
Dynamic Reconfiguration of the Data Aggregation Topology at the Edge

(extended abstract of the MSc dissertation)

Tiago Gonçalves
Departamento de Engenharia Informática

Instituto Superior Técnico
Advisor: Professor Luı́s Rodrigues

Abstract—Edge computing is a paradigm where computation

and storage services are offered by nodes that are placed

close to devices that constitute the Internet of Things (IoT), as

opposed to a pure cloud computing model where these services

are provided by large central datacenters. The main advantages

of edge computing are twofold: it allows to offer services to the

IoT devices with low latency and it reduces the amount of data

that needs to be sent to the central datacenters by means of data

aggregation, providing significant bandwidth savings. These

services are provided by edge nodes, often called fog nodes or

cloudlets, that are placed in different geographical locations,

close to the users. To ensure low latency the number of these

servers will be necessarily high and need to be organized in

a structured infrastructure that allows to take advantage of

the localization of edge nodes. For the successful operation of

edge computing it is crucial to have an infrastructure that is

able to adapt to multiple environments and reconfigure itself to

a more favorable topology. This thesis presents FlexRegMon,

a system that allows to have dynamic re-configuration of the

data aggregation topology, by using a distributed component

that manages the hierarchical topology of the system.

Keywords-edge computing, monitoring, flexible topology, re-

configuration, data aggregation.

I. INTRODUCTION

The number of devices that are connected to the Internet
is very large and keeps growing at fast pace. The nature of
these devices is very heterogeneous, from powerful laptops
and smartphones to small sensors, a plethora of devices have
the ability to provide services to end users and to collect and
produce data: media servers, smart TVs, consumer appli-
ances, smart watches, smart home sensors and actuators, etc.
This reality is known as the Internet of Things (IoT). Edge
computing is a paradigm where computation and storage
services are offered by nodes that are placed close to devices
that constitute IoT, as opposed to a pure cloud computing
model where these services are provided by large central
datacenters. The main advantages of edge computing are
twofold: it allows to offer services to the IoT devices with
low latency and it reduces the amount of data that needs
to be sent to the central datacenters, providing significant
bandwidth savings.

Edge computing typically relies on a multi-layer archi-
tecture [1] [2] [3] with the following components: (i) A
centralized cloud computing layer, which includes cloud
datacenters. It can be used for long-term storage and big-
data analysis; (ii) A fog/edge layer, that has the ability
to pre-process raw data before it is shipped to the cloud.
It allows processing data closer to the location of capture
which leads to better latency and response times. This layer
can have multiple levels, where they can be either closer
to cloud or to the edge where end-users are; (iii) the edge

layer, composed by sensors/devices that generate the data
and execute applications.

The architecture above allows also improves application
performance as data is processed closer to the end-user
which allows to reduce latency. It provides new approaches
to load balancing by introducing new functionalities of
service migration such as moving a running service from
the cloud layer to the edge computing layer. It also provides
awareness of location, network and context information. The
edge layer also makes easier to track end-user information
and adapt the environment to their needs and preferences.

In this work we are mainly concerned with the operation
of nodes in the edge/fog layers. These nodes can assume dif-
ferent structures, known as micro-datacenters [4], cloudlets
[5], or fog computing [6]. To ensure that they can provide
services with low latency to devices in the edge layer, these
nodes need to be placed in locations that are physically
close to the end-devices. For the successful operation of edge
computing it is crucial to have an infrastructure that is able to
monitor the status and usage patterns of edge nodes, not only
to perform maintenance and repair, but also to reconfigure
the applications based on the observed usage patterns.

II. RELATED WORK

In order to efficiently manage systems with increasing
complexity that can be found in the Cloud, Fog and Edge,
there is a necessity of an accurate and fine-grained monitor-
ing solution capable of capturing different types of informa-
tion regarding the operation of the system, its components,
and subsystems. In order to operate in an infrastructure of
this scale and complexity, a monitoring system needs to
fulfill different function [7]:
Observation The observation function is the one responsible
for tracking remote resources and gathering data for pro-
cessing. This function can be implemented in various ways.
The work of performing the collection of data can come the
monitoring system, or be distributed throughout the remote
resources (Push vs Pull [8]).
Processing In order to be able to use the data generated
by the monitored resources, there is a need to process
and interpret it. This is necessary to evaluate, and provide
necessary insight about the system, and its components.
The analysis can be used to perform optimizations and re-
configurations on the system to increase performance.
Exposition This function is responsible to export the output
of the monitoring system to the users, allowing them to
visualize the information captured and processed.
A. Fog/Edge Multi-layer Monitoring Structure

Edge computing follows a different structure from cloud
computing in the sense that it is divided by layers. Due

1



to these differences, a monitoring service for the edge
needs to be structured differently from one designed for the
cloud. This means following the multi-layer structure defined
for the edge infrastructure [3] with distinct characteristics
that need to be taken into account. Systems are large and
massively distributed, the heterogeneity of the nodes that
make the system and the fact that the nodes can easily
enter and exit the system as most of them are mobile. These
specific characteristics fundamentally change the strategies
that can be used when monitoring the system [1], [7].
New requirements are necessary to design a monitoring
system dedicated to the edge [7]. A edge monitoring system
needs to reduce the amount of network traffic, quickly
react to dynamic resource changes, have operating system
and hardware independence, it should be able improve the
application performance and have location and network
context awareness.

B. Existing Monitoring Solutions
We researched and read about existing monitoring solu-

tion to get a grasp of the techniques used to gather data,
aggregate it. We also wanted to assert if those systems were
capable of adapting to the different conditions and changes
that we might find in the edge. In specific we read about:
Astrolabe [9], FMonE [10], Ganglia [11], MonALISA [12],
Monasca [13] and SDIMS [14]. All of those systems perform
some type of data aggregation, but due to their architecture
and the fact that most of these tools were designed to
work in centralized sites they either use a static topology
to perform the aggregation and do not have the capabilities
of modifying the topology without having highly complex
mechanisms, manual re-configurations (like in Ganglia) or
even restarts of the whole system. Or they are flexible but
do not offer a hierarchical structure that is able provide
a good overview of the aggregation process (MonALISA
and Monasca). In systems like SDIMS where aggregation
regions are closely tied to the data structure it would prove
even harder to re-configure a topology. This means that
although they do have re-configuration processes they are
mostly used to mitigate failures and not re-configure the data
aggregation topology. And even FMonE, that has a design
oriented to fog/edge architecture, with the flexibility of
attributing different settings to each node, it does not provide
a mechanism to easily apply or modify those different rules.

Data aggregation can affect the performance of the system
by reducing the amount transmitted data on the system and
if the topology is well adapted to the scenario. With a
system that is deployed on the edge, the number of devices
increases, and the load and distribution of nodes is constantly
changing. It could prove beneficial to be able to re-configure
the topology to adapt to those loads that the system is being
put under in order to optimize performance. With this, it
feels natural that the next step is to create a monitoring
system capable of functioning at the edge level, and is
able to adapt to different ongoing conditions by modifying
its data aggregation topology without overheads that could
overshadow the benefits of making said change.

Central

Orchestrator

Orchestrator

Replica

Orchestrator

Replica

Orchestrator

Replica

Aggregator

Orchestrator

Replica

Producer Producer

Producer
Producer

Producer Producer
Producer

Producer Producer

Topology 
Maintenance

Data Gathering/
Collection

Regions

Aggregator

Producer

Producer

Producer

Producer

Producer

Producer

Producer Producer

Aggregator

Producer

Aggregator

Aggregator Aggregator

Hierarchical Relation Maintenance Relation

Figure 1: FlexRegMon general structure

III. THE FLEXREGMON SYSTEM

FLEXREGMON design comes from the necessity of hav-
ing a system capable of adapting its data aggregation topol-
ogy to adjust to the constant changes that occur on the Edge.
Our design decisions were made in focus with objective of
simplifying this process and to increase the performance of
management operations in a highly distributed network.

A. System Model
We incorporate FlexRegMon nodes into the classic edge

architecture, by designing it within the following structure: a
central layer, in which we allocate a centralized orchestrator,
where we maintain the whole hierarchical topology, and
other system maintenance information; an edge/fog layer
with wide-spread fog nodes or cloudlets where we are
able to allocate the remaining services for the system:
(i) Orchestrator-Replicas - partial replicas of the Central
Orchestrator; (ii) Aggregators - nodes that store, process,
aggregate, and forward the information generated by the
producers; (iii) Producers - nodes that produce data and feed
it to the their attributed aggregator.

All of these services can be deployed on multiple nodes
per region to allow the system to scale. The Central Or-
chestrator components keeps record of the whole topology,
it is responsible for propagating any changes to its own
partial replicas, and acts as the initial point of contact for
topology changes to be made by the Control System. Each
region is composed by at least one Orchestrator-Replica and
one aggregator. Due to the nature of the architecture of the
system it is possible to deploy the different types of node
on different kinds of devices, such as: (i) Cloud Devices,
servers located in big datacenters built in specific areas of
the globe. Due to their fixed location the communication
conditions with the system’s nodes might vary depending
on the location of said node. Internally the servers have big
can act as Orchestrator, its replicas, and aggregators nodes;
(ii) Fog Devices, located in smaller sized datacenters, called
cloudlets, distributed across the globe, can act as aggregators
for a sub-region or as an Orchestrator-Replica; (iii) Edge
Devices, mobile devices with low computation power that
can host the data producers which generate the data sets
that are sent to the system.

2



B. Data Collection and Processing

In an edge system the number of nodes increases as we
approach the outer layers. Because most of the data in these
type of systems is produced in these dense regions, we
decided to take the approach of submitting data with a Push
based technique. Here producers are actively responsible for
sending the data to the monitoring system.

Producers connect to the corresponding aggregators and
submit their data sets. The aggregators keep those data
sets and are responsible to relay the information to the
upper levels of the hierarchical tree. They achieve this by
contacting the upper hierarchical level aggregators, just like
a producer, and submit the data sets to those nodes.

Due to the nature of the edge network, the connections
between different aggregators have limited bandwidth. Prob-
lems such as link congestion, and message loss, can be
amplified in environments where large amounts of data are
transferred through the network, a scenario that is likely
to happen in a system like ours that has a steady flow of
information coming from producers.

To ease the process of data propagation, and reduce over-
head and possible connection problems between hierarchical
levels, we assume that the aggregators are able to use
aggregation functions to resume data. These functions help
to reduce the size of the data transmitted between levels, and
consequently the overhead of sending data up on hierarchical
tree. With our data model, we aggregate the values by taking
all data sets that have the same context and summarize them
into a single value. This aggregation can be performed with
just one region, or with multiple regions, the only restriction
for aggregation is having the same context. The operation
can be any function that combines multiple values into a
single one (such as the average).

C. Orchestrator

The orchestrator is a logically centralized component
localized in the control layer. This component maintains the
record of the entire topology, which regions are replicated
in each region, and other information relevant to the main-
tenance of the system.

We assume the existence of an external Control System,
that is capable of monitoring the workload and status of each
node of the system. It is also capable of deploying additional
nodes, provide them with all the necessary information
to enter the system, and re-configure the aggregation tree
accordingly. After insertion into the system, all changes to
node information are performed in the Central Orchestrator,
which then propagates it to its own replicas. In this thesis
we do not discuss the policies that may trigger the recon-
figuration of the tree. Instead, we focus on the process of
notifying the aggregators affected by a reconfiguration of
their new parents.

Concerning the topology information, the Central Orches-
trator keeps track of all the different regions, their corre-
sponding parent region, children sub-regions, Orchestrator-
Replicas nodes and it’s associated regions. To create a new

root

Europe

Portugal

Setubal  PortoLisboa

root

Europe

Portugal

 Setúbal 

Porto

Lisboa

Centro-Sul

Figure 2: Hierarchical Tree after new level addition

hierarchical level, the control system creates on the Central
Orchestrator a new register for the new region, sets the
parent and children regions for the new region, and then
attributes a replica and an aggregator to the newly created
region. If the new level is inserted in the middle of the
hierarchical tree, it is necessary to change the values of
adjacent regions. It needs to remap the parent value of all the
sub-regions connected to the previously existent level, and
also needs to remap the child values of the region it takes
as its parent. The process is similar to removing a level.

Figure 2 illustrates this process. The picture on the left
shows an initial hierarchical tree with 4 levels. The one
on the right shows the resulting hierarchy after adding
an intermediate level (the Centro-Sul region) between the
Portugal region and Lisbon/Setúbal regions.

D. Orchestrator-Replicas
Each replica is assigned to a region by the external Control

System and maintains a partial topology of the hierarchical
structure that corresponds to the assigned region. When
a topology update occurs, these replicas are notified and
updated by the Central Orchestrator. The role of these
replicas is to interact with aggregators and producers on
behalf of the Central Orchestrator. Because those types of
nodes only require a partial topology, instead of establishing
a connection to the Central Orchestrator, they can connect
to these replicas to avoid long-latency links, and still retain
the ability to receive topology updates, and query about the
topology, and IP of other nodes.

E. Aggregators
Aggregators are responsible for running the services that

collect and process the data-sets submitted to the system.
They receive and store data from end-users, sensors, and
information producer nodes in the system. Each aggregator
is assigned to at least one region, and those regions are
arranged into a hierarchical structure, where data flow up
the hierarchical tree (from one aggregator to its parent
aggregator). To perform these roles, while being able to
adapt to topology changes, every aggregator is required to
connect to an Orchestrator-Replica (one per region that it is
associated with) in order to keep receiving topology updates.

3



F. Producers
Producer role is generally attributed to nodes located on

the edge of the network, but the it can be attributed to any
other device on the network. This means that any other
service can partake as producers on the system. Produc-
ers join the system by receiving the command from the
Control System, indicating the region, the aggregator and
the Orchestrator-Replica that they should attach to receive
updates. Producers connect to aggregators to submit the
data-sets.

G. Node Bootstrap
The Control System is able to deploy nodes and pro-

vide them with the necessary information to integrate the
system. For Orchestrator-Replicas this means provision of
the region they are representing, their partial topology and
the IP address of the Central Orchestrator to maintain the
connection to receive updates. For the aggregators, it is
necessary the associated region, topology information and
which Orchestrator-Replica to connect in order to receive
topology updates and obtain the parent level Aggregator.
Producers only require their region and replica IP address
to start functioning.

H. Service Discovery and Failures
When a failure occurs and a node becomes unavailable,

the system needs to make sure that nodes that were con-
nected to the point of failure are re-inserted to the system.
To achieve this we make use of the information maintained
by the replicas to find a new IP Address for a service
that replaces the missing node and restores the connection
with the partitioned portion of the system. The task of
detecting a node failure is assigned as follows. The Central
Orchestrator monitors its replicas and each replica monitors
the aggregators in its own region. When a failure is detected,
in order to not provide IP Addresses of malfunctioning
nodes, we rewrite the stored IP address information on the
system and remove the failed node’s register. Failures that
are not directly detected by the Central Orchestrator are
relayed to it by the replicas. Then it can feed the external
Control System with up to data information regarding the
system status; in turn, the control system decides which
actions should be pursued.

I. Data Model
1) Hierarchical Structure: The Central Orchestrator and

its replicas keep the hierarchical topology information in a
Hierarchical Table that matches regions to their sub-regions
and to the parent value. The Central Orchestrator stores the
entire topology while the each Orchestrator-Replica keeps
only that part of the topology associated with its own region.
As noted before, the hierarchical topology is maintained
by the Orchestrator and its replicas. Each one of these
nodes keeps an Hierarchical Table. The information on
these tables is propagated from the Central Orchestrator
to the Orchestrator-Replicas, and subsequently from the

Orchestrator-Replicas to the aggregators and producers. Ag-
gregators and producers can receive their topology infor-
mation from the replicas as these node only require the
information for their region, parent value and sub-regions.
This reduces the amount of information that each replica
needs to maintain to serve a specific region. Upon a topology
update from the Control System, the Central Orchestrator
sends the updates to the corresponding replicas, and those
replicas modify their tables and relay the updates to the
affected nodes that are assigned to them. As an example,
consider the topology depicted in Figure 2. If the Control
System were to remove the Centro-Sul region from the Cen-
tral Orchestrator, it would trigger the Central Orchestrator
to notify the affected Orchestrator-Replicas. After updating
each replica would notify their affected aggregators.

The query operations that are available to connected
nodes provide all the information necessary to propagate
and maintain topology information throughout the system.
Nodes can determine sub-regions and parents of regions.

2) Routing Information: Like with hierarchical informa-
tion, the Central Orchestrator and its replicas keep a registry
of every node connected that is currently serving each
region. To store this information in a Routing Table that
matches regions to the node IP addresses that serve those
regions. If a node is working and is attributed to the region,
its IP address will be present in this table. While the Central
Orchestrator keeps track of all the routing information of the
system, it only directly tracks the status of its replicas. Each
replica maintains the Routing Table for their own aggregators
and provides that information to the central node. Upon
joining the system, each aggregator establishes a connection
between itself and their corresponding Orchestrator-Replica
to have access to topology information updates. This process
creates an entry on the Orchestrator-Replica’s Routing Table
entry and while the connection remains intact the node will
be kept on the table. If, for any reason, the connection is
closed, the replica removes the corresponding node from the
table, making it unreachable inside the system. The closure
of the connection can come from a intentional operation or
caused by a failure of the node or network.

J. Data Sets

Data-sets are sent to aggregators where they are stored,
processed and propagated. The data is stored under two
constraints, context and region. The first one classifies the
value and what it represents (e.g. temperature, CPU usage,
number of nodes), and the second one restricts the scope
of the data set, which is defined by the origin of the data
collection/production.

IV. IMPLEMENTATION

All components have been implemented in Java (1.8).
The Orchestrator and its replicas make extensive use of a
Zookeeper instances to store their information and use as
a session manager. Each instance is linked to a Zookeeper

4



/flex

Portugal

parent
Europe

sub-regions replicas aggregators

Europe

parent
root

sub-regions replicas aggregators

Spain

parent
Europe

sub-regions replicas aggregators

Portugal Spain

Figure 3: Example of FLEXREGMON Zookeeper Server
Hierarchical Structure

Cluster, where they are able to store, and maintain infor-
mation about the hierarchical topology and status of the
connections between nodes.

To create a realistic wide-spread network and to be able
to tweak delays on demand we used Kollaps [15], [16] a
Decentralized Container-Based Network Emulator. It allows
us to run experiments in a single cluster while simulating a
wide-spread network where we can tweak several character-
istics of the network to test different scenarios.

The Central Orchestrator maintains all the hierarchical and
routing information on its Zookeeper cluster. This allows us
to use the central not only as a point of communication for
updates but also as a backup for the distributed replicas.
If any problem arises, and there is a need to repopulate
information to a replica, the Central Orchestrator is able to
provide that information.

A. FLEXREGMON Internal Zookeeper Structure
We use the zookeeper to maintain the topological infor-

mation and connection status with clients for the specific
replica.

We take advantage of the Zookeeper Hierarchical Space
[17] to store our own hierarchical and routing information.
As depicted in Figure 3, at the root level of the Zookeeper
space we create a branch /flex, where every child znode
of that branch represents a region (e.g. /flex/Portugal). In
each one of those child znodes, we create another four
different znodes: (i) /flex/*/parent, where we keep the value
of the parent region; (ii) /flex/*/sub regions, where, for each
subregion we create a znode with the name of each one
of those regions (e.g. flex/Portugal/sub regions/Lisbon; and
at last (iii) and (iv) which have similar behavior (which
is detailed in the following section) are /flex/*/replicas and
/flex/*/aggregators.

B. FLEXREGMON Discovery Service
Zookeeper has the ability to create ephemeral nodes.

These znodes remain in the system as long as the client
that created those znodes remains connected to the Server
and renews the lease on the znode (mimicking the behavior
of a session). When the session ends the znode is deleted.
A limit imposed on the creation of these types of nodes is
that they are not allowed to have children znodes.

Due to way these nodes work, one of the documented
uses to them is the role of service discovery. If a certain
service creates an ephemeral znode with their location (IP
address and port) and keeps renewing the lease on that same

/flex

Lisbon

parent
Portugal

sub-regions replicas

193.165.5.45

192.58.368.4

aggregators

191.54.356.7

Figure 4: Zookeeper Structure example to store Routing
Table information

node, we will be able to find the service on the Zookeeper
registries. In this way, we can always have an updated and
on-demand list of the current location of machines that are
running a said service.

We make use Zookeeper’s natural hierarchical structure
and ephemeral znodes as the foundation for the implemen-
tation for our own discovery service and Routing Table.

We construct the routing table by using the zookeeper
hierarchical znodes. As described in the previous section, re-
gions are represented by permanent znodes (with the region
name). Within those znodes we create multiple branches that
we can use to store the necessary information to maintain
the routing table (as can be seen by the aggregators and
replicas branches in Figure 3).

These branches are populated by ephemeral znodes, cre-
ated by the nodes that are running the corresponding service
(either as replicas or aggregators). When the connection
with the node that created the ephemeral znode is closed,
the ephemeral znode is removed and the node becomes
unreachable when searching for that service.

The replicas branches are populated when an
Orchestrator-Replica connects to the central Orchestrator
and they create the ephemeral znode with their location
on the corresponding region. The aggregators branch is
populated in a different way, depending if we are talking
about a replica or the central Orchestrator. If populating
a replica, aggregators nodes connect to those replicas
and create the ephemeral znodes to initiate their session.
Then the replicas duplicate those znodes to the Central
Orchestrator.

Whenever a node requires to know the location of a
service, it simply needs to do a simple query for the children
of those znodes (aggregators and replicas).

C. Notification System

After a topology modification is performed it is necessary
to propagate the changes throughout the system. This is
important to enable the features that we want our system
to have in respect to adaptability to multiple topologies.

We started by using the Watcher mechanism already
implemented by Zookeeper [17]. This proved to be a prob-
lem when sending topology change notifications through
long-distance channels that had a higher level of latency.

5



Zookeeper’s watch mechanism works by having clients sub-
scribe to changes in a certain node, and notifying subscribers
of said data changes and let the client control the operation
to perform after notification. This means that to update a
single node of a topology change in a region it is required
to: (i) report the event to the subscriber (in this case report
data change of x znode); (ii) the subscriber node will receive
the event and decide what to do (in this case request the new
data); (iii) send the data from the origin to the subscriber
node. In a communication channel where latency is involved,
this extra number of messages that is necessary to update the
topology results in an excessive amount of overhead due to
the time it takes for each message to be transmitted in a long
distance channel. We solved this problem by implementing
a custom protocol that sends all the necessary information to
perform the necessary modification in one single message.
When a modification is performed, the central Orchestrator
or replica look at the modified area of the Zookeeper, and
send the a single message to the affected nodes with the
necessary changes. This allow us to evade the two phase
update (notification plus data pull) that is necessary when
using the Zookeeper’s native watcher mechanism.

This notification system is also used to report node
failures. It works in a similar way to the notification of
topology changes. When a connection between a node and
its orchestrator breaks, the ephemeral znode that represents
the node session is removed. This triggers the notification
to the affected nodes (in a single message like a topology
change) and perform the necessary operations.

D. Orchestrator

The Orchestrator works as the central registry for the
hierarchical structure. Each instance is associated with a
Zookeeper Cluster, where they store all the necessary data
to keep the topology and other necessary information.

With the Central Orchestrator initiated, the distributed
replicas can connect to the central node, get hierarchical
information, and create a ephemeral znode with the replica
IP to receive updated (under the /replicas branch e.g. /Portu-
gal/replicas/IP ADDRESS). These ephemeral znodes allow
us to monitor existing services, as the corresponding znodes
are removed when the connection are closed. If a connection
is closed in a controlled way, either by the orchestrator or by
the node itself, the orchestratror deletes the ephemeral znode
immediately, effectively removing it from the hierarchical
and routing table. In the case of the session being terminated
in an uncontrolled way the Zookeeper instance has a timeout
for every session. When a service fails to renew the lease for
the ephemeral znode, the Zookeeper service automatically
removes the related znode.

E. Orchestrator-Replicas

In order for individuals Orchestrator-Replicas to take
the role of localized topology information maintainers and
serve aggregators, we associate each replica to the central
Orchestrator.

Each replica requests the necessary information for its re-
gion to the Central-Orchestrator and populates its registries.
In order to receive topology updates, the replicas also create
an ephemeral znode in the central node with their IP for
each region they represent. This node is created under the
branch: /flex/*region*/replica. This allows the central node
to known which replicas to update when any of these any
modification occurs.

After configuration, aggregators connect to replicas in
a similar way that Orchestrator-Replicas connect to the
central node. They create an ephemeral znode, under
/flex/*region*/aggregator, which allows to receive topology
information, routing information and updates.

F. Aggregators
Aggregators nodes implementation can be divided into

two parts: the first part consists of a client that con-
nects to the Orchestrator-Replicas. This connection is what
enables aggregators to register themselves for a specific
region and create their sessions in replicas. The process
is similar to a replica registration on the Central Or-
chestrator, aggregators connect to a replica and add an
ephemeral znode to the region’s aggregators branch (e.g.
flex/*region*/aggregators/*AggregatorIpAddress*).

The second part consists on the metric server. FLEXREG-
MON producers uses a push approach to submit data-sets to
the system. Aggregator nodes open a server on a well-known
port, where producers or other aggregators can connect to
submit data sets.

To submit data to the metric server nodes are required
to tag the data-sets with an identifier that contextualizes the
data and allows the metric server to sort it. Aggregators
store the data sets along with their tags and origin region.
Periodically, they perform a set of predefined operations that
summarize the values with a specific tag for a region into
a single data value. After summarizing the data sets, aggre-
gators can relay the new value to the up in the hierarchical
tree to another aggregator. These processes repeats until the
data reaches the root of the hierarchical tree.

G. Deployment
In respect to the deployment of the system we took extra

care with two aspects. The first one is that to be able to
run a monitoring system on top of an Edge architecture
is highly recommended the ability to deploy software in a
heterogeneous environment with different types of machines
and architectures and the software should be able to run on
different these architecture with various levels of resources
availability without high levels of configuration and compat-
ibility problems. And the second problem is that evaluating a
large-scale distributed system is a hard, slow, and expensive
task. This comes from the large number of components that
are involved: system dependencies, libraries, environment
heterogeneity, network variability, and difficulty in control-
ling the network and its conditions to test specific cases.

We solved the first problem by making use of Docker
[18], a containerization technology that allows us to run our

6



software in multiple types of environment, as long as they
are able to run the docker engine and support virtualization
technology. The second problem is solved by deploying
FLEXREGMON on top of Kollaps [15], [16], a decentralized
container based network emulator. This emulator allows us
to have full control over deployment environment.

V. EVALUATION

In the evaluation, we want to address the following
problems:

1) How does FLEXREGMON distributed topology man-
agement compare to the centralized solution of
Zookeeper [17] in edge scenarios?

2) Does the FLEXREGMON distributed management help
with operations inside regions?

3) Can FLEXREGMON provide advantages to systems
that unexpected loads on a specific region with its
characteristic of topology flexibility?

For this purpose it was run a performance evaluation of
FLEXREGMON against a centralized Zookeeper adapted to
our nodes.

VI. EXPERIMENTAL SETUP

All experiments were run on cluster composed by two
machines: the first one with a 2.20GHz Intel Xeon Silver
4114 CPU and 128GB of RAM. And the second with a
2.00GHz Intel Xeon Gold 6138 CPU and 64GB of RAM,
with all CPU cores locked at running at 50% max load. We
used Kollaps [15] to create the virtual networks necessary
for the experiments and to launch the nodes instances. The
experiment was then deployed on top of a Docker Swarm
cluster and inside the virtual network.

Each FLEXREGMON nodes run a custom docker image
containing our system implementation and running on top
of Alpine Linux 3.4.6, and Java 1.8.0 111.

Depending on the experiment, we use different topology
definitions to match the desired network structure, with
different point-to-point network configurations to simulate
different network structures.

To measure latency and manage all nodes, we also created
an extra overseer node, called Puppetmaster. This node is
external to the Kollaps network and is able to communicate
with close to 0ms delay with every other node on the
network (which allows us to take the measurements).

A. Propagating Modifications on the Edge
In this section, we try to answer the first question and

compare, on an Edge environment, our solution to distribute
the management of region to Orchestrator-Replicas and
compare it to the centralized solution of a Zookeeper cluster.
Upon a topology modification, FLEXREGMON relies on the
Central Orchestrator to send the update to a replica that
serves the region, and the replica will send the update to
the remainder of the nodes. In the case of Zookeeper, the
central server is responsible for sending the updates to every
node on the system.

(a)

Figure 5: Time to add hierarchical level

We expect that, in scenarios where the central node is in
distant geographical areas, as those that can be found in an
Edge environment and where the connections have higher
latency between nodes, the Zookeeper solution will obtain
worse results than FLEXREGMON.

The network scenarios consist of two geographical areas,
split by a Kollaps relay with 1000Mbps of bandwidth
and 200ms of latency between them. FLEXREGMON de-
ployment keeps the Central Orchestrator in one of the
geographical areas, and all the other nodes required to run
the experiment in the second area. Zookeeper keeps the
central server on one of the areas and the remainder nodes
on the other.

We then measured the time it takes for a modification on
the data aggregation topology of a single region to propagate
to every affected aggregator. With this, in Figure 5a we have
the x axis where we vary the number of aggregators present
in the region and in the y axis the time it takes for all the
aggregators to acknowledge the new topology.

We can observe up to 3.1⇥ lower latency times to
update all aggregators in FLEXREGMON when compared to
Zookeeper. FLEXREGMON makes use of the geographical
proximity of the replicas to leverage lower latency connec-
tions, contrasting the Zookeeper solution of updating each
aggregator.

Another aspect that might affect these results is the
use of Zookeeper notification mechanism. The notification
system in this specific scenario is not optimal. It requires
to send n number of notification messages (n being the
number of nodes that were affected by the update), plus
n data request messages, and n more data answer messages
through a channel with a delay of 200ms. FLEXREGMON
design is streamlined to send a single a message with the
necessary information to each node. In this case, FLEXREG-
MON sends a single message to the orchestrator-replica,
and then that replica relays the message to all the other
nodes with a much lower latency. Both these characteristics,
the distributed management (Orchestrator-Replicas) and the
notification system, allow FLEXREGMON to reduce the time
to update the topology by an average of 2.8⇥ in comparison
to the classic Zookeeper system in an edge scenario.

7



Figure 6: Time to add aggregator

B. Adding and Removing Aggregators

Because FLEXREGMON attributes the management of
regions to replicas instead of managing it at the central node
aggregators and data producers only are required to talk with
the replicas to interact with the system. This allows to have
lower latency operations, like joining and exiting the system
or receive topology updates. It would also be interesting to
have a distributed control engine that could give regions the
ability to self-regulate, scale as necessary, and even perform
topology modifications inside their own scope.

With this we want to measure the effectiveness of our
solution to decrease the latency of these types of operations
in edge scenarios, where the central node has a high latency
connection to the nodes located in the edge. We deploy
both FLEXREGMON and Zookeeper in a topology with
two different geographical areas, with a Kollaps relay in
the middle where we vary the latency. For FLEXREGMON
we keep the Central Orchestrator in one of the areas and
on the other we have a single Orchestrator-Replica that is
responsible for the unique region that exists in the system.
For the Zookeeper solution we keep the server in one of
the areas and the remainder nodes on the other. Then we
deploy an aggregator that will register on the system and we
measure the time it takes for it to integrate the system. We
expect FLEXREGMON to have better results. Orchestrator
replicas reduce drastically the latency from the new node
to a management node which leads to an increase of the
performance of the system, and reduction of the overhead
that would occur by using a centralized management system
in an environment with high latency connection such as
those found in the edge. In Figure 6, it is shown the average
time to add an aggregator after instantiating it. In the x
axis we have the latency between the geographical areas
that we vary from 10ms to 400ms, and in the y axis we
have the time it takes for the aggregator to be available
to producers. By analyzing the results we can see that the
FLEXREGMON maintains a constant value as the system
uses the localized replicas to manage the regions, which
results in an average of 10ms to fully execute the operation
and for the aggregator to be available. The Zookeeper
performance keeps deteriorating with the increase of the
latency between the geographical areas. The distribution of
the regions’ management makes these types of operations
independent from the quality of the connection to the central

(a) (b)

Figure 7: Time to propagate update (a) varying nodes (b)
varying latency

node. The results show that the FLEXREGMON architecture
helps in dealing with local management operations as the
necessary nodes are closer, reducing the impact of high
latency connections. It also reinforces the idea of possible
benefits that having a distributed control mechanism that
enable more decision powers in each replica over their region
could be beneficial to the system, making the replicas even
more independent from the central node.

C. Notification System
Both FLEXREGMON and the centralized Zookeeper so-

lution rely on a notification system to propagate topology
changes. This is a necessary step to update the topology
on all necessary nodes, and needs to take into account
the condition of the connections between nodes to not
hinder the update process. Zookeeper uses the Watcher [17]
mechanism. Each node subscribes to changes to a specific
znode and are later notified of said changes, having to
request the changed data and resubscribe to keep receiving
updates. FLEXREGMON uses its own routing table to send
the updates automatically upon a modification. In a con-
strained network with higher latency, as those found between
two distant geographical zones, FLEXREGMON saves a
lot of overhead due to sending a single message. Figure
7 shows the results of our experiments to evaluate both
notification systems. To evaluate the performance benefits
of our notification solution, we integrated the Zookeeper
notification mechanism into FLEXREGMON and performed
two experiments, one measuring the time for both noti-
fication mechanisms to update the system while varying
the number of Orchestrator-Replicas and maintaining the
latency between regions. For the second experiment we took
the same measurements but varied the latency between the
geographical areas with a fixed number of replicas. The
topology for the experiments consist on two geographical
areas, separated by a Kollaps relay, with the Central Or-
chestrator in one of the geographical areas and all the other
replicas in the other.

In the Figure 7a, the x axis varies the number of replicas
that need to be updated and the y axis shows the time it
takes for all nodes to acknowledge the new topology. We
kept the latency between the two geographical regions at
200ms and vary the number of replicas that required to
be updates from 1 to 50. As expected, we can see that

8



(a) Time to update topology on
all nodes

Figure 8: FLEXREGMON vs Zookeeper in centralized envi-
ronment

both FLEXREGMON and Zookeeper maintain performance
when varying the number of replicas that required concurrent
updates, with both systems keeping stable results throughout
the experiment. This provides assurance that both notifica-
tion mechanisms are adequate to send concurrent updates to
multiple nodes, with no detriment in the performance when
increasing the number of notifications.

In Figure 7b, for the x axis we vary the latency between
two geographical areas and again in the y axis we have the
time in ms for all replicas to receive the update. Here we
fixed the number of replicas to 25 and varied the latency
between geographical regions, going from 10ms to the
400ms. Looking at the results, it is possible to see that
both FLEXREGMON and Zookeeper notification systems
performance get worse results as we increase the latency
between the geographical areas, with Zookeeper having a
larger deterioration on performance. This happens because
Zookeeper solution requires more messages to perform the
data update on the remote nodes, meaning that as we in-
crease the connection latency between geographical regions,
the more it will affect the update process. This translates to
FLEXREGMON having up to 2.7⇥ better results than the
Zookeeper in similar conditions.

D. FLEXREGMON Overhead
FLEXREGMON introduces some processing steps to each

update, where it is necessary to consult the routing table
to assert which nodes need to be updated. Due to the
way that FLEXREGMON propagates the updates, it might
be necessary to have multiple phases of this process. For
example, when making a topology modification that affects
aggregators. First the Central Orchestrator sends the update
to the replicas, and only then after processing the update and
looking at their routing tables the replicas send the updates
to the aggregators. In the case of using the centralized
Zookeeper, the server will deliver directly the update directly
to each node. By deploying both systems in a centralized
scenario we can measure how having to re-process and relay
the updates on FLEXREGMON might affect the system. The
connection between nodes is no longer a problem and both
systems can function just based on execution time.

We used a simple topology with a single geographical
area where we allocate every necessary node to run the

(a) (b)

Figure 9: Benefits of flexible topology: Dynamic vs Static

experiment. By varying the number of nodes that need to
be updated we can show how it affects each update strategy
and if the processing required by our solution affects the
performance at all. We expect FLEXREGMON extra steps
to have a small impact (or even none) on the performance
and to achieve similar results to the Zookeeper.

In Figure 8a, we have the x axis where we vary the
number of nodes that are updated and in the y the time it
takes for every node to acknowledge the update. By looking
at the results we can see that the performance is relatively
the same between both solutions. They both keep a steady
time to update all nodes and no solution is better than the
other in this centralized scenarios in terms of update latency.
This shows that even with FLEXREGMON added complexity
caused by having a distributed region management, it does
not cause an excessive overhead over updates in a centralized
environment while providing benefits in edge scenarios.

E. Benefits of the Flexible Topology
Due to the nature of the edge, it is expected to have

constant changes in the load of nodes and regions. With
clients having the capability of being mobile, the possi-
bility of big migrations might lead to the degradation of
performance in a specific region. To combat this we can
re-arrange the topology of the system in order to distribute
load and use of data aggregation to reduce the saturation
of connections on the system. In the previous sections it
was shown that FLEXREGMON is able to apply topology
updates in a effective way, even in edge scenarios. Now we
wish to prove that the impact of performing those updates
does not overbear the benefits of the re-configuration the
data aggregation tree.

To measure this we want to run an experiment that
compares the performance between a static topology vs a
dynamic approach where we re-configure the regions topol-
ogy to adapt to the load. In this experiment both solutions
start with two geographical areas separated by a Kollaps
relay with no added latency but with variable throughput
(from 5Mbps to 1000Mbps). All the other connections have
no latency and work with a throughput of 1000Mbps. The
regions divide into two hierarchical levels. With every level
being able of resuming the data to a quarter of what it
receives. During the experiment we connect a fixed number
of clients to the system that generate a total 25GB of
data-sets and submit them to the system. The system will

9



progressively send the generated data up the hierarchical
tree through the aggregators until it reaches the root of the
hierarchical tree. For this experiment we set each aggregator
to be capable of resuming the received data to a quarter.

We deploy two versions of FLEXREGMON: the first one
maintains the topology static and does not create or remove
regions or hierarchical levels. The second version applies a
topology modification that two extra hierarchical levels to
increase the number of times of data aggregation.

In Figure 9a, the x axis varies the throughput of the
connections between the geographical areas, and the y axis
shows the time it takes for the inserted data (or a resume of
it that represents it) to reach the central node. By looking
at the results we can see that when we have connections
with low throughput and saturate them re-configuring the
topology is clearly beneficial to the performance of the
system, with much lower times than the static topology due
to the reduction of the transmitted data that comes from
having the two extra hierarchical levels.

For situations with higher throughput, we need to take into
account the objective of a re-configuration. Depending on the
objective it might still be effective (e.g. reduce the amount
of data transmitted) even in situations of high throughput
where we worse results if we perform the re-configurations.

Because the re-configuration has a time cost and intro-
duces extra steps between the central node and the root (due
to the increase of hierarchical levels), there are situations
where re-configuring the topology leads to worse times. We
see the breaking point for that situation on 9b, where the
static topology has better results when the connection has
a throughput of 1000Mbps and that at around 790Mbps it
starts to be worth to use the dynamic approach instead of the
static solution. The smaller the throughput of a connection
the worse the system will behave when transmitting the
same amount of data, thus the re-configuration will allow
aggregate the data more aggressively, and reduce the size of
the transmission improving the performance of the system.

Our experimental evaluation shows that FLEXREGMON
is capable of modifying the topology of a edge deployed
system up to 3.1x faster when compared to a centralized
topology management. FLEXREGMON also creates a mas-
sive increase in the performance of management operations
like joining or exiting a region, with results close to 0ms of
latency, due to the distributed role of region management that
is present in Orchestrator-Replicas. The notification system
used by FLEXREGMON also reduces drastically the cost of
performing updates on the edge, as the reduce communica-
tions cost helps the propagation of updates. And lastly we
also validated the utility and viability of dynamically altering
the data aggregation topology to increase the performance
of the system.

VII. CONCLUSIONS AND FUTURE WORK

Given that the Edge computing paradigm is spread in
a much larger area when compared to the classic Cloud
computing paradigm, it is expected to have different types
of loads that depending on the situation would benefit

from different topologies. In this thesis it was presented
FLEXREGMON, a system that by the means of a dis-
tributed management orchestrator allows to efficiently mod-
ify the topology of regions for data aggregation, to allow
low latency operations and increase the performance when
propagating information. It was shown that FLEXREGMON
allows the system to reconfigure itself and re-arrange its data
aggregation topology to adapt to different conditions, leading
to performance gains in multiple scenarios. FLEXREGMON
combines the use of a new notification system along with
the distributed Orchestrator-Replicas to reduce the amount
of communication necessary to central node to perform said
re-configurations.

As future work, it would be interesting to develop the
decision motor to perform dynamic modifications on the
topology of the system, and evaluate the benefits of distribut-
ing that component. If each region could be self-regulated
and modify its topology independently it could enhance the
capabilities of the system.

ACKNOWLEDGMENTS

This work was partially supported by the FCT via
project COSMOS (via the OE with ref. PTDC/EEI-
COM/29271/2017 and via the “Programa Operacional Re-
gional de Lisboa na sua componente FEDER” with ref.
Lisboa-01-0145-FEDER-029271) and project UIDB/ 50021/
2020.

10



REFERENCES

[1] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and
V. Stankovski, “Monitoring self-adaptive applications within
edge computing frameworks: A state-of-the-art review,” Jour-
nal of Systems and Software, Feb 2018.

[2] V. Prasad, M. Bhavsar, and S. Tanwar, “Influence of moni-
toring: Fog and edge computing,” Scalable Computing, May
2019.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, Oct
2016.

[4] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The
cost of a cloud: Research problems in data center networks,”
Computer Communication Review, Jan 2009.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE
Pervasive Computing, Oct 2009.

[6] F. Bonomi and R. Milito, “Fog computing and its role in
the internet of things,” Proceedings of the MCC workshop on
Mobile Cloud Computing, Aug 2012.

[7] M. Abderrahim, M. Ouzzif, K. Guillouard, J. Francois, and
A. Lebre, “A holistic monitoring service for fog/edge in-
frastructures: A foresight study,” in 2017 IEEE 5th Interna-
tional Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2017.

[8] J.-P. Martin-Flatin, “Push vs. pull in web-based network man-
agement,” in Integrated Network Management VI. Distributed
Management for the Networked Millennium. Proceedings of
the Sixth IFIP/IEEE International Symposium on Integrated
Network Management., 1999.

[9] R. Van Renesse, K. Birman, and W. Vogels, “Astrolabe,” ACM
Transactions on Computer Systems, May 2003.

[10] M. Pérez and A. Sanchez, “Fmone: A flexible monitoring
solution at the edge,” Wireless Communications and Mobile
Computing, Nov 2018.

[11] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience,” Parallel Computing, 2004.

[12] H. B. Newman, I. Legrand, P. Galvez, R. Voicu, and
C. Cirstoiu, “Monalisa : A distributed monitoring service
architecture,” CoRR, 2003.

[13] Openstack Project, “Monasca wiki,” https:
//wiki.openstack.org/wiki/Monasca, accessed: 2019-12.

[14] P. Yalagandula and M. Dahlin, “A scalable distributed infor-
mation management system,” SIGCOMM Comput. Commun.
Rev., Aug. 2004.

[15] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa,
V. Schiavoni, and M. Matos, “Kollaps: Decentralized
and dynamic topology emulation,” in Proceedings of
the Fifteenth European Conference on Computer Systems,
ser. EuroSys ’20. New York, NY, USA: Association
for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387540

[16] M. Matos, “Kollaps/thunderstorm: Reproducible evaluation of
distributed systems,” in Distributed Applications and Interop-
erable Systems, A. Remke and V. Schiavoni, Eds. Cham:
Springer International Publishing, 2020, pp. 121–128.

[17] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper:
Wait-free coordination for internet-scale systems,” in Pro-
ceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIXATC’10. USA: USENIX
Association, 2010, p. 11.

[18] D. Merkel, “Docker: Lightweight linux containers for consis-
tent development and deployment,” Linux J., vol. 2014, no.
239, Mar. 2014.

11


