avoids the anoma-
lies described above by ensuring that all the effects of one
write transaction are visible to other transactions or none at
all. It should be noted that several systems extend causal
consistency with support for read-only transactions [11]-[14].
These systems avoid the anomaly illustrated by 7™, although
not the anomaly illustrated by 7. Thus, TCC is stronger than
causal coherence with support for read transactions, which in
turn is stronger than causal coherence with no support for
transactions. The interested reader may find a hierarchical
comparison of the various consistency models that have been
proposed in the literature in [6]. However, we emphasize that
TCC remains weaker than snapshot isolation [15] that, in
turn is weaker than serializability. These last two consistency
models oblige to sort the write operations in a total order,
which is not the case with the TCC.

III. RELATED WORK

The implementation of different forms of transactions in
systems with low consistency has been much studied in recent
years, and it is possible to find different approaches to the
problem in the literature. In this section, we will compare
and discuss how the concepts and ideas presented in the
related work have inspired us in the design of FastCCS.
However, this comparison is not trivial due to different systems
having different types of consistency and transaction isolation
guarantees, so to make a reasonable comparison between the
systems, this section will be subdivided into comparing the
different techniques, the types of transactions and consistency
guarantees. This comparison is summarized in Table I.

TABLE I
SYSTEMS THAT OFFER CAUSAL CONSISTENCY. R REPRESENTS THE NUMBER OF
READ ROUNDS. NBR AND WTX RESPECTIVELY REPRESENT NON-BLOCKING READS
AND WRITE TRANSACTIONS. N REPRESENTS THE NUMBER OF PARTITIONS, M THE
NUMBER OF DATA CENTER AND TS THE PHYSICAL CLOCK VALUE.

System R NBR WTX Metadata Size Strategy
ChainReaction [13] >1 X X OoM) Sequencer
Orbe [12] 2 X X ON x M) Stabilization
GentleRain [14] 2 X X 1ts Stabilization
COPS [11] <2 v X O(|deps|) Explicit Check
Cure [6] 2 X v (010.%0] Stabilization
Eiger [9] <3 v v O(|deps|) Explicit Check
Wren [16] 2 v v 2ts Stabilization
FastCCS <2 v v O(N) Stabilization

Strategies can be classified into four broad categories ac-
cording to the technique they use to ensure that the transac-
tion is performed in a consistent cut, namely: stabilization,
serialization, explicit dependency check, and explicit locks.
Next, we will briefly discuss each of these techniques. The
strategy in which the coherent cut is obtained by stabilization,
do it by ordering the transactions in total order, based on
a timestamp. A partition can satisfy a read operation made
by a transaction that executes at the instant ¢ when it knows
that it has already become aware of the effect of all write
transactions that were executed with timestamp lower than t.
Systems such as Orbe [12], GentleRain [14], and Cure [6],
use physical clocks as the timestamp to order the transactions.
Using the physical clock has the advantage of them monotoni-
cally increasing without the presence of events. Unfortunately,
since it is impossible to synchronize clocks with complete
accuracy, partitions need to exchange information to know
which timestamps are in the past of all other nodes. Moreover,
it is possible due to clock skew that a client reads a value
that the timestamp is the “future” for some partition, forcing
the partition to stall the operation until its clock catches up.
Wren [16] uses similar strategies though using hybrid clocks.

In systems where the consistent cut is obtained by serializa-
tion, a centralized component is used, which takes cognizance
of all transactions, and orders them in full. This solution has
the disadvantage of creating a bottleneck in the system, which
limits the scalability of the system. One of the systems that
implement this strategy is ChainReaction [13].

Systems that use explicit consistent cut verification require
that all write transactions to be associated with metadata that
captures the client’s causal past. System like COPS [11] and
Eiger [9] use this strategy. However, the client must piggyback
causal dependency information and execute expensive depen-
dency checks across partitions.

Some systems try to pursue general-purpose transactions.
In their pursuit of general transactions, these systems all
choose consistency models that cannot guarantee low-latency
operations. Other systems such as Wren and Cure, try to
give the give to the client a much weaker form of general-
purpose transaction guaranteeing only TCC. In these types of
transactions, the client is responsible for caching its writes and
execute all read operations from a specific snapshot. However,
the pre-set of the snapshot has a cost. In this case, one round

of communication and was previously shown [8] this cost is
not negligible.

Other system takes one step back and implements only
read transactions without implementing any write transactions.
Some of these systems are ChainReaction, Orbe, GentleRain,
Cops. Dropping write transactions for lower latency introduces
several artifacts that make it more difficult for programmers
to reason about. Moreover, are incompatible with TCC.

Eiger has a much moderate approach. This system separates
read from write transactions. Thus, it can optimize read
transactions without introducing too much latency. More, over
it is compatible with TCC.

Now we will discuss how FastCCS places in the related
work. The goal of this work is to create a system that satisfies
the following goals. Our system must support scalable and low
latency transactions. It is making one strategy incompatible
with our requirements. Serialization due to the limitation of
the scalability. We opted not to use explicit dependencies as
it would introduce too much metadata overhead at the client-
side, due to the client needing to piggyback its operations.
So, we chose stabilization as a strategy to be implemented.
However, trying to avoid some downfalls of previous systems
that implemented this strategy with physical clocks. We opted
to use logical vector clocks that avoids blocking the client
reads due to clock skew.

For the type of transaction, as we mentioned, one of our
goals is low latency. General transactions have the disadvan-
tage of requiring two rounds of communication. Moreover, as
we FastCCS typical workload would be read-heavy, it would
introduce unnecessary latency; however, as we want to provide
TCC to avoid some anomalies related to write operations.
Thus, we opted for read-only and write-only transactions, as
they are compatible with TCC.

IV. FASTCCS SYSTEM DESIGN

In many cloud applications, read operations dominate the
workload of the system [8]. For example, 99.8 % of Facebook
distributed database operations [17] are reads and the latency
of those operations is particularly important because a client
request can lead to thousands of reads and some of these reads
need to be done in sequence, and the critical path can reach
dozens of reads [18].

Therefore, it is crucial to offer an algorithm that supports
non-blocking read operations with as fewest as possible rounds
of communication.

FastCCS focuses on providing read and write transac-
tions for cloud application without increasing significantly the
overall latency experience by the user compared to eventual
consistency, however providing to the client higher consistency
guarantees.

A. Client Library

This library is responsible for handling the splitting, rout-
ing, and re-assembly of the transactional requests. As the
transaction can span multiple partitions, the client library is
responsible for splitting the client’s request, and so hiding the

internal structure of the replicas by forwarding requests to the
correct partitions. For knowing the correct partition, it uses a
hashing function that is provided by Cassandra [19]. Moreover,
to hide the internal algorithm of the transaction and to give an
illusion to the client that the transaction is executed as a single
operation. The client library is responsible for the re-assembly
of the client request, and in case of Eiger [9] and FastCCS to
check if the first round of parallels reads was successful.

Also, the client library keeps track of the causal dependen-
cies of the client to avoid introducing false dependencies be-
tween thread-of-execution done on behalf of different clients.
Each client has a unique id that it uses to communicate with
the client library so that the dependencies of different clients
(e.g., operations done on behalf of ¢; are not entangled with
operations of c3). This unique id is also used to generate the
transaction id, by simply appending the unique client id to a
sequence number.

B. Designing the algorithm

In the recent works was proven that it is impossible to
achieve one round read transaction while supporting TCC or
as they were called in the literature fast transaction without
compromising availability [20]. Thus, the read transaction
protocol needs at least two rounds of communication always to
return a consistent causal view over multiple keys. The optimal
solution is to, in the majority of cases, only needing one round
of communication and the second round for the cases that it
fails. The success rate of the first round will influence the
overall latency that the client experiences. So we can derive
a two-step algorithm in which the first part is optimistic, that
reads the most recent available values, then has a function that
verifies if the first round was successful or not. The second
part is for the times that the optimistic read fails. The more
metadata that the system stores with the versions, the more
precise is the assessment if the first round was successful. For
example, if the system stores little metadata, the system could
conclude that the first round was unsuccessful and need to
execute a second round that would introduce more latency,
even if, in reality, the result was causally consistent. This is
called a false dependency. Moreover, the metadata needs to be
precise enough to determine the second round read condition,
or else, more rounds would be needed to return a consistent
result. On the other end of the spectrum, the system could store
more metadata that would reduce the false dependencies at the
cost of a heavier first round and more storage overhead. Other
solutions may include fetching more than one version of the
keys in the first round, the more versions that are fetched, the
lower the probability of the second round occurring, however,
with the cost of more expensive first-round reads. It becomes
clear that exits a balance between the number of rounds of
communication and the size of the metadata.

C. Metadata

FastCCS implements more precise metadata with the intent
to reduce to the minimum the number of second rounds
without too large sized metadata that would detriment the

overall performance of the system. We will now describe the
metadata implemented in FastCCS.

FastCCS attaches to each read or write transaction a times-
tamp, that is materialized in the form of a vector clock of size
N. Where N is the number of partitions in a datacenter, every
time a write transaction changes the value of a key, it is created
a new version of that key, which is stored with the commit
timestamp of that transaction. The client also maintains a
vector clock timestamp vc of size N of the last operation
that it performed. This vector clock tracks the client’s causal
past. When a new version of a key is created, it is passed
by three states of knowledge: pending, confirmed, visible. A
timestamp associated with a pending transaction is temporary
and will be updated when the transaction is confirmed. A
key passes to the state of visible when all the keys in that
write transaction are confirmed in all participating partitions.
Every partition 7 keeps a sequence number that is incremented
every time that a new version of a key is created in that
partition. This sequence number is denominated as sn;. Every
partition ¢ also maintains snapshot vector clock timestamp
svc; of size N, where every entry holds the maximum value
of sn; observed by the partition 4, denominated as snapshot
vector clock. Every key modified by a transaction with a
commit timestamp lower or equal to the snapshot vector clock,
are guaranteed to be confirmed in all the partitions. Every
partition ¢ updates the value of the entry svc;[i] every time a
transaction is confirmed in that partition. Moreover, partitions
periodically exchange the value entry of svc;[i]. Every time
that the snapshot vector clock is updated, the partition checks
if there exists transactions in the state confirmed with a commit
timestamp lower or equal than the svc; and passes them to the
visible state accordingly.

V. WRITE-ONLY TRANSACTIONS

FastCCS’s write-only transactions allow a client to atom-
ically write many keys spread across many servers in the
local datacenter. As we will see, the algorithm guarantees low
latency because it takes at most 2 message RTTs in the local
datacenter to complete and no operations acquire locks.

A. Write-Only Transaction Algorithm

The write transaction 7' is executed in two rounds of
communication, in the following way. Let P(T') be the set of
partitions that store keys modified by 7. In the first round,
the client chooses one of the partitions as the transaction
coordinator as cp € P(T). The client sends to each partition
Vi € P(T') the new value of the modified keys and the coor-
dinating identifier of the transaction, the vc, and the number
of participants in the transaction and waits for the responses.
Each partition, upon receiving this message, increments its
sequence number sn; and creates a new pending version of
the key to which it assigns a temporary commit timestamp ct;
where ct;[j] = —1,7 # j and ct;[i] = sn;. If the partition
is the transaction coordinator, the partition waits for the other
partitions to respond to P(7T') otherwise the value of sn; is
returned to the coordinator.

The second round begins when the coordinator receives
a response from all partitions. The coordinator creates a
commit timestamp for the cty transaction where ctp[i] =
max(vc.[i], sn;), Vi € P(T). The coordinator sends this value
to all partitions in P(T'). Receiving the value of ctr, the
partition passes all versions of keys modified by transaction
T to the committed state, associating with these versions the
value of the final timestamp. Finally, each partition waits
until sve;fi] + 1 > ctpli], at which point it is sure that all
transactions with a commit timestamp lower than ctp are
already committed in the partition ¢. When this condition is
met, a response is sent to the client. The write transaction is
considered terminated when the client receives a response from
all the participating partitions, ensuring that all values that the
transaction wrote are already committed on all partitions. The
coordinator sends the transaction ctr to the client. The client
adopts ctr as its new client timestamp (vc. = ctr).

VI. READ-ONLY TRANSACTIONS

FastCCS’s read-only transactions allow a client to read
many keys spread across many servers from the local data-
center consistently in at most two rounds of communication
usually one in read heavy workloads. This is achieved by the
first read returning the most recent committed values from the
server, and the second read it’s only executed if the first round
fails to deliver a consistent view of the keys. The second read
only happens if there is a concurrent commit over the same
keys. We will go more in depth about the algorithm of the
read-only transactions in this section.

A. Read-only Transaction Algorithm

The read transaction 7' runs in at most two rounds of
communication as follows. Let P(T') be the set of partitions
that store keys read by 7.

In the first round, the client sends to each ¢ € P(T)
partition the keys it wants to read, along with its vc, and
waits for a response from all partitions in P(7"). Each partition,
upon receiving this message, updates its snapshot vector clock
by making sve;[k] = max(sve;[k],ve [k]), Yk € N. This is
possible since vc. represents the maximum timestamp the
client has ever seen, and if the effects of a transaction are
already visible it means that the transaction has already been
committed on all partitions and thus making possible to
advance svc to vc. safely. This ensures that all transaction
effects that the client has observed in the past will be visible,
thus ensuring atomicity and causality.

Partitions return newer versions with ctr < sve, sve, and
the maximum commit timestamp read ctm, where ctm[k] =
max(ctm[k], ct[k]),Vk € N.

When the client receives a response from all partitions.
Client checks if sve; > ct;,Vi,j € P(T) Ai # j and updates
its ve, = max(ctm;[k], vee[k]),Vi € P(T) AVYk € N . If the
condition is met, the client ends the transaction and returns
the values. If the condition is not met, the client has read
of a snapshot that may or may not be consistent. Therefore,
the client must start a second round of read operations on

partitions that did not meet the previous condition by sending
their new vc.. Partitions receiving a request from the second
reading round return the latest versions with ctr < wvc., and
update their snapshot vector clock similar to the first round.

The second round ensures that a coherent causal snapshot
will be returned, because the stabilization protocol ensures
that all versions that the client read in the first round are
already installed on all partitions, so it is not necessary to
block reads until the new version is installed. Since the client
reads versions that satisfy ctr < wvc., no extra rounds of
communication will be required because the reads returned
in the first round have a ctr < ve,.

VII. GARBAGE COLLECTION OF OBSOLETE VERSIONS

To limit the number of versions that are maintained in the
system, partitions need to implement some sort of garbage
collection mechanism in order to delete versions that are not
longer necessary. One way to garbage collect old versions is
as follows. Partitions periodically exchange among them them
the lower snapshot read by any active transaction; versions that
are older than this snapshot can be safely deleted. However,
this approach requires more communication among partitions,
increasing the overall load on the network. Furthermore, in
the presence of network partitions, garbage collection may
stall, because partitions would not be able to compute the
lower snapshot. FastCCS implements the garbage collection
mechanism proposed in Eiger [9] that circumvents these
problems by assuming that servers can have their physical
clocks loosely synchronized. This garbage collection strategy
limits old versions in two ways. First, transaction have a
timeout that specifies their real-time duration. If the timeout
fires the client library restart the transaction. Thus, servers only
need to store values that were overwritten during this timeout
period. Second, the partition only retains values that could
be requested in the second round. Thus, a server only keeps
versions that are newer than those returned in a first round
within the timeout duration. This mechanism requires nodes
to maintain additional metadata for each version of the data,
namely the last time at which that version has been accessed.

VIII. CORRECTNESS

We have derived proofs of correctness for FastCCS’ algo-
rithms. Due to space constraints, these were not included in
this paper, but can be seen in the full thesis.

IX. FAULTS

Like the correctness arguments, the reconfiguration strate-
gies were not included in this paper. Furthermore, they are not
evaluated, leaving them as future work.

X. EVALUATION

A. Implementation

In order to evaluate the proposed system, it needs to be
compared to other solutions that employ different techniques.
The chosen ones were: Eiger [9], for offering read and write
transaction with multiple rounds of reads (at most three)

and Wren [16] for comparing if two round of reads has a
higher overhead than reading in at most two rounds although
with a higher metadata overhead. In addition to the causally
consistent systems, FastCCS is also compared with a system
that only offers eventual consistency as this types of storage
system are predominant in cloud applications. Is expected that
eventual consistency should offer best latency, as it makes
updates visible as soon as they are received and only needs
one round to satisfy read transaction without any metadata
that normally be used to enforce consistency. We implemented
FastCCS as a modification of FEiger’s fork of Cassandra.
Wren was implemented also by modifying Eiger’s fork of
Cassandra and for Eiger we used the original code. For
eventual consistency we used the original fork of Cassandra
from which Eiger is based.

B. Experimental Setup

In our evaluation, we use two different experimental
testbeds that complement each other, namely, we perform
experiments using simulations and we perform experiments
in a real deployment on AWS [21]. Simulations allow us
to experiments with system sizes that we cannot afford to
deploy in AWS. The AWS deployment allow us to assess the
performance of FastCCS in a realistic setting, and simulations
offer some form of validation of the results obtained.

Simulations have been performed using PeerSim [22],
which was augmented with some modules that help in in-
creasing the fidelity of the results. Namely, PeerSim has
been configured with extensions that simulate FIFO point-to-
point channels with configurable network latency and finite
bandwidth. Each node has a bandwidth limit of 1 Gb/s, and
each message is randomly delayed with an average value of
0.5 ms (latency observed between servers in an AWS data
center [23]). Since the performance of the various algorithms
depends fundamentally on the number of rounds and the need
to wait for a causal cut, to speed up simulations we do not
aim at capturing CPU utilization or overhead of the disk access
time. This allow us to quickly obtain results that approximate
well enough the real setting. However, as we will note later, in
some systems, the CPU can also be a bottleneck, in particular
in systems that have to manage large amounts of metadata.
These effects are only captured in the real deployment.

For the real deployment we have built a prototype of our
system using Cassandra, a well known key-value store which
is very used in the industry. For running the experiments, the
prototype was deployed in AWS. In these deployments, each
partition run within m4.2xlarge instance with 8 vCPUs and
32 GB of memory. Each client machine runs a client library
that issues read and write transactions eagerly. In order to
benchmark the proposed architecture we used the a modified
version of the stress test of Cassandra. The modifications we
have introduced were the minimum necessary to make it work
with the new client library.

TABLE II
PARAMETERS OF THE DYNAMIC WORKLOAD GENERATOR.
Parameter Default Range
Keys/Read 5 2-64
Keys/Write 5 2-64
Partitions 8 2-64
Value Size (B) 128 2 -1024
Write fraction 0.05 0.01-0.5

XI. LATENCY

The first experiment compares the latency observed by the
clients when they perform read and write operations using
different systems. It is expected that read operations present a
lower overall latency when compared to write operations. In
fact, our target systems have been designed to optimize the
latency of read operations, which are assumed to be the most
frequent operations.

Figure 1 depicts the cumulative distribution function (CDF)
of the latency observed by the clients for both read and
write operations. These numbers have been collected using
the deployment on AWS.

We start by discussing the performance of reads. Not
surprisingly, the lowest latency if offered by a system that
offers only eventual consistency. This can be explained by the
fact that this system is the one that requires less metadata
and less coordination (operations only need one round of
parallel requests to return a result). Interestingly, FastCCS
closely follows the performance of an eventual consistent
system for read operations. This happens because FastCCS
implements a good tradeoff between metadata and accuracy:
it does not require clients to maintain complex dependency
trees but avoids most false positives, and therefore allows
most reads to execute in a single communication round. Eiger
has less precise metadata compared to FastCCS, which leads
to more false dependencies which, in turn, often generate a
second round of reads. Moreover, in Eiger, a write transaction
becomes visible as soon as the partition receives the commit,
so the second round of reads may target a pending commit
value; the partition needs to issue a request to the coordinator
of that transaction to confirm if it is safe to return the new
version. Eiger also needs to maintain a dependency tree in
the client, which adds additional overhead in the client, that
introduces even more latency. Finally, Wren presents a read
latency that is higher than all the other systems as it needs
two rounds to return a causal consistent view of the keys.

Looking at the latency of write operations, the tradeoff im-
plemented by FastCCS becomes clearer. In order to favor read
transactions, FastCCS sacrifices write latency, as the client
waits for the update of the write transaction to be installed
in all partitions. Thus, FastCCS is particularly well suited for
read-heavy workloads, where slower write operations are not
able to have a significant impact on the overall throughput
significantly, as we will see next.

FastCCs

Eiger EC —— Wren

CDF

o 2 4 6 8 10
Read Latency (msec)

(a)

FastCCs

Eiger EC —— Wren

CDF

o 2 4 6 8 10
Write Latency (msec)

(d)

Fig. 1. Cumulative distribution function for each systems read and write latencies.

A. Throughput

This section analyzes the throughput achieved by the dif-
ferent systems. We measure throughput as the number of
transactions executed by the client per second. All results
are normalized with regard to the throughput achieved by the
eventual consistency consistency; this makes easier to assess
the overhead incurred when one increase the consistency guar-
antees to TCC. Furthermore, in this section we present results
obtained both using simulations and the real deployment on
AWS. This allows us to validate our simulation environment.

1) Effect of Tx Lenght on Read Transactions: Figure 2
presents the throughput of the different systems, when ex-
ecuting transactions with a write/read ratio of 0.05, as a
function of the objects accessed in each read transaction. As
in can be observed, FastCCS is able to closely follow the
performance of system that only offers eventual consistency,
with a penalty in the order of 10%. Both Eiger and Wren are
much worse. For transactions that touch a small number of
items, the number of communication rounds of each protocol
dominates the performance and, therefore, Wren exhibits a
poor throughput. However, for transactions that touch a lot
of objects, the performance of Wren starts approximating the
performance of other systems, even surpassing Eiger for long
transactions. This is due to a combination of three factors.

First, a large number of keys is penalizing for Eiger. In
fact, in Eiger, when more keys are accessed in the first
round it becomes more likely that the first round will re-
turn an inconsistent view, which subsequently increases the
likelihood of reading from a key that has a pending version,
which subsequently increases the number of commit checks.
Moreover, if the number of keys per request increases, the
second round is more expensive as more keys will need to be
returned in the second round of reads. Second, as the number
of keys increase, the costs associated with CPU utilization
and with disk access time start to become dominant, and the
overhead of the additional round introduced by Wren becomes
less relevant. Third, we have also noticed that as the read
transaction size influences the number of dependencies in the
client, and this dependency tree is only cleared when the
client issues a write transaction. Moreover, as the client has a
low probability of issuing a write transaction, the overhead of

maintaining the dependency tree increases, which negatively
influences the client’s performance.

In the case of FastCCS, when the read transaction size
increases, the second round also becomes more likely and
more expensive as it needs to return more values. However,
as the probability of the second round due to false positives
is low, and there is no need for a third round, FastCCS is still
able to offer overall better performance than Eiger.

The figures obtained with the simulated environment show
that the simulator can capture with reasonable accuracy the
performance of the different systems for small transactions.
For large transactions, the simulator no longer provides an
accurate estimate of the performance; this is due to the fact
that the simulator is not able to simulate CPU or disk usage.

2) Effect of the Write/Read Ratio: Figure 3 presents the
throughput of the different systems, when executing transac-
tions with different write/read ratios (all transactions access 5
objects of 128 bytes).

The figure unveils an interesting limitation of Eiger. For
residual write ratios (for instance, 0.01%), Eiger and FastCCS
have almost the same number of second-round reads. There-
fore, one could expect that both systems would exhibit the
same performance, as predicted by our simulations. In reality,
the throughput of Eiger is 10% lower that that of FastCCS in
the AWS deployment. The cause for this difference lies in the
way Eiger keeps dependencies in the client. Eiger maintains
a tree of dependencies that can only be purged when a write
transaction is executed. For small ratio of write transactions
the dependency tree keeps increasing and the CPU utilization
at the client becomes a bottleneck.

The figure also shows throughput of FastCCS decreases, as
the percentage of write transaction increase. This is due to
the higher write transaction cost and a higher probability of a
second round. In fact, it is possible to observe that for large
write/read ratios, Wren eventually outperforms the FastCCS.
This happens because write operations terminate earlier in
Wren. Interestingly, the simulations can also capture this
fact, despite the limitations in accuracy previously discussed.
Nevertheless, for most realistic write/read ratios, FastCCS
outperforms both Eiger and Wren.

—a— FastCCS Eiger —<— EC —+— Wren

—a— FastCCS Eiger —<«— EC —+— Wren

1.0
s
£ T
S, 0.8
=
<4
r—
=
5064 0 .
N
“©
E
S 0.4
=

0.2

2 4 8 16 32 64
Keys/Read

(b) Simulations

Fig. 2. Read throughput as a function of Tx length: AWS vs simulations.

1.0
S ‘—_/—‘——/‘\‘
S, 0.8
=
<4
=
=
= 0.6 1
N
“©
E
S 0.4
=
0.2
2 4 8 16 32 64
Keys/Read
(a) AWS
—a— FastCCS Eiger —<— EC —— Wren
1.0
..
=
(=N
5 0.8
=
=4
=
g \
B °°] —
=
©
E
S 0.4
=
0.2
0.0 0.1 0.2 0.3 0.4 0.5

Write Fraction

(a) AWS

—=a— FastCCS Eiger —<«— EC —— Wren

1.0

°
®

Throughput (txn/s)
(@]
o

°
IS

0.2

0.1 0.2 0.3

Write Fraction

0.4

(b) Simulation

Fig. 3. Throughput as a function of the write/read ratio: AWS vs simulations.

B. Scalability

The ability to distribute the data across different servers is
essential for scalability. Thus, all cloud storage systems split
the data into logical partitions and then let a different set of
servers handle each partition. If a transaction accesses data
that are in different partitions, coordination among different
servers is required. This experiment focuses on understanding
how the system can scale horizontally. We do so by studying
the effect of the number of partitions on the system throughput.

Given that the number of communication rounds used by
each protocol has a direct impact on the achievable throughput,
we also show the average number of communication round
used by the different systems. For these experiments, we
have been able to deploy the system on AWS using up
to 64 partitions. Unfortunately, we could not afford to run
experiments on a real deployment using a larger number
of machines, as this was outside our budget. Therefore, we
resorted to simulations to estimate the performance of the
system in scenarios that go up to 1024 machines.

1) Horizontal Scaling: We start by showing that FastCCS is
able to horizontally scale and sustain additional clients as more
servers are added to the system. For this experiment, we aug-
mented the number of partitions and augmented proportionally
the number of clients, such that the operations submitted by
N client machines are fully loading /N partitions. Moreover,
we proportionally increase the number of keys to avoid any
artifacts due to an increase in concurrency between clients.

Transactions always access 5 objects selected at random.

Figure 4(a) shows the throughput for FastCCS as we scale
the number of partitions from 1 to 64 (note that both axes
are in log scale). The bars show the throughput normalized
against the throughput of 1 partition. FastCCS scales out as
the number of partitions increases. However, this increase
is not linear from 1 to 8 partitions. The configuration with
1 partition has the benefits of batching: all operations that
involve multiple keys are executed on a single machine. As
the number of partitions increases, the transactions span across
multiple partitions, and thus the system is no longer able to
exploit batching effectively. This effect was also present in the
original evaluation of Eiger [9].

As we increase the number of partitions, the differences due
to lack of batching no longer become relevant. In fact, in a
system with many partitions, most transactions tend always
to access 5 different partitions. Nevertheless, the ability of
the system to scale perfectly is limited due to a number of
overheads that are associated with the maintenance of multiple
partitions, such as background stabilization procedures or
increased size of metadata. Next, we describe a number of
experiments that provide some insights for the causes of the
observed impairments to horizontal scaling.

2) Partition Overhead: In order to better understand the
sources of overhead that become visible when many partitions
are used, we have run a series of experiments where we
increase the number of partitions while keeping the workload

—— FastCCS Eiger —— EC —— Wren —— FastCCS Eiger —— EC —— Wren
N 340000 340000
264 4
= g 320000 g 320000
532 2 2
2 § 300000 § 300000
© 16 ® ®
3 @ 280000 @ 280000
= Qo Q
£8 5)
= = 260000 = 260000 —
g g g -
N <,240000 <, 240000
© 2 3 3 of
€ £ 220000 £ 220000
S 1 = =

200000 200000
1 2 3 5 6 7 8 2 4 8 16 32 64

Partitions

(a) Normalized throughput of FastCCS changing
the total number of Partitions (AWS) and pro-
portionally changing the number of clients and
keys. Bars are normalized against 1 partition.

Partitions Per Write Transaction

(b) Partitions per Write

Partitions

(c) Total Number of Partitions

Fig. 4. Changing the Number of Partitions (AWS).

constant. Figure 4 shows the results obtained with the deploy-
ment at AWS. We have performed two experiments. In the
first experiment (4(b)), we fixed the total number of partitions
to 8, and we varied the number of partitions accessed by each
transaction. In the second experiment (4(c)), transaction access
5 objects at random, and we have changed the total number
of partitions (the higher the total number of partitions is, the
more likely is that a transaction touches 5 different partitions).

We start by discussing the effect on the number of partitions
accessed by each transaction. Naturally, even the eventual
consistent system degrades its performance as the number
of partitions accessed by a given transaction increases, as
more servers need to be contacted. This happens because
Cassandra maintains a number of background bookkeeping
tasks that become heavier with the number of nodes increase.
Still, not surprisingly, the eventually consistent system is the
one that is less affected by an increase in the number of
partitions, and it does not require nodes to coordinate, and the
amount of metadata maintained is minimal. The performance
of FastCCS, Eiger, and Wren follow a similar trend when the
number of partitions accessed by each transaction increases.
Because these protocols require more coordination among
partitions, the effect of using a larger number of partitions is
more noticeable than in an eventually consistent system. For
instance, with Eiger, because the metadata used to capture
causal dependencies has low accuracy, the number of times
the protocol requires a second or even a third round of
communication. FastCCS has the same coordination overhead
as Eiger but, due to more precise metadata, it is less likely to
require a spurious second round of reads.

We now discuss the effect of changing the total number
of partitions. In this experiment, we have kept the workload
constant across all experiments. When there are few partitions,
served do not have enough capacity to serve all the clients’
requests. Therefore, the throughput of the system is limited
by the lack of capacity of the servers. As we increase the
number of partitions, we are able to distribute the load of the
clients among different servers, and the throughput increases.
This growth stops when the number of partitions reaches 16.

In this scenario, the capacity of the servers is no longer a
bottleneck, and adding more servers does not provide any help
(we recall that the workload is fixed). From this point, we
can start observing the effect of some amount of overhead
that is induced by having a large number of partitions. This
overhead as two main sources: one source are background
activities, such as the stabilization protocol used by FastCCS
and Wren, and another source is the increased size of the
metadata (for instance, larger vector clocks). The combined
effect of these two factors slows down the system when the
workload remains constant (naturally, the larger system could
sustain a higher peak workload, but this is not depicted in
these plots). Note, however, that even the eventually consistent
system experiences this effect, given that the underlying key
value store also has some bookkeeping tasks whose overhead
increases with the number of servers.

In order to estimate the performed of the system for a higher
number of partitions, we needed to resort to simulations.
The results are depicted in Figure 5. Note that, as before,
we assume that the workload is fixed. Thus, the maximum
throughput is bounded by the number of clients. Therefore,
adding more partitions only increases the overhead generated
by background tasks, such as the stabilization protocols, and
larger metadata (i.e., larger clocks). The simulations show a
trend that is aligned with the results obtained with the real ex-
periment. However, as we have seen in previous experiments,
the results from the simulator are an upper bound on the real
performance, because the simulator is not considering CPU
utilization, which also increases as the metadata increases.

We have also measured the average number of rounds
required by read operations in the different systems, as the
number of partitions grows (Figure 5(b)). This is interesting
because it highlights that the overhead induced by a large
number of participants manifests in different ways for different
protocols. For Eiger, the loss of performance can be mainly at-
tributed to the fact that the average number of rounds increases
with the number of partitions, which affects the throughput
of the system. Thus, because Eiger uses less metadata than
FastCCS, it needs to perform a second round more often.

—a— FastCCS Eiger —<«— EC —+— Wren

400000

350000 4

300000 4

250000 1

Throughput (operations/s)

200000 1

16 32 64 128

Partitions

256 512 1024

(a) Throughput

Fig. 5. Changing the Number

FastCCS, instead, does not suffer from this problem. Most
reads can be performed in one round, no matter how large is
the system. Unfortunately, this positive feature is obtained at
the cost of using more metadata, which grows linearly with the
system size. This amount of metadata also affects negatively
the performance of the system (even if the results are still
better than Eiger).

XII. CONCLUSIONS

Stronger consistency models ease the life of programmers,
making it more easy to reason about. However, as stated by
Amazon and Google, the increase in user perceived latency
leads to a concrete revenue loss. For example, Amazon es-
timates that a 100ms latency increase leads to 1% revenue
loss [24]. So it is important to find consistency models that
can offer low latency. This thesis has described the design,
implementation, and evaluation of FastCCS. By using more
precise metadata, we showed that FastCCS reduces the number
of communication rounds needed to implement TCC. In fact,
to our knowledge, FastCCS is the first system that implements
TCC with at most two rounds of communication, reducing the
overall latency that the client experiences.

REFERENCES
[1] P. A. Bernstein, P. A. Bernstein, and N. Goodman, “Concurrency control
in distributed database systems,” ACM Computing Surveys (CSUR),
vol. 13, no. 2, 1981.
C. H. Papadimitriou, “Serializability of concurrent database updates,”
Journal of the ACM, vol. 26, no. 4, 1979.
P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Highly available transactions: Virtues and limitations,” in
Proc. of VLDB, Trento, Italy, Aug. 2013.
M. K. Aguilera, J. B. Leners, and M. Walfish, “Yesquel: Scalable sql
storage for web applications,” in Proc. of SOSP, Monterey, CA, Oct.
2015.
W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, 2009.
D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguica, and M. Shapiro, “Cure: Strong semantics meets high
availability and low latency,” in Proc. of ICDCS, Nara, Japan, Jun. 2016.
P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veeraraghavan,
“Challenges to adopting stronger consistency at scale,” in Proc. of 15th
HotOS, Kartause Ittingen, Switzerland, May 2015.
H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd, “The SNOW theorem
and latency-optimal read-only transactions,” in Proc. of OSDI, Savannah,
GA, Nov. 2016.

[3]

[4]

[5]
[6]

[7]

10

Communication Rounds

—a— FastCCS Eiger —<«— EC —— Wren

—A

32 64 128

Partitions

256 512 1024

(b) Average Number of Rounds

of Partitions (Simulations).

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Stronger
semantics for low-latency geo-replicated storage,” in Proc. of NSDI,
Lombard, IL, Apr. 2013.

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal
memory: definitions, implementation, and programming,” Distributed
Computing, vol. 9, no. 1, 1995.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops,” in Proc. of SOSP, Cascais, Portugal, Oct. 2011.

J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable causal
consistency using dependency matrices and physical clocks,” in Proc.
of SoCC, San Jose, CA, Oct. 2013.

S. Almeida, J. a. Leitdo, and L. Rodrigues, “Chainreaction: A causal+
consistent datastore based on chain replication,” in Proc. of EuroSys,
Prague, Czech Republic, Apr. 2013.

J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in Proc. of SoCC,
Seattle, WA, Nov. 2014.

P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Feral concurrency control: An empirical investigation of
modern application integrity,” in Proc. of SIGMOD, Victoria, Australia,
May 2015.

K. Spirovska, D. Didona, and W. Zwaenepoel, “Wren: Nonblocking
reads in a partitioned transactional causally consistent data store,” in
Proc. of DSN, Luxembourg City, Luxembourg, Jun. 2018.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li et al., “TAO: Facebook’s
distributed data store for the social graph,” in Proc. of ATC, San Jose,
CA, Jun. 2013.

P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veeraraghavan,
“Challenges to adopting stronger consistency at scale,” in Proc. of
HotOS, Kartause Ittingen, Switzerland, May 2015.

A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” in Proc. of LADIS, Big Sky, MT, Oct. 2009.

D. Didona, P. Fatourou, R. Guerraoui, J. Wang, and W. Zwaenepoel,
“Distributed transactional systems cannot be fast,” in Proc. of SPAA,
Phoenix, AZ, Jun. 2019.
Amazon, “Amazon Elastic
https://aws.amazon.com/ec2/.

A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
Proc. of P2P, Seattle, WA, Sep. 2009.

P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Highly available transactions: Virtues and limitations,” in
Proc. of VLDB, Trento, Italy, Aug. 2013.

Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can client-
only solutions go for mobile browser speed?” in Proc. of WWW, Lyon,
France, Apr. 2012.

Compute Cloud (EC2),”

