
Performance Monitoring on the Edge

Tiago Miguel Calhanas Gonçalves
tiago.miguel.c.g@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. Edge computing is a paradigm where computation and stor-
age services are o↵ered by nodes that are placed close to devices that
constitute the Internet of Things (IoT), as opposed to a pure cloud com-
puting model where these services are provided by large central data-
centers. The main advantages of edge computing are twofold: it allows
to o↵er services to the IoT devices with low latency and it reduces the
amount of data that needs to be sent to the central datacenters, provid-
ing significant bandwidth savings. These services are provided by edge
nodes, often called fog nodes or cloudlets, that are placed in di↵erent geo-
graphical locations, close to the users. To ensure low latency the number
of these servers will be necessarily high. For the successful operation of
edge computing it its crucial to have an infrastructure that is able to
monitor the status and usage patterns of edge nodes, not only to per-
form maintenance and repair, but also to reconfigure the applications
based on the observed usage patterns. This report addresses the prob-
lem of monitoring edge computing infrastructures. We survey existing
monitoring solutions for large scale systems and identify some key limi-
tations for the edge computing scenarios. Then we propose to design and
implement a monitoring tool that addresses these limitations.

1

Table of Contents

1 Introduction . 3
2 Goals . 4
3 Background . 5

3.1 Observation Function - Data Collection . 5
3.2 Data Processing Function . 6
3.3 Data Exposition Function . 7
3.4 Fog/Edge Multi-layer Monitoring Structure 8
3.5 Fog/Edge Monitoring Properties . 8
3.6 Monitoring Service Specification on Edge/Fog 9

4 Related Work . 11
4.1 Existing Monitoring Solution . 12
4.2 Analysis of Monitoring Solution . 19
4.3 Shortcomings of Existing Solutions for Edge Computing: 21

5 Architecture . 21
5.1 Node and Region Organization . 22
5.2 Lookup Service . 23
5.3 Edge Layer . 24

6 Evaluation . 25
6.1 Response Latency . 25
6.2 Overhead and Resource usage . 26
6.3 Elasticity . 26

7 Scheduling of Future Work . 26
8 Conclusions . 27

1 Introduction

The number of devices that are connected to the Internet is very large and
keeps growing at fast pace. The nature of these devices is very heterogeneous,
from powerful laptops and smartphones to small sensors, a plethora of devices
have the ability to provide services to end users and to collect and produce data:
media servers, smart TVs, consumer appliances, smart watches, smart home sen-
sors and actuators, etc. This reality is known as the Internet of Things (IoT).
Edge computing is a paradigm where computation and storage services are of-
fered by nodes that are placed close to devices that constitute the Internet of
Things (IoT), as opposed to a pure cloud computing model where these services
are provided by large central datacenters. The main advantages of edge comput-
ing are twofold: it allows to o↵er services to the IoT devices with low latency and
it reduces the amount of data that needs to be sent to the central datacenters,
providing significant bandwidth savings.

Edge computing typically relies on a multi-layer architecture [1][2] with the
following components: (i) A centralized cloud computing layer, which includes
cloud datacenters. It can be used for long-term storage and big-data analysis
and not for time-sensitive data processing; (ii) A fog/edge layer, that has the
ability to preprocess raw data before it is shipped to the cloud, for example,
aggregating and filtering it. It allows processing data closer to the location of
capture which leads to better latency and response times. This layer can have
multiple levels, where they can be either closer to cloud or to the edge where
end-users are; (iii) the IoT layer, composed by sensors/devices that generate the
data and execute applications.

The architecture above allows also improves application performance as data
is processed closer to the end-user which allows to reduce latency. It provides
new approaches to load balancing by introducing new functionalities of service
migration such as moving a running service from the cloud layer to the edge
computing layer. It also provides awareness of location, network and context
information. The edge layer also makes easier to track end-user information and
adapt the environment to their needs and preferences. Finally, it also minimizes
energy consumption for the end-user devices, as it allows battery-constrained
devices to o✏oad heavy tasks to edge nodes which are not as far away as the
centralized nodes.

In this work we are mainly concerned with the operation of nodes in the
edge/fog layers. These nodes can assume di↵erent structures, known as micro-
datacenters[3], cloudlets[4], or fog computing[5]. To ensure that they can provide
services with low latency to devices in the IoT layer, these nodes need to be
placed in locations that are physically close to the end-devices. For the successful
operation of edge computing it is crucial to have an infrastructure that is able
to monitor the status and usage patterns of edge nodes, not only to perform
maintenance and repair, but also to reconfigure the applications based on the
observed usage patterns.

This report addresses the problem of monitoring edge computing infrastruc-
tures. We survey existing monitoring solutions for large scale systems and iden-

3

tify some key limitations for the edge computing scenarios, as we will discuss
ahead. Although many designs have previously addressed the problem of sys-
tem monitoring in di↵erent contexts, including in cloud infrastructures, many of
these designs are unable to cope with the heterogeneity, elasticity, and massive
distribution of resources that can be found on the edge [6]. In this report we
survey existing monitoring systems and their implementations; we discuss the
problems that might arise when adapting these systems to an edge environment
and, based on this analysis, we devise a new architecture to support multi-layer
monitoring.

The rest of the report is organized as follows. Section 2 briefly summarizes the
goals and expected results of our work. In Section 3 we provide the necessary
background and in Section 4 we discuss related work. Section 5 describes the
proposed architecture to be implemented and Section 6 describes how we plan
to evaluate our results. Finally, Section 7 presents the schedule of future work
and in Section 8 the conclusions that we drawn from our findings.

2 Goals

This work addresses the problem of monitoring an edge multi-layer infrastruc-
ture. Due to their cluster/datacenter environments, existing solutions assume a
more static structure for aggregating data, where all the processing of a specific
region can only be done by an elected node of that region or by nodes of that
region. We want to allow data aggregation to be made in a more relaxed way
where any server can assume the behavior of data collector/aggregator for any
region at any time. More precisely:

Goals: We aim at designing and implementing a monitoring infras-
tructure for edge computing. The monitoring algorithms should be able
to provide information regarding the operation of the system with dif-
ferent levels of detail, while avoiding sending all data regarding the op-
eration of edge nodes to a central node.

Our work is inspired by previous works on scalable monitoring infrastruc-
tures, such as Astrolabe and SDIMS (these systems will be discussed in Section
4). We will organize the monitoring infrastructure in a hierarchical composition
of logical regions. Isolated edge nodes exist at the lower layer of the hierarchy.
They collect information regarding their own operation and the devices that
they serve. Edge nodes can be grouped into a logical region, and coordinate to
collect aggregated information regarding the collective performance of nodes in
their regions. In a recursive manner, level-n regions can be grouped to create
level-(n+ 1) regions, that further aggregate data. The top level regions that in-
clude all the edge nodes and are responsible for computing the aggregated values.
With respect to previous works, we aim at providing higher flexibility to where
the monitored resources can send their data and where the data is processed.
We want to separate the hierarchical logic from the disposition of the servers
on the system. In this way, any node can assume another function role at any

4

time, independently of its location and characteristics while avoiding recreating
or changing data structures with complex procedures.

The project will produce the following expected results.

Expected results: The work will produce i) identification of the re-
quirements for a edge-based monitoring system; ii) specification of a
monitoring system for the edge; iii) an implementation of the system;
iv) an extensive experimental evaluation using Grid’5000 and YCSB to
measure our system.

3 Background

Cloud services can be requested on-demand and are provided by elastic and
scalable resources. Some of the main characteristics o↵ered by cloud services are
[7]: availability, concurrency, dynamic load balancing, independence of running
applications, security, and intensiveness. These characteristics are attained by
using datacenters with hundreds of high performing servers.

In order to be able to e�ciently manage this type of systems with increasing
complexity, there is a necessity of an accurate and fine-grained monitoring solu-
tion capable of capturing di↵erent types of information regarding the operation
of the system, its components, and subsystems.

The ability to monitor the system is essential for both Cloud providers and
consumers/users. For providers it helps to have a monitoring system that can
gather information to ease control and managements of the infrastructures.
While for consumers and users a monitoring service can provide key information
about the applications that they are running on the infrastructures.

In order to operate in an infrastructure of this scale and complexity, a moni-
toring system needs to fulfill di↵erent function [8]: observation of monitored re-
sources, data processing and data exposition. These functions can also be further
divided into sub-operations such as aggregation, transformation of measurements
into events, and event processing.

3.1 Observation Function - Data Collection

The observation function is the one responsible for tracking remote resources
and gathering data for processing. This function can be implemented in various
ways. It can be entirely implemented by the monitoring system, or be distributed
throughout all the remote resources. There are two strategies approaches to
collect data from remote resources [9]:

– Pull or polling solutions are usually used in centralized solutions. This type
of solution requires a pre-registration of the monitored resources on the sys-
tem in order to be able to be localized. After registration, the system can
request/query the monitored resource for information or actively perform
checks on the system, like testing if the node is alive by making ping tests.

5

The system needs to be aware of the location of all the nodes and contacts
each one individually, which makes it hard to scale.
Furthermore, in an architecture with a lot of volatility, like the Edge, where
we have high number of joins and exits of nodes, we may have a unfeasible
number of registration processes, or the system may try to query nodes that
already left the system but were not acknowledge as such as there is no
way of detecting unless the remote resource unregisters itself. This is hard
to guarantee in highly elastic and mobile environments where nodes do not
know when they will leave the system.

– Pushmodel favors decentralized and highly elastic environments. It does not
require resources to register themselves on the system. Monitored resources
are the ones responsible for transmitting the data to the monitoring system
according to some time interval or event condition. Furthermore, due to the
characteristics of this communication model, an unidirectional channel is
created where communication only flows in one way, from monitored resource
to the monitoring system. This makes it easier to address security concerns
and being capable to communicate with every resource, even if when these
are behind middleware boxes and firewalls that, due to security reasons,
might block incoming tra�c.

The characteristics of the push model make it the more adequate for an Edge
environment, due to the volatility of the nodes and the scale of the number of
nodes. Using a pull-based solution would be troublesome, as we would have to
deal with a high number of registration processes, due to edge nodes being mobile
which results in a high chance of leaving the system. Also, while using a pull-
based communication, the monitoring tool is not able to immediately recognize
the loss of resources, and is going to keep trying to pull data from it, wasting
time and resources.

3.2 Data Processing Function

In order to be able to use the data generated by the monitoring resources,
there is a need to process and interpret it. This is necessary to evaluate, and
provide necessary insight about the system, and its components. This analysis
can be used to perform optimizations and adaptations on the system to increase
performance.

Data processing operations have di↵erent requirements for di↵erent objec-
tives [10]. In environments where we answer requests as fast as possible, it is
beneficial to use techniques that help us obtaining the relevant data as quickly
as possible. For instance, if a request does not require a global view of the system
we can consider data from only a subset of all the information on the system.
This allows getting the necessary data quicker (in perfect conditions it would
only use local data), and in consequence process it quicker. In other scenarios,
we may need to have a global view of the system. To achieve that, it may be
necessary to process the data from the whole system. The latter type of opera-
tions needs to support longer response times, as the volume of data that needs
to be processed is much higher and localization can be more sparse.

6

The data processing/analysis can also be used to create historical data to
be later interpreted. For instance, data mining can find patterns and match
certain events with problems on the infrastructure, which may reveal that when
a specific zone is having issues the whole system performance will go down. This
knowledge can then be used to adjust the system.

3.2.1 Aggregation is a type of computation function that can be applied to
data sets. It takes multiple sources of data of the same type and resumes their
values into a single output. The combined output gives an insight regarding
the inputs while avoiding all the individual contributions to be re-processed
whenever their values are needed. Aggregation of data provides context around
di↵erent data points. Typically it occurs at centralized location and provides
powerful insight into the behavior of an application or zone of the system.

– System Aggregation of data reveals the overall health and state of the
system. This type of aggregation is designed to give various views and insight
into the system state. In addition, we calculate di↵erent aggregates with
distinct sets of metrics, in order to predict di↵erent scenarios, or to play
“what-if” situations, where we can explore potential side e↵ects of changes
that might modify or introduce faulty behaviors in the system.

– Local Aggregation is an optimization that aims at keeping the data near
the nodes that generated it. Many metrics and events can be computed
“on the go” locally, instead of requiring data to be sent to another location
for analysis. Unfortunately, local aggregation is not always possible, either
because the edge nodes do not have enough processing power, or because it
would add an unacceptable latency (due to the need to gather the data from
other nodes) to the query response.

3.2.2 Transformation Into Events Events are historical records of some-
thing that has happened in the monitored system. They can be created when a
certain state of the system is reached or when certain actions were performed.
With events, we can provide output with behavioral scope instead of relying only
on pure data.

3.3 Data Exposition Function

This function is responsible to export the output of the monitoring system
to the users, allowing them to visualize the information captured and processed.
There are two primary types of outputs:

– Notifications: Consist on communicating to a user or to another system
that an event has occurred. It can either be used to notify an administrator
of something going bad in the system or can also be used to integrate two
systems that depend on each other. For example, consider a situation where
system A needs system B to be in a certain state and the monitoring system
could be programmed to notify system A when system B is in that specific
state.

7

– Visualization: Can be shown in the form of tables, charts, or graphs, that
allow the users to analyse and reason about the state and performance of
the system. Users should be able to check for di↵erent zones of the system
and, in case of historical data, should be able change the granularity and
period of the data being shown.

3.4 Fog/Edge Multi-layer Monitoring Structure

Edge computing follows a di↵erent structure from cloud computing in the
sense that it is divided by layers [11]. At its core, has three layers: the cloud
computing layer, which is similar to the classic cloud computing paradigm where
we have big datacenters with a lot of high performance servers; the fog layer,
that consists on having high performance nodes or even small datacenters called
cloudlets, deployed in di↵erent sites closer to the users; and the edge layer, which
is populated by the end-users and end-devices, these devices have low perfor-
mance, power constraints, and are responsible for generating most of the data
of these type of systems.

Due to the di↵erences between this structure and the one from classic cloud
computing, a monitoring service for the edge needs to be structured di↵erently
from a monitoring system for the cloud. The most common structure, proposed
in the literature [1,8,11], follows a multi-layer structure that is similar to the
edge infrastructure, composed by the following layers:

– Centralized cloud computing layer: Includes cloud datacenters that can
be used as long-term storage. Datacenters can execute application-level data
processing and exposition functions that do not have short latency require-
ments. Datacenters are the locations where we can perform big data analysis
of the whole infrastructure.

– Fog layer: In this layer, smaller cloud resources are deployed in order to be
closer to end-users and end-devices. It allows for a more localized processing
and exposition of the data and also allows edge nodes to o✏oad some of
its computation to it. This layer hosts the entry points to the monitoring
system, for the edge nodes. It hosts data collection services that are able to
act on the captured data, for example, by aggregating, filtering or encrypting
local data.

– Edge computing layer: This layer contains the devices, users, and applica-
tions that will implement part of the observation function of the monitoring
system. It is the source of data for the upper layers.

3.5 Fog/Edge Monitoring Properties

The multi-layer structure makes fog/edge environments very di↵erent from
the traditional cloud computing environments. Its specific characteristics fun-
damentally change the strategies that can be used when monitoring the system
[1,8]:

8

– Large and massively distributed: Fog/edge based systems are deployed
across a di↵erent number of sites that can be widely spread. The distance sep-
arating these sites can reach hundreds of kilometers. They can be connected
through di↵erent types of links, such as copper, fiber, wireless technologies,
each one with its reliability and speed. Both factors, distance and nature
of the link, a↵ect latency and bandwidth among the resources, a fact that
should be taken into account when designing the monitoring system.

– Heterogeneity: The infrastructure is composed by di↵erent types of de-
vices, such as servers with high computing power, storage servers, routers,
gateways, middleware appliances, and users devices. All these resources have
di↵erent characteristics in terms of capacity, reliability, and usage. On top
of it, virtualization which is widely used in the cloud environment also adds
another level of heterogeneity, due to the possibility of the resources being
either virtual or physical.

– Highly volatile: Nodes at the edge level may join and leave the system at
any time, given that many edge devices are mobile.

With these new properties in mind, we need to provide a set of improvements
over the classic cloud paradigm for monitoring systems.

3.6 Monitoring Service Specification on Edge/Fog

The new infrastructure and specific characteristics imposes a new a set of
requirements, that need to be taken into account in a monitoring system for a
fog/edge environment [1,2,8]:

3.6.1 Functional Requirements

– Reduce the amount of network tra�c: Nodes at the fog computing
layer should be able to filter unnecessary data and aggregate information
that needs to be streamed to other nodes. By filtering and aggregating the
data before sending, it is possible to decrease the amount of data that is
being transmitted. This helps dealing with the big volume of information
generated by the large and massively distributed number of edge nodes.

– Tweak monitoring intervals: The system should be tunable and trigger
data collection or processing based on custom intervals or event conditions.
By customizing time intervals, we can prevent the network from being con-
gested with too many messages, something that could happen if all nodes
would transmit at the same time. Using events to trigger monitoring, we
can provide immediate response to abnormal circumstances, avoid having to
wait for the next time interval and preventing loss of control of the system.

– Long-term storage: The monitoring solution should be able store the data
in an optimized way that allows for future retrieval of the data. In this way,
monitoring data can be used to inform future adaptation strategies.

– Service migration: The system should be able to adapt to reallocation of
services, something that is common with distributed systems. It should be
able to adapt at the hardware level and at the virtualization level.

9

– Independent from underlying cloud infrastructure provider: The
system should be able of inter-operable monitoring and to share information
among heterogeneous frameworks.

– Quickly react to dynamic resource changes: The monitoring solution
should rapidly detect and collect information about the changing environ-
ment. Edge computing requires an agile monitoring system, especially at the
Edge layer, due to the highly elastic environment where end-devices may fre-
quently join and leave the system.

– Operating system and hardware independence: An Edge monitoring
solution has to deal with heterogeneous resources and in order to achieve it,
needs to interact and capture data independently of the resource operating
system, if it is virtualized or not, and of which hardware it is running on.

– Able to reach all devices in spite of filters and firewalls: Certain
types of network packets are filtered in private administrative domains due
to security concerns. The monitoring system should be able to adapt its
communications protocols in order to be able to contact nodes that are
located in these contained networks.

– Improve the application performance: Users and applications at the
edge level might need a quick response to a request. The system should be
able to provide those fast responses. Therefore, it should not rely exclusively
on the cloud computing layer or other centralized components to process
localized data. Instead, it should support local data processing on fog nodes,
which are closer to the edge. Localized processing reduces the latency and
reduces response time (as long as it only uses local data), which results in
better application performance.

– Location and network context awareness: Edge devices and fog nodes
are distributed in a wide geographic area. This is used to track end-users in-
formation, such as their location, mobility, network condition, behavior, and
environment in order to e�ciently provide customized services. This allows
to provide context for the data captured and extra attributes to categorize
information which will allow to make localized adjustments to the system
[12] or end-users’ preferences.

– Minimize energy consumption: Some edge devices have limited resources
and should be able to o✏oad [13,14] tasks to fog nodes that are preferably
close (otherwise the power used to transmit the data could be higher than
processing the data itself). When applied properly, this technique helps in
reducing the energy consumption of edge devices.

3.6.2 Non-functional Requirements

– Scalability: The system needs to scale and be able to monitor a large num-
ber of resources. It should be able to handle a sudden growth of monitored
resources as well as a sudden high load of requests, while maintaining per-
formance across the whole system.

– Non-intrusiveness: Edge computing makes use of small devices that need
to be e�cient due to their energy constraints. This creates an environment

10

where special attention need to be provided to resource usage, by adopting a
strategies that use minimal processing, minimal memory usage, and reduced
communication. The observation function of the monitoring system should
also gather metrics from edge devices using a non-intrusive and lightweight
implementation.

– Locality: The monitoring service should ensure adequate response delay,
regardless of the location of the monitored resource. It should allow to deploy
the monitoring service on multiple locations and near its users, in order to
be able to guarantee low response times.

– Modularity: The heterogeneous resources of the fog/edge infrastructure
range from high performance servers to low power devices. To o↵er monitor
services more choices its deployment should be made possible in any type
of these resources, regardless of their capacities, OS, or if it is virtualized or
not.

– Geo-aware: An Edge platform has an inherent geo-distributed structure.
Nodes can be clustered into regions depending on their location. Nodes can
leverage local connections within those regions to get better connectivity
among them. These regions create the possibility of deploying a server dedi-
cated to each zone, in order to be able to process local data relatively to its
regions’ nodes. By using these local servers, we can achieve less latency to
the edge nodes. It is also possible to enable these servers to answer requests
relative to their own regions or even gather information of other zones and
store it in order to be able to answer quickly to the nodes that request that
information.

– Robustness:

• Resilience to server additions/removals: The monitoring system
cannot prevent the failure of the servers hosting it. It should be able to
adapt if any of its resources is removed or if there is a need for a system
migration of any of its modules, an event that is common in a virtualized
environment like cloud and fog environments.

• Resilience to network changes/failures: Due to the distributed na-
ture of the fog/edge based architecture, the network is highly vulnerable
to network failures. In particular, at the edge level, we have many small
mobile devices that can enter and exit the system with ease, and the
system should be able to adapt to these changes. Furthermore, moni-
toring remote resources relies heavily on the network to transmit data.
The system should also be able to cope with networks failures, using
mechanisms to guarantee deliver of data and alternative routes to reach
the system.

4 Related Work

In this section we review the literature on monitoring systems.

11

4.1 Existing Monitoring Solution

4.1.1 Astrolabe Astrolabe [15] is a hierarchical monitoring system. Astro-
labe organizes the monitoring nodes into a hierarchy of domains, which are
called zones. A zone is recursively defined to be either a set of hosts or a set of
non-overlapping zones (no hosts in common). Astrolabe continuously computes
summaries of system data using on-the-fly aggregation.

The hierarchical distribution of Astrolabe’s zones can be viewed as a tree
of nodes, where leaves represent the physical hosts and middle/top nodes are
virtual nodes hosted on physical hosts. Each zone has a local zone identifier, a
string name unique within their parent zone. A zone is identified by its zone
name, which is the name path of zone identifiers from the root of the tree to the
node itself. Representatives from the set of hosts within the zone are elected to
take responsibility for running the gossip protocol that maintains the internal
zones. If they fail, the zone will automatically elect another node to take the
place of the failing node.

Astrolabe propagates information using an epidemic peer-to-peer protocol
known as gossip[16]. Each node in the system runs an Astrolabe agent and every
agent runs the gossip protocol with other agents. It will periodically choose
another node at random and exchange information with it. If both nodes are
within the same zone, the state exchanged is related to information of that same
zone. If they belong to di↵erent zones, they exchange information associated
with their least common zone. The use of gossip allows the state of the Astrolabe
nodes to converge, as data ages and nodes communicate with each other.

Each zone stores information in an attribute list, a form of Management Infor-
mation Base or MIB, which borrows its terminology from SNMP [17]. Astrolabe
attributes, unlike SNMP, are not directly writable, but generated by aggregation
functions. Each zone has a set of functions that calculates the attributes of that
zone’s MIB. An aggregation function for a zone is defined as a SQL program.
It takes a list of the zone’s children MIBs and produces a summary of their
attributes. The only attributes that are writable are in the leaf zones. The at-
tributes of these zones are writable and are the sources of the MIBs the higher
level zones.

Each agent has access to (keeps a local copy of) only a subset of all the MIBs
in the Astrolabe zone tree. The subset includes all the zones on the path to the
root node, as well as sibling zones of each of those. In particular, each zone has
a local copy of the root MIB, and the MIBs of each child of the root.

There are no centralized servers associated with internal zones and all the
data is replicated on all agents within the zones it belongs to. Due to the structure
of the hierarchy tree and the fact that every node has a subset of the tree’s
information, it is possible to answer queries and requests for certain zones using
only local information.

Astrolabe is also capable of dealing with membership management problems
such as failure detection and integration of new nodes. Each MIB has a rep-
resentative attribute that contains the name of the agent that generated that
MIB, and an issued attribute that contains the time at which the agent last

12

updated that MIB. Each agent keeps track, for each zone and for each represen-
tative agent, the last MIBs from each agents. When an agent has not seen an
update for a zone from a particular representative agent for that zone for some
time Tfail, it removes its corresponding MIB. When the last MIB of a zone is
removed, the zone itself is removed from the agent’s list of zones.

In order to recover from crashes or add new machines, Astrolabe treats node
integration as merging two Astrolabe trees. It relies on IP multicast to set up
the first contact between the trees. After the initial setup, each tree multicasts a
gossip message at a fixed rate leading to an eventually merged state of the two
trees and starts using the normal gossip protocol.

4.1.2 FMonE FMonE[18] is a fog monitoring solution aimed at addressing
fog-based architecture requirements with its focus on heterogeneity. It relies on
a container orchestration system to build monitoring workflows that adapt to
the di↵erent environments that can be found on a fog architecture.

FMonE main module is a centralized framework that coordinates the mon-
itoring process across the whole fog infrastructure. It is designed to work with
container technologies. It uses an orchestrator to coordinate and maintain moni-
toring agents (responsible for the observation and processing functions) and the
back-ends (used to store metrics). The orchestrator is replicated on multiple in-
stances. In case of failure these replicas can replace the instance and keep the
system running.

FMonE organizes groups of nodes into regions. A region is composed inter-
nally by FMonE agents which are responsible for gathering the metrics, process
them and send to a back-end. FMonE uses a concept called Pipeline to match
agents and back-ends to its regions. The Pipeline also defines the workflow of
the agents and how they should behave for each function by defining three set
of rules InPlugin, MidPlugin and OutPlugin:

– Inplugin: defines how frequently the agent and which data is extracted from
a component of the system (can be a device or a message queue).

– MidPlugin: defines custom functions that are able to filter and aggregate
the set of metrics extracted by the agents (applied before the metrics are
published).

– OutPlugin: defines the time condition to push data and the location to where
it will be sent. An agent can dump its data in a back-end to be stored or in
a message-queue to be used by another agent.

The customization of these sets of rules allow for extra flexibility on the
agent’s behavior. It is possible to change the configuration according to each
region conditions which allows the system to be used with di↵erent types of de-
vices. The collection of the data by the agents is based on a push approach. It
starts by extracting the data from the device to the agent memory (still local to
the device) using InPlugin rule set, then it applies all the filtering/aggregation
function declared by MidPlugin, and finally pushes the processed data to loca-
tions given by OutPlugin.

13

For new nodes to join the system the new nodes simply need to match the
pipeline rules of the region that it wants to join. The orchestrator will initiate
the agent and the node will join and it will start collecting pushing the metrics.

As depicted by the Figure 1, the use of regions along with pipelines to de-
fine the workflow of the agents makes the system take a hierarchical architec-
tural approach. While it does not create a strict structure based on trees like
Astrolabe[15] and SDIMS [19], it allows the system’s regions to take a hierarchi-
cal behavior, where they can use aggregated values from other regions instead
of taking all the individual values from all devices.

Fig. 1. Pipeline example taken from [18]

4.1.3 Ganglia Ganglia[20] is a monitoring system for high performance sys-
tems such as Clusters and Grids. It is based on a hierarchical architecture, where
machines are split between federations of clusters.

Each cluster chooses a representative node. Ganglia creates a tree of point-to-
point connections amongst cluster’s representatives nodes in order to aggregate

14

their state and create hierarchical relations between the clusters. This structure
needs to be manually configured by the administrator of the system.

At each node in the tree (which are cluster’s representatives), exists a pull-
based service gmetad. It periodically polls the child data sources and aggregates
them into a single value. The data sources can be other representative nodes
(gmetad instances) that represent a single or multiple clusters, or at the lower
levels of the tree could be the physical machines that compose the clusters.

Every node in a cluster collects and maintains monitoring information for all
the other cluster nodes by listening to a well-known multicast address. To collect
metrics within each federation, Ganglia uses another service called gmond that
runs on every node. It monitors the node’s local resources and sends multicast
packets containing the monitoring data to the cluster-wide multicast address.

The multicast-based listen/announce protocol allows for a swift re-election
of cluster’s representatives in case of failure of the current one, as all nodes know
all the values of the whole cluster. It also makes joining the system easy, nodes
only need to start listening/announcing in order to join the federation.

In order to not flood the network with messages, the broadcast of metrics
inside a cluster only occurs when there are significant updates to those values.
Ganglia also uses time thresholds to specify an upper bound on the interval of
when metrics are sent. Every time a node reaches the threshold, it will multicast
its data to refresh the time value, even if there are no new values.

To deal with faulty nodes the system uses heartbeat messages with time
thresholds. Each heartbeat contains a timestamp representing the startup time
of its gmond instance. These values are stored on every node on the cluster
like metric data collection. Anytime a gmond instance has an altered timestamp
(compared with the local value stored in each node) it is immediately recognized
by its peers as having been restarted. A gmond which has not responded over
some number of time thresholds is assumed to be down.

Although the system has a hierarchical architecture like Astrolabe [15], it
cannot provide local scope queries. This happens because federations are not
associated with a name space, which makes it impossible to target them. In-
formation is simply collected and sent up the tree to upper gmetad nodes. The
manual configuration of the tree structure can be a problem at a bigger scale,
as it is not possible to manual configure thousands of nodes that we might find
in bigger environments.

4.1.4 MonALISA MonALISA[21] innovates by not focusing on monitoring
a single site and instead focusing on monitoring at a global scale. MonALISA
uses a service-oriented architecture and is designed to serve large physics collab-
orations that are spread over multiple data grids composed of hundreds of sites
on di↵erent locations, with thousands of computing and storage elements.

In order to scale and work robustly while managing global, and resource-
constrained Grid systems, MonALISA follows a peer-to-peer approach. Uses a set
of Station Servers, deployed one per facility or site. All the monitoring functions,
much like Astrolabe [15], take place in a single monolithic element.

15

The system architecture is sub-divided into four logical layers:

– The first layer contains the regional or high-level services (that use the data
from other services), data repositories and clients. These are the consumers
of information gathered by MonALISA and are able to store data.

– The second layer is composed by proxies. They allow for secure and reliable
communications, dynamic load balancing, scalability and replication. Clients
contact the proxies instead of communicating directly with the services. It
allows the proxy service to perform operations over the requests. For ex-
ample, allowing a service to only send the data once and then the proxy
multiplexes it for the all the clients that subscribe to that information.

– The third layer is where services are located. The services make use of a
multi-thread execution engine to perform the data collection and processing
tasks. The multi-threaded execution allows the system to monitor a large
number of entities, filter and aggregate the monitoring data, store monitoring
information for shorter periods of time, manage web services for direct data
access, provide triggers, alerts and actions based on monitoring data and
control the system using dedicated modules.
It also allows to perform independent data collection tasks in parallel. The
monitoring modules are dynamically loaded and executed on independent
tasks which allows to run concurrently a large number of modules. Due to
the use of independent threads, the failure of a monitoring task (due to node
failure or delay) will not delay the other tasks.

– The fourth and last layer hosts the lookup services (LUS). Consists of a net-
work of services that provide dynamic registration and discovery for all the
components described above. MonALISA services are able to communicate
and access each other at the global scale by registering themselves with LUS
as part of one or more groups along with some attributes that describe them-
selves. In this way any interested application, service or client can request
services based on a set of matching attributes.

The registration uses a lease mechanism. If a service fails to renew its lease,
it is removed from the LUS and a notification is sent to all services or other
applications that subscribed to such events. The scalability of the system comes
from the use of the multi-threaded execution engine to host the loosely coupled
services, and the use of the lookup service to register and discover services from
the proxies that allow the servers to only send information once and then the
proxy will multiplex it to all the interested parties.

4.1.5 Monasca Monasca[22], unlike all the other solutions we have seen un-
til now, is a centralized and highly modular monitoring solution. Its functions
are isolated from each other and divided into di↵erent modules. It follows a
micro-services architecture with several services split and responsible for a sin-
gle function. Each module is designed to provide a discrete service in the overall
monitoring solution and can be deployed or omitted according to the opera-
tors/customers need.

16

Instead of using gossip or a hierarchical tree like the other systems, Monasca’s
communication between processing functions is ensured by topics according to
the publish/subscribe paradigm. The central module uses a Message Queue,
like Apache Kafka [23], to provide temporary storage for the messages. The
message queue has two type of users. Producers that create messages and deliver
them, and consumers that connect to the queue and get the messages to be
processed. Messages stay on the queue until they are retrieved by a consumer.
This type of systems provide an asynchronous communications protocol between
modules. Publishers do not need an immediate response to continue working,
which decouples the di↵erent modules from each other as they do not need to
interact directly.

Data collection is done using agents that execute the observation function
on the remote resources. These agents capture the metrics from the remote
resources and push them to the central Monasca Module, called Monasca API.
Later, the API publishes the pushed metrics in the message queue under the
topic “Metrics” so that they can be used by any other Monasca Modules.

Aggregation is done by the module “Transform Engine”. It consumes the
data from the “Metrics” topic and transforms it by applying an aggregation or
mathematical function to obtain a new value. After transforming the data it
publishes the new values on the same topic “Metrics” so it can be used by the
other modules. In order to store the data permanently Monasca has a module
called “Persister” that takes the metrics from the Message Queue and puts them
in a persistent database.

Monasca also has another modules that are responsible for the creation of
alarms, events and notification that consume metrics from the Message Queue.

Due to fact that Monasca uses a centralized architecture and does not have
an internal organization of its remote resources, the system is not capable of
providing locality nor resilience against failures.

4.1.6 SDIMS SDIMS[19] is a generic monitoring system that aggregates in-
formation about large-scale networked systems.

It implements the same hierarchical architecture as Astrolabe but, instead
of exposing all information to all the nodes of a subtree, it allows nodes to only
access detailed views of nearby information and summary views of distant and
global information.

It uses a modified Distributed Hash Table (DHT) algorithm extended from
the Pastry’s protocol [24] to construct a tree spanning across all nodes in the
system. Each physical node is a leaf and each subtree represents a logical group of
nodes. These logical groups can correspond to administrative domains or groups
of nodes within a domain (both equivalent to zones on Astrolabe).

An internal non-leaf node or virtual node is simulated by one or more physical
nodes at the leaves of the subtree for which the virtual node is the root. The
zones on the tree are created by exploiting the fact that each key in Plaxton-
based DHT (which Pastry is based on) identifies a tree consisting of the routes
from each other node to the root node for that key. The algorithm was modified

17

to have a leaf set for each administrative domain, rather than a single set for
the whole tree.

The authors adapted the Pastry’s protocol by changing its routing algorithm.
Instead of using a single routing table based on network jumps, they changed
the algorithm to have two di↵erent proximity metrics when creating the routing
tables for the DHT. They use hierarchical domain proximity as its primary
metric, which means that domains need to be declared before the tree is formed,
and use network distance as a secondary metric.

Each physical node stores its metrics locally. The system associates an ag-
gregation function with each attribute, and for each level-(n+ 1) subtree in the
tree it calculates the aggregated value using the values from level-n aggregated
values.

Data collection uses a pull method. Values are directly gathered from the
source nodes when the system wants to calculate the aggregate of those values.

The aggregated values can be propagated along the tree when calculated in
order to provide some degree of locality.

While previous systems, like Astrolabe [15], provided a single static strategy
for computing and propagating values, SDIMS provides flexible computation
and propagation strategies by letting applications customize their propagation
patterns to their needs.

This strategy allows the system to provide a wide range of strategies for data
propagation in order to match the read-write-ratio of di↵erent applications.

SDIMS is able to provide this flexibility by having three operations that
manipulate the system configuration:

– Install(): installs an aggregation function that defines an operation on an
attribute and specifies the update strategy that it will use. It uses two pa-
rameters up and down that define how much the value should be propagated
on the tree. The up value defines at which levels above the node that the
aggregated value should be stored and the down parameter determines how
much levels it should propagate down to its descendants.

– Update(): updates or adds a new value to a leaf node, allowing it to trigger
a new aggregation.

– Probe(): returns the value of an attribute. An application can specify the
level of the tree at which the answer is required for an attribute. It can also
specify up and down parameters in order to ask for re-aggregation of the
values taking into account those parameters.

Beyond the strategies already used in Pastry’s [24], two more strategies are
provided in order to deal with the problem of nodes leaving the system: On-
demand re-aggregation and replication in space.

On-demand re-aggregation is done by using the up and down attributes of
the Probe API application to force a re-aggregation. If an application detects
that the aggregated values are stale it can re-issue the probe by increasing the
up and down values, forcing the refresh of those values.

Replication in space is attained by using the up and down knobs in the In-
stall API. With bigger values on each parameter, aggregates at the intermediate

18

virtual nodes are propagated to more nodes in the system. It reduces the number
of nodes that have to be accessed to answer a probe, which lowers the probabil-
ity of incorrect results due to the failure of nodes that do not contribute to the
aggregate.

4.2 Analysis of Monitoring Solution

Due to di�culty of doing a empirical approach evaluation on systems with
large heterogeneity, massive distribution and elastic resources, we will follow the
strategy used by the authors in [8] and use a qualitative approach to evalu-
ate monitoring solution. We will classify monitoring solutions from each other
according to their functional decomposition, architectural model, locality, data
collection method, function flexibility and scalability.

– Functional Decomposition:
• No Decomposition: In this category, the monitoring function is per-

formed entirely by a monolithic element. It collects all the data from the
monitored resources, processes it and exposes it. This model is simple
and easy to implement, but restricts the scalability and modularity of
the system as it has its functions on a single non scalable element.

• Basic Decomposition: In this category, the observation function is de-
ployed on the monitored resources separated from the other monitoring
functions which enhances resilience to network failures. Deploying agents
on the monitored resources allows the system to adapt the infrastructure
and granularity of the measurements.

• Fine-grained Decomposition: Every monitoring function can be de-
ployed on separate locations. This improves modularity and reduces the
risk of simultaneous failures of all functions which increases resilience to
both servers removals and network failures.

– Architectural Models:
• Centralized Model: Only one instance of each monitoring function is

deployed except for the observation function for which multiple instances
may be deployed on the monitored resources. This model limits the mon-
itoring service scalability as it cannot benefit from additional resources.
Furthermore, latency between the monitoring service, the monitored re-
sources and the management systems may be significant.

• Hierarchical Model: Deploys a su�cient number of instances for each
monitoring function according to the size and requirements of the in-
frastructure. The scalability is enhanced and latency between instances
is reduced. Instances are organized in regions that slotted into levels.
Regions in level-n can be composed by hosts or by level-(n+ 1) regions.
This type of infrastructure is more complex and costlier to maintain.
Each time a change occurs, either by server removal or network change,
the tree organization has to be rebuilt, which is time consuming. The
higher the broken node is on the tree, the more significant is the failure
impact. This translates to higher levels of locality but it still is insu�-
cient to satisfy the highly elastic nature of Edge environments.

19

Table 1. Comparison

Astrolabe FMonE Ganglia MonALISA Monasca SDIMS
Architecture Hierarchical Hierarchical Hierarchical P2P Centralized Hierarchical

Decomposition None Fine-grained Basic None Fine-grained Basic

Data Collection Mixed Push Pull Push Push Push

Locality + + - - - +

Flexibility - + - + + -

Scalability -
1

+ + + - +

• Peer-to-peer Model: Allows the replication of functions without im-
posing specific structure to be able organize relations between the nodes.
Any instance can connect to any other instance if needed and it still
holds the scalability property by allowing multiple instances of a given
function. It also solves the expensive structural maintenance issue by
removing hierarchical reliance between instances.

– Locality: The system allows to di↵erentiate remote resources based on
zones. We can query the system to receive information from only specific
scopes of the system. This zones can be created based on di↵erent criteria
like administrative domains (like departments in a University) or geograph-
ical distance between the nodes.

– Data collection method:

• Pull: Every remote resource needs to go through a register process on
the monitoring system in order to be found. The system periodically
polls the remote resources individually to gather metrics. This puts all
the load of data collection on the system instead of splitting it across
the remote resources.

• Push: Each remote resource is responsible for sending its metrics to the
monitoring system. Metrics can be sent based on a time or event condi-
tion. It is possible for nodes to do for local aggregation before sending
it to the monitoring system, which is beneficial at the Edge level where
the the energy consumption of computing that value is lower than trans-
mitting the whole data.

– Function flexibility: If it is possible to redefine a node function and if it
possible to easily move the function to another node (for example change
which node is responsible to aggregate data from a region).

– Scalability: If the architecture and protocols used by the system result in a
structure that is able to scale e�ciently, not only with the number of nodes,
but also with the number of metrics.

1 Although Astrolabe is scalable with the number of nodes, it is not scalable with the
number of metrics due to replicating all metrics in a big number of nodes.

20

4.3 Shortcomings of Existing Solutions for Edge Computing:

The systems mentioned were designed with a specific infrastructure and node
organization in mind.

Due to the bigger number of devices in the Edge, data generation is much
higher compared to classic Cloud computing systems. Sending all that data
through the network is unfeasible. In order to deal with it, we need to aggregate
and filter the data with the objective of reducing the volume of information that
we need to transmit.

Most of the mentioned monitoring systems use a strict hierarchical struc-
ture to organize its nodes. Functions are closely tied to the nodes’ organization.
To perform any change in that structure the system must go through complex
processes (like a leader election process). These procedures are expensive and
does not allow to easily re-attribute functions (observation and processing) or
create new regions while the system is running without re-configuring the whole
structure.

In an Edge system, the environment is always changing with the entrance
and exit of nodes. We need to be able to freely attribute a function to any node
without diminishing the performance of the system and adapt to the various
situations that might arise.

Closely tied to functional flexibility is functional decomposition. It is impor-
tant to be able to clearly di↵erentiate functions within the monitoring system.
Di↵erent functions should be performed by di↵erent components that do not
depend directly on other functions.

With all of this, an Hierarchical architectural model with a High functional
decomposition and with no strict node organization seems the most viable ap-
proach to be able to aggregate and filter data in an Edge system while maintain-
ing locality (due to the existence of regions) and functional flexibility (to adapt
to changes in the system).

5 Architecture

In our solution edge nodes are responsible to generate data and push it to the
fog layer to be processed in cloudlets. Each cloudlet will represent at least one
logical region from a hierarchical scheme. Cloudlets will communicate with each
other to synchronize information between zones and gather information from
other regions to perform aggregation.

Our goal is to provide a more flexible node organization while maintaining
the hierarchical scheme provided by systems like Astrolabe[15] and SDIMS[19].
Edge nodes will communicate using a push model, while Fog and Cloud nodes
will use a pull model to gather information from other nodes, as illustrated in
Figure 2.

Classic hierarchical schemes like the ones from Astrolabe and SDIMS were
designed for grids and datacenters environments. Monitored resources are closer
to each other and the monitoring system itself is hosted on the same machines it

21

is monitoring. In these schemes, data observation and processing functions are
closely tied to the node organization. For example, in Ganglia [20] only members
of the federation can perform operations over the values of that cluster.

This type of approach results in little flexibility to change nodes disposition
and functional responsibilities while the system is running, and when it happens,
it relies on complex election protocols to change the nodes assigned to each zone
and even after electing the new node it may take a lot of time to change the
structure that maintains the hierarchy.

Our solution aims to allow the possibility to having any node taking func-
tional responsibility for any region while maintaining hierarchical aggregation.

Fig. 2. Communications Model

5.1 Node and Region Organization

The monitoring system will follow Fog/Edge multi-layer architecture, as de-
picted on Figure 3. At the lower level we will have the Edge layer. Edge nodes
will belong to at least one logical region. They will generate and send data to
one fog node responsible for its region. The Fog Layer will contain the nodes
responsible for receiving data from edge nodes and processing it. Each fog node
can be responsible for multiple regions. Regions can be composed by edge nodes
or by another regions. And at the top level we will have the Cloud layer that

22

will have a global view of the system and will be able to perform data analysis
at a global scope.

The logical regions need to be specified by administrators and are registered
on a Lookup Service. The Lookup Service will serve as a name service. It can
be used to find which node represents which regions and how are the regions
composed (see Section 5.2). Each region will have a pool of servers that are
responsible for collecting and aggregating information for the region they are
assigned to. This list can change at any time with the entrance and exit of
servers. The servers will register on the lookup service by declaring which regions
they want to be responsible for.

When an edge node wants to join the system, it contacts the lookup service
in order to find out the location of one of the servers responsible for its region
and starts sending data to it.

Fig. 3. System Architecture Model

5.2 Lookup Service

Our solution will be based on MonALISA’s [21] lookup service. It will be
used to find the IP addresses of the responsible servers each region. It will store
a list of servers and their location for each zone. It will also store hierarchical
levels by having a list with the level-n regions that compose level-(n+1) regions.

Nodes will also store those lists and synchronize them with the Lookup Ser-
vice. When a node leaves or joins a region, the lookup service announces it to all
the other region’s nodes so that they can update their local lists. This is done to
allow nodes to operate independently from the lookup service after registration.

23

Just like MonALISA’s [21] service, registration will work based on a lease
approach. Servers will register themselves on the lookup service by providing
their IP address and the regions they want to take responsibility for. Upon
failure of renewing the lease the server will be removed from the lookup service.

When joining the system, edge nodes will query the service to receive an IP
address for a server that is responsible for its region. With base on metrics that
yet to be defined, the lookup service will select the best server from the region’s
list to give that querying node.

We are still not sure if this component will be centralized in order to have a
global notion of the system or if we will try to distribute it. There will also be
some kind of replication of this service in order to get resilience in case of failure
of the service.

5.2.1 Communication between hierarchical levels: Regions from higher
hierarchical levels will pull information from lower levels regions in order to
calculate the aggregated values. When a node wants to aggregate the values
from lower regions it will use its local list of sub-regions and query the lookup
server for an IP address of a responsible for those lower level regions. Then the
server will pull all the necessary data from the lower regions, process it, and
aggregate it.

This behavior will work in recursive way until we reach the root node, which
is represented by the centralized nodes in the Cloud layer.

5.2.2 Synchronization among nodes on the same region: It will be
possible to have multiple nodes responsible for each region. In order to have
locality without every node of the region and also have resilience in case of
server failures we need to synchronize the servers state. The responsible nodes
within the same region will periodically (or upon an trigger event) trade their
sets of information, in a similar way to Astrolabe’s gossip protocol (see 4.1.1).

5.3 Edge Layer

Edge nodes will be the primary data source for the system. Nodes at this layer
are highly volatile and dynamic relatively to resource availability and structure
(OS, hardware architecture).

5.3.1 Data Collection: We will use an agent based approach. It will imple-
ment a Push communication protocol between the edge nodes and the processing
servers on the Fog Layer. We will deploy an agent on each remote resource. It
will distribute the load of gathering the information through the edge nodes
by periodically, or upon certain condition, send the metrics to the processing
servers. The use of push instead of pull allows the system to scale better with
the number of monitored resources, and also allows to deal better with edge
nodes entering and exiting the system (see Section 3.1).

24

5.3.2 Agent Deployment: For the agents to be easily deployed at the Edge
level we need to employ a method that is able to be used in a heterogeneous
environment, independently from the Operating System and architecture. We
plan to use Containers [25] due to its ease of deployment in all kinds of OS and
architectures. Containers are deployed by having a system (lets say our Lookup
Service) send an image of the container to a node and then starting the image.
This images are smaller in size than a full fledged VM and require less resources
to run.

5.3.3 Distributing edge nodes through regions Nodes joining the system
will query the Lookup Service. Based on the location of the node or other metrics,
will give the more adequate region for the node to join. This will allow to group
nodes using di↵erent rules. For example, it will be possible to group geo-related
nodes into regions associated to a specific geographical area. In this case it will
enable geo-aware queries simply due to the way the nodes are distributed among
regions without extra work from the system.

6 Evaluation

Our main goal is to provide an Edge monitoring solution with a flexible struc-
ture to organize the system’s nodes while maintaining the hierarchical properties
that allow us to reduce the volume of data on the system. The tests will be con-
ducted in the Grid’5000 testbed [26] in order to allow us to set up di↵erent
scenarios for the system. With this, we will compare our Edge components with
Monasca (our agent is based on Monasca’s solution) and our fog and cloud com-
ponents with Astrolabe (in order to compare our hierarchical solution). We will
assess the impact that our solution has in respect to response latency; agent over-
head and resource usage; and elasticity of the system upon node failure and/or
function re-attribution.

6.1 Response Latency

It is important to be able to see how our solution impacts latency to query
responses in an Edge Scenario. We will setup both our solution and Astrolabe
in Grid’5000 in an Edge-like infrastructure. Our solution will have three layers:
edge nodes spread across multiple locations with big distance between them;
multiple middle nodes representing the fog layer, these nodes will be distributed
to be in various degrees of distance with the edge nodes; and a central node
(far from the edge nodes). Astrolabe will have all of its physical nodes hosted
in multiple regions (with di↵erent distances between them) in order to simulate
an edge scenario. Afterwards, we will measure the time it takes to answer to
di↵erent queries within within di↵erent scopes (i.e., global, local and between
regions) and compare those values between both systems.

25

6.2 Overhead and Resource usage

We will monitor the impact that our monitoring system has on resource
usage for each node in the edge layer (as it is the more sensitive layer to resource
usage). We will also want to measure the time it takes for an edge node to be
up and running upon joining the system.

At the edge level, the most interesting comparison we can do is compare our
agent with Monasca’s, as it is the system we based on to develop our agent.
In order to simulate the Monasca architecture, we will setup our solution in a
centralized structure, with multiple edge nodes, linked directly to a centralized
node that will collect all the metrics. We will then use YCSB [27] to perform
these tests. YCSB agents will continuously query the database in the central
node until they reach a threshold and measure the amount of operations/sec
that the agents are able to perform. Afterwards, we will do the same to Monasca
and compare both values.

6.3 Elasticity

Since the biggest improvement our solution brings is the possibility of re-
adapting the hierarchical structure and the possibility of re-attributing functions
to nodes, we need to measure how quickly the system can adapt to these changes.

We need to assess the time it takes for other nodes to acknowledge a func-
tion re-attribution/removal. To do this, we will setup the same topology in our
solution and Astrolabe, remove the nodes that are responsible for aggregating a
specific zone, and measure the time it takes for that region to start aggregating
those values again.

It’s also important to measure the time it takes for a node to start running
its agent upon joining the system. Because new nodes require a container image,
to start up the agent in order to monitor, there is a possible overhead there.
We will setup various tests where we will have di↵erent number of edge nodes
joining the system at the same time (i.e., 10, 15, 20 nodes joining and requiring
the container image) and measure the time it takes the nodes to start sending
metrics. We will check if there is di↵erence in performance when increasing the
number of nodes, and if there is going to be any di↵erence between joining the
system while already having the image (which happens when rejoining) versus
having to pull the image from the monitoring system.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

26

8 Conclusions

There is a need to monitor an edge system to track its behavior and to be
able adapt the system to di↵erent conditions. The edge brings an increase of
the number of highly volatility devices that generate data. Sending all the data
to centralized servers to process it may be unfeasible. This motivates the need
for a monitoring service capable of aggregating and filtering data to reduce the
volume of information transmitted and that gives a flexible structure to construct
di↵erent aggregation regions to adapt to di↵erent applications.

In this report, we surveyed the structure of existing monitoring systems, the
requirements imposed by the fog/edge environment, the existing cloud comput-
ing monitoring solutions, and their shortcomings in an edge environment. We also
elaborated a solution that allows to maintain a hierarchical architecture while
allowing functional flexibility. Finally, we discussed several potential strategies
for evaluating the proposed architecture.

Acknowledgments We are grateful to Nivia Quental for the fruitful discussions
and comments during the preparation of this report.

References

1. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring
self-adaptive applications within edge computing frameworks: A state-of-the-art
review. Journal of Systems and Software (Feb 2018)

2. Prasad, V., Bhavsar, M., Tanwar, S.: Influence of monitoring: Fog and edge com-
puting. Scalable Computing (May 2019)

3. Greenberg, A., Hamilton, J., Maltz, D., Patel, P.: The cost of a cloud: Research
problems in data center networks. Computer Communication Review (Jan 2009)

4. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing (Oct 2009)

5. Bonomi, F., Milito, R.: Fog computing and its role in the internet of things.
Proceedings of the MCC workshop on Mobile Cloud Computing (Aug 2012)

6. Zhang, B., Mor, N., Kolb, J., Chan, D.S., Lutz, K., Allman, E., Wawrzynek, J.,
Lee, E., Kubiatowicz, J.: The cloud is not enough: Saving iot from the cloud. In:
7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15). (July
2015)

7. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: A survey.
Computer Networks (2013)

8. Abderrahim, M., Ouzzif, M., Guillouard, K., Francois, J., Lebre, A.: A holistic
monitoring service for fog/edge infrastructures: A foresight study. In: 2017 IEEE
5th International Conference on Future Internet of Things and Cloud (FiCloud).
(Aug 2017)

9. Martin-Flatin, J.P.: Push vs. pull in web-based network management. In: In-
tegrated Network Management VI. Distributed Management for the Networked
Millennium. Proceedings of the Sixth IFIP/IEEE International Symposium on In-
tegrated Network Management. (1999)

27

10. Fatema, K., Emeakaroha, V., Healy, P., Morrison, J., Lynn, T.: A survey of cloud
monitoring tools: Taxonomy, capabilities and objectives. Journal of Parallel and
Distributed Computing (Oct 2014)

11. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges.
IEEE Internet of Things Journal (Oct 2016)

12. Zhu, J., Chan, D.S., Prabhu, M.S., Natarajan, P., Hu, H., Bonomi, F.: Improving
web sites performance using edge servers in fog computing architecture. In: 2013
IEEE Seventh International Symposium on Service-Oriented System Engineering.
(March 2013)

13. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: Elastic execu-
tion between mobile device and cloud. (Jan 2011)

14. Rudenko, A., Reiher, P., Popek, G., Kuenning, G.: Saving portable computer
battery power through remote process execution. Mobile Computing and Commu-
nications Review (March 1998)

15. Van Renesse, R., Birman, K., Vogels, W.: Astrolabe. ACM Transactions on Com-
puter Systems (May 2003)

16. Demers, A., Greene, D., Houser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
ACM SIGOPS Operating Systems Review (1988)

17. Hare, C.: Simple network management protocol (snmp). (2011)
18. Pérez, M., Sanchez, A.: Fmone: A flexible monitoring solution at the edge. Wireless

Communications and Mobile Computing (Nov 2018)
19. Yalagandula, P., Dahlin, M.: A scalable distributed information management sys-

tem. SIGCOMM Comput. Commun. Rev. (August 2004)
20. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:

design, implementation, and experience. Parallel Computing (2004)
21. Newman, H.B., Legrand, I., Galvez, P., Voicu, R., Cirstoiu, C.: Monalisa : A

distributed monitoring service architecture. CoRR (2003)
22. Openstack Project: Monasca wiki. https://wiki.openstack.org/wiki/Monasca

Accessed: 2019-12.
23. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: A distributed messaging system for

log processing. In: Proceedings of the NetDB. (2011)
24. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing. (2001)

25. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE
Cloud Computing (2014)

26. Cherrueau, R., Pertin, D., Simonet, A., Lebre, A., Simonin, M.: Toward a holis-
tic framework for conducting scientific evaluations of openstack. In: 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). (May 2017)

27. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. (2010)

28

